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Abstract

Researchers dissatisfied with the performance of the Beverton-Holt model, in contexts

where “Beverton-Holt-like” behavior is expected, have introduced a plethora of

alternative model forms. This paper presents a formalization of what constitutes

“Beverton-Holt-like behavior” which includes many of these forms, and shows that the

class of functions so defined has a coherent and non-trivial mathematical theory. Data

from the stock production database assembled by Ransom Myers is used to illustrate

why such generalizations have been sought in the first place, and to highlight the

difficulties in choosing between model forms on purely empirical grounds. Special

attention is given to a parametric family of functions within this class, here called

“θ-BH” functions. These functions cover a broad range of shapes, including both the

Beverton-Holt and hockey stick functions, and share useful properties with these two

widely-used models.

1 Introduction 1

The stock-production approach to population modeling is to view abundance at some 2

life-stage (e.g., recruitment to the ocean fisheries) as a function of abundance at some 3

antecedent stage (e.g., the number of parent spawners). If X denotes the abundance of 4

the parent stock, and Y the resulting production, the model is that Y = F (X), where 5

the function F is called a “stock-production function” (or “stock-production relation”, 6

or “stock-production law”). Although abundances are often expressed as numbers of 7
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individuals (and hence as whole numbers), it is usual to treat X and Y as continuously 8

variable quantities, and F as a continuous (and even piece-wise smooth) function. 9

A stock-production function summarizes, and could in principle could be derived 10

from, a deep analysis of the ecology of an organism. In practice, it is more common to 11

use a stock production function as a substitute for such an analysis. That is, one argues 12

on qualitative grounds that the “true” relationship should be at least approximately of 13

a certain algebraic form, and selects parameters for this form by some process that 14

side-steps the need for detailed theories of individual behavior, bioenergetics, and so on. 15

One commonly used form is the “Beverton-Holt” function [1]: 16

F (X) =
rX

1 + rX/K
. (1)

This form is appealing for a number of reasons, not least of which is that it has only two 17

parameters, both of which can be given plausible interpretations as “real” quantities 18

(this will be considered more carefully in Sections 4 and 5). It has become one of the 19

most commonly used of all stock-production models. 20

The Beverton-Holt function has also been frequently criticized, however. Aside from 21

reservations about the usefulness of stock-production theory in general, a recurrent 22

complaint is that theory or empirical data suggest that Beverton-Holt has the wrong 23

qualitative behavior for the situation in hand. 24

For example, while it is trivially true that there must be some theoretical upper 25

limit on the population, this might not have any practical meaning for the population 26

under consideration, which might be better described by the Shepherd function 27

F (X) = rX/(1 + bXγ) with γ < 1 [2]. Or one might expect production to attain a 28

maximum at some finite stock and then decrease, like the Ricker function 29

F (X) = rX exp(− rXeK ) [3]. If Allee effects are a concern, the Thompson function 30

F (X) = rKXδ/(rXδ +K) might be appropriate [4]. Some of the possibilities are 31

illustrated in Fig 1.

Fig 1. Some frequently used stock-production relationships.

32

This paper is concerned with a different objection: Fitting data to Beverton-Holt 33

functions can produce results which are unsatisfactory even when the data appear 34
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“Beverton-Holt-like.” To understand this objection, and how it might be addressed, it is 35

necessary to understand which features of the Beverton-Holt function are essential to 36

the conceptual model underlying its adoption, and which are accidental to the 37

particular algebraic form as Eq (1). 38

2 Beverton-Holt-like functions and r-K functions 39

This section formalizes what it means to say that a stock-production function 40

“resembles” or “generalizes” the Beverton-Holt function, and discusses basic properties of 41

the functions so defined. 42

2.1 Definitions 43

In many situations, biological considerations lead to the expectation that production 44

should be nearly proportional to stock when habitat is freely available, and nearly 45

constant when some dimension of habitat is fully utilized. In particular, this is the case 46

when population dynamics is driven principally by contest competition [5, 6]. These 47

qualitative expectations can be formalized as constraints on the mathematical form of a 48

stock-production function Y = F (X): 49

(I) For some 0 < r <∞, the graph of F approaches the line Y = rX as X goes to 0. 50

(II) For some 0 < K <∞, the graph of F approaches the line Y = K as X goes to ∞. 51

Conventionally, r is interpreted as an “intrinsic rate of increase” or a 52

“density-independent survival,” and K as the ultimate “carrying capacity” of the habitat 53

(this will be considered more carefully in Section 4). 54

These are typically are the only properties that are justifiable a priori, so F should 55

be otherwise unremarkable. A simple formulation of this is: 56

(III) F (X) is non-decreasing and concave. 57

A more stringent notion of “unremarkability” is explored in S1 Appendix. 58

For the rest of this paper, continuous functions satisfying the conditions (I), (II), and 59

(III) will be called Beverton-Holt-like. It is mathematically convenient to exclude the 60
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case when stock (and hence production) is exactly zero, so Beverton-Holt-like functions 61

will be continuous functions on the positive real numbers. 62

Continuous functions on the positive real numbers satisfying the conditions (I) and 63

(II) will be called r-K functions. 64

2.2 Standard form and homogeneous families 65

The limiting values associated with an r-K function F will be denoted r(F ) and K(F ). 66

The (signed) area of the “wedge” between the graph of F and the line y = K(F ) will be 67

called the defect of F , and written defect(F ); this is one way of measuring how quickly 68

the function approaches its limit. Fig 2 shows a generic Beverton-Holt-like function.

