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Abstract 

Context 

Conservation planning and land management are inherently spatial processes that 

are most effective when implemented over large areas.  

Objectives 

Our objectives were to (i) use existing plot data to aggregate species inventories 

to growth forms and derive indicators of vegetation structure and composition 

and ii) generate spatially-explicit, continuous, landscape scaled models of these 

discrete vegetation indicators, accompanied by maps of model uncertainty. 

Method 

Using a case study from New South Wales, Australia, we aggregated floristic 

observations from 7234 sites into growth forms. We trained ensembles of artificial 

neural networks (ANN) to predict the distribution of these indicators over a broad 

region covering 11.5 million hectares. Importantly, we show spatially explicit models 

of uncertainty so that end-users have a tangible and transparent means of assessing 

models. 

Results 

Our key findings were firstly, widely available site-based floristic records can be used 

to derive aggregated indicators of the structure and composition of plant growth 

forms. Secondly, ANNs are a powerful method to predict continuous patterns in 

complex, non-linear data (Pearson’s correlation coefficient 0.83 (total native 

vegetation cover) to 0.42 (forb cover)). Thirdly, maps of the standardised residual 

error give insight into model performance and provide an assessment of model 

uncertainty in specific locations.  

Conclusions 
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Spatially explicit, continuous representations of vegetation composition and 

structural complexity can add considerable value to conventional maps of vegetation 

extent or community type. This application has the potential to enhance the capacity 

for conservation planners, landscape managers and policy-makers to make informed 

decisions across landscape and regional scales. 

 

Keywords: growth form; interpolated residual error; neural network; predictive 

modelling; site-based floristic records; spatially-explicit vegetation models; vegetation 

composition; vegetation indicators; vegetation structure 
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Introduction 

Conservation planning and land management are inherently spatial processes, and 

to be effective, they need to be implemented over extensive geographic regions. 

Vegetation extent and community type are often the primary spatial information used 

to underpin decision-making at broad scales. Typically, maps of vegetation extent 

depict binary classifications such as ‘extant versus cleared’; ‘woody versus non-

woody’ or ‘native versus exotic’; and maps of vegetation communities depict discrete 

boundaries of community types, each deemed to be internally homogeneous in 

terms of floristic composition, and distinct from other types.  

 

Maps of extent and type have been used to assess the impacts of land use (e.g. 

Hansen et al. 2013), model the distribution of species (e.g. Ferrier et al. 2002), 

inform systematic conservation planning (e.g. Margules and Pressey 2000), 

implement conservation prioritization (e.g. Moilanen et al. 2011; Myers et al. 2000), 

assess wildfire risk (e.g. McKenzie et al. 2004) and estimate standing carbon stocks 

(e.g. Chave et al. 2005; Scurlock and Hall 1998). For example, in their work 

identifying global hotspots, Myers et al. (2000) identified the extent of remaining 

vegetation types as one of the determinants of hotspot status. Myers et al. (2000) 

and many others, pragmatically defer to such maps because vegetation extent and 

community type are often the only spatially explicit datasets available across large 

extents.  

 

However, maps with delineated boundaries imply vegetation is discontinuous (De 

Cáceres and Wiser 2011). Binary or categorical maps seldom represent the 

continuous characteristics of vegetation, such as foliage cover and species richness. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 1, 2019. ; https://doi.org/10.1101/715797doi: bioRxiv preprint 

https://doi.org/10.1101/715797
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 
 

Nor do they directly convey information on total native plant cover or total native 

abundance, or on the multi-layered components of plant structure or composition of 

discrete growth forms. Often the discrete structural elements, or the relative 

abundance and composition, of different plants are difficult to discern from maps of 

vegetation communities.  

 

The structural complexity and composition of vegetation is a function of climate and 

soils, geographic position in the landscape, biogeographic processes and of past 

disturbance (both human-induced and natural stochastic events) (Specht and Specht 

2002). Structural complexity and heterogeneity are associated with faunal diversity 

and distribution (Lindenmayer et al. 2000; McElhinny et al. 2006a; Tews et al. 2004); 

can be used to judge the risk of wildfire by assessing co-occurring plant growth 

forms (Pyne et al. 1996) and can be used to account for the above-ground biomass 

that contributes to carbon stocks (Scurlock and Hall 1998). The compositional 

elements of vegetation at a site, such as native species richness underlie 

conservation strategies (Fleishman et al. 2006) and can be used to identify threats to 

biodiversity (Evans et al. 2011; Hooper et al. 2005).  

 

Growth forms (such as trees, shrubs, grasses or forbs) represent aggregations of 

species based on plant form and function and provide a useful approach for 

representing the multi-layer structural complexity and the relative abundance and 

composition of vegetation. Globally, site-based floristic inventories that record 

individually observed plant species (Bruelheide et al. 2019; Franklin et al. 2017) and 

their growth form allocations (Engemann et al. 2016; Oliver et al. 2019) are 

becoming easier to access.  
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The first objective of our study was to use existing floristic inventories recorded from 

vegetation plots and synthesise these lists of species into indicators of growth form 

structure and composition. The second objective was use predictive models to 

interpolate the ecological patterns and map these predictions at a landscape scale. 

We coupled aggregated observational data with predictor surfaces that influence the 

growth and morphology of vegetation, as well as predictor surfaces that reflect 

landscape-scaled disturbance. Of the range of modelling methods available to 

interpolate site-based observation data (Elith et al. 2006), we used ensembles of 

artificial neural network (ANN) models. ANNs are advantageous for ecological 

applications where data do not meet parametric statistical assumptions and the 

relationships between the response data and the predictor surfaces are complex, 

unknown or non-linear (Bishop 1995; Fielding 1999).  

 

These resultant predictive maps of individual vegetation indicators represent 

spatially-explicit, continuous characteristics of vegetation structure and composition. 

Furthermore, we mapped the spatial distribution of the standardised residual errors 

to show explicitly where our models over- or under-predict. This is a key asset in 

ensuring that the strengths and limitations of these spatially-explicit predictions are 

clear to end-users. This information can support a broad range of landscape scaled 

applications and help conservation planners and landscape managers make better 

informed decisions. 

 

Methods 

Study area 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 1, 2019. ; https://doi.org/10.1101/715797doi: bioRxiv preprint 

https://doi.org/10.1101/715797
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Fig 1 Location of the study area showing topographic relief - northern New South 

Wales, Australia.  

