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Abstract 20 

Aim: Under rapid environmental change, phenotypic plasticity, if adaptive, could increase the odds 21 

for organisms to persist. Environmental variation over time is an important source of phenotypic 22 

plasticity. Likewise, phenotypic plasticity can vary with age in many organisms. However, little is 23 

known on phenotypic plasticity variation across species’ ranges. Our aims are: (i) to assess whether 24 

populations’ phenotypic plasticity is related to the inter-annual climate variation under which 25 

populations have evolved during the last century; (ii) to compare phenotypic plasticity among 26 

developmental classes; and (iii) to predict phenotypic plasticity across’ species ranges.  27 

Location: Europe and North-Africa. 28 

Time period: 1901-2014. 29 

Major taxa studied: Pinus nigra, P. pinaster and P. pinea. 30 

Methods: We used 372 646 individual tree height measurements at three developmental classes 31 

from a wide network of 38 common gardens in Europe and North Africa with provenances covering 32 

the distribution range of the species. With this data, we: i) build linear mixed-effect models of tree 33 

height as a function of tree age, population and climate; ii) estimate populations’ reaction norms 34 

from the fitted models; iii) calculate populations’ phenotypic plasticity indexes; iv) build models of 35 

populations’ phenotypic plasticity indexes as a function of inter-annual climate variation during the 36 

last century.  37 

Results: We found that i) most populations that have evolved under high inter-annual climate 38 

variation, in either maximum or minimum values in temperature or precipitation, exhibited high 39 

values of plasticity in tree height; ii) phenotypic plasticity for tree height was higher in young trees 40 

than in older ones, iii) phenotypic plasticity did not follow any particular geographical pattern 41 

across species’ ranges.  42 

Main conclusions: Phenotypic plasticity across the three Mediterranean pines’ ranges is related 43 

with the climate variation experienced over time and calls into question whether this plasticity could 44 

be adaptive and hence beneficial to cope with climate change in the short-term.  45 

Keywords: Acclimation, Black pine, Climate change, Developmental stage, Inter-annual climate 46 

variation, Maritime pine, Mixed-effect models, Stone pine.  47 
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Introduction  48 

Climate change is reshuffling species distribution ranges from marine to terrestrial systems, altering 49 

current ecosystems functioning and structure through disruption of species interactions at temporal 50 

and/or spatial scales (Lenoir et al., 2008; Poloczanska et al., 2013). To survive under new climates, 51 

organisms can move to more favorable environments (Chen et al., 2011; Sunday et al., 2011), or 52 

persist in-situ by changes in their genetic composition or adjusting to environmental changes using 53 

phenotypic plasticity (West-Eberhard, 2003; Pulido & Berthold, 2004). Evolutionary responses to 54 

climate change will imply changes in allele frequencies that need many generations to arise 55 

(Bradshaw & Holzapfel, 2001; Reale et al., 2003; Franks et al., 2007), whereas plastic responses 56 

can occur without changes in the genetic structure (Sultan, 2000; Valladares et al., 2014) within one 57 

generation (or even longer when including trans-generational effects, Donelson et al., (2018)). 58 

Thus, phenotypic plasticity can provide a rapid response, whereas evolutionary responses need 59 

longer time depending on the lifespan of organisms. For the particular case of trees, with very long 60 

generation times and large gene flow among populations, genetic adaptation occurs at long time 61 

scales (Savolainen et al., 2007). For example, evolutionary adjustments to match new climates 62 

could need more than 1500 years in Pinus sylvestris (Rehfeldt et al., 2002). Therefore, plasticity is 63 

often the main mechanism for tree populations to respond in-situ to rapid climate change (Benito 64 

Garzón et al., 2019).  65 

Environmental variation, either spatial or temporal, may promote differentiation in phenotypic 66 

plasticity among populations (Vizcaíno-Palomar et al., 2016). In this context, some studies have 67 

shown that more plastic genotypes are promoted under greater heterogeneity (Lind & Johansson, 68 

2007; Canale & Henry, 2010; Baythavong, 2011; Lázaro-Nogal et al., 2015). However, phenotypic 69 

plasticity may not be always advantageous, and sometimes it can be detrimental. For example, high 70 

values of plasticity can be associated with low values of fitness-related traits as survival, biomass, 71 

or reproduction (e.g. Sánchez-Gómez et al., (2006); Molina-Montenegro & Naya, (2012)). 72 

Likewise, changes in plasticity can occur during the lifespan of organisms due to morphological and 73 

physiological adjustments to the environment (Evans, 1972; Coleman et al., 1994; Mitchell & 74 

Bakker, 2014). Hence, we could expect to find differences in phenotypic plasticity for fitness-75 

related traits between early and mature stages of development (Mediavilla & Escudero, 2004). For 76 

instance, we can expect high plasticity in seedlings that present small root systems located in the 77 

shallow soil layers with great variation in soil moisture in contrast to mature trees with deep root 78 

systems reaching to more stable layers of soil moisture over the year. Hence, greater plasticity at the 79 

recruitment stage could be favorable for plant establishment in the community. Taken altogether, 80 

we could expect that phenotypic plasticity can vary across the species’ distribution ranges and 81 

within-species lifespan. 82 
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 The complex topography and orography of the Mediterranean basin, with its inter and 83 

intra-seasonal climate variation, and its recent story of species’ expansions from refugia after the 84 

Last Glacial Maximum could have promoted differentiation in phenotypic plasticity among 85 

populations across  species’ ranges (Médail & Diadema, 2009). As a result, Mediterranean pine 86 

species present patchy distributions with differentiated patterns of genetic diversity and local 87 

adaptation, reviewed in Fady, (2012). For instance, although P. nigra has a larger distribution than 88 

P. pinaster, both present moderate-high population differentiation in neutral genetic diversity (Soto 89 

et al., 2010) and in quantitative traits, such as tree height, diameter, height-diameter allometry, 90 

survival, etc. (Varelides et al., 2001; Taïbi et al., 2016; Vizcaíno-Palomar et al., 2016). On the 91 

contrary, P. pinea presents very low levels in genetic diversity across its range (Vendramin et al., 92 

2008), as well as low differentiation for quantitative  traits, such as in tree height (Mutke et al., 93 

2010, 2013; Sánchez-Gómez et al., 2011).  94 

 Assessing populations’ phenotypic plasticity responses across the species’ ranges 95 

requires the use of phenotypic data measured from multiple common gardens, ideally a minimum of 96 

three (Arnold et al., 2019), installed across large environmental gradients in which a suite of 97 

populations from varied origins are planted. These experimental designs permit to fit populations’ 98 

non-linear phenotypic responses to the environment, known as ‘reaction norm’ curves (Gavrilets & 99 

Scheiner, 1993; Schlichting & Pigliucci, 1998), from which quantifying populations’ phenotypic 100 

plasticity is straightforward (Arnold et al., 2019). Furthermore, populations’ phenotypic responses 101 

can be used to quantify populations’ phenotypic plasticity using indices (Valladares et al., 2006). 102 

In this study, we used tree height, a fitness-related trait (King, 1990; Savolainen et al., 103 

2007), measured in a wide network of common gardens established in Europe and North Africa for 104 

Pinus nigra, P. pinaster and P. pinea (Vizcaíno-Palomar et al., 2019). We fitted linear mixed-effect 105 

models of tree height to: i) assess whether populations’ phenotypic plasticity is related to the inter-106 

annual climate variation under which populations have evolved during the last century; ii) compare 107 

phenotypic plasticity among developmental classes; iii) predict phenotypic plasticity across species 108 

ranges.  109 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 6, 2019. ; https://doi.org/10.1101/716084doi: bioRxiv preprint 

https://doi.org/10.1101/716084
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 
 

Material and methods 110 

Provenance trials, species and phenotypic data 111 

We used tree height recorded in common garden networks for three pine species: Pinus nigra Arn., 112 

P. pinaster Aiton and P. pinea L. (see Figure S1 in Supporting Information). For Pinus nigra, we 113 

used 192 221 measurements of individual tree height recorded in 15 trials distributed across three 114 

countries (France, Germany and Spain) where 78 populations (provenances) from origins covering 115 

the entire range of the species were planted. Trials were planted between years 1968 and 2009 and 116 

tree heights were measured between 2 and 18 year-old. For P. pinaster we used 123 801 117 

measurements of individual tree height recorded in 14 trials established across three countries 118 

(France, Morocco and Spain) and 182 populations covering the entire range of the species. Trials 119 

were installed between years 1966 and 1992 and tree heights were measured between 2 and 34 year-120 

old. For P. pinea, we used 56 624 measurements of individual tree height recorded in 9 trials 121 

established in France and Spain, where a total 55 populations covering the entire range of the 122 

species were planted. Trials were established between years 1993 and 1997, and tree heights were 123 

measured between 2 and 22 year-old. Further description of these databases can be found in 124 