Fig 2. A generic Beverton-Holt-like function (solid line), with its defining asymptotes
(dashed lines) and defect (shaded area).

69

An r-K function f will be said to be in standard form if r(f) = K(f) = 1. If f is in 70

standard form, then the function F (X) = Kf(rX/K) is an r-K function with r(F ) = r 71

and K(F ) = K. Conversely, every r-K function F is associated in this way with a 72

unique function in standard form, which will be called the standard form of F . 73

A family F of r-K functions will be called homogeneous if all its members have the 74

same standard form. This common form will be called the standard form of F . 75

A family F of r-K functions will be called full if every possible combination of r and 76

K is represented by at least one member of F . 77

In practice, Beverton-Holt-like functions encountered in the stock-production 78

literature seem to fall naturally into homogeneous families. This is partially explained 79

by the following observation: 80

Proposition 1. Suppose F is a full family of r-K functions whose members are 81

uniquely characterized by their r and K values. Suppose also that F is closed with 82

respect to rescaling; that is, for any F in F and any positive numbers a and b, the 83

function aF (bX) is also in F . Then F is homogeneous. 84

Proof. Let f be the unique member of F with r(f) = 1, K(f) = 1. If F is any other 85

function in F , say with r(F ) = r, K(F ) = K, then F (X) and Kf(rX/K) are two 86

members of F with the same r and K values; by assumption, these must coincide. 87
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2.3 Examples of Beverton-Holt-like functions 88

Some examples of Beverton-Holt-like functions are collected in Table 1 in standard form, 89

together with their defects. Fig 3 shows a sampling of these. 90

Table 1. Examples of Beverton-Holt-like functions in standard form. To express these in the original units for
stock and production, apply the substitutions x = rX/K, y = Y/K, and multiply the defects by K2/r.

Name Reference Standard form∗ Defect†‡

hockey stick [7] y = min(x, 1)
1

2
Beverton-Holt [1] y =

x

1 + x
∞

Skellam [8] y = 1− e−x 1

θ-BH [9] y =
x

(1 + xθ)1/θ

{
∞ if 0 < θ ≤ 1
1
θB( 2

θ , 1−
1
θ ) if 1 < θ <∞

negative power [6] y = 1−
(
1 +

x

λ

)−λ {
∞ if 0 < λ ≤ 1
λ
λ−1 if 1 < λ <∞

positive power (see text) y = 1−
(
1− x

λ

)λ
+

λ

λ+ 1
for 1 ≤ λ <∞

logistic hockey stick [7] y = 1− logλ
(
1 + (λ− 1)λ−

λ
λ−1x

)
− λ− 1

λ(log λ)2
Li2(λ) for 1 < λ <∞

bent hyperbola [10] y =
2x

x+ 1 +
√
x2 − 2λx+ 1

{
∞ for −1 ≤ λ < 1
1
2 for λ = 1

∗ (x)+ is max(0, x).
† B(·, ·) is the beta function, B(u, v) =

∫ 1

0
tu−1(1− t)v−1 dt [11, §6.2].

‡ Li2(·) is the dilogarithm function, Li2(u) = −
∫ u

1
log(t)/(t− 1) dt [11, §27.7].

Fig 3. Some Beverton-Holt-like functions having the same r and K. See Table 1 for
sources and algebraic forms.

Since all Beverton-Holt-like functions look more or less alike to the human eye, it is 91

reasonable to wonder if there is any point to this proliferation of algebraic forms. This 92

will be addressed in Sections 4 and 6; for now, it will just be noted that many of the 93

functions in Table 1 were introduced specifically to address practical problems 94

encountered with Beverton-Holt. 95

The hockey stick, Beverton-Holt, and Skellam functions have all been used by 96

multiple researchers. Moreover, less familiar functions seem invariably to include one or 97

more of these as a special or limiting cases. It is obvious that any Beverton-Holt-like 98

function is bounded above by the hockey stick of the same r and K, and it is shown in 99

S1 Appendix that any Beverton-Holt-like function which is “sufficiently boring” (in a 100

technical sense explained in the Appendix) is bounded above by the Skellam of the same 101

r and K. 102
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The name “θ-BH” was coined for the present paper, in analogy to the θ-logistic 103

differential equation with which it is closely related (Section 3.3). [9] calls it the 104