 

Our study area of 115 000 km2 is located in north-eastern New South Wales (NSW), 

Australia (Figure 1). The area is characterised by privately-owned land used for 

agriculture (52% land used for grazing and 23% used for cultivation, including 

irrigated cropping). Extractive industries (including coal seam gas exploration and 

open-cut coal mining) are emerging land uses. Less than 10% of the area is 

protected within National Park or public reserve. The biophysical landscape includes 

elevations up to 1510 m in the eastern ranges to semi-arid regions on the western 

plains. Vegetation formations are diverse, ranging from closed rainforest in the 
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eastern, elevated regions to arid shrublands and grasslands on the drier, western 

plains (Keith 2004).  

 

Figure 2 outlines the five components of this study: (i) transforming site-based data 

into vegetation indicators; (ii) sourcing spatial layers that represent environmental 

and disturbance gradients; (iii) training ANN models; (iv) using the trained ANN 

model to predict indicators across the whole landscape; and (v) rendering the 

average results from ensembles of predicted models into a spatially explicit map for 

each indicator, accompanied by a mapped estimate of the standardised residual 

error.  
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Fig 2 Workflow showing an overview of the five components required to transform 

floristic data to deliver landscape-scaled models of vegetation indicators 

 

Site-based data to inform landscape-scaled models – the response variables 
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We extracted floristic records from in the BioNet Database 

(http://www.bionet.nsw.gov.au). This database contains over 100 000 geo-

referenced, site-based surveys of vascular plants across the state of NSW. These 

floristic data have been collected for a multitude of reasons, mostly to inventory, 

circumscribe and map vegetation communities. We extracted only floristic records 

that were surveyed from a fixed area (0.04 ha); included either a percentage foliage 

cover estimate (<1%–100%) or a cover-abundance score (e.g. 1–6 Braun-Blanquet 

cover abundance score) for each plant species and contained no missing information 

(Step 1.1 in Figure 2). The suite of sites extracted from the database spanned a 

survey period from 1986 to 2011.  

 

Floristic records were checked (e.g. metadata were reviewed to identify only records 

that were collected systematically and recorded full floristic data) and cleaned (e.g. 

sites with missing data were removed). Floristic data with Braun-Blanquet cover-

abundance scores were converted to percentage cover values following methods 

described in McNellie et al. (2019) (Step 1.2 in Figure 2). All species were assigned 

as either native or exotic. We accessed an existing framework for allocating native 

species to one of six major growth form groups (trees, shrubs, grasses and grass-

like, forbs, ferns, and remaining ‘others’ (Oliver et al. 2019) (Step 1.3 in Figure 2). 

Here we have excluded ferns and other growth form groups because there were too 

few observations and we focused on four dominant growth form groups: trees, 

shrubs, grass and grass-like (hereafter referred to as grasses) and forbs. 

 

Structural indicators were calculated by summing the foliage cover estimates across 

all native species. Compositional indicators were calculated as the count of all native 
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species (after aggregating subspecies and varieties). Outliers were identified by 

plotting the distribution data. Sites with abnormally high summed cover (most likely 

due to human error in making visual estimates of cover) were identified and excluded 

from cover models. In total, ten vegetation indicators were generated: total native 

cover; total native richness; as well as cover and richness of trees, shrubs, grasses 

and forbs.  

 

To improve predictive accuracy and to build a representative dataset, we created an 

additional set of absence sites (Step 1.4 in Figure 2). Given our exclusive interest in 

the structural and compositional properties and characteristics of the native 

vegetation, our ‘absences’ were locations where there is virtually no perennial cover 

of native vegetation. Absence sites were important in this study as the training data 

were almost exclusively obtained from natural or near-natural vegetation and the 

objective of this study was to extrapolate our models across all land tenures, 

including both near-natural systems and small remnants of vegetation. This 

complementary set of absences in the response data were generated using on-

screen digitising point registration using satellite imagery (2009 SPOT 5) as a 

backdrop to identify under-sampled land uses that contain no native terrestrial 

vegetation such as irrigation bays, water bodies, roads and infrastructure. Each 

absence site was attributed as having 0% native species cover and 0 native species 

richness. 

 

Environmental and disturbance surfaces – the predictor variables 

We selected a suite of predictor surfaces that reflect: (a) environmental attributes 

that directly (temperature, moisture, radiation) or indirectly (geology, soils, 
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topography) influence the resources and conditions controlling growth and 

morphology of vegetation (Austin 2002; Box 1981; Franklin 2009; Pressey et al. 

2000) and (b) an a priori assessment of disturbance variables that modify and 

fragment vegetation (Step 2.1 in Figure 2 and Supplementary Material S1) (Foley et 

al. 2005).  

i) Abiotic environmental surfaces 

Climatic and topographic surfaces were derived from the Australian 1 second, 

smoothed digital elevation model (DEM-S) (Gallant et al. 2011). Raster surfaces 

were resampled to 25 m resolution to match the observational scale of the response 

data (Williams et al. 2012). Climatic variables were calculated using the MTHCLIM 

module in ANUCLIM v6.1 (Xu and Hutchinson 2013) for the 1921 -1995 epoch. 

Detailed and additional information on predictor surfaces is provided in 

Supplementary Material S1. 

ii) Contemporary disturbance surfaces 

We used land use mapping as a surrogate for disturbance (Foley et al. 2005). We 

assigned mapped land use classes to seven major groups: grazing; cropping and 

horticulture; conservation areas; tree and shrub cover; remaining other land uses 

(which included all urban areas, roads, mining, power generation and areas used for 

intensive animal production); and rivers and wetlands. We also prepared continuous 

land use variables by calculating the distance (m) to the nearest land use or land 

modification (cropping, irrigation, grazing, mining or urban land uses). We compared 

model performance using either categorical or continuous land use variables. 

 

Predictor variables derived from Landsat TM imagery were used only to inform 

models of total native vegetation cover and vegetation cover by growth form. 
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Imagery from 2005 to 2012 was used to calculate normalized difference vegetation 

index (NDVI), foliage projected cover (FPC) and individual components of fractional 

groundcover (bare ground, green groundcover and brown groundcover) derived from 

multitemporal Landsat TM images. Consequently, the response data used to build 

and train models of total native vegetation cover and vegetation cover by growth 

form were a subset of the data where sites were surveyed between 2005 and 2012. 

 

Training the artificial neural network  

The training matrix (Step 2.2 in Figure 2) was created by extracting the value for 

each predictor surface for each site with response data, as well as every absence 

site (see Supplementary Material S3—NN Extract from Binaries.exe for software 

designed to build matrices). Lek et al. (1996), Olden et al. (2008), Özesmi et al. 