Vizcaíno-Palomar et al., (2019). 125 

 To analyse the effect of age on phenotypic plasticity we defined three developmental 126 

classes (DC. 1, DC. 2 and DC. 3) covering the range of ages of each species. In all species, DC.1 127 

included information for 4 year-old trees, DC.2 included trees of 8, 13, and 9 year-old, and DC.3 128 

included information for 14, 24, and 22 year-old trees, for P. nigra, P. pinaster and P. pinea, 129 

respectively.  130 

 131 

Climate data 132 

We used the EuMedClim dataset that provides annual measurements between 1901 and 2014, at 30 133 

arc-seconds (~ 1km) of resolution (http://gentree.data.inra.fr/climate/datasets/; Fréjaville & Benito 134 

Garzón, (2018)). We used a total of 21 climatic variables related with either annual or seasonal 135 

parameters of climate in terms of precipitation and temperature (Table S1). From this database, we 136 

computed the following climate-related variables and indices: 137 

 i) Long-term climate effect on trees’ height population (climp) was calculated as the 138 

average climate at the population origin between the beginning of the 20th century (1901) and the 139 

year before the trees were planted in the trials. This ‘long-term’ effect reflects the climate that 140 

occurred when the planted seeds were generated, and it can be related to population effects.  141 

 ii) Short-term climate effect on trees’ height population (climt) was calculated as the 142 

average climate at the trial of the last 3 years including the year when measurements were taken. 143 

This definition assures that plastic responses are measured under equal periods of time in all trees 144 
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for the three species, easing comparisons. This ‘short-term’ effect was defined to reflect the plastic 145 

response of tree height to recent climate.  146 

 iii) Inter-annual climate variation indices during the 20th at the population origin. We 147 

computed the standard deviation (sd) of seven climate variables selected to reflect the past climate 148 

variation encountered by the tree populations since the beginning of 20th century (1901) and the 149 

year before the trees were planted. Specifically, we computed the standard deviation (sd) of the 150 

mean annual temperature (sd bio1), sd of the mean diurnal temperature range (sd bio2), sd of the 151 

maximum temperature of the warmest month (sd bio5), sd of the minimum temperature of the 152 

coldest month (sd bio6), sd of the annual precipitation (sd bio12), sd of the precipitation of the 153 

wettest month (sd bio13) and sd of the precipitation of the driest month (sd bio14). 154 

 All climate-related variables and indices were standardized for further analyses. 155 

 156 

Statistical analyses 157 

We used linear mixed-effect models to account for the following effects: tree age, genetics 158 

(approached by the climate at the population origin, climp) and plasticity (approached by the climate 159 

at the trial, climt) on tree height measured across the networks of provenance tests for the three 160 

species. Afterwards, we predict populations’ phenotypic responses across the climatic range 161 

covered by the trials to compute phenotypic plasticity indices to summarize these curves. Our 162 

approach allowed us to obtain linear or non-linear curve responses as these are very common in 163 

nature (Arnold et al., 2019). Then, phenotypic plasticity values can be estimated with more 164 

accurate. 165 

 166 

1. Linear mixed-effect models of tree height responses accounting for age and climate 167 

For each species, we selected one climate variable for the population (hereafter climp) and another 168 

for the trial (hereafter climt). This selection was based upon the complementary use of linear mixed-169 

effects models and on principal components analyses (PCA) of the climate variables (see Appendix 170 

S1 for a detailed description). For P. nigra, we selected mean annual temperature (bio1) for climt 171 

and annual water availability (WAI) for climp. For P. pinaster, annual potential evapotranspiration 172 

(PET) for climt and winter precipitation (prec.djf) for climp. And for P. pinea, maximum 173 

temperature of the warmest month (bio5) for climt and summer precipitation (prec.jja) for climp (see 174 

Appendix S2, Table S2 and Figure S2). 175 

 Linear mixed-effect models were fitted to quantify the effects of tree age, climp and climt 176 

on tree height. The model equation takes the form (Eq. 1): 177 

 178 
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� �  ∑ ��
�

��� �� � ���� �  ���	   Eq. 1 179 

where H is tree height, ��  is the set of p parameters associated with the main and interactive fixed 180 

effects of �� (tree age, climp, climt), ���� is the variance component associated with the random 181 

terms, and ���	 is the residual distributed error, usually following a Gaussian distribution (see 182 

Results section). 183 

 The saturated model for the fixed part, ∑ ��
�

��� ��, contained the linear and quadratic 184 

terms for each explanatory variable and all the potential pair-wise and three variable interactions 185 

(i.e. Age�×�climp, Age�×�climt, climp�×�climt, Age�×�climp�×�climt). The random part of 186 

the model allowed us to consider three dimensions of common gardens experiments: a) the 187 

hierarchical nature of the data derived from the experimental design (i.e. populations nested within 188 

blocks, and blocks nested within trials), b) the temporal correlation between repeated measurements 189 

within tree individuals (i.e. individual tree), and c) the potential sources of variation not included in 190 

the fixed effects (such as soil, variation occurring at smaller spatial scales than blocks, etc.). All the 191 

variables were examined for outliers and departures from normality and the linearity of the 192 

relationships of each predictor with the response variable was checked (through residual plots for 193 

each predictor variable in the final model). 194 

 We selected the best-supported model starting from a saturated model following a 195 

hierarchical backward selection procedure (Burnham & Anderson, 2002; Zuur et al., 2009). For the 196 

random part of the model, we selected the structure with the lowest AIC value (round 1). For the 197 

fixed part, we used the Akaike Information Criterion (AIC) (Akaike, 1992), following the rule that 198 

net increments of lower than two units of AIC associated with the elimination of any parameter in 199 

the full model determined the exclusion of the parameter from the final model. We started by 200 

testing the three-variable interaction (round 2), followed by the two-variable interaction (round 3), 201 

main effects (round 4), and linear effects (round 5). 202 

 Differences in AIC between models allowed us quantifying the relative importance of 203 

each predictor variable. The random effects were tested using restricted maximum likelihood of the 204 

parameter (REML), and fixed effects using maximum-likelihood (ML). Finally, parameter 205 

estimates of the best-supported model were obtained using restricted maximum likelihood (REML), 206 

which minimizes the likelihood of the residuals from the fixed-effect portions of the model (Zuur et 207 

al., 2009). The variance explained by the model was assessed by pseudo-R2 (Nakagawa & 208 

Schielzeth, 2013) that splits the variance into the marginal MR2 (explained solely by the fixed 209 

effects) and conditional CR2 (explained by fixed and random effects together). This pseudo-R2 210 

cannot be calculated with all the combinations between the family distributions and link functions 211 

(e.g. Gaussian family with identity link “log”) for linear mixed-effect models, therefore the 212 

goodness of fit of the models was also assessed by computing the capacity of generalization of the 213 
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model (CG). To do this, we calculated the Pearson coefficient, ρ, between a model fitted with the 214 

2/3 parts of the data and independently validated with the remaining 1/3 part of the data. 215 

Additionally, to detect collinearity between explanatory variables in the best-supported model we 216 

used the variance inflation factor (VIFs) and set maximum value of VIF to 5 which is considered 217 

acceptable (Belsley, 1991). Appropriateness of the best model was assessed by plots of predicted 218 

vs. observed values. We used the R version 3.2.3 (R Core Team, 2016) run in linux-gnu operating 219 

system to perform all the analyses, and the ‘‘lme4’’ package (Bates et al., 2015). 220 

 221 

2. Computing populations’ phenotypic responses 222 

Using the best-supported model for each species, we predicted populations’ phenotypic responses 223 

curves of tree height across the climatic range covered by the trials, climt, for the three 224 

developmental classes (DC). Specifically, we fixed tree age using the DC, and the climate of origin 225 

of each population (climp), and then we predict tree height responses curves along the climate of the 226 

trial (climt) varying between the 99% percentiles observed in climt data. 227 

 228 

3. Computing phenotypic plasticity indices 229 

Using the populations’ phenotypic responses curves of tree height and developmental classes 230 

(DC.1, DC.2 and DC.3), we computed two phenotypic plasticity indices across the climatic ranges 231 

covered by the trials (reviewed in Valladares et al., (2006)).  232 

 1) Phenotypic plasticity index (PP) computed as follows: 233 

PP = (PRM-Prm)/PRM  Eq. 2 234 

where PRM is the highest phenotypic value across the population’s phenotypic response and across 235 

the climatic range studied. PRm is the lowest phenotypic value across the climatic range studied. 236 

This index ranges between values of zero and one. The closer the values are to zero the less plastic 237 

the population is; and the opposite with values close to one.  238 

 2) Coefficient of variation of the phenotypic response (CV) computed as follow: 239 

