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ABSTRACT

Drug repositioning aims to find new indications for existing drugs, in order to reduce drug development cost and time. Currently, numerous
successful stories of drug repositioning have been reported and many drugs are already available on the market. Although many of those
cases are products of serendipitous findings, repositioning opportunities can be uncovered systematically by following either a disease-centric
approach, as a result of a close relation between an old and new indication, a target-centric one, which links a known target and its established
drug to a new indication, or a drug-centric approach, which connects a known drug to a new target and its associated indication. The three
approaches differ in their complexity, potential, and limits, and most important the necessary starting information and computational power.
Which one is predominant in current drug repositioning and what does this imply for future developments? To address these questions, we
systematically evaluated over 100 drugs, 200 targets structures and over 300 indications from the Drug Repositioning Database. Each of the
analysed cases has been classified based on one of the three repositioning approaches, showing that the majority, more than 60%, falls
within the disease-centric definition, around 30% within the target-centric, and only less than 10% within the drug-centric. We therefore
concluded that so far repositioning has mainly been disease and target repositioning and not, as drug repositioning, as expected by definition.
We discuss the reasons and suggest directions to exploit the full potential of techniques useful for drug-centric in order to sustain future
rationale repositioning pipelines.

Introduction
Drug repositioning to tackle pharmaceutical R&D decline Drug discovery is a hard process, with an estimated success rate of
only 2%1. Such a high chance of failures rises the average costs of patenting and selling a new molecule for pharmaceutical
scopes to US $2–3 billion2. However, sometimes is possible to use approved drugs or molecules undergone phase trials to treat
different conditions. A popular example is the case of sildenafil, meant to treat hypertension, successively commercialized
against erectile dysfunction3. Also undesired effects can represent advantages towards different indications, such is the sadly
known case of thalidomide, where the strong antiangiogenic activity became useful to treat multiple myeloma3. Investigating
the efficacy of approved or discarded drugs for new indications with an approach called drug repositioning can in fact overcome
some of the obstacles that are usually behind the failure of new molecular entity approach to the market, such as the necessity to
meet the standard of quality set by previously marketed drugs4. Reducing the failure rate and therefore the average cost of
the drug discovery process5, drug repositioning represents also a valid opportunity to find pharmacological tools against rare
diseases5,6, and to make treatments of personilized medicine more affordable7.

Drugs, targets, and diseases Figure 1 shows a simplified classification of different repositioning approaches, where a protein
target plays a key role in a disease, usually because of an alteration of its function, and a drug treats the disease by inhibiting
or activating the target. Therefore, drug repositioning can focus on each of these three levels: disease, target, or drug. A
focus on disease is the most direct approach, since it is driven by the hypothesis that a drug’s use can be expanded from
the original to a closely related indication. As an example consider nilotinib, a tyrosine kinase inhibitor, approved for the
treatment of imatinib-resistant chronic myelogenous leukemia8. A few years later, Novartis proposed the reposition of nilotinib
to gastrointestinal stromal tumors. Disease-centric repositioning, as we define it, explores diseases of the same type, such as two
types of cancer. The underlying assumption for disease-centric repositioning is that diseases of the same type have shared guiding
principles. In the case of cancer this is e.g. summarized in the hallmarks of cancer9. However, despite such commonalities,
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Figure 1. Different concepts behind drug repositioning. Relations among drug (D), targets (T) and
siseases/indications(I) according to the different drug repositioning concepts. In disease-centric a drug’s
application can be expanded from the original to a closely related indication, in target-centric the identification
of a new indication is linked to a well established target and in drug-centric a new target is identified linking the
drug to a new indication.

indications differ and hence repositioning may not succeed. Actually, Novartis’ efforts to expand nilotinib to gastrointestinal
stromal tumors were abandoned after a phase III trial concluded that it cannot be recommended10. Complementary to a
disease-centric approach, target-centric repositioning builds on a novel link between a new indication and an established target.
As an example, the protein tyrosine kinase ABL was recently suggested as novel player in Parkinson’s disease11, and therefore
its inhibitors, such as nilotinib, may be effective against this syndrome12.This indication shift from cancer to neurodegeneration
driven by the target ABL represents a case of target-centric repositioning. Drug-centric repositioning occurs when a novel
target with its established link to a certain indication is predicted for the drug, as shown in Figure 1. For example, valproic
acid is used in bipolar disorder and seizures because its ability to hit the mithocondrial enzymes Succinate-semialdehyde
dehydrogenase (ALDH5A1) and 4-aminobutyrate aminotransferase (ABAT). However, due to its off-target interaction with
the Histone deacetylase 2 (HDAC2), and the role of this protein in many types of cancers, it has been hypothesized to induce
differentiation, growth arrest, and apoptosis in cancer cells, leading to the repositioning for the treatment of neoplastic conditions
such as familial adenomatous polyposis13.

