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10 Abstract

11 Microbial communities are pervasive in the natural environment, associated with many animal hosts, 

12 and of increasing importance in biotechnological applications. The complexity of these microbial 

13 systems makes the underlying mechanisms driving their dynamics difficult to identify. While 

14 experimental meta-OMICS techniques are routinely applied to record the inventory and activity of 

15 microbiomes over time, it remains difficult to obtain quantitative predictions based on such data. 

16 Mechanistic, quantitative mathematical modeling approaches hold the promise to both provide 

17 predictive power and shed light on cause-effect relationships driving these dynamic systems.

18 We introduce µbialSim (pronounced “microbialsim”), a dynamic Flux-Balance-Analysis-based (dFBA) 

19 numerical simulator which is able to predict the time course in terms of composition and activity of 

20 microbiomes containing 100s of species in batch or chemostat mode. Activity of individual species is 

21 simulated by using separate FBA models which have access to a common pool of compounds, 

22 allowing for metabolite exchange. A novel augmented forward Euler method ensures numerically 
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23 accuracy by  temporarily reducing the time step size when compound concentrations decrease 

24 rapidly due to high compound affinities and/or the presence of many consuming species. We present 

25 three exemplary applications of µbialSim: a batch culture of a hydrogenotrophic archaeon, a 

26 syntrophic methanogenic biculture, and a 773-species human gut microbiome which exhibits a 

27 complex and dynamic pattern of metabolite exchange.

28 Focussing on metabolite exchange as the main interaction type, µbialSim allows for the mechanistic 

29 simulation of microbiomes at their natural complexity. Simulated trajectories can be used to 

30 contextualize experimental meta-OMICS data, and hypotheses on cause-effect relationships driving 

31 community dynamics can be derived based on scenario simulations.

32 µbialSim is implemented in Matlab and relies on the COBRA Toolbox or CellNetAnalyzer for FBA 

33 calculations. The source code is available under the GNU General Public License v3.0 at 

34 https://git.ufz.de/UMBSysBio/microbialsim.

35 Introduction

36 Microbial communities are ubiquitous in nature, thriving in diverse habitats ranging from the deep 

37 subsurface [1] over digestive tracts of higher animals [2] to the upper troposphere [3]. They are self-

38 organizing entities which both modulate the environment they are embedded in, as well as their own 

39 constituents in terms of abundance of individual member populations. Typical natural and 

40 engineered microbiomes engage in numerous metabolic and non-metabolic interactions and contain 

41 a large fraction of not-yet cultured species. The resulting complexity makes microbiomes notoriously 

42 difficult to study. Meta-OMICS techniques help to uncover the metabolic potential and current 

43 activity of microbiomes. However, most analyses based on such data remains observational in nature 

44 and cannot be used to derive quantitative predictions. The mathematical modeling of microbiomes 

45 holds the promise to move from observation to a more quantitative understanding of microbiome 

46 dynamics and underlying mechanisms [4–7].
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47 Focusing on metabolic interaction, a number of dynamic community modeling approaches have been 

48 proposed in which activity of individual species is modeled using constraint-based techniques based 

49 on genome-scale metabolic network reconstructions [8]. Some of these approaches require the 

50 definition of a secondary community objective in addition to the standard growth maximization 

51 objective for individual species (e.g., d-OptCom, [9]), a priority list of objectives (DFBAlab [10]), or a 

52 pre-allocation of compounds to competing species [11]. Other models additionally allow for 

53 parameter calibration (MCM [12]), or for the inclusion of space either simulating populations 

54 (COMETS [13], MetaFlux [14]) or individual microbial cells following a rule-based approach 

55 (BacArena, [15]). With the exception of the last approach, typically only microbiomes of few species 

56 have been considered in simulations yet. In order to be able to mirror the diversity of natural 

57 microbiomes, we developed µbialSim. Our simulator is based on the dynamic Flux-Balance-Analysis 

58 approach and does not require the definition of any additional objectives or the pre-allocation of 

59 compounds. It allows for the simulation of well-mixed microbiomes of high diversity under batch and 

60 chemostat conditions with high numerical accuracy due to a novel numerical integration scheme.