CV = sd(PR)/mean (PR)  Eq. 3 240 

where PR is the phenotypic value at each point of the climatic range studied across the population’s 241 

phenotypic response fitted. sd is the standard deviation. This index reflects well the range of 242 

phenotype variation across the studied range. This index ranges between zero and one; the smaller 243 

the CV is, the smaller the plasticity is; and the opposite, the greater the CV is, the greater the 244 

plasticity is. 245 

 246 

4. The developmental class effect on populations’ tree height plasticity indices 247 
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We tested if plasticity in tree height changed with the developmental class within species. To this 248 

aim, we performed analyses of variance of the two phenotypic plasticity indices, PP and CV, for the 249 

developmental classes and post-hoc pairwise comparisons of Tukey HSD (Honestly Significant 250 

Difference). 251 

 252 

5. The inter-annual climate variation during the 20th century effect on tree height plasticity 253 

indices 254 

For each species and each developmental class, we tested if inter-annual climate variation at the 255 

populations’ origin could explain the current degree of phenotypic plasticity measured by the two 256 

phenotypic plasticity indices (PP and CV). To this end, we fitted linear fixed-effect models between 257 

the phenotypic plasticity index (PP or CV, as the response variable) and the set of inter-annual 258 

climate variation indices (sd bio1, sd bio2, sd bio5, sd bio6, sd bio12, sd bio13 and sd bio14, as 259 

explanatory variables) for each developmental class (Eq. 4). Collinearity in the models was 260 

controlled by including climate variation indices whose co-variation measured with the Pearson’s 261 

correlation coefficient was below |0.7|. 262 

	

 �  ∑ ��
�

��� �� �  ���	  Eq. 4 263 

where PIj  is the phenotypic plasticity index at the developmental class j (j= 1, 2 or 3), ��  is the set 264 

of p parameters associated with the effects of ��  (sd bioi) and ���	is the residual error. Models were 265 

fitted with a Gaussian distribution of errors and identity link function. A step-wise procedure 266 

(direction= “backward”) was implemented to choose the best-supported model. Appropriateness of 267 

the models were assessed by plots of residuals vs. fitted values, qq-plots and the Cook’s distance 268 

that identify outliers in the data that could over-influence the model fitting, if necessary they were 269 

removed from the analysis. 270 

  271 
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Results 272 

The model: Tree height responses accounting for tree age and climate 273 

The model that included all the factors tested (tree age, climp and, climt) with the linear and 274 

quadratic effects, and three and two-pairwise interactions, was the best-supported one for the three 275 

species (Table 1). The final model for P. nigra included age, mean annual temperature at the trial 276 

(bio1t) and annual water availability at the populations’ origin (WAIp); P. pinaster included age, 277 

annual potential evapotranspiration at the trial (PETt) and winter precipitation at the populations’ 278 

origin (prec.djfp); and for P. pinea included age, maximum temperature of the warmest month at the 279 

trial (bio5t) and summer precipitation at the populations’ origin (prec.jjap) (Table 2, Table S3 and 280 

Fig. S3). All models produced unbiased estimates of tree height and high capacity of generalization, 281 

as well as high marginal and conditional explained variance, CG/MR2/CR2, with 0.79/not 282 

available/not available, 0.72/0.83/0.96 and 0.80/0.69/0.97) for P. nigra, P. pinaster and P. pinea, 283 

respectively (Table 2). 284 

 285 

Main drivers of tree height triggering populations’ phenotypic responses 286 

Overall, tree age made the largest contribution to tree height, followed in order of importance by the 287 

climate at the trial and at the populations’ origin: climt and climp, respectively (Table 1; see ΔAIC 288 

comparisons). The mean annual temperature of the trial presented a positive effect on tree height in 289 

P. nigra (Fig.1a and Fig.S4a), but in the other two species, at a certain evaporative demand (either 290 

expressed in mm by annual potential evapotranspiration or degrees Celsius by the maximum 291 

temperature of the warmest month), the temperature had a negative effect on tree height, see 292 

populations’ phenotypic responses in Fig.1 and Fig.S4 for P. nigra and P. pinaster.). The most 293 

important interaction was age with climt, except in P. pinaster that was age with climp (Tables 1 & 294 

2). Finally, the interaction term between climt × climp overall contributed the least to tree height, 295 

although in P. pinaster this contribution was higher than in the other species (Table 1 and 296 

populations’ phenotypic responses in Fig.1. and Fig.S4.). 297 

 298 

The developmental class effect on populations’ tree height plasticity indices 299 

Overall, phenotypic plasticity indices decreased significantly across developmental classes, i.e. 300 

young trees are the most plastic ones (Fig. 2, Tables S4 and S5). The greatest values of plasticity 301 

were found for P. pinea and the least for P. nigra for all developmental classes (Fig. 2). Finally, 302 

intraspecific phenotypic plasticity variation was the greatest in P. pinaster and the lowest in P. 303 

pinea (Fig. 2). 304 

 305 
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The inter-annual climate variation during the 20th century effect on tree height plasticity 306 

indices 307 

For the three species, we did not include the standard deviation of annual precipitation (sd bio12) in 308 

the fixed-effect models because it was highly correlated with the standard deviation of the 309 

precipitation of the wettest month (sd bio13): Pearson’ correlation coefficients of 0.76, 0.82 and 310 

0.91 for P. nigra, P. pinaster and P. pinea, respectively. Moreover, we removed some populations 311 

whose Cook’s distances were above 1 and over-influenced the fitted models (Appendix S3). Also, 312 

the model fitted for early adults in P. pinea using the CV index was not included in the results as it 313 

did not accomplished the linearity assumptions.  314 

 Overall, inter-annual temperature and precipitation variation during the 20th century in 315 

the standard deviation (sd) of the maximum temperature of the warmest month (sd bio5), sd of the 316 

precipitation of the wettest month (sd bio13) and sd of the precipitation of the driest month (sd 317 

bio14) were positively correlated with phenotypic plasticity indices (Table 3); while inter-annual 318 

variation in sd of the average annual temperature (sd bio1) was negatively correlated with 319 

phenotypic plasticity indices, with the exception of the developmental class 3 in P. nigra and P. 320 

pinea (Table 3). The variance explained by the phenotypic plasticity indices models (P.I.) was high, 321 

and ranged between 0.69 and 0.70 for P. nigra, 0.80 and 0.84 for P. pinaster, and 0.71 and 0.76 for 322 

P. pinea (Table 3). 323 

 The results of the two indices were similar (Table 3). For illustrative purposes we plot the 324 

PP and CV indices along the sd bio5 variable that was statistically significant in all the models 325 

tested. Overall, we found that populations that experienced higher inter-annual climate variation 326 

during the 20th century (sd bio5) presented higher plasticity in tree height for the three 327 

developmental classes, except in the developmental class 3 for P. nigra and P. pinea (Fig.3 and 328 

Fig.S5). Spatial differences among populations of PP and CV were also similar, with more 329 

contrasted differences among populations for P. pinaster (Fig. 1 and Fig. S5).   330 
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Discussion 331 

The use of range-wide multi-year tree height measurements compiled on common gardens allowed 332 

us to quantify the effect of tree age, population differentiation and plasticity across the distribution 333 

ranges of three Mediterranean pines. Overall, our results show that: (i) A significant part of 334 

phenotypic plasticity in tree height was explained by the inter-annual climate variation during the 335 

20th century under which tree populations evolved; (ii) Younger trees were more plastic in tree 336 

height than older trees; (iii) Although populations’ responses to climate were largely driven by 337 

phenotypic plasticity we did not find a geographical pattern of phenotypic plasticity across the 338 

species’ ranges.  339 

 340 

Main climatic drivers of tree height triggering populations’ phenotypic responses 341 

Plastic responses in tree height were mainly driven by temperature-related variables (annual mean 342 

temperature, annual potential evapotranspiration and maximum temperature of the warmest month), 343 

and in general, rising temperatures led to higher trees up to a certain value. This result is in 344 

agreement with previous studies suggesting that higher heights in pines are found at warmer sites, if 345 

drought is not limiting (Vizcaíno-Palomar et al., 2016). This could be explained because warm 346 

temperatures, up to a certain threshold, allow trees to have higher photosynthetic capacity, resulting 347 

in a higher rate of carbon assimilation (Way & Oren, 2010) but going beyond that threshold, it can 348 

imply the opposite effect. Accordingly, in P. pinaster and P. pinea tree height decreases when the 349 

evaporative demand is too high due to stomatal closure and reduction of the photosynthetic activity 350 