“δ-power B&H”, and derives it from a size-based recruitment model. It makes a fleeting 105

appearance in [12] without acquiring a name there. Despite its simplicity, it has not 106

seen much use as a stock-production model. The θ-BH functions can be obtained from 107

Beverton-Holt by a simple change of variables: Y is a θ-BH function of X if and only if 108

Y θ is a Beverton-Holt function of Xθ. 109

The negative power distribution is derived in [6] as a mixture of Skellam functions. 110

Mixtures of Beverton-Holt-like functions will be discussed more generally in Section 2.5. 111

The positive power distribution is a trivial variant of this, but I haven’t been able to 112

find a case in which it has been used as a stock-production relation (perhaps because it 113

is not easily fitted by the usual least-squares method). 114

The logistic hockey stick is presented in [7] as a function in three parameters α, µ, 115

and θ, most naturally expressed as a cumulative integral: 116

Y =

∫ X

0

α
1 + e−1/θ

1 + e(x−µ)/(θµ)
dx (2)

The standard form of this turns out to depend only on θ, so this is a natural shape 117

parameter; when working with the standard form, it is convenient to use λ = e1/θ + 1, 118

resulting in the (admittedly bizarre) expression in Table 1. The natural domain of λ 119

from this derivation is 1 < λ <∞, with the limiting cases λ→ 1 and λ→∞ yielding 120

the Skellam and hockey stick, respectively. The algebraic expression in the table 121

continues to describe a Beverton-Holt-like function for the larger interval 0 < λ <∞, 122

with a removeable singularity at λ = 1. 123

The bent hyperbola is the specialization of the more general bent hyperbola of [13] 124

to the context of Beverton-Holt-like functions. It is presented in [10] as a function in 125

three parameters β, S∗, and γ: 126

Y = β
(
X +

√
S∗2 + γ2/4−

√
(X − S∗)2 + γ2/4

)
(3)

The standard forms of these turn out to depend only on the quantity 127

λ = S∗/
√
S∗2 + γ2/4, which is taken as the shape parameter here. The natural domain 128
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of λ from this derivation is the closed unit interval −1 ≤ λ ≤ 1, with the limiting cases 129

λ = −1 and λ = 1 yielding the Beverton-Holt and hockey stick, respectively. The 130

algebraic expression in the table continues to describe a Beverton-Holt-like function for 131

the larger interval −∞ < λ ≤ 1. 132

The bent hyperbola reveals a limitation of the defect as a measure of distance from 133

the hockey stick: although λ = 1 is the hockey stick, and the convergence as λ→ 1 is 134

uniform, the defect is infinite for all λ < 1. 135

2.4 Cumulative distributions 136

The definition of Beverton-Holt-like functions given in 2.1 does not include any explicit 137

smoothness requirements. However, it is a standard mathematical result that any 138

concave function must be quite well behaved—for example, locally Lipschitz continuous 139

and differentiable at all but countably many points [14]. 140

In particular, any Beverton-Holt-like F can be written as a cumulative integral: 141

F (X) =

∫ X

0

ϕ(u) du (4)

where ϕ is a monotone non-increasing function on (0,∞) with limu→0 ϕ(u) = r(F ) and 142∫∞
0
ϕ(u) du = K(F ). Conversely, any non-negative, monotone non-increasing function 143

which is bounded above and integrable on (0,∞) gives rise to a Beverton-Holt-like 144

function via Eq (4). 145

If F is in standard form, ϕ is a probability density on (0,∞). This gives an 146

interesting interpretation of the defect: if ϕ is the density function associated with an f 147

in standard form, then 148

defect(f) =

∫ ∞
0

uϕ(u) du. (5)

That is, defect(f) is the expected value for the probability distribution associated with 149

f . 150

The Skellam function is associated in this way with the standard exponential 151

distribution [15, Chapter 19], and the hockey stick with the uniform distribution on 152

(0, 1) [16, Chapter 26]. 153

Other functions from Table 1 correspond to less familiar distributions: the positive 154
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power function is associated with a (non-standardized) beta distribution with 155

p = 1, q = λ [16, Chapter 25]; the θ-BH and negative power functions are associated 156

with the special cases p = θ, q = 1 and p = 1, q = λ, respectively, of the generalized 157

t-distribution of [17]. 158

The density corresponding to the logistic hockey stick for λ > 1 does not seem to 159

have found much use by statisticians to date. For 0 < λ < 1, however, this is the 160

Exponential-Logarithmic distribution of [18] with p = 1− λ, β = λ log λ
λ−1 . 161

2.5 Mixtures 162

If F and G are Beverton-Holt-like functions and a, b are non-negative constants, 163

aF + bG is also Beverton-Holt-like. 164

More generally, let (Ω, µ) be any measure space, and let {Fω}ω∈Ω be a family of 165