Drug-target interaction prediction in drug repositioning A precise identification of drug–target interactions allows users to
compare different binding behaviours and therefore brings to the generation of novel rational repositioning hypotheses.
Experimental identification of binding interactions can be challenging and expensive, therefore computational techniques for
drug-target interaction prediction has gained a lot of attention. Computational approaches have been generally classified into
ligand-based approaches, target-based approaches and machine learning-based methods14. With ligand-based approaches the
binding is predicted by comparing the candidate ligand with compounds with known activity on the putative protein target. The
performance of ligand-based approaches, such as QSAR and pharmacophore modeling, is related to the number of active ligands
available for the protein target15. Target-based approaches, such as docking and binding-site similarity, are powerful tools for the
identification of protein-ligand interactions based on the 3D structures of the target. Their limitations are related to the scarce
availability of target structures, such in the case of GPCRs.15,16. Machine learning approaches predict novel drug-target pairs by
using similarities among both compounds and targets. Those approaches are generally classified in feature vector-based machine
learning and similarity-based machine learning. Similarity-based machine learning methods can be further grouped into three
categories: kernel-based approaches, matrix factorization-based approaches and network-based approaches17. Compared with
time consuming docking and information-demanding QSAR, machine learning methods can be faster and more efficient18.
However, many limitations are related to the commonly used databases which contain only true-positive interactions and ignore
many important aspects of the drug–target interactions, such as their dose-dependence and quantitative affinities.19.

Structure based drug repositioning for new drug-target interactions Several drug-centric approaches use structural information
of the target active site or the complex drug-binding site to infer novel connections between drugs and targets. Many studies
showed a correlation between drug-promiscuity and shared binding sites across the drug’s multiple targets, demonstrating
the potential role of structural analyses of shared binding sites in drug repositioning20. Structure-based techniques, such
as molecular docking, have been often applied on successful repositioning pipelines to predict new therapeutic candidates.
For example, a docking-based approach was used to find novel targets for existing drugs by computationally screening the
whole druggable proteome. As a result nilotinib was validated as potent inhibitor of MAPK14, adding potential to his role as
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antinflammatory drug21. A similar strategy was used to repurpose drugs against multi-drug resistant (MDR) and extensively
drug resistent (XDR) tuberculosis. As a results, the anti-Parkinson drugs entacapone and tolcapone have been predicted to treat
MDR and XDR tuberculosis since the structural and interaction similarity between the original target COMT and the new target
InhA22. Docking scores have also been fused with other structural information with data integration techniques. For example,
the method TMFS combined docking scores, ligand and receptor topology descriptor scores, and ligand-target interaction points,
to predict potential new drug-target interactions and provide structural insight about their mechanism of action. In this way two
novel drug-target interactions have been predicted and validated: mebendazole-VEGFR2 and celecoxib-CDH1123. Also several
structure-based non-docking approaches found an extensive application in drug-repositioning in order to overcome the problem
related with inefficiency and inaccuracy of docking. For example using information about the active-like state of the serotonin
receptor 5-HT2C in complex with ergotamine and the inactive-like state of the same receptor in complex with ritanserin, was
possible to suggest the extension of ergotamine pharmacological profile to the delta-opioid receptor24. Another non-docking
structure-based approach used interactions patterns comparison to identify novel repositioning candidates against the cancer
target Hsp27. Analysing the interaction patterns of the Hsp27 inhibitor brivudine was possible to indicate the approved anti
malaria drug amodiquine as a promising anti-cancer agent25. Notwithstanding a rich history of successful cases, structure based
drug repositioning suffers the limitation due to the scarce availability of structural information, concerning in particular certain
classes of drug targets, such as GPCRs.

Pros and cons of disease-, target-, and drug-centric repositioning At first glance, disease-centric repositioning may appear
faster and more direct than target- and drug-centric repositioning. In fact, a disease-centric repositioning hypothesis it’s based
on a close connection drug-indication which might also avoid the deep knowledge about physicochemial interactions between
drug and target. However, if this were the case, one cancer drug would cure all forms of cancer. Disease-centric approaches
require a detailed understanding of the disease phenotype and underlying molecular processes to pursue the novel indication.
Also, disease-centric approaches are hindered or supported (depending on the point of view) by patents. The drug under
consideration and the old indication will be backed by patent claims, which tend to be broader than the old indication. Hence,
the commercial exploration of a disease-centric repositioning needs to be closely coordinated with the relevant patent claims
possibly limiting opportunities. Disease-centric approaches are suitable for systematic exploration. E.g. comprehensive,
computational comparisons of phenotypes and drug side effects26,27 or comparisons of gene expression profiles28 define
numeric similarities of diseases, which may drive a disease-centric approach.

In target-centric repositioning, we consider only drugs, for which old and new indication are of different type. Hence, it
becomes less likely, that the new indication is already covered by patents of the drug. However, a novel link from target to
new indication is a rare finding. And hence, these approaches are limited by the technology to uncover novel target-disease
associations. Besides screening methods such as deep sequencing, micro-arrays, RNAi, which can give hints on candidate
targets, the target-centric approach needs a deep molecular understanding of the relation of target and disease. The drug-centric
pipelines are therefore the most indirect one, as the drug is only linked to the new indication via the discovery of a novel target,
which is already established for the indication. Since each repositioning approach shows several pros and cons we performed
a retrospective analysis to understand their distribution among the real successful drug-repositioning cases and the role of
drug-target interaction prediction on indication switch of known drugs.