(2006) and Zhang et al. (1998) provide examples of working with ANN models within 

an ecological context and Bishop (1995), Fielding (1999) and Haykin (2009) provide 

comprehensive and authoritative texts on the principles of neural networks. The 

training matrix, absence sites and extracted values for all predictor surfaces are 

stored at DOI://10.6084/m9.figshare.7730726.  

 

For each vegetation indicator, the response data were randomly split into three 

subsets: 50% of the data were used to train the model; 20% were used to test the 

model (by comparing the sum of squares error in the training and testing subsets). 

The remaining 30% were withheld (from training and testing) and used to 

independently validate the model (Step 3.1 in Figure 2). This form of data partitioning 

is a rigorous method for validating models (Fielding 1999). Additional information on 

the model architecture is detailed in Supplementary Material S2. 
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We trained artificial neural network models using 100 iterations whereby each 

iteration represented a different model architecture (e.g. number of hidden nodes). 

Each iteration of the model learns patterns or relationships between the response 

data and the predictor data (Bishop 1995). Of the 100 model iterations, the 25 

highest performing models were combined and averaged to produce an ensemble 

model. The predictive performance of each ensemble model was evaluated by 

calculating the average Pearson’s correlation coefficient (r) for each of the training, 

testing and validation subsets (Step 3.2 in Figure 2). It is important to note that 

model performance was judged by determining how well the model performs when 

applied to new data (the validation subset). Parity between the correlation 

coefficients for the training and validation subsets gives an indication of how well the 

model has been trained (Step 3.3 in Figure 2). Sum of squares error was evaluated 

for each network model. Sensitivity analyses were reviewed to give an indication of 

the contribution of each predictor surface to the model (Step 3.3 in Figure 2). 

Sensitivity analyses are unit-less measurements and show how the model performs 

when each predictor is removed from analysis. Standardised residual error for each 

of the response data were reviewed to assess model uncertainty (see Step 5.2 in 

Figure 2). The standardised residual error can be interpreted like z-scores whereby 

values +/- 3 are regarded as outliers (Shekhar et al. 2003). 

 

Predicting the spatial patterns and relationships across the whole landscape 

In this stage, we used raster analyses to treat every 100m grid cell in the study area 

(approximately 11.5 million grid cells) as a new, unknown, or unsurveyed site (Step 

4.1 in Figure 2). The centroid of each grid cell was extracted using custom software 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 1, 2019. ; https://doi.org/10.1101/715797doi: bioRxiv preprint 

https://doi.org/10.1101/715797
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 
 

(see Supplementary Material S3 - NN Extractor.exe) and the underlying values of the 

predictor surfaces were extracted to build the prediction matrix (see Supplementary 

Material S3 - NN Extract from Binaries.exe for details of the software designed to 

build this matrix). This matrix (sites x predictor variables) formed the ‘predict later’ 

(Ferrier and Guisan 2006) input table used to predict the trends and patterns learned 

from the training data site (Step 4.2 in Figure 2). 

 

To build predictive models of each of the ten vegetation indicators, that is, to 

interpolate the spatial patterns and relationships across the whole landscape, each 

of the 25 training models per indicator (representing 25 trained networks) in 

Predictive Model Markup Language (PMML) file format were deployed to every grid 

cell in the prediction matrix which represented the new, unknown cases. These 

analyses produced 25 prediction models. The final predicted output for each grid cell 

was averaged to create a single ensemble model for each vegetation indicator (Step 

4.3 in Figure 2).  

 

Representing the model predictions as maps 

Predictions from the models were stored as PMML files. Custom software (Step 5.1 

in Figure 2) (see Supplementary Material S3 - NN Tools Prediction.exe for software 

designed to build spatially explicit predictive models), transformed the PMML 

predicted model output into the format needed to create a raster map. Each 

vegetation indicator was mapped using the location (easting and northing) of each 

100m x 100m cell centre (X, Y) and the predicted value (Z) (Step 5.2 in Figure 2). An 

overlay of non-native vegetation was used to mask out areas that have been 

identified as cleared (NSW Office of Environment and Heritage 2017). 
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To investigate the spatial patterns and behaviour of model predictions over the whole 

of landscape, we calculated the inverse distance weighting (IDW) (Shekhar et al. 

2003) of the standardised residual to represent under- and over-prediction ‘error’ as 

a raster map (Step 5.3 in Figure 2). Negative standardised residual values indicate 

over-prediction and positive values indicate under-prediction. The spatial 

representation of the standardised residual error guides end-users where the 

modelled predictions have higher uncertainty.  

 

Results 

Response variables 

The dataset used to train the models contained 7234 sites and an additional 3904 

absence sites. The subset of sites that matched the temporal period of the remote 

sensing variables (and that were used to predict cover) was 3490 floristic sites and 

we selected a random subset of 1313 absence sites. Of the 3490 sites used as 

response data in the cover models, a further nine sites were excluded from the total 

native cover model because they were identified as outliers (>235% summed cover).  
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Model assessment 

The correlation coefficients, assessing the strength of correlation between predicted 

and observed values for of the training, testing and validation subsets for each 

modelled vegetation indicator are shown in Table 1. The correlation coefficient (r) for 

the validation subsets ranged from 0.83 (total native cover) to 0.42 (for forb cover). 

Parity between the correlation coefficients of the training subset and validation 

subsets show that models have been well-trained and performed well when applied 

to new data (the validation subset). The difference between the training and 

validation correlation coefficients was greater for cover models, with this difference 

ranging from 0.01 (forb cover) to 0.07 (shrub cover). The correlation coefficients for 

training and validation subsets in the richness models were much closer and the 

difference ranged from 0 (total native richness) to 0.02 (shrub and grass richness). 

 

Table 1: Averaged Pearson’s correlation coefficient (r) and sum of squares error 

(SoS) for ensemble models for each of the ten vegetation indicators. Correlation 

coefficients for the validation subset is shown in bold to highlight the validation 

results. Total number of observations (n) for total native cover model n = 3481 (with 

training subset n = 1741; test subset n = 696 and validation subset n = 1044); all 

other cover models n = 3490 (with training subset n = 1745; test subset n = 698 and 

validation subset n = 1047) and total number of observations for richness models n = 

11132 (with training subset n = 5567; test subset n = 2226 and validation subset n = 

3339).  