61 Design and Implementation

62 Overview
63 In order to simulate the fate and metabolic activity of a microbial community we follow the 

64 compartmentalized approach in which activity and growth of individual species is modeled by 

65 separate genome-scale metabolic network models following the Flux-Balance-Analysis approach 

66 (FBA, [16]). All species have access to a common set of pool compounds. This allows for competition 

67 between species as they try to consume the same pool compound and cross-feeding if one species 

68 produces a pool compound another is able to use for growth. Instead of restricting analysis to steady 

69 state dynamics for which the community composition must be defined as a model input (e.g., 

70 [17,18]), we follow the dynamic FBA approach [19] in order to be able to simulate dynamic shifts in 

71 microbiomes as a consequence of the system’s dynamics. In this approach, the steady-state 
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72 assumption underlying FBA is assumed to hold true for the duration of the numerical integration 

73 step. FBA-computed growth and compound exchange rates are then used to update the state 

74 variables of the model which encompass microbial biomass and pool compound concentrations. 

75 µbialSim is implemented as Matlab code and relies on either the COBRA Toolbox [20] or 

76 CellNetAnalyzer [21] for performing FBA computations. This allows for the easy incorporation of FBA 

77 models prepared with either softwares in a community model. Space is neglected in the model, 

78 hence assuming a well-mixed environment similar to a well-stirred bioreactor. Both batch and 

79 chemostat operation can be simulated. Both compounds and microbial populations can be defined to 

80 be part of the bioreactor inflow.

81 Mathematical description

82 The system state is given by (C, X), with C = (C1,…,Cm) referring to the concentrations (in mM) of m 

83 pool compounds present in the bioreactor and X = (X1,…,Xn) referring to the abundance (in gDW/L) of 

84 n microbial populations. For each of these populations, the exchange reactions in their metabolic 

85 network model which describe the transport of a metabolite across the cell membrane need to be 

86 identified. Not all of these reactions need to be coupled to pool compounds. For example 

87 metabolites assumed not to be growth-limiting can be ignored. With k the number of coupled 

88 exchange reactions for species j, coupReacj = (r1,…,rk) records the reaction IDs of the respective 

89 exchange reactions,  coupCompj=(idxi,…, idxk) the indices of the corresponding compounds in C, 

90 coupSensej=(si,…, sk) the directionality of the exchange reaction with the reaction proceeding in the 

91 forward direction indicating metabolite excretion for s = 1 and metabolite uptake for s = -1, 

92 coupVmaxj the maximal uptake fluxes, and coupKsj the corresponding Monod constants (see below).

93 The dynamics of the system is then given by two sets of ordinary differential equations. Microbial 

94 dynamics for species j is given by

𝑑𝑋𝑗

𝑑𝑡 = (𝑋𝑖𝑛𝑓𝑙𝑜𝑤
𝑗 ‒ 𝑋𝑗)

𝑞
𝑉 + µ𝑗𝑋𝑗

(Equation 1)
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95 with microbial concentration in the inflow Xi
inflow (gDW/L), flow rate q (L/h), bioreactor volume V (L), 

96 and specific growth rate µi (1/h). The dynamics of pool compound i in the bioreactor is given by

𝑑𝐶𝑖

𝑑𝑡 = (𝐶𝑖𝑛𝑓𝑙𝑜𝑤
𝑖 ‒ 𝐶𝑖)

𝑞
𝑉 +

𝑛

∑
𝑗 = 1,𝑖 ∈ 𝑐𝑜𝑢𝑝𝐶𝑜𝑚𝑝𝑗

𝑤𝑖𝑡ℎ 𝑖 𝑡ℎ𝑒 𝑘 ‒ 𝑡ℎ 𝑒𝑙𝑒𝑚𝑒𝑛𝑡

𝑐𝑜𝑢𝑝𝑆𝑒𝑛𝑠𝑒𝑗
𝑘 × 𝑣 𝑗

𝑐𝑜𝑢𝑝𝑅𝑒𝑎𝑐𝑗
𝑘 × 𝑋𝑗

(Equation 2)

97 with inflow concentration Ci
inflow (mM) and flux of the exchange reaction vi

j (mmol/gDW/h) which is 

98 the i-th reaction of the j-th species.