Results
Which of the three approaches dominate drug repositonings? Is drug-target interaction prediction a driving force of drug
repositioning? To address these questions, we analyzed all the repositioned small-molecule drugs active against a protein target,
contained in the Repurposed Drug Database (RDD, http://www.drugrepurposingportal.com/repurposed-drug-database.php).

Current Drug repositioning set contains 196 known cases The merging of RDD with the Molecular Drug Targets (MDT) data
led to a compiled report of 196 drug repositioning cases, 263 unique targets and 333 unique indications). Finally, 128 cases
(194 merged cases excluding the cases regarding non small molecules and non protein targets) represents the starting point for
our classification of repositioning cases (see Annex I).

The majority of cases (59%) were Disease-centric discovered. In order to characterize the diseases susceptible to drug reposi-
tioning, we evaluated the frequency of appearance of the diseases in RDD for small molecule drugs by their root MeSH term
key (results displayed in Figure 2). MeSH, Medical Subject Headings, is a comprehensive controlled vocabulary that provides a
consistent way to retrieve information that may use different terminology to describe the same concept, facilitating indexing and
searching. The most common MeSH groups mentioned in drug repurposing database are various neoplasms, immune system
diseases, pathological signs and symptoms (clinical manifestations that can be either objective when observed by a physician,
or subjective when perceived by the patient) and nervous system diseases. It is interesting to mention, that besides group
C that comprises diseases, also repositioning indications can be in group E01 (Diagnosis), F02 (Psychological Phenomena
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and Processes), F03 (Mental Disorders), G08 (Reproductive and Urinary Physiological Phenomena), G11 (Musculoskeletal
and Neural Physiological Phenomena). When checking the pairs of ”original indication - secondary indication” for small
molecule drugs (see Figure 2), in general, the most interesting cases are located in the area of intersection of C01 (bacterial
infections), C02 and C03 (parasitic diseases) with other types of diseases. In such a case the repositioning can occur either
to a homolog protein with conservation of the function or to a completely different protein target. In the first case a drug
such as the antimycotic ketokonazole has been repositioned to a human target (Cytochrome P450) from its fungal homologus,
to treat nephrotoxicity induced by cyclosporine. In the second case a drug such as doxycycline has been repurposed from
bacterial infection as rpsD and rpsI inhibitor to stomatognathic disease as metalloproteinase inhibitor. However, this area is not
particularly populated and cases of such repositioning are rare.

N MeSH Category Drug Names Number of
Drugs

1 Neoplasms
Sorafenib, Alitretinoin, Arsenic trioxide, Paclitaxel aqueous gel,
Daunorubicin liposomal, Lapatinib, Idarubicin, Doxorubicin, Pazopanib, Toremifene,
Nilotinib, Floxuridine, Paclitaxel protein-bound particles for injection suspension, Paclitaxel, Erlotinib Hydrochloride, Clofarabine

16

2 Immune System Diseases
Pralatrexate, Nabumetone, Mycophenolate mofetil, Thalidomide, Fludarabine phosphate,
Azathioprine, Mesalamine, Beclomethasone 17,21-diproprionate, Lenalidomide, Vorinostat,
Leflunomide, Pentostatin, Nevirapine

13

3 Nervous System Diseases Riluzole, Midazolam HCl, Galantamine, Memantine, Gabapentin, Apomorphine, Clonazepam, Tetrabenazine 8
4 Pathological Conditions, Signs and Symptoms Medroxyprogesterone acetate, Bupivacaine, Tramadol hydrochloride, Midazolam nasal spray, Aminocaproic acid 5
5 Respiratory Tract Diseases Bosentan, Tiotropium bromide, Mifepristone, Ambrisentan, Nitric oxide 5
6 Bacterial infections and Mycoses Clindamycin, Doripenem, Aztreonam, Levofloxacin, Rifabutin 5
7 Digestive System Diseases Fluorouracil, Nitisinone, Synthetic human secretin, Ursodiol, Nitazoxanide 5
8 Mental Disorders Pramipexole, Milnacipran, Fluoxetine, Atomoxetine hydrochloride, Aripiprazole 5
9 Cardiovascular Diseases Nitroprusside, Bethanidine Sulfate 2
10 Hemic and Lymphatic Diseases Anagrelide, Decitabine 2
11 Female Urogenital Diseases and Pregnancy Complications Testosterone propionate, Progesterone 2
12 Nutritional and Metabolic Diseases Miglustat 1
13 Virus Diseases Tenofovir disoproxil fumarate 1
14 Diagnosis Synthetic porcine secretin 1
15 Parasitic Diseases Praziquantel 1
16 Eye Diseases Brimonidine 1
17 Musculoskeletal and Neural Physiological Phenomena Mepivacaine 1
18 Virus Diseases Ribavirin 1
19 Behavior and Behavior Mechanisms Bupropion 1

Table 1. Disease-centric cases of repositioning. List of 76 disease-centric repositioned drugs grouped for
indication category, according to the MeSH tree classification is shown. Since their original and secondary
therapeutic indication falls within the same MeSH category no further analysis on the targets were carried.