Beverton-Holt-like functions such that the map (ω,X) 7→ Fω(X) is 166

Ω× (0,∞)-measurable. If both r =
∫

Ω
r(Fω) dµ(ω) and K =

∫
Ω
K(Fω) dµ(ω) are finite, 167

the mixture 168

F (X) =

∫
Ω

Fω(X) dµ(ω) (6)

is Beverton-Holt-like, with r(F ) = r and K(F ) = K. 169

Considerations of habitat heterogeneity lead naturally to such mixtures. This will be 170

pursued a bit further in S1 Appendix. 171

The “negative power” function, which includes both Skellam and Beverton-Holt as 172

limiting cases, can be exhibited as a continuous mixture of Skellam functions: 173

1− (1 +
x

λ
)−λ =

∫ ∞
0

(1− e−ax) dν(a), (7)

where ν is a gamma distribution with expected value 1: 174

dν(a) =
λλ

Γ(λ)
aλ−1e−λa da. (8)

If the term 1 + x/λ is modified to (1 + x/λ)+, the negative power function continues 175

to be an r-K function for negative values of the parameter λ, and is Beverton-Holt-like 176

when λ ≤ −1. This “positive power” function has some charm: it has the interesting 177

(and biologically natural?) property of actually attaining the production capacity at a 178
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finite stock. It is not, however, a mixture of Skellam functions. (This will follow from 179

results in S1 Appendix.) 180

2.6 Composition 181

If Y is a Beverton-Holt-like function of X, and Z is a 182

Beverton-Holt-like function of Y , then Z is also a Beverton-Holt-like function of X. 183

That is, compositions of Beverton-Holt-like functions are again Beverton-Holt-like. In 184

particular, models obtained by iterating Beverton-Holt-like functions cannot produce 185

“interesting” population dynamics, as iteration of Ricker functions famously can [19]. 186

Compositions of true Beverton-Holt functions are also true Beverton-Holt functions, 187

whose parameters are simple combinations of the parameters of the constituents. 188

Specifically, if F and G are Beverton-Holt, their composition G ◦ F is the Beverton-Holt 189

with parameters 190

r(G ◦ F ) = r(G)r(F )

K(G ◦ F ) =
(
K(G)−1 + r(G)−1K(F )−1

)−1
(9)

This property is sometimes convenient for simulation modeling [20]. It is exploited 191

systematically, for example, in the EDT framework of [21]. 192

The Beverton-Holt family is not the only family with a “composition law”, however. 193

If F and G are θ-BH for the same value of θ, G ◦ F is also θ-BH for this θ, with 194

r(G ◦ F ) = r(G)r(F )

K(G ◦ F ) =
(
K(G)−θ + r(G)−θK(F )−θ

)−1/θ
(10)

Moreover, if F and G are hockey sticks, G ◦ F is also a hockey stick, with 195

r(G ◦ F ) = r(G)r(F )

K(G ◦ F ) = min(K(G), r(G)K(F ))

(11)

Since the limit as θ →∞ of the θ-BH functions having given r and K parameters is 196

the hockey stick with these parameters, hockey sticks can be thought of as ∞-BH 197

functions; with this convention, Eqs (9) and (11) are both special cases of Eq (10). 198
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It turns out that these are the only examples of full homogeneous families with 199

composition laws: 200

Theorem 2. Suppose that F is a full homogeneous family of r-K functions, and 201

suppose that F is closed under composition. Then there is some 0 < θ ≤ ∞ such that F 202

is the family of θ-BH functions. 203

Since this is a mathematical fact, rather than a biological one, the demonstration is 204

relegated to S2 Appendix. 205

3 Stock-production and continuous dynamical 206

systems 207

Stock-production functions can arise as discrete dynamical systems derived from 208

continuous dynamical systems. In particular, the Beverton-Holt function has a natural 209

association with the widely used logistic differential equation for the evolution of 210

populations over time. Furthermore, this association persists even when the parameters 211

of the equation are allowed to vary with time. 212

This section will describe this connection, and show that the θ-BH functions are 213

associated in the same way with θ-logistic differential equations. 214

3.1 Differential equations and stock-production 215

An approach to population modeling with a very long history is to consider abundance 216

as a continuous quantity, varying continuously in time, and satisfying a first-order 217

differential equation derived from consideration of changes in arbitrarily short time 218

increments: 219

dP

dt
= ϕ(P, t) , P (0) = X (12)

for the abundance P , where X is the initial population and ϕ is a continuous function 220

from (0,∞)× [0,∞) into (−∞,∞). 221

It is shown in standard textbooks on differential equations that, under mild 222

assumptions on ϕ, Eq (12) has a unique solution for any X > 0, at least on some 223

non-trivial interval containing t = 0 [22] . If there is some interval [0, Tmax) which works 224
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for all X > 0, then any T strictly between 0 and Tmax gives rise to a stock-production 225

relation F between X = P (0) and Y = P (T ). 226

Stock-production functions derived in this way are necessarily monotone, as noted 227

in [23, §3.1.2]. S3 Appendix explores conditions under which they are 228

Beverton-Holt-like. 229

3.2 The exponential and logistic equations 230

Perhaps the oldest population model of all is the differential equation 231

dP

dt
= aP, (13)

with a constant. This appears (implicitly) already in the pioneering work of Graunt on 232

human demographics [24]. The solution, P (t) = P (0)eat, gives rise to the 233

stock-production function Y = rX, where r = eaT . 234

Malthus observed that exponential growth cannot persist indefinitely, and must 235

therefore be modified by some kind of density dependence [25]. An early mathematical 236

formulation of this is the logistic differential equation of Verhulst [26], 237

dP

dt
= aP − bP 2, (14)

with a and b constant, b > 0. The solution to this is the classic logistic function 238