Indicator 
 

Subset r SoS 

Total native cover Train 0.85 435.86 
 Test 0.87 402.40 
 Validate 0.83 462.91 
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Tree cover Train 0.81 114.25 
 Test 0.80 129.94 
 Validate 0.79 125.60 
Shrub cover Train 0.60 134.83 
 Test 0.57 133.04 
 Validate 0.53 136.68 
Grass cover Train 0.65 206.42 
 Test 0.66 191.70 
 Validate 0.61 229.62 
Forb cover Train 0.41 40.39 
 Test 0.44 41.43 
 Validate 0.42 44.31 
Total native richness Train 0.81 51.43 
 Test 0.83 51.81 
 Validate 0.81 53.22 
Tree richness Train 0.75 0.92 
 Test 0.77 0.93 
  Validate 0.76 0.84 
Shrub richness Train 0.73 4.89 

 Test 0.75 4.70 
 Validate 0.75 4.82 
Grass richness Train 0.70 6.99 
 Test 0.72 6.88 
 Validate 0.72 6.72 
Forb richness Train 0.69 13.57 
 Test 0.72 12.95 
 Validate 0.70 13.30 

 

Predictor variables and sensitivity analysis  

We evaluated treating land use as either a single categorical predictor or several 

individual continuous predictors. Our results (Supplementary Material S4) showed 

that correlation coefficients were higher and sum of squares errors were lower when 

categorical land use was used as a predictor to inform vegetation structure and 

composition. Sensitivity analysis showed that the categorical predictors (land use 

and great soil group) made the two highest contributions to training models. No 

predictors had a sensitivity of less than one (Table 2) indicating that there were no 

redundant predictor variables. Overall, the suite of richness models yielded higher 
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sensitivity values for land use and soils, followed by climatic variables (mean 

minimum winter temperature and isothermality) and soil properties (percentage of 

clay or silt). Not surprisingly, remotely sensed predictor variables (foliage projective 

cover and normalised difference of vegetation index) had higher sensitivity values for 

the suite of cover models, especially total native cover and tree cover. However, for 

some of the cover attributes, such as forb cover, there were few strong predictor 

variables. 
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Table 2: Sensitivity analysis showing the sensitivity averaged over 25 ensembles of ANN models for ten vegetation indicators. Only 

the highest three sensitivity values for each vegetation indicator are shown.  

Indicator  Land 
use 

GSG FPC NDVI Winter 
temp 

Clay% Sand% Isotherm 

Total native cover 2.44 1.10  1.05     
Tree cover 1.88 1.06 1.54      
Shrub cover  1.22 1.02 1.02      
Grass cover 1.67 1.08 1.09      
Forb cover 1.15 1.01       
         
Total native richness 4.16 1.11   1.05    
Tree richness  2.82 1.07    1.02   
Shrub richness  2.56 1.09     1.05  
Grass richness 2.89 1.07   1.03   1.03 
Forb richness 2.66 1.07   1.05    
         
GSG – great soil group 
FPC – foliage projective cover 
NDVI – normalised difference vegetation index
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Interpolating spatial patterns and relationships across the whole landscape 

We created spatially explicit model-based predictions for ten vegetation indicators 

over the 11.5 million grid cells (100 m x 100 m) in the study area. The data file with 

location (X, Y) and the predicted value (Z) was displayed as a continuous surface 

raster map. Here we show an example (Figure 3) of the detailed (1:1 000 000 scale) 

prediction surface for total native richness (Figure 3a) and the associated estimate of 

standardised residual error in the prediction (Figure 3b), for a section of the study 

area (Figure 3c). Residual errors were classified to depict classes of under- and 

over-estimation. To further demonstrate how indicators of individual vegetation 

components can be modelled, Figure 4 shows a detailed example for shrub richness 

(1:1 000 000 scale) over the same area which illustrates the contribution of richness 

within this growth form to the overall richness. The spatially explicit maps for all ten 

vegetation indicators and their accompanying residual error maps are supplied as 

Supplementary Material S5. 
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Fig 3 Fine-scale representation of predicted total native species richness showing 

the detail of the a) continuous surface for native species richness (count of all native 

species), b) standardised residual error for native species richness and c) a location 

diagram within the study area 
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Fig 4 Fine-scale representation of predicted shrub richness showing the detail of the 

a) continuous surface for shrub richness, b) standardised residual error for shrub 

richness and c) a location diagram within the study area  
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Discussion 

Extending site-data for predictive ecological modelling 

Here we have shown how existing inventories of floristic data can be assembled into 

growth forms which can facilitate the modelling and more detailed mapping of 

different facets of vegetation structure and composition. The ever-growing volume of 

floristics site data (Bruelheide et al. 2019; Dengler et al. 2011; Peet et al. 2013; 

Schaminée et al. 2011) and large-scale synthesises of species to a growth form 

(Engemann et al. 2016; Oliver et al. 2019) has opened opportunities to explore how 

site-based observations can be extended to inform ecological models. Currently, 

much effort and attention has been applied to using these floristic data to inventory, 

describe and map vegetation community types at broad scales (e.g. Chytrý et al. 

2011; Grossman et al. 1998; Mucina and van der Maarel 1989; Wiser et al. 2011), 

and these maps have been highly influential for supporting whole of landscape 

decision making (e.g. Myers et al. 2000).  

 

However, approaches that aim to delineate boundaries around uniform types are 

subject to multiple sources of variation. Hearn et al. (2011) found that most errors in 

mapping vegetation boundaries were observed where neighbouring vegetation types 

had similar structure and composition. Delineating communities on a map is often an 

arbitrary decision that requires a degree of expert interpretation because most 

vegetation types intergrade across ecotones. Furthermore, Hearn et al. (2011) also 

found that experts differed in their opinions about which vegetation types were 

contained within the mapped boundaries, especially when vegetation structure and 

composition were similar (such as in shrub-dominated heaths or grasslands). Our 

spatially explicit representation of structure and composition of individual plant 
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growth forms can overcome some of the sources of variation found in maps of 

vegetation communities. This alternative approach is unimpeded by bounded 

vegetation categories because we represent discrete growth forms as a continuous 

surface that can express the heterogeneity in vegetation structure and composition 

across the landscape. 

 

Evaluating the predictor data 

Land use was a strong predictor for all vegetation structure and composition indices. 

Land use is a key driver underpinning the modification of natural landscapes (Fischer 

and Lindenmayer 2007; Foley et al. 2005; Newbold et al. 2016). Interestingly, when 

we investigated both categorical and continuous methods to represent land use data 

we found the categorical land use variable improved the correlation coefficients, 

reduced residual errors, made the greatest contribution to sensitivity analyses and 

resulted in realistic spatial representations of all indices across the landscape when 

compared to continuous representations of distance to different land use types. 