When comparing the frequency of pairs ”original indication - secondary indication” for diseases root MeSH key, as shown
on the heatmap Figure 2 the main diagonal was the most populated, meaning 76 cases out of the 128 were repurposed within the
same disease class, and thus belong to the Disease-centric group. The main cases are between one type of neoplasm against
another type of neoplasm, cancer in the majority of cases, (C04 - C04), 16 cases in total, such as the kinase inhibitor Nilotinib,
repurposed from Philadelphia chromosome positive chronic myelogenous leukemia to the treatment of gastrointestinal stromal
tumors Table 1. Also very popular is repositioning for immune system diseases (C20 - C20), 13 cases in total, for which an
example is the steroid beclomethasone repositioned from the treatment of rhinitis to the intestinal graft-versus-host disease
Table 1; nervous system diseases (C10 - C10), 8 cases, such as midazolam HCL intravenous switched from preoperative
sedation to epileptic seizure activity Table 1; and pathological conditions, signs and symptoms (C23 - C23), 5 cases, such as
aminocaproic acid repurposed from enhancing hemostasis to topical treatment of traumatic hyphema of the eye Table 1. In
reality, based on phenotypical similarities and handling approaches, even bigger group of brain related diseases and perception
modification group C10-C23-F03 (mental disorders) exists. The popularity of main diagonal for drug repositioning can be
explained by importance of the key protein targets for handling and treatment of many similar diseases at the same time.

The 36% of the cases fall into the Target-centric category. The drug targets were linked to original and secondary indications
using data mining and literature information. When the target was the same for both indications, or showed a sequence simialrity
of at least 30%, the drug was classified as Target-centric. 6 identified cases were based on the binding of a drug to two
homological targets with the same function (orthologue) (see Table 2). For ketokonazole amino-acid the similarity of targets
was 49%, for eflornithine 57%, for dapsone 60%, for atovaquone 65% and for trimetrexate 66%. These values are much higher
than the currently used 30 percent as a structural similarity threshold. In total, as shown in Table 2, 46 out of 128 drug cases
were identified as Target-centric. Some examples include chlorpromazine, of which interaction with the serotonin receptor
HTR2A is involved in both the antiemetic/antihistamine indication (Pathological Conditions, Signs and Symptoms) and the
non-sedating tranquillizer action (Mental Disorder) Table 2; and celecoxib, non-steroideal antinflammatory, originally approved
to treat osteoarthritis and adult rheumatoid arthritis (Immune System Diseases) for its interaction with the enzyme PTGS2,
also known as COX-2, and subsequently repurposed to familial adenomatous polyposis (Congenital, Hereditary and Neonatal
Diseases) with the same target Table 2.

The 5% of the cases is classified as Drug-centric The last step was made to identify cases of multi-target drugs. We searched
for drugs for which the original and new indications were linked with different protein targets. Therefore, after completing
the previous filtering steps, 6 out of 128 cases were left and classified as drug-centric. For example, valproic acid, used to
treat episodes associated with bipolar disorder and seizures (nervous system diseases) by hitting the mithocondrial enzymes
succinate-semialdehyde dehydrogenase (ALDH5A1) and 4-aminobutyrate aminotransferase (ABAT) ,repurposed to the treatment
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N Drug name Original Indication Secondary Indication
MeSH Category Gene Target MeSH Category Gene Target