P (t) =


aP (0)eat

a+bP (0)(eat−1) if a 6= 0,

P (0)
1+btP (0) if a = 0;

(15)

the corresponding stock-production function is therefore the Beverton-Holt function 239

with parameters 240

r = eaT , K =


a
b

eaT

eaT−1
if a 6= 0,

1
bT if a = 0.

(16)

3.3 The θ-logistic equation 241

Typical derivations of Eq (14) have an ad hoc flavor, starting from the desired 242

qualitative behavior of ϕ and simply taking the “simplest” form that works [26,27]. 243
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Just what “simplicity” means in this context is not entirely clear, however, and 244

alternatives have been considered from a very early date. In particular, the models 245

dP

dt
= aP − bP 1+θ (17)

for θ > 0 already appear in Verhulst’s 1838 paper [26, page 116]. 246

Eq (17) is sometimes called the “θ-logistic” equation. In population-modeling 247

contexts, it has been called the “Richards equation” after its appearance in [28]. 248

The substitution Q = P θ reduces (17) to the ordinary logistic equation 249

dQ/dt = aθQ− bθQ2, so the associated stock-production model is the θ-BH function 250

with parameters 251

r = eaT , K =


(
a
b

eaθT

eaθT−1

)1/θ

if a 6= 0,(
1
bθT

)1/θ
if a = 0.

(18)

3.4 Time-varying parameters 252

The models (13), (14), and (17) are “autonomous,” that is, the function ϕ does not 253

depend explicitly on t. Since environmental conditions can be expected to vary over 254

time, it is natural to consider generalizations of these models in which the coefficients 255

are functions of t. From the stock-production point of view, this turns out to add 256

nothing new. 257

Specifically, the general solution to (17), considered as a possibly non-autonomous 258

equation, can be written as 259

P (t) =
P (0)r(t)p(t)[

p(t)θ + P (0)θ
(
r(t)θ − p(t)θ

)]1/θ , (19)

where p(t) is the particular solution with p(0) = 1 and r(t) = exp(
∫ t

0
a(τ) dτ). If 260

b(t) ≡ 0 on the interval [0, T ], the corresponding stock-production function is simply 261

Y = r(T )X. Otherwise it is θ-BH, with parameters 262

r = r(T ), K =
r(T )p(T )

(r(T )θ − p(T )θ)1/θ
. (20)
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3.5 Another characterization of θ-BH functions 263

The stock-production functions associated with a given ϕ as in Section 3.1 for different 264

choices of T , form a one-parameter family. 265

More generally, let ϕ be a continuous function from (0,∞)× [0,∞) into (−∞,∞), 266

and suppose that there is some 0 < Tmax ≤ ∞ such that, for each 0 ≤ s < Tmax and 267

each 0 < X <∞, the initial value problem 268

dP

dt
= ϕ(P, t), P (s) = X (21)

has the unique solution F s,t(X), s ≤ t < Tmax. Then F = {F s,t | 0 ≤ s < t < Tmax} is 269

a two-parameter family of stock-production functions, degenerating to a one-parameter 270

family in the autonomous case (since then F s,t = F 0,t−s). 271

In the cases considered in Sections 3.2–3.4, this family was homogeneous. This turns 272

out to be a very special property: 273

Theorem 3. Let F be as above. If the F s,t are all r-K functions having the same 274

standard form, this form is the standard θ-BH for some 0 < θ <∞. 275

This result is closely related to Theorem 2. A proof is given in S2 Appendix. 276

4 Beverton-Holt-like functions as population models 277

It is hard to avoid the suspicion that all this mathematics is out of proportion to the 278

original problem—that the proliferation of algebraic forms for the stock-production 279

function is more a matter of scholastic hair-splitting than practical biology. 280

Such doubts are only exacerbated by the fact that such functions are typically used 281

in a crudely empirical way. The usual goal is simply to describe a data set, with no 282

pretense that the fitted form is anything other than a conveniently simple 283

approximation to an inconveniently complex reality. 284

This section and the next will try to explain why so many “alternatives to” or 285

“generalizations of” the basic Beverton-Holt law have nonetheless been proposed over the 286

years. 287
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4.1 Physical interpretation of model parameters 288