99 The specific growth rates µ and exchange fluxes v are derived by solving individual FBA problems for 

100 all species individually. For this purpose, current compound concentrations in the bioreactor need to 

101 be translated to maximal allowable uptake rates. This is commonly done by assuming Monod-type 

102 kinetics. For the i-th exchange reaction of species j which is coupled to pool compound coupCompj
i, 

103 the current maximal uptake rate is given by

.𝑣 𝑗
𝑚𝑎𝑥𝑈𝑝𝑡𝑎𝑘𝑒, 𝑖 =  𝑐𝑜𝑢𝑝𝑉𝑚𝑎𝑥𝑗

𝑖

𝐶𝑐𝑜𝑢𝑝𝐶𝑜𝑚𝑝𝑗
𝑖

𝑐𝑜𝑢𝑝𝐾𝑠𝑗
𝑖 + 𝐶𝑐𝑜𝑢𝑝𝐶𝑜𝑚𝑝𝑗

𝑖

(Equation 3)

104 Numerical integration scheme

105 While µbialSim can make use of Matlab solvers for numerically integrating Equations 1-2 (options 

106 solverPars.solverType and solverPars.solver), the computational costs quickly 

107 becomes prohibitive for more complex microbial communities. Instead, we have implemented a 

108 novel augmented forward Euler method in µbialSim. The forward Euler method uses the system state 

109 at time t, evaluates Equations 1-2 and uses computed rates to derive the system state at time t + Δt, 

110 with Δt being the integration step size:

𝑋(𝑡 + ∆𝑡) = 𝑋(𝑡) + ∆𝑡 ×
𝑑𝑋(𝑡)

𝑑𝑡 ,

.𝐶(𝑡 + ∆𝑡) = 𝐶(𝑡) + ∆𝑡 ×
𝑑𝐶(𝑡)

𝑑𝑡

(Equation 4)
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111 For syntrophic interactions such as in syntrophic propionate degradation (see Example 2), a 

112 compound produced by one species (here: hydrogen), needs to be quickly consumed by the 

113 syntrophic partner (here: a methanogenic archaeon) as propionate degradation is 

114 thermodynamically only feasible for low hydrogen concentrations. This means that typically, the 

115 partner features an effective uptake of the compound with a small Ks value in Equation 3. As 

116 consumption can become much faster than production, a very negative rate for hydrogen may result 

117 in Equation 2. This can lead to the computation of negative concentrations during an integration step 

118 (Equation 4). Similarly, this can also be caused by many species competing for a highly attractive 

119 compound. Simply setting negative values to zero in each integration step induces a numerical error. 

120 Instead, choosing a smaller integration step size can solve this problem, but might significantly 

121 prolong simulation time. Hence, in µbialSim the integration step size is reduced only temporarily 

122 whenever this situation occurs in order to avoid numerical error at an affordable increase in 

123 computational cost. The time step size is reduced in such a way that the concentration of compound 

124 o at the next time step is close to its steady-state concentration under the assumption that the 

125 production process remains constant. We first identify all species which are either producing or 

126 consuming compound o. We then compute the current total production rate p and the current total 

127 uptake rate u for the compound by summing across the identified species. Additionally, let f describe 

128 the current rate of concentration change for compound o due to a prescribed flow if a chemostat is 

129 simulated. The steady-state condition is then given by p = u - f. Treating p as fixed, we find that the 

130 right-hand side of this equation depends on the compound concentration Co when combining 