(Pasho et al., 2012; Mazza et al., 2014). However, we did not find that threshold in P. nigra. This 351 

species is found at higher altitudes than P. pinaster and P. pinea, in mountainous areas where high 352 

temperatures can be counterbalanced by the altitude effect and hence allow for increments of tree 353 

height growth. Moreover, it can be explained by the fact that the range of climate covered by the 354 

trials do not cover the complete population’s phenotypic response, explaining the lack of a 355 

maximum tree height as it have been found in the other two species. Altogether, these results 356 

suggest that high temperatures linked with water stress are the main climatic drivers liming tree 357 

height in the three pine species studied.  358 

 The main driver of population differentiation (population effect) in tree height was 359 

precipitation (for P. pinaster and P. pinea) and annual water availability (for P. nigra). This points 360 

out to the selective role of water availability across the distribution range of these mostly 361 

Mediterranean trees (Pigott & Pigott, 1993). Our findings suggest that evolutionary processes in 362 

tree height were mostly driven by water availability (Aranda et al., 2009; Sánchez-Gómez et al., 363 

2011), although local adaptation is driven by minimum winter temperatures for P. nigra (Kreyling 364 

et al., 2012), and by mean annual temperature for Pinus pinea (Mutke et al., 2010). The highest 365 
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differences in tree height among populations were found for P. nigra and P. pinaster (Fig. 1a. and 366 

Fig. 1e.). In general, populations originating from the extremes of the climatic gradient, either under 367 

high or low values in rainfall or water availability, underperformed compared to populations 368 

originating from intermediate climates, but these differences are more marked in P. pinaster. For 369 

example, P. pinaster populations from the south of the distribution are better adapted to drought: 370 

they invest higher biomass to root and less to stem development than populations from northern 371 

parts of the distribution (Aranda et al., 2009). In P. nigra, differences in tree height due to genetic 372 

effects have also been recorded (Thiel et al., 2012), whereas P. pinea shows low genetic variation 373 

among populations (Fig.1i.). This is in agreement with previous studies reporting little genetic 374 

variation in morphological and physiological quantitative traits -e.g. photosynthesis, biomass 375 

partitioning, SLA, etc. (Court-Picon et al., 2004; Mutke et al., 2010; Sánchez-Gómez et al., 2011) 376 

but null in Chambel et al., (2007). 377 

 378 

The developmental class effect on populations’ tree height plasticity indices 379 

Young pine trees were more plastic than early adults (Fig. 2). This result suggests that the capacity 380 

to respond plastically changes along the life cycle of trees. Phenotypic plasticity differ among 381 

species, among populations, among traits (Valladares et al., 2002; Bradshaw, 2006), and here we 382 

show that it also varies with age. The first stages of recruitment are critical for plant establishment, 383 

and hence greater capacity of plasticity in tree height can be advantageous to avoid competition and 384 

reach light. In addition, small changes in the environment can be more noticeable for seedlings than 385 

to saplings or adult trees that are already well established with their root systems installed into 386 

deeper layers of the soil compared to seedlings. For instance, soil moisture variation is higher in the 387 

shallow layers of the soil than in deeper ones, hence promoting greater phenotypic plasticity. As a 388 

consequence, phenotypic plasticity variation across developmental classes can impact into many 389 

ecological processes, such as population and community dynamics, the community assembly and 390 

ecosystem functioning.  391 

 392 

The inter-annual climate variation during the 20th century effect on tree height plasticity 393 

indices 394 

Our findings suggest that plasticity in tree height is a trait that is under selection driven by climate 395 

variability (Table 3, Fig. 3 and Fig. S5). This finding is consistent for the three Mediterranean 396 

species regardless the origin of the populations. Populations that evolved under high inter-annual 397 

climate variation, in either maximum or minimum values in temperature or precipitation of climate 398 

variables associated with extreme values (standard deviation of the maximum temperature of the 399 

warmest month, sd of the precipitation of the wettest month and sd of the precipitation of the driest 400 
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month) during the 20th century, have great capacity to respond plastically in tree height to changes 401 

in climate (Fig. 3), regardless their position at the core or at the margin of the distribution range 402 

(maps in Fig. 1 and Fig.S4). These results are in agreement with previous studies in plant species 403 

where plastic responses were associated with climate variation in Convolvulus chilensis and Senna 404 

candolleana (Gianoli & González-Teuber, 2005; Lázaro-Nogal et al., 2015). Although local 405 

adaptation (population effect in common garden data) seems to clearly follow a geographical 406 

pattern in European trees (including the ones studied here) (Frejaville et al.), our results show that 407 

plasticity geographical patterns are more complex (Valladares et al., 2014). 408 

 409 

Implications of phenotypic plasticity for evolutionary responses to climate change  410 

Our findings are important in the context of climate change because plastic genotypes would likely 411 

increase their odds to persist at the short-time if plasticity is adaptive, and can also be advantageous 412 

if plastic genotypes are subject to further evolution that promotes the necessary genetic changes to 413 

reach the new optimum and get adapted to the new environment (Pigliucci, 2005; Richards et al., 414 

2006). Among the three studied species, P. pinaster presents high values of plasticity in tree height 415 

combined with a high differentiation among populations (Fig. 1e. and Fig. 2), suggesting good 416 

chances to respond to climate change in the short term by phenotypic plasticity and keeping 417 

evolutionary potential to adapt in the long term. P. pinea presents the highest phenotypic plasticity 418 

values out of the three studied species, but combined with low differentiation among populations 419 

and low genetic diversity (Fig. 1i. and Fig. 2), which makes plasticity virtually the unique way for 420 

this species to respond to changes in the environment. However, we cannot rule out that plasticity 421 

for tree height is related to higher fitness and our results call into question whether higher plasticity 422 

could be adaptive and hence beneficial to cope with climate change in the short-term.  423 

 424 

Limitations 425 

Although the network of provenance tests used in the present study cover relatively well the species 426 

distribution ranges, our results of phenotypic plasticity in tree height are confined to the climatic 427 

gradients covered by these common gardens. For example, in P. nigra phenotypic plasticity values 428 

could have been underestimated because the maximum tree height is not reached within the mean 429 

annual temperature range studied. Improved results regarding phenotypic plasticity could be 430 

obtained by establishing new common gardens both within the species’ distribution to complete the 431 

range and outside the climatic range of the species.  432 

 433 

Conclusions  434 
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Under a climate change context, the potential of the three species to persist in-situ largely rely on 435 

their plastic responses, regardless of their genetic diversity. The predominance of the plastic effect 436 

over the genetic one highlights that at the short-term, species’ strategy to keep pace with climate 437 

change will likely rely on eco-physiological adjustments to environmental changes rather than on 438 

evolutionary responses. However, our current understanding of plasticity makes difficult to 439 

ascertain if plasticity will be adaptive and in case, which will be the real limits of plasticity. 440 

Therefore, to allow species persistence in the long-term, genetic variation within populations is 441 

essential to respond by evolutionary processes to environmental changes. Likewise, our results call 442 

into question whether future climate change variation would promote plasticity in the near future as 443 

our results showed that happened in the 20th century.  444 

  445 
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Data Accessibility Statement 619 

All phenotypic data used in this study are available on ZENODO with DOIs 620 

10.5281/zenodo.3250704, 10.5281/zenodo.3250698 and 10.5281/zenodo.3250707 for P. nigra, P. 621 

pinaster and P. pinea, respectively (Vizcaíno-Palomar et al., 2019). 622 
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Table 1 Random and fixed effects selection of tree height model in response to age, climt and climp using the Akaike Information Criterion (AIC) for 623 

the three pine species.  624 

Pinus nigra df AIC ∆AIC  Pinus pinaster df AIC ∆AIC 
Random effects selection         

# round 1: testing random structure         
full model just fixed effects (fixed) 12 2239318   fixed 12 175302  
fixed + block effect 15 2002183   fixed + block effect 15 80711  
fixed + tree ind 13 1917911   fixed + tree ind 13 143270  
fixed + block effect + tree ind 16 1888388   fixed + block effect + tree ind 16 77968  

Fixed effects selection         
# round 2: three way interactions         
full model 16 1888388 0  full model 16 77862 0 
no age×bio1t×WAIp 15 1888727 339  age×PETt ×prec.djfp 15 77885 23 
# round 3: two way interactions         
full model 16 1888388 0  full model 16 77862 0 
no age×bio1t 15 1897136 8748  no age×PETt 15 78141 279 
no age×WAIp 15 1888506 117  no age×prec.djfp 15 78772 910 
no bio1t ×WAIp 15 1888401 13  no PETt×prec.djfp 15 77959 97 
# round 4: main effects         
full model 16 1888388 0  full model 16 77862 0 
no age 11 2605168 716780  no age 11 367581 289719 
no bio1t 11 1916110 27722  no PETt 11 123183 45321 
no WAIp 11 1888975 587  no prec.djfp 11 79360 1498 
# round 5: linear effects         
full model 16 1888388 0  full model 16 77862 0 
no quadratic effect age 15 2083109 194721  no quadratic effect age 15 181836 103974 
no quadratic effect bio1t 15 1889004 616  no quadratic effect PETt 15 85070 7208 
no quadratic effect WAIp 15 1888398 10  no quadratic effect prec.djfp 14 80797 2935 