In the conceptual model of Section 2, the r and K parameters correspond to “real” 289

quantities: 290

� r is the “intrinsic rate of increase” one would expect to see in the absence of 291

crowding—a measure of habitat quality. 292

� K is the “carrying capacity” or maximum production potential—a measure of 293

habitat quantity. 294

There are thus two sets of “r” and “K” parameters present when a Beverton-Holt-like 295

model is considered: values describing the habitat, and values describing the population 296

dynamics. 297

Some applications of stock-production modeling rely on identifying the two. This 298

can be done in either direction: 299

� One can attempt to obtain information about physical habitat from population 300

data. For example, parameters obtained by fitting a stock-production model to 301

population data may be used as estimates of physical values, in the course of 302

setting harvest levels [29] or estimating extinction risks [30]. 303

� One can attempt to obtain information about population dynamics from habitat 304

data. For example, stock-production models parameterized with physical values 305

(from survival experiments, habitat mapping, etc.) may be used to game 306

management or restoration alternatives [20]. 307

What makes this identification dangerous is that the r and K parameters by 308

definition concern properties of the fitted curve at the fringes of the data (strictly 309

speaking, outside any possible range of data). Estimating intrinsic productivity or 310

ultimate carrying capacity parameters from passively-observed stock-production data, 311

by fitting any kind of stock-production model, is always extrapolation; such values may 312

be driven as much by the algebraic form of the model as by the data. 313

4.2 Beverton-Holt as a Beverton-Holt-like function 314

A series of papers by Ransom A. Myers, Nicholas J. Barrowman, and others [7, 31,32] 315

have developed an empirical case that use of the Beverton-Holt model to infer 316
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physical-habitat parameters from population dynamics tends to overestimate both r and 317

K, which can lead managers to overestimate the robustness of populations with respect 318

to exploitation or habitat loss. 319

Of course, it is to be expected that using the wrong model will produce incorrect 320

results—the Beverton-Holt function is not special in this regard. However, if it is typical 321

for “true” stock-production curves to sit above the Beverton-Holt curve having the same 322

asymptotes, then fitting Beverton-Holt functions will typically over-estimate r and K. 323

And this is precisely what is asserted in in the cited papers. 324

At the root of these charges is the very slow rate at which the Beverton-Holt 325

function rises toward its asymptote, which corresponds to a seemingly inefficient use of 326

resources. For example, Eq (1) predicts that even when the habitat is 100% over-seeded 327

(in the sense that X = 2K/r, the stock which would yield a production of 2K in the 328

absence of density-dependence), fully one-third of the productive potential of the 329

habitat will remain unexploited (in the sense that Y = 2K/3). Whether this is 330

reasonable or not of course depends on how organisms actually interact with the 331

habitat, and with one another, in the situation at hand. But as a generic assumption, to 332

be used in the absence of population-specific detail, it is at least open to challenge. 333

One measure of just how slowly the Beverton-Holt function approaches the 334

horizontal asymptote is that the “wedge” between the curve and the asymptote has 335

infinite area. In the notation of Table 1, defect(F ) =∞ when F is a Beverton-Holt 336

function. Since real populations are always finite, it is not clear how to interpret this. 337

However, it is noteworthy that most of the Beverton-Holt-like functions that have been 338

proposed over the years as alternatives to Beverton-Holt have finite defect. If a 339

Beverton-Holt-like function in standard form is interpreted as the cumulative function 340

of a probability density, as in Section 2.4, the defect is finite whenever this density has 341

an expected value; Section 6 of Web Appendix A gives another heuristic under which 342

functions of infinite defect might be considered “unreasonable.” 343

5 Beverton-Holt-like functions in practice 344

This section will make the discussion of Section 4 more concrete by considering some 345

actual data. Because the papers of Myers et al. are so cogent, and because these 346
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authors have made their data publicly available with the express desire to support 347

“meta-analytic methods to combine results across many populations” [33], they seem 348

particularly well suited to the present purpose. The focus will be on populations of 349

Coho salmon Oncorhynchus kisutch discussed in [7]. 350

5.1 Coho salmon data 351

Fig 4 shows all the sets of stock-production data from the Myers database [34] for Coho 352

salmon, Oncorhynchus kisutch, in which “stock” is female spawners and “production” is 353

outmigrant smolts, arranged very subjectively by shape.

Fig 4. Coho salmon (Oncorhynchus kisutch) female-to-smolt data from the Myers
database, with fitted θ-BH curves.