131 Equations 2 and 3:

.𝑢 ‒ 𝑓 = ∑
𝑗 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑠𝑢𝑚𝑖𝑛𝑔 𝑠𝑝𝑒𝑐𝑖𝑒𝑠|𝑉𝑚𝑎𝑥𝑗| 𝐶𝑜

𝐾𝑠𝑗 + 𝐶𝑜
× 𝑋𝑗 ‒ (𝐶𝑖𝑛𝑓𝑙𝑜𝑤

𝑜 ‒ 𝐶𝑜)𝑞
𝑉

(Equation 5)

132 Under the assumption that compound o is the growth-limiting factor for the second species (i.e., the 

133 maximal uptake rate is indeed realized) and that growth remains viable for smaller concentrations, 

134 the steady-state concentration C*
o for compound o can be found by reducing concentration Co  in 
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135 Equation 5 until p = u(C*
o) - f(C*

o). The time step size Δt which leads Co(t + Δt) to be evaluated to C*
o 

136 can then be computed with the help of Equation 4 to:

∆𝑡 = (𝐶 ∗
𝑜 ‒ 𝐶𝑜(𝑡)) 𝑑𝐶𝑜(𝑡)

𝑑𝑡 .
(Equation 6)

137 If for more than one chemical compound negative concentrations were calculated using the default 

138 time step size, for each of these compounds the described scheme is applied and ultimately the 

139 smallest time step size used. We note that reducing the time step size does not require the 

140 recomputation as FBA problems, as only Δt changes in Equation 4. For the next time step, the default 

141 time step size is restored. Compounds which required the reduction of the time step size are flagged 

142 as strongly consumed compounds, as their consumption rate surpassed their production rate. In 

143 order to avoid oscillatory behavior for these compounds, µbialSim allows to additionally restrict the 

144 time step size in subsequent iteration steps such that the concentration change of these compounds 

145 does not surpass a given threshold (parameter solverPars.maxDeviation). If negative 

146 biomass concentrations occur, the time step size is reduced such that the biomass concentration is at 

147 most reduced by a factor of two. The flowchart in Fig 1 depicts the complete algorithmic logic of the 

148 augmented forward Euler method implemented in µbialSim.
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149

150 Fig 1. The augmented forward Euler scheme implemented in µbialSim. In each numerical 

151 integration step, first the FBA solutions are computed for all member species of the simulated 

152 microbiome. The new system state is then computed using obtained rates and the default time step 

153 size. If negative concentration values for biomasses or compounds occur, the time step size is 

154 reduced as required.
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155 Features
156 FBA computations can have non-unique solutions such that different flux distributions lead to the 

157 same maximal growth rate. In dFBA simulations, this can cause discontinuities in intracellular fluxes 

158 over time. To avoid this, µbialSim implements two features which can individually or in tandem be 

159 activated. The first feature is a secondary optimization step which seeks to realize the optimal 

160 growth rate as determined by the initial FBA computation, but with minimal fluxes, known as 

161 parsimonious FBA [22]. The second feature tries to realize the optimal growth rate by a flux 

162 distribution that most resembles the flux distribution which was active in the last integration step, a 

163 methodology similar to the minimization of metabolic adjustment approach (MOMA, [23]) which has 

164 been applied in the context of dFBA before [24]. Simulation results can be stored at each integration 

165 step in individual files or in a single result file at the end of the simulation. The former feature 

166 (parameter solverPars.recording) is helpful for complex simulations as simulated data is not 

167 lost in case of unforeseen server downtimes or other computational calamities. A subsequent 

168 simulator run can use the saved data to initialize the simulator and continue the interrupted 

169 simulation run (parameter solverPars.readInitialStateFrom).

170 As loading SBML files and preparing the corresponding data structures can take a while for complex 

171 microbiomes, the data structures of the loaded models can be saved as a single file and be used in 

172 subsequent simulation runs to speed up initialization (parameter 

173 solverPars.saveLoadedModelToFile).