 625 
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Pinus pinea df AIC ∆AIC 
Random effects selection    

# round 1: assessing random structure    
fixed 12 53113  
rand_bl 15 19110  
rand_ind 13 37939  
rand_both 16 16898  

Fixed effects selection    
# round 2: three way interactions    
full model 16 16790 0 
 age bio5t×prec.jjap 15 16797 7 
# round 3: two way interactions    
full model 16 16790 0 
no age×bio5t 15 23396 6606 
no age×prec.jjap 15 16807 17 
no bio5t×prec.jjap 15 16794 4 
# round 4: main effects    
full model 16 16790 0 
no age 11 154070 137280 
no bio5t 11 29128 12337 
no prec.jjap 11 16829 39 
# round 5: linear effects    
full model 16 16790 0 
no quadratic effect age 15 41981 25190 
no quadratic effect PETt 15 28835 12044 
no quadratic effect prec.djfp 14 19025 2234 
df are the degrees of freedom, AIC is the Akaike Information Criterion value, ∆AIC is the difference between the full model and the models tested in 626 

each round. In random effects selection, the smaller the AIC is, the better supported the random structure part is. In fixed effects selection, if ∆AIC 627 

comparing two models is smaller than 2 units then we remove that effect from the full model.628 
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Table 2 Detailed description of the best-supported model for each pine species analyzed including the family distribution and link function, the 629 

variance and standard deviation for the random effects (Var and SD respectively); and the estimated parameter, standard error and t-values for 630 

the fixed-effects (Estimate, SE and t-values, respectively). 631 

Pinus nigra     Pinus pinaster    
Family distribution and link 
function:  

Gaussian distribution error and 
identity link "log" 

 Family distribution and link 
function:  

Gaussian distribution error and 
log (H) 

Random effects  Var SD  Random effects  Var SD 
Id_tree (Intercept) 20.613 4.54  Id_tree (Intercept) 0.01 0.11 
Provenance/Block/Trial (Intercept) 9.567 3.09  Provenance/Block/Trial (Intercept) 0.041 0.20 
Block/Trial (Intercept) 2.222 1.49  Block/Trial (Intercept) 0.004 0.07 
Trial (Intercept) 63.428 7.96  Trial (Intercept) 0.271 0.52 
Residual  282.506 16.81  Residual  0.093 0.31 
Fixed effects Estimate SE t value  Fixed effects Estimate SE t value 
(Intercept) 4.710 0.120 39.35  (Intercept) 6.150 0.140 44.022 
age 1.166 0.001 1250.89  age 1.422 0.002 923.084 
bio1t 0.318 0.002 128.67  PETt -0.812 0.006 -127.091 
bio1t^2 -0.035 0.001 -24.88  PETt^2 -0.379 0.004 -86.587 
age^2 -0.212 0.000 -527.92  prec.djfp 0.043 0.005 8.278 
WAIp 0.021 0.006 3.59  prec.djfp^2 -0.044 0.003 -14.141 
WAIp^2 -0.015 0.004 -3.45  age^2 -0.366 0.001 -418.081 
age × bio1t -0.048 0.001 -93.39  age × PETt 0.028 0.002 16.764 
age × WAIp 0.002 0.001 3.73  age × prec.djfp -0.040 0.001 -30.268 
bio1t × WAIp 0.008 0.002 3.84  PETt × prec.djfp -0.034 0.003 -9.983 
age × bio1t × WAIp -0.010 0.001 -18.43  age × PETt × prec.djfp 0.008 0.002 5.030 
CG 0.79    CG 0.72   

MR2 -    MR2 0.83   

CR2 -    CR2 0.96   
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Pinus pinea 

    

Family distribution and link 
function: 

Gaussian distribution error and 
log (H) 

 

Random effects  Var SD  
Id_tree  (Intercept) 0.014 0.12  
Provenance/Block/Trial  (Intercept) 0.007 0.09  
Block/Trial  (Intercept) 0.017 0.13  
Trial  (Intercept) 0.601 0.78  
Residual  0.062 0.25  
Fixed effects Estimate SE t value  
(Intercept) 5.504 0.259 21.300  
age 1.321 0.002 719.800  
bio5t 0.168 0.012 14.600  
bio5t^2 -0.719 0.006 -118.000  
prec.jjap 0.007 0.002 3.000  
prec.jjap^2 -0.004 0.001 -4.800  
age^2 -0.278 0.002 -183.900  
age × bio5t 0.185 0.002 84.800  
age × prec.jjap 0.005 0.001 4.300  
bio5t × prec.jjap -0.006 0.002 -2.400  
age × bio5t × prec.jjap 0.004 0.001 3.000  
CG 0.80    
MR2 0.69    

CR2 0.97    

  632 
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Table 3. Results from the linear fixed-effect models between phenotypic plasticity indices (P.I.) and the standard deviation climate variables (sd 633 
bio). Three sub-tables are presented for each pine species, a), b) and c). Each sub-table shows the results for the two indices and the three 634 
developmental classes (DC) analyzed. Developmental Class 1: green, DC. 2: orange and DC. 3: blue 635 
 636 

a) P. nigra 637 
DC. 1 Variable Estimate effect p-value R2 DC. 2 Variable Estimate effect p-value R2 DC. 3 Variable Estimate effect p-value R2 

PP sd bio 1 -5.11×10-3 

 
- ***  PP sd bio 1 -4.42×10-3 - ***  PP sd bio 1 2.95×10-3 + ***  

 sd bio5 6.46×10-3 + ***   sd bio5 4.26×10-3 + ***   sd bio5 -2.78×10-3 - ***  

 sd bio 13 5.68×10-3 + ***   sd bio6 1.11×10-3 + n.s.   sd bio6 -7.36×10-4 - n.s.  

 sd bio 14 2.94×10-3 + *** 0.69  sd bio 13 4.06×10-3 + ***   sd bio 13 -2.69×10-3 - ***  

CV sd bio 1 -7.43×10-3 - ***   sd bio 14 2.31×10-3 + *** 0.70  sd bio 14 -1.67×10-3 - *** 0.70 
 sd bio5 7.09×10-3 + ***  CV sd bio 1 -5.35×10-3 - ***  CV sd bio 1 2.81×10-3 + ***  

 sd bio6 1.86×10-3 + n.s.   sd bio5 5.14×10-3 + ***   sd bio5 -2.66×10-3 - ***  

 sd bio 13 6.84×10-3 + ***   sd bio6 1.30×10-3 + n.s.   sd bio6 -7.30×10-4 - n.s.  

 sd bio 14 4.04×10-3 + *** 0.70  sd bio 13 4.90×10-3 + ***   sd bio 13 -2.54×10-3 - ***  

       sd bio 14 2.89×10-3 + *** 0.70  sd bio 14 -1.51×10-3 - *** 0.69 
 638 
Variable refers to the explanatory variables of the model (standard deviation of the inter-annual climate variation in the 20th century). Estimate refers to the estimated 639 
value for that variable. Effect makes reference whether the parameter estimate has a positive (+) or negative (-) impact on the phenotypic plasticity index. p-value 640 
refers whether the Estimate is statistically significant with a p-value lower than 0.001 ***, 0.01 **, 0.05 *, 0.1 � and 1 n.s. R2 is the explained variance of the model. 641 .

C
C

-B
Y

-N
C

-N
D

 4.0 International license
a

certified by peer review
) is the author/funder, w

ho has granted bioR
xiv a license to display the preprint in perpetuity. It is m

ade available under 
T

he copyright holder for this preprint (w
hich w

as not
this version posted A

ugust 6, 2019. 
; 

https://doi.org/10.1101/716084
doi: 

bioR
xiv preprint 

https://doi.org/10.1101/716084
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 
 