Lindegarth and Gamfeldt (2005) also found analyses using categorical variables 

provided an indication as to which factors were important.  

 

This study addresses the challenge of selecting an appropriate and comprehensive 

set of predictor surfaces (Williams et al. 2012) by using predictors that are known to 

relate to growth and morphology of vegetation, such as temperature, light, 

topography, hydrology (Austin 1998; Box 1981), as well as predictors that are known 

to modify and fragment landscapes. The approach described here has the capacity 

to be broadened. Globally, compilations of gridded environmental surfaces that 

represent climate, soils or topography are readily available (e.g. for climatic data see 
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WorldClim (Fick and Hijmans 2017); for soil data see SoilGrids (Hengl et al. 2017) or 

digital elevation models from which topographic predictors can be derived (e.g. 

ASTER Global Digital Elevation Model https://lpdaac.usgs.gov).  

 

Despite our careful selection of predictor surfaces, there are limitations in using 

surrogates, such as land use, to represent disturbance. Firstly, for some land use 

categories, the extent to which native vegetation is modified is not uniform. For 

example, grazing by either native animals or livestock varies in its intensity and 

impact on native vegetation (Lunt et al. 2007; Olff and Ritchie 1998; Pausas and 

Bond 2019; Speed and Austrheim 2017). Secondly, some disturbance events, such 

as fires, droughts or floods, are stochastic in time (duration, intensity and frequency) 

and space (scale and extent) (Lake 2000; Levin 1992) and their effect on vegetation 

can be complicated (Pausas and Austin 2001). A static surrogate such as land use 

cannot capture the spatial and temporal variation in disturbance (Drielsma and 

Ferrier 2006). By singling out different growth form groups, we implicitly 

acknowledge that different disturbances influence plant groups in different ways. 

Advances in data availability (such as routinely updated land use information, or 

remotely sensed data, including LiDAR, IKONOS, Quickbird, Landsat ETM and 

Sentinel-2) may offer opportunities to dynamically and iteratively update and refine 

variables (Leitão and Santos 2019), such as land use, to better predict structure and 

composition of vegetation at a regional scale. At a global scale, predictors that relate 

to land use are often inferred from remotely sensed land cover data (see 

Socioeconomic Data and Applications Center http://sedac.ciesin.columbia.edu). 

 

Simple and transparent maps of model uncertainty in specific locations 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 1, 2019. ; https://doi.org/10.1101/715797doi: bioRxiv preprint 

https://doi.org/10.1101/715797
http://creativecommons.org/licenses/by-nc-nd/4.0/


  28 
 

One of the substantial benefits of our modelling approach is the mapped 

standardised residual error. When displayed as a map, the ‘known error’ at every site 

is used to infer the ‘unknown error’ across the whole landscape. Here we have used 

inverse distance weighting to spatially interpolate the residual error between the 

observed input data and the surrounding areas where errors are unknown. Other 

approaches, including Kriging, are equally useful (Sajid et al. 2013). The spatial 

patterns in standardised residual error show that some vegetation indicators are 

likely to be temporally dynamic, such as forb cover and richness, which have a 

greater range in the residual error. Whereas vegetation indicators that are relatively 

stable through time, such as tree richness, show a narrower range in the residual 

error.  

 

Predictive models are prone to uncertainty. The sources of model uncertainty can 

arise from any (or all) of the steps outlined in Figure 2, including errors and temporal 

variation in the response data; inaccurate, imprecise or absent predictor surfaces; or 

the model may fail to adequately associate (learn) the patterns and relationships 

between the response data and the predictor variables. Some model uncertainty can 

be contained by using ensembles of neural network models (Muñoz-Mas et al. 2015) 

and quantified using sensitivity analyses. In addition to methodological rigor, our 

analyses and spatial representation of the residual error have provided a simple and 

transparent means of assessing model uncertainty in specific locations. These maps 

provide essential information to assist end-users with evaluating the suitability of 

each model in specific locations and to identify locations for on-ground, visual 

validation of models. 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 1, 2019. ; https://doi.org/10.1101/715797doi: bioRxiv preprint 

https://doi.org/10.1101/715797
http://creativecommons.org/licenses/by-nc-nd/4.0/


  29 
 

Practical applications for mapped vegetation indicators  

Quantifying and mapping species composition of vegetation, be that of discrete 

growth forms or in totality, offers a novel approach for assessing vegetation structure 

and composition across landscapes. For instance, predictions from these models 

could be used to inform the habitat preferences for species (e.g. Kissling et al. 2018; 

Lindenmayer et al. 2018) especially where higher cover or richness of different 

growth forms contributes to greater habitat complexity (Ashcroft et al. 2017; Brown et 

al. 1995; Rowe and Speck 2005). These types of biologically-orientated models that 

can be used to inform habitat-specific occupancy models (McElhinny et al. 2006b), 

especially the structure and composition of grasses and forbs, which are often 

overlooked (Gilliam 2007; McElhinny et al. 2005). 

 

In vegetation types where some growth form components are missing yet expected, 

active restoration can be targeted towards these missing components. For example, 

Nichols et al. (2010) found that passive regeneration of grasses and forbs was not 

realised within the ten years post-planting of dominant tree species. We foresee an 

improved approach to identifying growth forms that could be actively restored to 

improve the conservation value and enhance some vegetation types. This work has 

made progress towards targeting restoration efforts to enhance vegetation and 

habitat quality because we have treated vegetation as a complex of different growth 

forms. 

 

Additionally, these maps can provide information about vegetation indicators that are 

useful for estimating the above-ground biomass contribution to carbon accounting or 

fuel loads which are typically under-detected by remote sensing satellites that collect 
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landscape-scaled imagery, such as Landsat ETM (Lawley et al. 2016), especially the 

contribution made by non-woody growth forms such as grasses and forbs. Chastain 

et al. (2006) found that an understorey layer of shrubs made a significant 

contribution to the carbon content and nitrogen cycling in forests, and importantly, 

that the substantial understorey layer was not able to be detected using Landsat 

imagery. 