174 Once the simulation is done, µbialSim computes the overall activity during the simulation for all 

175 exchange fluxes of all species (including both exchange reactions which were coupled to pool 

176 compounds and those which were not) if desired (parameter solverPars.doMassBalance). 

177 This indicates the total compound turnover per species in terms of compound production minus 

178 consumption (in mM), and the resulting increase in biomass concentration (in gDW/L). Additionally, 

179 three figures to visualize the simulation result are automatically generated. The first figure gives a 

180 quick overview over the temporal evolution of all microbial biomass concentrations and all pool 
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181 compound concentrations over time. In the second figure, all biomass concentrations are plotted in 

182 one panel as an offset to the initial biomass concentration, to make dynamics easy to inspect for 

183 species having very different initial biomass concentrations, and individual panels for each pool 

184 compound. The third figure contains two panels for each microbial species and shows the evolution 

185 of coupled exchange reactions, and exchange reactions which were not coupled. Only non-zero 

186 exchange fluxes are shown.

187 Setting up and running a microbiome simulation

188 The bioreactor and its operational parameters are defined in the function 

189 reactorDefinition_*.m. Here, the reactor volume, flow rate, and the list of pool compounds 

190 is defined. Additionally, initial concentrations for compounds and biomasses are specified, as well as 

191 their concentration in the inflow in case a chemostat is to be simulated.

192 Loading a FBA model of an individual species of the microbiome to be simulated is recommended to 

193 be done in two steps. First, the model is loaded by using the appropriate commands of either the 

194 COBRA Toolbox or CellNetAnalyzer in the Matlab function prepareFBAmodel_*.m. After loading, 

195 if necessary, general constraints on particular reactions can be set, for example to implement a 

196 particular scenario. Next, the reaction IDs of the biomass reaction and the non-growth associated 

197 maintenance reaction (NGAM) need to be specified. Reaction IDs refer to their running order in the 

198 SBML file (or corresponding CellNetAnalyzer data structure). Furthermore, all exchange reactions 

199 need to be identified by their IDs and their directionality, that means whether a positive 

200 flux  indicates compound secretion (Sense = 1) or compound uptake (Sense = -1). Finally the 

201 subset of exchange reactions are identified, which will be coupled to pool compounds present in the 

202 bioreactor in the vector IDs. The mapping of coupled reactions to reactor compounds is done in the 

203 vector reactorCompoundIDs of length k, with k indicating the number of coupled reactions. The 

204 entry at the i-th position specifies for the i-th coupled reaction, as defined before in the vector IDs, 

205 the index of the reactor compound (referring to vector reactor.compounds) to which the 
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206 exchange reaction is coupled. After this general setup of the FBA model, model parameters are 

207 defined in the second step in the function parametrizeFBAmodel_*.m. Here, the values for 

208 NGAM, and vmax and KS to define uptake kinetics for all coupled compounds are set.

209 Finally, the target simulation time, default time step size and other options (see Features) and 

210 numerical accuracy parameters are set in the main simulator file microbialSimMain.m.

211 Results

212 We present three exemplary applications of µbialSim simulating batch growth of a monoclonal 

213 hydrogenotrophic culture, a syntrophic biculture transforming propionate to methane, and a 773 

214 species human gut microbiome. In all examples, a bioreactor volume of 1 L and a default time step 

215 size of Δtdefault = 0.002 h was chosen. The simulation end time was set to ttarget = 1 h for the mono- and 

216 binary culture, and to 0.3 h for the human microbiome example. All simulations were run in Matlab 

217 R2018a on an Intel® Xeon® CPU E5-4620 v2@2.6GHz with 32 cores. Up to 64GB of RAM were 

218 required to simulate the 773 species microbiome.