 642 
 b) P. pinaster 643 

DC. 1 Variable Estimate effect p-value R2 DC. 2 Variable Estimate effect p-value R2 DC. 3 Variable Estimate effect p-value R2 
PP sd bio 1 -4.34×10-3 - ***  PP      PP      

sd bio 2 -7.23×10-4 - �   sd bio 2 -1.20×10-3 - **   sd bio 2 -8.59×10-4 - **  

sd bio 5 3.83×10-3 + ***   sd bio 5 1.70×10-3 + ***   sd bio 5 1.20×10-3 + ***  

sd bio 6 -3.86×10-3 - ***   sd bio 6 -1.57×10-3 - ***   sd bio 6 -1.16×10-3 - ***  

sd bio 13 7.92×10-3 + ***   sd bio 13 8.69×10-3 + ***   sd bio 13 6.33×10-3 + ***  

sd bio 14 2.91×10-3 + *** 0.84  sd bio 14 7.65×10-4 + � 0.80  sd bio 14 5.82×10-4 + � 0.80 
CV sd bio 1 -4.30×10-3 - ***  CV      CV      

sd bio 2 -7.74×10-4 - n.s.   sd bio 2 -1.39×10-4 - **   sd bio 2 -8.39×10-4 - **  

sd bio 5 4.43×10-3 + ***   sd bio 5 2.14×10-3 + ***   sd bio 5 1.33×10-3 + ***  

sd bio 6 -5.10×10-3 - ***   sd bio 6 -2.25×10-3 - ***   sd bio 6 -1.42×10-3 - ***  

sd bio 13 1.01×10-2 + ***   sd bio 13 1.06×10-2 + ***   sd bio 13 6.52×10-3 + ***  

sd bio 14 3.45×10-3 + *** 0.84  sd bio 14 8.40×10-4 + � 0.80  sd bio 14 4.86×10-4 + n.s. 0.81 
 644 
Variable refers to the explanatory variables of the model (standard deviation of the inter-annual climate variation in the 20th century). Estimate refers to the estimated 645 
value for that variable. Effect makes reference whether the parameter estimate has a positive (+) or negative (-) impact on the phenotypic plasticity index. p-value 646 
refers whether the Estimate is statistically significant with a p-value lower than 0.001 ***, 0.01 **, 0.05 *, 0.1 � and 1 n.s. R2 is the explained variance of the model. 647 
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 648 
 c) P. pinea 649 
 650 

DC. 1 Variable Estimate effect p-value R2 DC. 2 Variable Estimate effect p-value R2 DC. 3 Variable Estimate effect p-value R2 
PP sd bio1 -2.26×10-5 - n.s.  PP sd bio1 -2.47×10-5 - n.s.  PP sd bio1 4.09×10-5 + �  
 sd bio 5 1.08×10-4 + ***   sd bio 5 9.69×10-5 + ***   sd bio 5 -1.44×10-4 - ***  
 sd bio 6 1.02×10-4 + ***   sd bio 6 8.99×10-5 + ***   sd bio 6 -1.26×10-4 - ***  
 sd bio 14 9.99×10-5 + *** 0.76  sd bio 14 9.07×10-5 + *** 0.71  sd bio 14 -1.23×10-4 - *** 0.73 
CV sd bio1 -6.40×10-5 - �  CV sd bio1 -4.11×10-5 - �        
 sd bio 5 2.43×10-4 + ***   sd bio 5 1.50×10-4 + ***        
 sd bio 6 2.07×10-4 + ***   sd bio 6 1.37×10-4 + ***        

 sd bio 14 2.21×10-4 + *** 0.73  sd bio 14 1.40×10-4 + *** 0.75       

 651 
Variable refers to the explanatory variables of the model (standard deviation of the inter-annual climate variation in the 20th century). Estimate refers to the estimated 652 
value for that variable. Effect makes reference whether the parameter estimate has a positive (+) or negative (-) impact on the phenotypic plasticity index. p-value 653 
refers whether the Estimate is statistically significant with a p-value lower than 0.001 ***, 0.01 **, 0.05 *, 0.1 � and 1 n.s. R2 is the explained variance of the model.654 
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Figures 655 
 656 

 657 
Figure 1. Populations’ phenotypic tree height responses across climt particularized for three 658 
populations’ origin (High, Average and Low in terms of climp values) and for the three 659 
developmental classes, DC, (Developmental Class 1: green, DC. 2: orange and DC. 3: blue) 660 
for a) P. nigra, e) P. pinaster and i) P. pinea. Values of the phenotypic plasticity index (PP) 661 
for the three developmental classes across the species natural distribution ranges are shown. 662 
DC. 1: b), f) and j), DC. 2: c), g) and k); and DC. 3: d), h) and i). 663 
  664 
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665 
 666 
Figure 2. Phenotypic plasticity values for the three species and for the three developmental 667 
classes, DC, (Developmental Class 1: green, DC. 2: orange and DC. 3: blue) for the two 668 
indices computed (PP and CV). An inset graph is included in the CV index as the values of P. 669 
nigra and P. pinaster are significantly smaller compared with those obtained in P. pinea. 670 
 671 
  672 
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 673 

 674 
Figure 3. Phenotypic plasticity predictions of the PP index across the standard deviation of 675 
the maximum temperature of the warmest month (sd bio5) for the three developmental 676 
classes and pines species.  677 
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Appendix S1. Detailed description for climate variable selection.  678 

We used two analysis to select the short-term climate related to the trial (climt) and the long-679 

term climate related to the climate at the population origin (climp): i) linear mixed-effect 680 

models and ii) principal component analyses.  681 

i) Linear Mixed-Effect Models 682 

To select climt, we ran 21 linear mixed-effects models to analyse the response of tree height 683 

to each of the 21 climate variables to the climate of the trials (Table S1). To select climp, we 684 

ran 21 linear mixed-effects models to analyse the response of tree height to each of the 21 685 

climate variables to the climate at the populations’ origin. Random effects included 686 

populations nested into blocks, and those nested within trials, and trees nested within 687 

population, block and trial, to control for differences among sites and populations, and to 688 

control for repeated measurements of the same trees, respectively. Fixed effects included tree 689 

age and the climate variable, including the linear and the quadratic forms, and the linear 690 

interaction between them. All climate variables were standardized (the mean was subtracted 691 

from each value and divided by the standard deviation). The model equation takes the form: 692 

� �  ∑ ��
�

���
�� � ���� �  ���	   Eq. 1 693 

where H is tree height, ��is the set of p parameters associated with the main and interactive 694 

effects of �� climate (either climt or climp) and age variables, ����is the variance component 695 

associated with the random terms, and ���	is the residual distributed error. 696 

 We selected the model in which the climate variable met three requisites: 1) the 697 

sign of the estimated quadratic coefficient must be negative in order to get concave responses 698 

(maximum tree height is expected at intermediate climatic values, decreasing towards the 699 

extremes) 2) high absolute values of the estimated coefficients as an approach of the size 700 

effect of the climate variable on tree height, 3) being biological meaningful variable. For 701 

example, potential evapotranspiration climate variable can provide us with more information 702 

than just a variable of annual precipitation. Usually, curve responses between climt and tree 703 

height are more likely to be concaves than tree height with climp (personal observation from 704 

preliminary analysis). Therefore for climt we focused on the absolute highest value of the 705 

negative estimated parameter in the quadratic term when statistically significant, while for 706 

climp, we focused on whether the linear and quadratic terms were statistically significant and 707 

then we chose among those variables with the absolute highest negative parameter in the 708 

quadratic term. If only the linear parameter was significant, then we chose the variable with 709 

the highest estimated parameter.  710 
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ii) Principal Component Analysis 711 

We ran two independent principal component analyses (PCA) in R (R Core Team, 2016) for 712 

climt and climp variables for each species. These analyses help selecting the variable which is 713 

highly representative of the climate variation covered by the data. We generally choose the 714 

climate variable that belongs to the first PCA axis, which captures a higher variance of the 715 

data. However, sometimes we needed to choose the climate variable from the second PCA 716 

axis if the climate variable is highly correlated with the first PCA axis. 717 

 718 

These two complementary analyses were defined to facilitate climate selection, but this was 719 

not always straightforward.   720 
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Appendix S2. Description of the results from the linear mixed-effect models and principal 721 

component analyses to select the climate variables of climp and climt. 722 

P. nigra. Mean annual temperature, bio1, was selected for climt. It showed the highest size 723 

effect among the total of the climate variables tested in the linear mixed-effect models (Table 724 

S2). Moreover, mean annual temperature was highly correlated with the first PCA axis (0.76) 725 

and showed a moderate-high contribution to the first axis (6.37% being the maximum 9.36%) 726 

(Figure S2). Annual water availability, WAI, was selected for climp. Although none of the 727 

tested climate variables in the linear mixed-effect models were statistically significant, the 728 

principal component analysis facilitated to choose it (Table S2). Thus, annual water 729 

availability was highly correlated with the first PCA axis (-0.93) and it showed the highest 730 

contribution to the first PCA axis, 8.33% (Figure S2).  731 

 P. pinaster. Annual potential evapotranspiration, PET, was selected for climt. 732 

Although precipitation of the driest month could have been selected for modeling, we chose 733 

annual potential evapotranspiration as it was statistically significant in the linear mixed-effect 734 

models and it integrates temperature and precipitation values which make this variables more 735 

informative (Table S2). Annual potential evapotranspiration was highly correlated with the 736 

first PCA axis (0.94), and it showed the second highest contribution (7.57%) to this axis after 737 

summer daily mean temperature (Figure S2). Winter precipitation, prec.djf, was selected for 738 

climp. It was statistically significant in the linear mixed-effect models, and the two estimated 739 

coefficients were biologically meaningful and their size effects were the highest (Table S2). 740 