354

The fitted curves will be discussed below. Disregarding these for the moment, 355

several features of these data are worth remarking. 356

First, all the individual datasets are quite small. The largest consists of 26 points. 357

This is typical of stock-production data: monitoring programs that follow a consistent 358

methodology for a quarter of a century are unfortunately (albeit understandably) rare. 359

Next, the data are quite noisy. Again, this is typical of stock-production data: 360

environmental drivers (flow, water temperature, food availability) can vary dramatically 361

from year to year, and the estimates of both stock and production usually come from 362

sampling, with large uncertainties. 363

Because the datasets are small and noisy (or as Ransom Myers put it, “nasty, 364

brutish, and short” [33]), it is unrealistic to expect the data to point unambiguously to 365

a particular algebraic form. One might decide that a dataset seems “Beverton-Holt-ish”, 366

or “Ricker-ish”, but it seems hopeless to choose between, say, the logistic hockey stick 367

and bent hyperbola, on empirical grounds alone. It will be seen that there are good 368

reasons for considering models with a degree of freedom beyond r and K, but one more 369

“shape” parameter is probably all that can be accommodated. 370

Many of these particular datasets are plausibly Beverton-Holt-like. Considered in 371

isolation, some of these sets (e.g. a–c) plausibly convey information about both r and K, 372

without the need to assume much except a general “Beverton-Holt-like-ness.” Others 373

suggest constraints on either r (d–f) or K (g–i), but not necessarily both. Still others 374
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(m–o) hint at possible non-Beverton-Holt-like decreases in production at high density. 375

5.2 Model fitting 376

The observed stock-production pairs (Xi, Yi), 1 ≤ i ≤ n, are assumed to be related via a 377

stock-production function F from some parametric family F (·,p). Since the purpose 378

here is simply illustrative, a simple multiplicative error structure is assumed: 379

log Yi = logF (Xi;p) + εi (22)

where the εi are i.i.d. normal deviates with mean 0 and variance σ2. 380

(Stock-production datasets are typically time-series, with Xi in turn a function of 381

earlier Yj , j < i, and autocorrelation should be taken into account. Furthermore, both 382

Xi and Yi are usually themselves estimated from sampling data, and hence have error 383

structures of their own. A more general framework here is state-space modeling [35].) 384

Eq 22 gives rise to the log-likelihood 385

l(p, σ2 | {(Xi, Yi)}ni=1) = − 1

2σ2

n∑
i=1

(log Yi − logF (Xi;p))2 − n

2
log(2πσ2) (23)

The maximum-likelihood estimate for the parameters is (p̂, σ̂2), where p̂ minimizes the 386

residual sum of squares 387

RSS(p) =
n∑
i=1

(log Yi − logF (Xi;p))2 (24)

and σ̂2 = 1
n RSS(p̂). 388

The Bayesian Information Criterion is then 389

BIC(F ) = n log σ̂2 + n log(2π) + (k + 1) log(n) (25)

where k is the length of p. Given an alternate model form 390

log Yi = logG(Xi;q) + εi, εi ∼ N(0, τ2) (26)
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the performances of the maximum-likelihood-fitted models will be compared as 391

∆ BIC(F,G) = BIC(F )− BIC(G) . (27)

The quantity exp(− 1
2∆ BIC(F,G)) is interpretable as an evidence ratio. 392

The models considered will all be θ-BH: 393

Fθ(X; r,K) = rKX((rX)θ +Kθ)−θ (28)

The present concern is how the performance of this model depends on θ. That is, rather 394

than treating θ as a fitting parameter, a range of values for θ are considered, and the 395

log-likelihood maximized with respect to the remaining parameters. The intention is to 396

explore how choice of algebraic form affects the estimation of the “natural” quantities r 397

and K, using the family of θ-BH functions for different values of θ as a convenient 398

surrogate for the full range of possible r-K functions. 399

5.3 Results 400

The methods of Section 5.2 were used to fit θ-BH models to the Myers Coho data for a 401

range of θ. Four of these fitted curves are shown in Fig 4 for each of the data sets. Fig 5 402

shows how the fitted parameters and BIC depend on θ. The ∆ BIC values are all 403

calculated with respect to the model with θ = 1.

Fig 5. Dependence of fitted models on the shape parameter θ. By at least one
widely-used criterion, a broad range of θ values are more-or-less equally compatible with
the data. The fitted r and K parameters however, vary considerably between models
(note the logarithmic scale).

404

In most cases, the fitted curves look very similar to one another. This subjective 405

impression is supported by the evidence-ratio panel of Fig 5: for most of the datasets, 406

the evidence ratio for the θ-BH model is within a factor of three of the Beverton-Holt 407

model over a wide range of values for θ, and thus by a widely-used rule-of-thumb all 408

these models are comparably well supported. The fitted values of r and K, on the other 409

hand, depend quite strongly on θ. 410

To put it more dramatically, it is not possible to estimate r and K very well without 411

committing to a particular model form, and the data themselves are of little help in 412
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selecting this form. Recall that this is simply a range of models consistent with the 413

Beverton-Holt-like heuristic: as noted in Section 1, these by no means cover the universe 414

of forms considered seriously in the stock-production literature. 415

Essentially the same phenomenon is analyzed in [36], where a discretized version of 416

the θ-logistic differential equation discussed in Section 3 is fitted to real and simulated 417

population time-series. These authors show that treating θ as a fitting parameter on par 418

with the (appropriate analogs of) r and K is very unstable, in the sense that small 419

perturbations of the data can result in large changes to the parameter estimates, and in 420

the case of simulated series, that model fitting cannot reliably recover the “true” values 421

used to generate the series in the first place. 422

5.4 Other taxa 423

The same patterns are seen for other taxa. 424

The great majority of stocks in the Myers database are assigned there to one of six 425

orders of bony fishes: Clupeiformes, Gadiformes, Perciformes, Pleuronectiformes, 426

Salmoniformes, and Scorpaeniformes. Of these stocks, 543 have at least five years of 427

stock and production values. Applying the fitting procedure of Section 5.2 to these data 428

yields the evidence-ratio curves shown in Fig 6.