219 Batch culture of Methanococcus maripaludis

220 A batch culture of the hydrogenotrophic methanogen M. maripaludis was simulated using an 

221 established genome-scale FBA model [25]. The archaeon transforms H2 and CO2 to CH4. Excess CO2 

222 was provided such that H2 was the growth limiting factor. Model parameters and initial conditions 

223 are listed in Table 1. Simulation results show an almost linear growth of M. maripaludis until t = 0.6 h 

224 when H2 becomes depleted and growth stops (Fig 2). Simulations using Matlab’s ODE solver ode15s 

225 and the novel augmented forward Euler method lead to identical results (Fig 2) with comparable 

226 simulation times (2.2 minutes for Matlab’s solver and 3.4 minutes for the Euler method).

227
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228 Table 1. Model parameters and initial conditions for Example 1.

Model parameters for M. maripaludis model iMR539 Initial conditions

µ (1/d) vmax a 

(mmol/

gDW/h)

Ks (mM) NGAM 

(mmol 

ATP/gDW/h)

Biomass 

(gDW/L)

H2 (mM) CO2 (mM)

2.1 [26] 189.3 4.375  10-4 [26] 5.1176 [25] 1.0  10-4 0.01 1.0

229 aWas choosen such that the maximal FBA-predicted growth rate matched the specific growth rate µ 

230 reported in first table column.

231

232 Fig 2. Simulating a hydrogenotrophic batch culture. A M. maripaludis population converts H2 and 

233 CO2 to CH4 until H2 becomes depleted. Both Matlab’s ode15s ODE solver (lines) and µbialSim’s novel 

234 augmented forward Euler method (symbols, every 15th data point is plotted) lead to identical 

235 results.
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236 Co-culture of Syntrophobacter fumaroxidans and Methanospirillum 

237 hungatei

238 The syntrophic conversion of propionate to methane was simulated by using a binary FBA model 

239 community of S. fumaroxidans and M. hungatei which has previously been simulated at steady state 

240 [18]. Model parameters are listed in Table 2, choosing an initial relative biomass ratio of 3:4 (M. 

241 hungatei:S. fumaroxidans) as previously [18]. Initial compound concentrations were set to 20 mM for 

242 propionate, 0.9561 µM for H2 and 8.215 µM for CO2 which was considered not to be growth limiting 

243 for the methanogen. Being produced by S. fumaroxidans and quickly consumed by M. hungatei, H2 

244 was flagged as a strongly consumed compound in the simulation. The time step size became reduced 

245 and reached a minimum just prior to the depletion of H2 as growth of S. fumaroxidans ceased due to 

246 low propionate concentrations at t = 0.76 h (Fig 3). Except for H2, simulation results agreed well if 

247 using Matlab’s ODE solver or the novel numerical Euler scheme. For H2, minor fluctuations around 

248 the ODE result were apparent when using the Euler scheme (Fig 3). Most notably, the final H2 

249 concentration was 0 instead of the ODE predicted (small) concentration of 43.9 pM. Simulation times 

250 remained below 30 minutes for both Matlab’s ODE solver (9.7 minutes) and the augmented forward 

251 Euler method (22.6 minutes).

252

253

254

255

256

257

258

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 26, 2019. ; https://doi.org/10.1101/716126doi: bioRxiv preprint 

https://doi.org/10.1101/716126
http://creativecommons.org/licenses/by/4.0/


14

259 Table 2. Model parameters and initial biomass concentrations for Example 2.

Model µ (1/d) vmax a 

(mmol/gD

W/h)

Ks (mM) NGAM (mmol 

ATP/gDW/h)

Initial biomass 

(gDW/L)

S. 

fumaroxidans 

iSfu648

0.15 [27] 1.1738 2.7 [28] 0.14 [18] 28.57

M. hungatei 

iMhu428

1.2 [27] 27.6 0.006 [27] 0.025 [18] 21.43

260 aWas choosen such that the maximal FBA-predicted growth rate matched the specific growth rate µ 

261 reported in first table column.