The variable of winter precipitation was moderate-to-highly correlated with the second PCA 741 

axis (0.76), with a moderate-to-high contribution to the axis (8.21%, being the maximum 742 

contribution of 12.55%) (Figure S2). The second axis of the PCA explained nearly the same 743 

amount of variability, 33.38%, compared to the variance explained by the first axis of 744 

45.19%.  745 

 P. pinea. Maximum temperature of the warmest month, bio5, was selected to 746 

represent climt. It showed the highest size effect on the estimated quadratic term in the linear 747 

mixed-effect models. Moreover, maximum temperature of the warmest month was highly 748 

correlated with the first PCA axis (-0.91) and it showed a moderate-to-high high contribution 749 

to the first axis of the PCA (6.88%, being the maximum 7.86%) (Figure S2). Summer 750 

precipitation was selected to represent climp. Both of the terms estimated, the linear and the 751 

quadratic terms, were statistically significant. The linear and quadratic terms were 752 

statistically significant. Moreover, summer precipitation was moderately correlated with the 753 
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second PCA axis (-0.59) and it showed a moderate contribution to the axis (4.91%, being the 754 

maximum 11.51%) (Figure S2). The second axis of the PCA explained nearly the same 755 

amount of variability, 33.3% compared to 38.83%.  756 

 757 

Appendix S3. Populations’ with a Cook’s distance value above one.  758 

The Cook's distance measures the effect of deleting a given population due to the presence of 759 

large residuals that can influence the accuracy of the model. We removed those populations 760 

from the linear-fixed effect models. Specifically, in P. nigra we deleted the population of 761 

Parapluberg in the three developmental classes (DC.1, DC. 2 and DC.3).  In P. pinaster, we 762 

deleted four populations (the population of Val Freda in DC. 3, and the populations of Ain 763 

Baccouche, Tabarka and Valencia in DC. 1). In P. pinea, we deleted the population of Artvin 764 

in DC1, DC2 and DC3.  765 
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Supporting Information 766 

Table S1. Climatic variables used from the EuMedClim (Fréjaville & Benito Garzón, 2018). 767 

Table S2. Results from linear mixed-effect models to select the climate variables of climp 768 

and climt. Bold letters indicate the selected variables. Complementary results from the 769 

Principal Component Analyses are shown in Figure S2  770 

Table S3. Variance inflator factors (VIF) of the best-supported model for each pine species 771 

analyzed.  772 

Table S4. Mean and standard deviation values for each phenotypic plasticity index. Analysis 773 

of the variance and post-hoc analyses adjusted by Tukey HSD were performed to test 774 

differences among developmental classes (DC).  775 

Table S5. Results from the analysis of the variance to test phenotypic plasticity variation 776 

across developmental classes (DC) and for each pine species.  777 

 778 

 779 

Figure S1. Maps showing the trials, provenances and natural distribution of the three species. 780 

Red triangles represent the common gardens (trials) and light blue circles the provenances. 781 

The light green area represents the natural distribution of the species according to 782 

EUFORGEN (http://www.euforgen.org/). Top left: Pinus nigra, top right: Pinus pinaster, 783 

bottom left: Pinus pinea. Adapted from Vizcaíno-Palomar et al., (2019). 784 

Figure S2. Plots of principal component analyses (PCA) for the short-term climate (climt) 785 

and the long-term climate (climp). These results are complementary to the linear mixed-effect 786 

model results shown in Appendix S2. 787 

Figure S3. Plots of residuals of the best-supported model for tree height. Figures show the 788 

residuals across age, climt and climp in standardized values. a) P. nigra, b) P. pinaster, and c) 789 

P. pinea. 790 

Figure S4. Populations’ phenotypic tree height responses across climt particularized for three 791 

populations’ origin (High, Average and Low in terms of climp values) and for the three 792 

developmental classes, DC, (Developmental Class 1: green, DC. 2: orange and DC. 3: blue) 793 

for a) P. nigra, e) P. pinaster and i) P.pinea. Values of the coefficient of variation index (CV) 794 

for the three developmental classes across the species natural distribution ranges are shown. 795 

DC. 1: b), f) and j), DC. 2: c), g) and k); and DC. 3: d), h) and i). 796 
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Figure S5. Phenotypic plasticity predictions of the CV index across the standard deviation of 797 

the maximum temperature of the warmest month (sd bio5) for the three developmental 798 

classes and pines species. 799 

  800 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 6, 2019. ; https://doi.org/10.1101/716084doi: bioRxiv preprint 

https://doi.org/10.1101/716084
http://creativecommons.org/licenses/by-nc-nd/4.0/


38 
 

Table S1. Climatic variables used from the EuMedClim (Fréjaville & Benito Garzón, 2018). 801 

Annual climate variables 

Number Variable name Description 

1 bio1 annual daily mean temperature (º C) 

2 bio2 mean diurnal temperature range (max-min, º C) 

3 bio5 maximum temperature of the warmest month, (º 

C) 

4 bio6 minimum temperature of the coldest month (º C) 

5 bio12 annual precipitation (mm) 

6 bio13 precipitation of the wettest month (mm) 

7 bio14 precipitation of the driest month (mm) 

8 PET annual potential evapotranspiration [PET] (mm) 

9 WAI  water availability [bio12- PET] (mm) 

 

Seasonal climate variables 

Number Variable name Description 

10 tmean.dfj winter daily mean temperature (º C) 

11 tmean.mam spring daily mean temperature (º C) 

12 tmean.jja summer daily mean temperature (º C) 

13 tmean.son autumn daily mean temperature (º C) 

14 prec.djf winter precipitation (mm) 

15 prec.mam spring precipitation (mm) 

16 prec.jja summer precipitation (mm) 

17 prec.son autumn precipitation (mm) 

18 PET.min PET of the wettest month (mm) 

19 PET.max PET of the driest month (mm) 

20 WAI.min WAI of the driest month (mm) 

21 WAI.max WAI of the wettest month (mm) 

  802 
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Table S2. Results from linear mixed-effect models to select the climate variables of climp 803 

and climt. Bold letters indicate the selected variables. Complementary results from the 804 

Principal Component Analyses are shown in Figure S2  805 

 806 

Pinus nigra Short term climate effects Long term climate effects 

Variable coef^2 t value Variable coef t value coef^2 
t 

value 

 

bio1t -0.24 -112.12 prec.jjap 0.00 -0.01 -0.04 -0.28  
tmean.djft -0.20 -140.38 PET p -0.02 -0.12 -0.03 -0.19  
PET.mint -0.13 -45.51 WAI.minp -0.02 -0.08 -0.02 -0.14  
bio6t -0.10 -127.72 bio5p -0.02 -0.11 -0.02 -0.18  
prec.jjat -0.08 -84.68 PET.maxp -0.01 -0.07 -0.02 -0.10  
prec.sont -0.07 -180.30 WAIp -0.01 -0.03 -0.01 -0.08  
bio14t -0.03 -149.63 bio2p -0.02 -0.09 -0.01 -0.06  
tmean.sont -0.03 -19.31 prec.djfp -0.05 -0.20 -0.01 -0.08  

bio13t -0.01 -29.53 tmean.jjap -0.02 -0.09 -0.01 -0.12  
pet.maxt -0.01 -11.58 prec.sonp 0.00 0.00 -0.01 -0.04  

WAI.mint -0.01 -9.42 WAI.maxp -0.07 -0.27 -0.01 -0.05  

tmean.jjat 0.01 10.06 bio13p -0.05 -0.19 -0.01 -0.05  
prec.mamt 0.01 22.98 tmean.sonp 0.01 0.04 -0.01 -0.06  

bio5t 0.02 28.96 bio1p 0.01 0.07 0.00 -0.05  
bio12t 0.02 65.66 tmean.djfp 0.06 0.31 0.00 -0.01  

WAIt 0.03 72.89 tmean.mamp -0.01 -0.05 0.00 0.00  

PETt 0.04 28.05 bio6p 0.05 0.26 0.00 0.00  
prec.djft 0.05 100.84 prec.mamp -0.01 -0.04 0.00 0.00  

tmean.mamt 0.05 41.13 bio12p -0.05 -0.20 0.01 0.03  
bio2t 0.13 92.50 PET.minp 0.04 0.16 0.01 0.04  
WAI.maxt 0.13 211.40 bio14p -0.04 -0.18 0.03 0.12  

 807 

 808 

Pinus pinaster Short term climate effects Long term climate effects 

Variable coef^2 t value Variable coef t 

value 

coef^2 t value  

bio14t -79.13 -77.05 prec.djfp 92.89 5.83 -116.90 -15.43  
PETt -62.09 -37.09 bio13p 124.55 10.02 -95.65 -13.56  
WAIt -40.50 -34.15 bio2p 58.20 5.07 -75.43 -11.05  
WAI.maxt -28.87 -52.10 PET.maxp 101.64 7.73 -84.34 -9.88  
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Pinus pinaster Short term climate effects Long term climate effects 