 

Conclusions 

Often maps of vegetation community type or remotely sensed images of vegetation 

cover are used to inform conservation and land management. Seldom are the 

structure and composition of discrete growth forms synthesised from species 

inventories and mapped as specific and separate indicators. We have focused on 

advances in three key areas. Firstly, we have identified how response data that are 

ubiquitous and accessible can be extended to derive community-level structural and 

compositional vegetation indicators. Secondly, using an extensive suite of predictor 

data, including environmental and human-induced disturbance surfaces, we used 

ensemble models to predict and map individual vegetation indicators as 100 m raster 

layers. We also mapped the interpolated residual error to highlight locations where 

predictive models have higher uncertainty. These methods can be applied to many 

regions of the world, especially as new information on the type, frequency and 

intensity of human-induced and natural disturbance becomes available. 

 

This framework has delivered spatially explicit representations of the structural and 

compositional indicators of vegetation. We anticipate that these models of vegetation 

indicators will enhance existing vegetation maps, fill an information gap where maps 
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are not currently complete or consistent and strengthen biodiversity conservation 

and land management decision-support across a range of applications.  
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Supplementary Material S1 – Conceptual underpinning of the environmental and 

disturbance gradients – the predictor variables  

We selected a suite of predictor surfaces based on our ecological understanding of 

the landscape and conceptual understanding of drivers that influence patterns in 

vegetation; ‘V’ indicates that the specified predictor surface is known to influence the 

growth and morphology of vegetation extent or type; ‘M’ indicates surfaces included 

to inform modification or fragmentation of vegetation. ‘V,M’ indicates that within a 

whole of landscape context, the predictor informs both extent and type of vegetation 

as well as modification and fragmentation.  

Climate surfaces were generated using MTHCLIM in ANUCLIM v6.1 (Xu and 

Hutchinson 2013) for the 1921 -1995 epoch. A 25 m resolution ‘smoothed’ digital 

elevation model DEM-S (Gallant et al. 2011) was used as the third independent 

variable needed to interpolate monthly mean climate values. These variables were 

selected to express various aspects of the annual regimes of temperature, 

precipitation, and potential evapotranspiration (Box 1981). After ANUCLIM 

processing, climate surfaces were imported into ArcGIS v10.1, converted to raster 

layers (25 m) and projected to Lamberts NSW coordinate system. Sharples et al. 

(2005) note that digital elevation models with a spatial scale of 1 km resolution are 

normally sufficient for temperature dependent parameters and a 5 km resolution 

DEM is normally sufficient for rainfall dependent parameters. Table S1 outlines the 

predictor surfaces used to represent the environmental and disturbance gradients. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 1, 2019. ; https://doi.org/10.1101/715797doi: bioRxiv preprint 

https://doi.org/10.1101/715797
http://creativecommons.org/licenses/by-nc-nd/4.0/


  45 
 

 

Environmental 

gradient 

Predictor surface Informs Description Response 

Data 

Range 

Conceptual 

underpinning or 

reference to method 

Macroclimate isothermality V temperature evenness as calculated in 

BIOCLIM (BIO03) as the diurnal temperature 

(°C) range divided by annual temperature 

range. It is a measure of the day to night 

temperature oscillation in comparison to the 

seasonal oscillation. annual range of monthly 

mean temperatures 

0.43 – 

0.52 

Xu & Hutchinson 

2013 

 mean minimum temp in 

winter 

V averaged minimum temperature (°C) for June, 

July and August  

-1.3 – 5.2 Box 1981 

 winter rainfall V averaged rainfall (mm) for June, July and 

August  

78 – 334 Box 1981 

 mean maximum 

temperature in summer 

V averaged maximum temperature (°C) 

December, January and February 

20.5 – 

34.3 

Box 1981 

 summer rainfall V total rainfall (mm) for December, January and 

February 

137.8 – 

690.5 

Box 1981 

 rainfall seasonality ratio V solstice rainfall seasonality ratio calculated as 

rainfall (mm) totals for December, January and 

1.1 – 2.9 Austin 1998 
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February over rainfall totals for June, July and 

August  

 precipitation/ 

evaporation 

V annual moisture index (annual precipitation 

divided by the estimate of annual potential 

evapotranspiration) 

 

0.17 – 1.7 Box 1981 

 heat load index V Input variables are latitude, slope, and aspect. 

The equations apply to 0–60° north latitude, 

slopes from 0–90°, and all aspects. By 

transforming aspect, the equations can also be 

applied as an index of heat load, symmetrical 

about a northeast to southwest axis. 

1025 - 

7088 

McCune & Keon 

2002 

Topography transformed aspect V Transformed aspect = 1 - cos (aspect - 30)/2. 

This transformation assigns the highest values 

to land oriented in a south-southwest direction, 

the coolest and wettest orientation for 

Australian landscapes (southern hemisphere). 

0 – 1 Roberts & Cooper 

1989 

 slope V identifies the rate of maximum change in 

elevation between each cell 

0 – 52  

 compound topographic 

index 

V Generated from the hydrologically enforced 

digital elevation model (DEM-H see Gallant et 

3.5 – 20.0 Gessler et al. 1995 
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al. 2011) 

Soils and 

Geology 

gravity V Anomalies in the earth’s gravitational field can 

in some cases be used to define the thickness 

and extent of the regolith, due to the strong 

contrast in density between the regolith 

(including in situ weathered bedrock) and fresh 

bedrock, and in defining regolith features such 

as paleo-channels (Tracey et al. 2007) and is 

used in lieu of geology 

-267 – 442 Wellman 1998 

Radiometric ratio Th/K  Gamma radiometric data (K, U and Th) 

provides information on the distribution of 

materials in which the soils. Ratios of these 

gamma-emissions show the spatial distribution 

of a range of contrasting soil-forming materials  

0.15 – 

218. 

Cook et al. 1996 

   Potassium (K) (%) concentration decreases 

with increasing weathering and occurs in many 

rock-forming minerals such as K-feldspars, 

micas and as clays like illite. 

  

   Thorium (Th) (ppm) is most common in 

accessory and resistate minerals such as 

zircon, sphene, apatite, xenotime, monazite 
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and epidote.  

 

Soils  

 

great soil group  V,M Mapped great soil groups were ordered 

according to their profile development (Murphy 

2000).  

41 

categories 

# 

 % clay, %sand and %silt  The clay, silt and sand content of a soil control 

its texture and physical behaviour, including 

water holding capacity and permeability, and 

influence many chemical characteristics 

 OEH 2017, Digital 

soil mapping of key 

soil properties over 

NSW, Technical 

Report, NSW Office 

of Environment and 

Heritage, Sydney 

      

 

Environmental 

Gradient 

Predictor Surface Informs  Range Conceptual 

underpinning or 

reference to method 

Landsat 

Imagery 

median band 3:  

median band 4:  

median band 5:  

median band 7 

V,M Median pixel value for each Landsat image 

sliced into individual bands 3, 4, 5 and 7 for 

years 2005-2012.  