1 Chlorpromazine Pathological Conditions, Signs and Symptoms DRD2-4,HTR2A/2C,HRH1/4 Mental Disorder HTR2A
2 Albuterol Respiratory Tract Diseases ADRB2 Pathological Conditions, Signs and Symptoms ADRB2
3 Glycopyrrolate Bromide Digestive System Diseases CHRM1-5 Stomatognathic Diseases CHRM1-5
4 Amiloride Nutritional and Metabolic Diseases SCNN1A Congenital, Hereditary and Neonatal Diseases SCNN1A
5 Celecoxib Immune System Diseases PTGS2 Congenital, Hereditary and Neonatal Diseases PTGS2
6 Buprenorphine Eye Diseases OPRK1,OPRM1,OPRD1 Mental Disorder OPRK1,OPRM1,OPRD1
7 Iloprost Respiratory Tract Diseases PTGIR Cardiovascular Diseases PTGIR
8 Adenosine Congenital, Hereditary and Neonatal Diseases ADORA1/2A/2B/3 Nervous System Diseases ADORA1/2A/2B/3
9 Minoxidil Cardiovascular Diseases ABCC9 Pathological Conditions, Signs and Symptoms ABCC9
10 Alfetanil Musculoskeletal and Neural Physiological Phenomena OPRM1 Nervous System Diseases OPRM1
11 Tadalafil Cardiovascular Diseases PDE5A Mental Disorder PDE5A
12 Ethinyl Estradiol Respiratory Tract Diseases ESR1 Skin and Connective Tissue Diseases ESR1
13 Guanfacine Mental Disorder ADRA2A/2B/2C Congenital, Hereditary and Neonatal Diseases ADRA2A/2B/2C
14 Azacitidine Hemic and Lymphatic Diseases DNMT1/3A Neoplasms DNMT1/3A
15 Guanethidine Cardiovascular Diseases SLC6A2 Nervous System Diseases SLC6A2
16 Epoprostenol Sodium Respiratory Tract Diseases PTGIR,PTGER1 Pathological Conditions, Signs and Symptoms PTGIR,PTGER1
17 Sildenafil Pathological Conditions, Signs and Symptoms PDE5A Mental Disorder PDE5A
18 Misoprostol Digestive System Diseases PTGER3 Pathological Conditions, Signs and Symptoms PTGER3
19 Mecamylamine Hydrochloride Cardiovascular Diseases CHRNA3/B4 Mental Disorder CHRNA3/B4
20 Ropinirole Cardiovascular Diseases DRD2-4 Mental Disorder DRD2-4
21 Dexamethasone Eye Diseases NR3C1 Immune System Disorders NR3C1
22 Sibutramine Mental Disorder SLC6A2-4 Physiological Phenomena SLC6A2-4
23 Oxandrolone Physiological Phenomena AR Congenital, Hereditary and Neonatal Diseases AR
24 Finasteride Male Urogenital Diseases SRD5A1/2 Pathological Conditions, Signs and Symptoms SRD5A1/2
25 Phentolamine Cardiovascular Diseases ADRA1A/1B/1D/2A/2B/2C Mental Disorder ADRA1A/1B/1D/2A/2B/2C
26 Dimethylstilberstrol Female urogenital Diseases and Pregnancy Complications KEAP1 Skin and Connective Tissue Diseases KEAP1
27 Desmethylmifepristone Respiratory Tract Diseases NR3C1 Endocrine System Diseases NR3C1
28 Everolimus Immune System Diseases FKBP1A Digestive System Diseases FKBP1A
29 Alprostadil Mental Disorder PTGER1/PTGER2 Cardiovascular Diseases PTGER1/PTGER2
30 Tranexamic Acid Pathological Conditions, Signs and Symptoms PLG Immune System Disorders PLG
31 Duloxetine Mental Disorder SLC6A,SLC6A4 Pathological Conditions, Signs and Symptoms SLC6A4
32 Metyrosine Neoplasms TH Mental Disorder TH
33 Capsaicin Pathological Conditions, Signs and Symptoms TRPV1 Cardiovascular Diseases TRPV1
34 Tretinoin Neoplasms RARA/B/G Musculoskeletal and Neural Physiological Phenomena RARA/B/G
35 Levomilnacipran Mental Disorder SLC6A2/4, Nervous System Diseases SLC6A2
36 Difluprednate Pathological Conditions, Signs and Symptoms NR3C1 Eye Diseases NR3C1
37 Raloxifene Nutritional and Metabolic Diseases ESR1/2 Skin and Connective Tissue Diseases ESR1/2
38 Histamine Immune System Diseases HRH1 Neoplasms HRH1
39 Propranolol Pathological Conditions, Signs and Symptoms ADRB1-3 Neoplasms ADRB1-3
40 Dihydrodigitoxin Cardiovascular Diseases ATP1A1-4 Endocrine System Diseases ATP1A and more29
41 Ketokonazole Fungal infection Cytochrome P450 (Candida albicans) Nephrotoxicity induced by cyclosporine Cytochrome P450 (Homo sapiens)
42 Eflornithine African trypanosomiasis Ornithine decarboxylate (Trypanosoma Brucei) Pneumocystis carinii pneumonia Ornithine decarboxylate (Pneumocystis carinii)
43 Dapsone Dermatitis herpetiformis Dihydropteroate synthase (Mycobacterium leprae) Toxoplasmosis Dihydropteroate synthase (Toxoplasma gondii)
44 Atovaquone Pneumonia Cytochrome b (Pneumocystis carinii) Toxoplasma gondii encephalitis Cytochrome b (Toxoplasma gondii)
45 Trimetrexate Pneumonia Dihydropholate reductase (Pneumocystis carinii) Metastatic carcinoma of the head and neck Dihydropholate reductase (Homo sapiens)
46 Allopurinol Neoplasm Xanthine dehydrogenase/oxidase (Homo sapiens) Parasitic Diseases Xanthine dehydrogenase/oxidase (Trypanosoma Cruzi30)

Table 2. Taget-centric cases of repositioning. Disease (MeSH category) and protein targets (gene name
or Uniprot ID) for both primary and secondary indications are shown. For the 46 cases of target-centric
repositioning the target UniprotID is identical for both original and secondary indication. Target-disease
associations retrieved from PubMed present a citation enclosed in the box. At the bottom, 6 drugs repurposed to
an orthologue target.

of familial adenomatous polyposis (congenital, hereditary and neonatal diseases) for the interaction with the histone deacetylase
2 (HDAC2) Table 3.