Fig 6. Evidence-ratio curves for θ-BH fits to stock-recruitment time-series for all stocks
from selected orders from the Myers database.

429

All but a handful of these curves are monotone on the entire interval 0.5 ≤ θ ≤ 4. 430

That is, if θ is treated as a parameter on a par with r and K, to be estimated by 431

maximum likelihood, the fitting routine wants to drive the model to one of the two 432

degenerate forms θ →∞ or θ → 0. 433

The curves which do have a local maximum are very flat: in only eleven cases is the 434

evidence ratio at some intermediate θ more than 20% higher than at both endpoints. 435

For 170 (31%) of the stocks, the curves are “extremely flat,” in the sense that they vary 436

no more than 1% across the full range of θ. 437
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5.5 Remarks 438

It should be emphasized that the analyses of this section are meant to illustrate some 439

general points about stock-production relationships. A serious analysis of the Coho data 440

from the point of view of a regional manager, say, would be much more involved. Such 441

an analysis would require a more careful consideration of error structures, and would 442

probably treat some or all the populations together (as recommended, for example, 443

in [37]). 444

First and foremost, however, such an analysis would consider environmental 445

covariates. There is a mistaken perception that stock-production ideas are somehow in 446

conflict with environmental explanations for population levels (a legacy, perhaps, of 447

otherwise forgotten ideological/philosophical debates from the early twentieth 448

century [38]). In principle, the relationship between stock and production for any 449

particular cohort is determined by the environmental circumstances of that cohort, and 450

should vary, perhaps dramatically, from cohort to cohort. No “explanation” of the data 451

in Fig 4 would be very satisfying which did not succeed in attributing much of the 452

scatter within populations to year-to-year changes in things like stream flow or ocean 453

harvest effort, and differences between populations to things like basin size. 454

6 Discussion 455

For the most part, mathematical ecology has outgrown the search for “laws” analogous 456

to those of physics. Forms such as the Beverton-Holt function for discrete population 457

dynamics, or the logistic models for continuous population dynamics, are adopted as 458

conventional starting points for analysis, in the same spirit that linear models or normal 459

distributions are used to explore other kinds of data. 460

Almost any data analysis these days is likely to include some linear regressions, 461

complete with R2 statistics, even when there is no particular reason to expect data to 462

come from a truly linear relationship, or for the errors to be independent 463

identically-distributed normal variables. From this point of view, the question of 464

whether to start with Beverton-Holt, or Skellam, or the logistic hockey-stick, is 465

analogous to the question of whether to plot xy-data on plain axes, or to use a log or 466

probit transform on one or both axes. 467
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There are, however, significant differences between the uses to which linear model 468

fits and stock-production fits are typically put. The mean of a normal fit, or the slope 469

of a linear fit, are attempts to capture some property of the “center” or “main body” of 470

the data. The r and K parameters of a Beverton-Holt-like function, however, concern 471

properties of the fitted curve at the fringes of the data, or in many cases well beyond 472

them. 473

It is well-known that interpolation is a much safer process than extrapolation, and 474

when a fitted model is to be used in an “interpolatory” way, for example, to make 475

short-term forecasts, or to explore the implications of modest changes to habitat under 476

hypothetical conditions broadly similar to historical conditions, the precise form of the 477

fitted model is unlikely to be of great importance. 478

However, to estimate a true intrinsic productivity or ultimate carrying capacity from 479

passively-observed stock-prodution data, by fitting any kind of stock-production model, 480

is always an extrapolation. Statistics is not magic, and information which is not present 481

in the data to begin with cannot be extracted from it by mathematical manipulations. 482

In the case of stock-production: 483

� If the data do not include cases of low stock densities, the data contain no 484

intrinsic information about productivity at low densities. Any estimate of intrinsic 485

productivity will be driven primarily by a priori assumptions about the model 486

form. 487

� If the data do not include cases of production near the carrying capacity, the data 488

contain no intrinsic information about carrying capacity. Any estimate of carrying 489

capacity will be driven primarily by a priori assumptions about the model form. 490

� Even if the data do include low or high stock densities, the “best” fit of a model 491

form to the overall data need not reflect the actual behavior at these extremes 492

very well. 493

This is not a problem if there are sound reasons to prefer some model form over 494

others, or if policy conclusions are robust with respect to the choice of form. I have 495

tried to demonstrate in this paper, however, that the space of “Beverton-Holt-like” 496

model forms is much larger than is generally appreciated, and there are important 497

application areas in which the choice of form matters a great deal. 498
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