10 – 174 

6 – 169 

7 – 227 

6 – 124 
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 foliage projected cover V,M Estimated foliage cover for woody areas 

derived from Landsat imagery 2005 - 2012. 

(Lucas et al. 2006) 

100 - 199  

   Foliage projected cover and fractional 

groundcover are mutually exclusive data sets. 

The fractional ground cover has only been 

assessed in areas with less than 20% foliage 

cover.  

  

 fractional groundcover 

index  

green groundcover:  

brown groundcover:  

bare ground 

V,M A Landsat 7 ground cover image based on a 

calibrated relationship between field 

measurement and the imagery from 2005 – 

2012. These data are generally used in a time-

series analysis for monitoring trends in ground 

cover over time 

 

 

87 – 201 

87 – 216 

84 – 202 

McCosker et al. 2009 

 normalized difference 

vegetation index 

V,M (Band 4 – Band 3) / (Band 4 + Band 3) used to 

detect vegetation changes in the biophysical 

parameters of the canopy. 

-0.45 – 

0.74 

 

Modification major land use and 

landforms 

M 7 major broad categories representing 

disturbance were identified and mapped from 

aerial photograph interpretation: Percentage of 

the study area cover by each landuse is in in 

7 

categories 

Foley et al. 2005; 

Fischer & 

Lindenmayer 2007.  
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brackets:  

• grazing (52%);  

• cropping and horticulture (23%);  

• conservation areas (10%);  

• tree and shrub cover (10%);  

• other landuses (which includes all urban 

areas, roads, mining, power generation 

and areas used for intensive animal 

production – 2%);  

• rivers (2%) and  

• wetlands (less than 1%).  

 Continuous surfaces to 

represent land use 

 we explored continuous surfaces that 

represent Euclidian distance to the nearest 

land use feature 

• distance to drainage line  

• distance to wetland 

• distance to mining 

• distance to cropping 

• distance to irrigation 

• distance to grazing 
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• distance to urban 

 

 

Table S1 Thirty-four predictor surfaces used in artificial neural network models.   
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Supplementary Material S2 – Additional information on artificial neural network 

model architecture 

Artificial neural network (ANN) models are used to find patterns in complex data 

through an iterative ‘train and learn’ process. Training is the process of recognizing 

the associative patterns and relationships between the response data and 

environmental predictor surfaces; learning is the process of finding the least amount 

of error in the patterns and relationships. Training passes information forward 

through the network via weights and bias; learning informs the network by adjusting 

weights to reduce the largest errors. 

 

Many types of ANN models exist (see Bishop 1995; Ripley 1996), the most frequent 

architecture used in ecological applications is a multi-layer perceptron (MLP) feed-

forward network with one hidden layer trained by either back-propagation (Rumelhart 

et al. 1986), or as in our application, the Broyden-Fletcher-Goldfarb-Shanno BFGS 

algorithm (see Bishop 1995). The MLP framework is used to construct ANN models 

because their architecture is robust when handling large volumes of complex data. 

 

Below, we discuss the important components of the ANN architecture – observation 

data, the training algorithm, activation functions and weight decay, predictive output 

and sensitivity analysis. 

 

Observation Data 

Site locations (X and Y coordinates) were assembled with the intersected point 

values for each of the 34 environmental and disturbance predictor surfaces (software 

specifications are outlined in Supplementary Material S3). This matrix formed the 

response data used to train the ANN. It is generally advised that the dataset contains 

10 times more observations than predictor surfaces  

 

Outlying Observations 

Even though ANN models can effectively discount outliers, isolated data points 

undermine the split-sample hold-out strategy because there are too few cases 

allocated to either the train, test or validate subsets. This, in turn, has a large effect 
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on the sum-of squares error (Bishop 1995) and consequently, poor predictions can 

be expected when the validation data contain values outside of the range of those 

used for training (Maier and Dandy 2000).   

 

Training algorithm 

Training the neural network involves an error algorithm, which finds a set of 

connection weights that produces an output signal with a small error relative to the 

observed output. There are many texts that explain the differences between gradient 

decent and quasi-Newtonian methods, but the fundamental difference is that back-

propagation is a gradient decent method and BFGS is a second derivative of the 

Newtonian method and uses a Hessian error matrix. In terms of applying ANN to 

ecological modelling, the difference is realised in computational penalties. BFGS 

require less computational power, which in turn delivers faster models. 

 

Activation functions 

Activation functions introduce nonlinearity into the model. It is the nonlinearity (that 

is, the capability to represent nonlinear functions) that make ANN models so 

effective. For both the hidden and output layers we used the negative exponential 

activation function because the output layers are continuous data, bounded by 0 at 

the lower with the potential for infinity at the upper end (Bishop 1995).  

 

Weight decay  

To avoid over-fitting the model during training, we used weight decay as an effective 

form of complex regularisation (Haykin 1994). Minimum weight decay was set to 

0.0001 and the maximum to 0.001, which is regarded as weak regularisation. Weight 

decay trains the network's sum of squares error function by penalizing larger weights 

(Statsoft Inc. 2013).  

 

Predictions 

We used Artificial Network Search (ANS) in the Statistica Artificial Neural Network 

(SANN) module within Statistica v10 software (Statsoft Inc. 2013) to explore multiple 

configurations of networks. We ran 100 model iterations and varied the number of 

hidden nodes. We also used weight decay to avoid over-fitting the model during 
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training. For each vegetation attribute, we retained the 25 highest performing models 

(assessed by the Pearson’s correlation coefficient (r)).  

 

The architecture and training parameters used to build the highest 25 performing 

models are stored as Predictive Model Markup Language (PMML) files. PMML 

models are a standard format used to represent predictive models across many 

modelling platforms applications.  

 

Sensitivity analysis 

An indication of the importance of each predictor surface was illuminated using 

global sensitivity analyses. Sensitivity analyses were calculated after the model was 

trained and were assessed by comparing the change in the original model error 

compared to the error obtained by substituting a variable with ‘missing value’. The 

ratio of ‘original error’ to ‘error when the variable is substituted’, gives an indication of 

how sensitive the network is to each predictor surface (Statsoft Inc. 2013). Predictor 

surfaces with sensitivity values less than one cause the model performance to 

degrade. 
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Supplementary Material S3 - Software to create data input tables, prediction output 

tables and manage multiple tables 

Creating the training matrix and the prediction matrix and interpreting the prediction 

output into a raster map was accomplished with the following suite of software tools. 