N Drug name Original Indication Secondary Indication
MeSH Category Gene Target Category Gene Target

1 Valproic acid Nervous System Diseases ALDH5A1,ABAT Congenital, Hereditary and Neonatal Diseases HDAC2
2 Doxycycline Bacterial Infection and Mycoses *rpsD,*rpsI Stomatognathic Diseases MMP1/7/8/13
3 Topiramate Nervous System Diseases GABR(+),GRIK1-5,GRIA1-4,SCN(+) Stomatognathic Diseases CA2/4
4 Zidovudine Neoplasms HIV1 Reverse transcriptase31 Immune System Disorders Human DNA polymerase32
5 Lidocaine Musculoskeletal and Neural Physiological Phenomena SCN1A/2A/3A/4A/5A/7A/8A/9A/10A/11A Immune System Disorders various/not specified (cytokines release)33
6 Mazindol Stomatognathic Diseases SLC6A2-4 Congenital, Hereditary and Neonatal Diseases various/not specified (growth hormone release)34

Table 3. Drug-centric cases of repositioning. For each drug-centric case therapeutic indications (MeSH
category) and protein targets (gene name or Uniprot ID (*:Non-human, (+):multiple subunits)) for both original
and secondary indications are shown. According to our definition of drug-centric, those 6 cases must have a
different MeSH code and protein target on the primary and secondary indication. Those 6 cases represents
the most interesting situations in terms of diversity for the application of drug-target interaction prediction
techniques. Target-disease associations retrieved from PubMed present a citation enclosed in the box.

Discussion
More than one third of the cases don’t fit the ”small molecule drug - protein target” definition Because of their higher promiscuous
profiles and a more clear interaction behaviour with their targets, we exclusively focused on small molecule drugs. After the
first step of filtering, a total of 68 cases out of the 196 were excluded, as they did not fit into ”small molecule drug - protein
target” scheme. For those cases the drug was usually an antibody and the target usually and RNA or another type of non-protein
biomolecule. Examples of repositioned therapeutic antibodies were: infliximab, being used in Crohn’s disease and juvenile
rheumatoid arthritis, adalimumab, also used in arthritis and Crohn’s disease. Therapeutic proteins were also present in the
database, such as somatropin, that is being used to treat children with growth failure and for induction of ovulation in women
with infertility. Some drugs had to be excluded because their action is linked to a non-protein target. For example, the DNA can
be a direct target for some drugs, such as melphalan, used in patients with multiple myeloma and metastatic melanoma, or
cladribine, used for treatment of hairy cell leukemia and chronic lymphocytic leukemia.

Drug repositioning is mostly disease and target-centric The retrospective analysis of the repositioning cases present in the
RDD database gave us an interesting picture of the current state of drug repositioning. 60% of repositioned drugs analysed (76
cases out of 128) have been redirected to the same disease family. This tendency resulted to be extremely frequent within two
categories of therapeutic indications: neoplasms and immune system disorders Figure 2, which show also the highest number of
repositioned cases contained in our database. 30% of the analyzed drugs (46 out of 128) have been repurposed to a different
condition but to the same protein target, intended as identical Uniprot ID. Only the 10% (6 cases) has been repositioned to a
different disease and a different target. The situation hereby described seems to reflect a general trend common in the whole

5/11

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 28, 2019. ; https://doi.org/10.1101/715094doi: bioRxiv preprint 

https://doi.org/10.1101/715094
http://creativecommons.org/licenses/by-nc-nd/4.0/


drug discovery world, which has been pointed as one of the reasons behind the structural crisis of the Pharmaceutical R&D
mentioned in the introduction. Current pharmaceutical R&D situation has been compared to an drilling-oil process, where
the cheapest and easiest opportunity with highest expected returns is exploit first and less attractive opportunities with lower
returns are left behind35. Looking at our results, that could be translated in the prioritization of certain disease classes and fast
repurposing approaches within the same disease and target families, with a big pool of drug-target-disease connections left
almost entirely unexplored. In sight of this, it might be crucial in the future to invest in drug repositioning techniques focused
on the study of fine charachteristics of drugs, targets and diseases (so called drug-centric approaches) and able to overcome the
barrier represented by the permanence within the same disease and target category. A systematic and efficient repositioning
approach able to exploit non-related diseases and targets might help both the pharmaceutical R&D by generating more profits
and patients by bringing new therapeutic tools in a fast and cheap way.

Figure 2. Frequency of disease among indication pairs. This figure shows the directions in terms of primary
and secondary indications of all the repositioning cases analyzed. The disease classes have been plotted on
both the axes and the number of repurposed drugs from one disease class to another has been expressed with
the color intensity. The darkest squares lay on the central diagonal, showing that the majority of successful
repositioning cases are carried within the same disease class. Besides on the Right side is displayed the number
of repositioned drugs for the new indication.

The role of drug-target interaction analysis in drug repositioning Notwithstanding the computational drug repositioning has
lately developed many strategies for drug-target interaction prediction, our analysis shows that most of the repositioning cases in
our database might have not been obtained with those techniques. As shown in Figure 1, disease-centric drug repositioning can
link a drug directly to a pathological condition with no need for assessing target similarity or analysing drug-target interactions.
In that case no target-centric or drug-centric approach is necessary to obtain a new patent. For target-centric strategies firm link
of target to indication is vital. Platforms such as open targets36 and Beagle37 are important to infer new connections, but often
the link target-indication is not so direct and clear. The drug-centric cases recognized here are the only one who might have
really benefit by drug-target interaction prediction methods (ligand-based, structure-based and machine learning-based).