Variable coef^2 t value Variable coef t 

value 

coef^2 t value  

tmean.sont -25.77 -21.76 prec.mamp 75.40 6.56 -37.47 -6.85  
bio2t -17.74 -27.77 prec.jjap 163.64 14.18 -42.90 -6.05  

WAI.mint -15.79 -24.15 bio6p 5.58 0.47 -36.23 -5.04  

bio5t -11.70 -6.69 WAI.maxp 83.98 7.58 -26.93 -3.66  
bio12t -7.56 -9.46 prec.sonp 35.45 3.26 -33.29 -3.21  

prec.djft -4.04 -14.02 bio14p 123.28 8.70 -14.10 -1.89  

PET.mint 3.78 1.71 WAIp 52.54 5.85 -12.40 -1.55  
bio13t 5.18 15.19 bio12p 54.79 5.45 -10.01 -1.25  
bio6t 10.16 13.75 PETp -39.41 -4.07 -6.07 -0.97  
prec.sont 11.66 49.06 tmean.sonp 22.65 1.78 -3.60 -0.47  
PET.maxt 12.06 21.90 PET.minp -70.27 -5.89 -0.67 -0.11  
tmean.djft 13.18 10.17 tmean.djfp 29.28 2.29 -0.40 -0.05  
prec.mamt 14.62 27.30 WAI.minp 64.09 7.41 2.43 0.32  
prec.jjat 18.26 15.69 bio5p 321.98 15.39 28.08 2.16  
tmean.jjat 62.56 31.59 bio1p 49.67 3.57 21.93 2.87  
tmean.mamt 89.81 71.02 tmean.mamp 63.97 4.65 24.23 3.20  
bio1t 142.09 56.23 tmean.jjap 333.48 13.47 148.08 9.88  

 809 

Pinus pinea Short term climate effects Long term climate effects 

Variable coef^2 t value Variable coef t value coef^2 t value  

bio5t -181.07 -152.89 pet.meanp 0.38 0.21 -2.23 -2.43  
prec.sont -99.92 -76.75 bio5p -1.61 -0.80 -2.07 -1.91  
pet.mint -54.20 -29.40 prec.jjap 4.67 1.96 -1.88 -2.39  
tmean.jjat -49.02 -67.42 PET.maxp 0.68 0.33 -1.34 -0.96  
bio1t -21.73 -24.04 WAI.minp -0.43 -0.20 -1.33 -1.03  
bio6t -17.76 -35.58 bio14p 2.99 1.09 -1.14 -1.64  
bio14t -11.35 -26.11 tmean.jjap -4.86 -2.47 -1.08 -0.75  
tmean.sont -9.99 -16.22 tmean.mamp -5.34 -2.91 -0.66 -0.46  

tmean.mamt -9.29 -16.19 tmean.djfp -5.26 -2.87 -0.36 -0.19  
PET.maxt -7.60 -12.53 PET.minp -2.05 -0.97 -0.34 -0.44  

WAI.mint 2.66 9.36 bio6p -5.23 -2.68 0.21 0.10  
prec.mamt 5.11 13.96 bio2p 3.25 1.52 0.29 0.16  

bio13t 7.00 10.69 bio1p -5.87 -3.20 0.54 0.31  

prec.djft 12.97 45.43 WAIp -5.80 -2.90 1.80 1.28  
WAI.maxt 22.84 38.69 prec.sonp -9.19 -3.92 2.59 2.26  
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Pinus pinea Short term climate effects Long term climate effects 

Variable coef^2 t value Variable coef t value coef^2 t value  
prec.jjat 25.26 84.43 tmean.sonp -7.19 -4.05 3.71 2.13  

tmean.djft 35.07 47.88 prec.mamp -7.98 -3.36 3.84 2.59  
bio2t 38.08 20.62 bio12p -9.18 -4.64 4.60 3.16  

PETt 57.09 26.45 bio13p -13.95 -6.45 8.76 5.41  

bio12t 74.68 88.44 ppet.maxp -14.19 -6.45 9.41 5.28  
WAIt 81.80 66.39 prec.djfp -15.37 -6.54 9.61 5.70  

  810 
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Table S3. Variance inflator factors (VIF) of the best-supported model for each pine species 811 

analyzed.  812 

Pinus nigra  Pinus pinaster  Pinus pinea  

Variable VIF Variable VIF Variable VIF 

age 5 age 2 age 2 

bio1t 1 PETt 2 bio5t 2 

bio1t^2 2 PETt^2 2 bio5t^2 4 

age^2 5 prec.djfp 2 prec.jjap 2 

WAIp 1 prec.djfp^2 2 prec.jjap^2 2 

WAIp^2 1 age^2 2 age^2 2 

age × bio1t 3 age × PETt 1 age × bio5t 4 

age × WAIp 3 age × prec.djfp 1 age × prec.jjap 1 

bio1t × WAIp 1 PETt × prec.djfp 1 bio5t × prec.jjap 1 

age × bio1t × WAIp 3 age × PETt × 

prec.djfp 

1 age × bio5t × 

prec.jjap 

1 
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Table S4. Mean and standard deviation values for each phenotypic plasticity index are shown. 813 

Analysis of variance and post-hoc analyses adjusted by Tukey HSD were performed to test 814 

differences among developmental classes (DC).  815 

 816 

  DC. 1 DC. 2 DC. 3 

 P.I 
mean 

standard 

deviation 
mean 

standard 

deviation 
mean 

standard 

deviation 

P. nigra PP 0.75a 0.012 0.73b 0.009 0.65c 0.006 

 CV 0.48a 0.015 0.45b 0.011 0.36c 0.006 

P. pinaster PP 0.86a 0.011 0.85b 0.001 0.84c 0.007 

 CV 0.52a 0.015 0.51b 0.012 0.50c 0.007 

P. pinea PP 0.98a 0.000 0.98b 0.000 0.95c 0.000 

 CV 0.82a 0.000 0.82b 0.000 0.80c 0.000 

a, b and c (from the highest to the lowest) mean that mean values of phenotypic plasticity values are 817 

statistically different among developmental stages for each index analyzed.  818 

 819 

Table S5. Results from the analysis of the variance to test phenotypic plasticity variation across 820 

developmental classes (DC) and for each pine species.  821 

 822 

Pinus nigra df Sum Sq F p value  

PP index (DC) 2 0.478 2865.9 < 2.2e-16 *** 

Residuals 234 0.020    

CV index (DC) 2 0.569 2244.6 < 2.2e-16 *** 

Residuals 234 0.030    

 

Pinus pinaster df Sum Sq F p value 

PP index (DC) 2 0.036 209.59 < 2.2e-16 *** 

Residuals 552 0.048    

CV index (DC) 2 0.048 183.01 < 2.2e-16 *** 

Residuals 552 0.073    

 

Pinus pinea df Sum Sq F p value 

PP index (DC) 2 0 212713 < 2.2e-16 *** 

Residuals 162 0    

CV index (DC) 2 0.017 45936 < 2.2e-16 *** 
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Residuals 162 0    

df: degrees of freedom, Sum Sq means sum of squares, F-test, *** for p values < 0.001 823 

  824 
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825 

 826 

Figure S1. Maps showing the trials, provenances and natural distribution of the three species. Red 827 

triangles represent the common gardens (trials) and light blue circles the provenances. The light 828 

green area represents the natural distribution of the species according to EUFORGEN 829 

(http://www.euforgen.org/). Top left: Pinus nigra, top right: Pinus pinaster, bottom left: Pinus 830 

pinea. Adapted from Vizcaíno-Palomar et al., (2019). 831 
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834 
Figure S2. Plots of principal component analyses (PCA) for the short-term climate (climt) and the 835 

long-term climate (climp). These results are complementary to the linear mixed-effect model results 836 

shown in Appendix S2.837 
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a) 838 

b) 839 

c) 840 
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 841 

Figure S3. Plots of residuals of the best-supported model for tree height. Figures show the residuals 842 

across age, climt and climp in standardized values. a) P. nigra, b) P. pinaster, and c) P. pinea. 843 
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 844 

Figure S4. Populations’ phenotypic tree height responses across climt particularized for three populations’ origin (High, Average and Low in terms of 845 

climp values) and for the three developmental classes, DC, (Developmental Class 1: green, DC. 2: orange and DC. 3: blue) for a) P. nigra, e) P. 846 

pinaster and i) P. pinea. Values of the coefficient of variation index (CV) for the three developmental classes across the species natural distribution 847 

ranges are shown. DC. 1: b), f) and j), DC. 2: c), g) and k); and DC. 3: d), h) and i). 848 
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 849 

Figure S5. Phenotypic plasticity predictions of the CV index across the standard deviation of the 850 

maximum temperature of the warmest month (sd bio5) for the three developmental classes and 851 

pines species.852 
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