There are 32-bit and 64-bit versions these tools. These are all developed under 

Microsoft.NET and require Microsoft.NET application Framework version 4.0. 

• NNExtractFromBinaries.exe (see manuscript Figure 2 Step 2.2 and Step 4.2) 

• NNToolsExtractor.exe (see manuscript Figure 2 Step 4.1) 

• NNToolsPrediction.exe (see manuscript Figure 2 Step 5.1) 

 

NNExtractFromBinaries.exe 

To build the training matrix, for each of the response data (points), the underlying 

values from each of the predictor (raster) surfaces were extracted using the 

NNExtractFromBinaries.exe application (Figure 2 Step 2.2). A comma delimited text 

file, formatted as Site_ID, X_Coordinate, and Y_Coordinate was used as input into 

the NNExtractFromBinaries.exe application. The output table was also a comma 

delimited table with the first three columns formatted as the input table and the 

comma delimited values for each of the predictor surfaces in subsequent columns. 

The same tool was used to build the prediction matrix (Figure 2 Step 4.2), using the 

cell centroids from each of the 100 m grid cells in the study area and the same suite 

of predictor surfaces.  

 

The predictor surfaces must all be in ESRI Binary Export Format (.flt/.hdr) and can 

be loaded into the listView in the lower half of the application. The positions of each 

predictor (order of extraction) can be modified via the up/down arrow buttons and 

predictors can be eliminated from the listView with the X button. Press Run to start 

the process of extraction. The status bar will indicate the progress. The csv table is 

supplied as the input file to train the ANN models. 
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NNToolsExtractor.exe 

The extent of the study area was prepared as a 100 m raster grid in ESRI Binary 

Export Format. The centroid of each grid cell in the spatial extent becomes a new 

site for which the trained network makes a prediction (Figure 2 Step 4.1). These cell 

centroids are extracted to create the first section of the prediction matrix. The 

NNToolsExtractor.exe application created a table with the following Format _ID, 

X_Coordinate, Y_Coordinate where the X and Y coordinates of all the centroids for 

each of the 11.5 million cells in the study area. Once the X Y locations for every new 

grid cell are nominated, this table can then be submitted to the 

NExtractFromBinaries.exe application to extract the predictor data for each record 

(Figure 2 Step 4.2).  

 

NNToolsPrediction.exe 

Once the predictions have been acquired via the PMML output from the model, the 

resulting table can be used as input to the NNToolsPrediction.exe application (Figure 

2 Step 5.1). The user can select the X and Y fields and importantly, the prediction 

field and by using the mask grid as a domain will create an ESRI Binary Export grid 

that will have each valid data cell coded with the predicted value from the ANN 

model. 
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Supplementary Material S4 – Comparison of results to assess ensemble model 

performance when using land use as a categorical or as several continuous layers.  

Total number of observations (n) for cover models n = 3 481 (with training subset n = 1 741 

observations; test subset n = 696 and validation subset n = 1 044) and total number of 

observations for richness models n = 11 132 (with training subset n = 5 567; test subset n = 

2 226 and validation subset n = 3 339). r = Pearson’s correlation coefficient; SoS = sum of 

squares error. 

 

Indicator Subset Land use - 
continuous 

Land use - 
categorical 

  r SoS r SoS 

Total native cover Train 0.83 475.44 0.85 435.86 

 Test 0.84 467.52 0.87 402.40 

 Validate 0.79 550.88 0.83 462.91 

Tree cover Train 0.79 120.29 0.81 114.25 

 Test 0.79 134.69 0.80 129.94 

 Validate 0.78 131.26 0.79 125.60 

Shrub cover Train 0.59 136.64 0.60 134.83 

 Test 0.56 134.22 0.57 133.04 

 Validate 0.53 136.73 0.53 136.68 

Grass cover Train 0.58 234.00 0.65 206.42 

 Test 0.60 218.52 0.66 191.70 

 Validate 0.53 262.04 0.61 229.62 

Forb cover Train 0.36 42.41 0.41 40.39 

 Test 0.39 43.93 0.44 41.43 

 Validate 0.36 46.78 0.42 44.31 

Total native richness Train 0.67 83.08 0.81 51.43 

 Test 0.68 87.12 0.83 51.81 

 Validate 0.66 89.99 0.81 53.22 

Tree richness Train 0.63 1.24 0.75 0.92 
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 Test 0.63 1.31 0.77 0.93 

  Validate 0.63 1.21 0.76 0.84 

Shrub richness Train 0.64 6.26 0.73 4.89 

 Test 0.65 6.22 0.75 4.70 

 Validate 0.65 6.34 0.75 4.82 

Grass richness Train 0.53 9.92 0.70 6.99 

 Test 0.54 10.26 0.72 6.88 

 Validate 0.52 10.14 0.72 6.72 

Forb richness Train 0.54 18.71 0.69 13.57 

 Test 0.56 18.43 0.72 12.95 

 Validate 0.53 18.86 0.70 13.30 
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Supplementary Material S5 - The spatially explicit maps and accompanying residual 

maps for each indicator  

Figures S1-S5 Maps of predicted vegetation indicator and their standardised 

residual error. The standardised residual error between predicted and observed 

values was calculated for each prediction at the site and interpolated across the 

landscape using inverse distance weighting (IDW) in ArcGIS Spatial Analyst. These 

values represent areas where the model has under estimated (positive values) or 

over estimated (negative values). Residual error maps were classified so that 

residual error (-1 and 1) are white; increasing residual error (between 1 to 2 and -1 to 

-2) as shaded lighter, and areas where there is higher uncertainty (less than -3 or 

greater than 3) are darker.  
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Figure S1 a) total native richness; b) standardised residual error for total native 

richness; c) total native cover (%); d) standardised residual error for total native 

cover and e) inset map showing study area 
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Figure S2 a) native tree richness; b) standardised residual error for native tree 

richness; c) native tree cover (%); d) standardised residual error for native tree 

cover; and e) inset map showing study area 
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Figure S3 a) native shrub richness; b) standardised residual error for native shrub 

richness; c) native shrub cover (%); d) standardised residual error for native shrub 

cover and e) inset map showing study area 
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Figure S4 a) native grass richness; b) standardised residual error for native grass 

richness; c) native grass cover (%); d) standardised residual error for native grass 

cover and e) inset map showing study area 
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Figure S5 a) native forb richness; b) standardised residual error for native forb 

richness; c) native forb cover (%); d) standardised residual error for native forb cover 

and e) inset map showing study area 
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