Limit and potential of Structure-Based drug repositioning as drug-centric approach An example of drug-centric approach which
aims to repurpose drugs to different targets and diverse indications is represented by the structure-based drug repositioning.
This approach aims to predict new drug-target interactions by taking into account information about the structure of drugs and
targets and their interactions. Although SBDR showed a big potential in repurposing known drugs to different targets and
indications25,38, many limitations make this approach not so easy to apply in a relevant and systematic way. In fact, it requires
the availability of structural data for both the original drug and the target as well as the putative new target with, possibly, its
ligands. The lack of those information limits considerably the searching space for drug repositioning. In fact, for none of the
cases classified in this work as drug-centric repositioning both the original drug-target couple and the repositioned complex
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were available on PDB, confirming the existing barriers in the application of SBDR.

Inaccuracy in the drug repositioning process identification It must be said that our analysis has been a retrospective work based
on the final result of different repositioning processes and doesn’t account for the real process used to repurpose the drugs.
Therefore we suspect that many drugs identified as result of disease-centric drug repositioning for the affinity between their
first and second indication might be instead product of a target-centric or diseases-centric pipeline. For example, the drug
nilotinib, which according our analysis falls in disease-centric drug repositioning, has been repurposed to a different protein
target for gastrointestinal stromal tumor after target-affinity experiments5. For that reason, a deeper molecular understanding of
drug-repositioning databases might lead to a more accurate analysis and give a clearer picture of the real status of repurposing.

Methods
Identification of current drug repositioning cases The Repurposed Drug Database (RDD) was downloaded fromwww.drugrepur
posingportal.com in January 2017. RDD contains 233 drugs that were repurposed up-to-date (see Annex II), providing
information about the drugs with their original and new indications. Given the above, it was necessary to integrate this data
with another source providing information about the protein targets involved in both indications.

Retrieval of molecular drug targets data A list of Molecular Drug Targets (MDT) was collected from the "Comprehensive map
of molecular drug targets" provided by Santos et al.39, where authors curated ”893 human and pathogen-derived biomolecules
through which 1,578 US FDA-approved drugs act”. They used target annotations from the ChEMBL, DrugCentral and canSAR
databases. The data was downloaded in .php format in January 2017 (see Annex II). The aim of that work was to facilitate
mechanism-based drug discovery. The resulting drugs’ targets data set contained information about efficacy targets - targets to
which the drug directly binds to exert its therapeutic effect (see Annex III). It is important to mention, that by definition of the
work ”biomolecules that the drug may also bind to, or be metabolized by, but which are not known to be responsible for its
therapeutic effect, are not defined as targets”. Important to consider as well, is that the work defines drug as any therapeutic
agent, including not only small molecules, but also other biological agents, that are used to enhance health.

Identification of targets involved in the repositioning cases Data in RDD were merged with data in MDT (drug targets) based
on the commonly known drug name, resulting in 196 drugs matched by their common names, 263 unique targets and 333 unique
indications (check Figure 3 or Annex I for more details). The merging of data was performed via a Python 2.7 script in April
2017 and complemented with other biological relevant databases in order to enrich the analysis (see Annex I).

Filter of not small molecules and not protein targets This study only considered proteins as biomolecule targets and small
molecule as drugs. Other cases, such as antibodies as drugs and other biomolecules (e.g enzymes or unknown) than proteins as
targets, were left outside. Out of the 196 drugs both in RDD and MDT, a total of 68 were removed under this filtering criteria
(see Annex II).

Identification of Disease-centric repositioning cases A repositioning case is considered as Disease-centric when it is based
on the similarity of phenotype. For each drug case, the MeSH tree root key was assigned to each indication (see Table 4).
The frequency of diseases among repurposed cases was calculated and visualized with the Matplotlib python library and the
number of cases for each pair of root MeSH keys were plotted in R with the ggplot2 package (see Figure 2). For each pair, all
targets mentioned for the cases at the intersection of the same root MeSH keys were collected and the number of targets at the
intersection calculated. Literature evidence about applicability of these targets for the group was also collected.

Target assignment to original and secondary indication In order to distribute targets into original and secondary indications we
used literature evidence in PubMed (see Figure 3). Target-indication connections were retrieved manually from literature by
searching for direct evidences, such as the improvement in a condition upon treatment with a certain drug due to action on
the protein target; indirect evidences, in case the correlation between a condition with a certain target activity and a disease
were reported by two different articles; or generalized evidences, if a small single evidence on target-condition link was found
even though no strong correlation has been yet recognized. The validation for the previous manual-curation was done via
text-mining by using the ensemble biclustering algorithm (EBC), which allow to extract the connections from a natural text in
a machine-processable form 42 . The text mining dataset used in this work consists of 2 parts. Part I connects dependency
paths to labels, or ’themes’. They were introduced in this dataset to label what kind of interaction exist between two terms,
e.g. whether a casual mutation has a role in pathogenesis or promotes progression of the disease. The second part of the
dataset contains information about drug-taret-indication associations. To validate manual PubMed curation and estimate how
applicable is text-mining for this aim in general, target-indication associations in this dataset were used. To make it possible to
use text-mining dataset with the drug repositioning dataset with targets, UniProt IDs were turned into gene IDs using UniProt
API service, and MeSH on demand was used to assign indications IDs to textual description of diseases. Afterwards, all the
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Figure 3. Collection and classification of known repositioning cases. Merging of Repositioned Drug
Database (RDD), containing 196 drugs and 333 indications linked through 388 connections, the Molecular
Target Database from Santos (MTD), containing 4632 links between 196 drugs and 263 targets, and PubMed,
which allowed to find 780 different links between 263 targets and 333 indications.

records, containing the genes of a proteins assigned as a therapeutic targets for drug repositioning, were collected from the
dataset, and checked whether the pair gene ID - MeSH ID is present. To identify, whether the gene encodes a drug target, the
Part I and Part II of text mining dataset were linked and selected entries were the gene actually had ’drug target’ label. In
this way targets were again distributed into original and secondary indication (see Annex III). The resulting distribution was
compared to manual distribution.

Identification of Target-centric repositioning cases A repositioning case is considered as Target-centric when exploits the same
protein target but in different cellular contexts. The remaining cases which were not classified as Disease-centric repositioning,
were analyzed in order to determine whether the drug actually has two different indications related to the same target or not.
Therefore, cases for which UniProt IDs were the same, were marked as target-centric repositionings.

Identification of Drug-centric repositioning cases A repositioning case is considered as Drug-centric when exploits drug’s
chemical properties. First, the cases which were not classified as Disease-centric and neither Target-centric were considered as
potential Drug-centric. Cases for which there was a literature evidence that targets are different, but secondary target was not
mentioned by the comprehensive map were marked as Drug-centric as well. Even though, some targets have different Uniprot
IDs they can be homological targets with the same function in different organisms (ortholog). In order to evaluate the above,
targets sequence similarity was evaluated using Clustal Omega alignment (https://www.ebi.ac.uk/Tools/msa/clustalo) where the
number of similar and identical positions was summarized and divided be the length of the alignment (usually length of the
longest sequence).

Drug-centric cases with structure-based drug repositioning We finally evaluated how feasible is for the structure-based drug
repositioning approach to identify the selected Drug-centric cases as repositioning stories. To do so, a mapping file from
Uniprot to PDB ID was generated and used to search all available structures in Protein Data Bank 43 , describing the binding
between the drugs and their corresponding targets (associated to both indications). In addition to the previous step, structures
describing a binding between the drugs but with another target (not described in the MDT) were also considered and evaluated
under the terms of structure-based drug repositioning.
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MeSH Category Disease group MeSH Category Disease group
C01 Bacterial Infections and Mycoses C16 Congenital, Hereditary, and Neonatal Diseases and Abnormalities
C02 Virus Diseases C17 Skin and Connective Tissue Diseases
C03 Parasitic Diseases C18 Nutritional and Metabolic Diseases
C04 Neoplasms C19 Endocrine System Diseases
C06 Digestive System Diseases C20 Immune System Diseases
C07 Stomatognathic Diseases C23 Pathological Conditions, Signs and Symptoms
C08 Respiratory Tract Diseases C25 Chemically-Induced Disorders
C10 Nervous System Diseases E01 Diagnosis
C11 Eye Diseases F01 Behaviour Mechanisms
C12 Male Urogenital Diseases F03 Mental Disorders
C13 Female Urogenital Diseases and Pregnancy Complications G07 Physiological processes
C14 Cardiovascular Diseases G08 Reproductive and Urinary Physiological Phenomena
C15 Hemic and Lymphatic Diseases G11 Musculoskeletal and Neural Physiological Phenomena

Table 4. Root MeSH tree key for the group of diseases and corresponding name. MeSH category codes (left column) and common names
(right column) for all types of diseases and conditions for which drug repositioning was previously applied according to RDD.

Conclusion
Drug-target interaction prediction is an important part of most of the rational drug repositioning pipelines. In fact, different
biochemical, physical and mathematical techniques have been designed and optimized to infer accurately links between ligands
and proteins. In this work we analyzed many successful drug-repositioning cases and, based on the similarity between old and
new indication and old and new target, we evaluated the real impact of drug-target interaction prediction for them. Dividing all
the cases containing small molecules and protein targets (128) in Disease-centric (with very similar indications), Target-centric
(with identical or orthologue targets) and Drug-centric cases (with different targets in different indications), we concluded
that only 6 cases out of 128 would have needed drug-target interaction prediction to rationally infer the repurposing. This
unexpected small number of drugs repurposed to a different target in a different indication might be due to the high costs
in terms of information, time and money required by drug-target interaction prediction approaches compared to Target- and
Disease-centric ones. On the other hand, those results highlight a big unexplored niche for drug-target interaction prediction
in drug repositioning, which might be safely explored with the ongoing advancements of techniques designed to infer a link
between a ligand and a new protein target.
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