262

263 Fig 3. Simulating a binary, syntrophic batch culture. Propionate is utilized by S. fumaroxidans and 

264 converted to acetate, CO2, and H2. M. hungatei then converts CO2 and H2 to CH4. Both Matlab’s 

265 ode15s ODE solver (lines) and µbialSim’s novel augmented forward Euler method (symbols, every 

266 15th data point is plotted) lead to similar results. As H2 is faster consumed than produced, the time 

267 step size gets frequently reduced, most notably just prior to the depletion of propionate after which 

268 growth of both populations ceases.
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269 Human gut microbiome
270 To simulate a human gut microbiome, the AGORA model collection (Version 1.01) comprising 773 

271 microbial human gut species was used [29]. Maximal substrate uptake rates (vmax) were taken from 

272 the individual SBML models, which were configured to mimic a typical western diet [29]. Exchange 

273 reactions in individual models were automatically identified by searching for “EX_” in reaction 

274 names. Pool compounds were automatically configured by considering only those exchange reaction 

275 which had at least one flux boundary which was neither zero nor unlimited, resulting in 166 pool 

276 metabolites if all 773 models are considered in the simulation. Monod constants for compound 

277 uptake were set to 0.01 mM for all pool compounds. Batch growth was simulated by setting initial 

278 pool compound concentrations to 1.0 mM for all compounds, and initial biomass concentration to 

279 0.1 gDW/L for all microbial species. Simulation results (requiring 7.2 days of simulation time using the 

280 augmented forward Euler method) indicate an initial short period of rapid growth which is followed 

281 by a prolonged period of slow growth (Fig. 4).

282

283 Fig 4. Simulating a 773 species gut microbiome with 166 pool compounds. Total biomass growth 

284 slows down as compounds become depleted. Growth for some species ceases early on while others 

285 are able to maintain fast growth rates until the end of the simulation.
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286 Availability and Future Directions

287 µbialSim is licensed under the GNU General Public License v3.0 and available for download at 

288 https://git.ufz.de/UMBSysBio/microbialsim  (or git clone 

289 https://git.ufz.de/UMBSysBio/microbialSim.git). The simulator can make use of 

290 Matlab’s support for parallel loop execution (parfor, option solverPar.parallel) for solving 

291 individual FBA problems in one time step. However, the observed speed-up remained far below the 

292 expectation of an almost linear speed-up. This is due to the non-persistence of worker processes 

293 executing individual loop iterations, requiring the repeated copying of FBA model structures to the 

294 workers’ memory in each time step. A future version of µbialSim shall feature persistent workers to 

295 better utilize current multicore computing architectures. Besides these technical improvements, non-

296 metabolic interactions as well as chemical activity among pool compounds and non-constant 

297 chemostat operating conditions can be implemented in future versions of µbialSim. Furthermore, 

298 reactor headspace and corresponding gas exchange processes can be included to ease comparison of 

299 simulation results with experimental data.

300 References

301 1. Dutta A, Dutta Gupta S, Gupta A, Sarkar J, Roy S, Mukherjee A, et al. Exploration of deep 

302 terrestrial subsurface microbiome in Late Cretaceous Deccan traps and underlying Archean 

303 basement, India. Sci Rep. 2018;8: 17459. doi:10.1038/s41598-018-35940-0

304 2. Gould AL, Zhang V, Lamberti L, Jones EW, Obadia B, Korasidis N, et al. Microbiome 

305 interactions shape host fitness. Proc Natl Acad Sci U S A. 2018;115: E11951–E11960. 

306 doi:10.1073/pnas.1809349115

307 3. Deleon-Rodriguez N, Lathem TL, Rodriguez-R LM, Barazesh JM, Anderson BE, Beyersdorf AJ, et 

308 al. Microbiome of the upper troposphere: Species composition and prevalence, effects of 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 26, 2019. ; https://doi.org/10.1101/716126doi: bioRxiv preprint 

https://doi.org/10.1101/716126
http://creativecommons.org/licenses/by/4.0/


17

309 tropical storms, and atmospheric implications. Proc Natl Acad Sci U S A. 2013;110: 2575–2580. 

310 doi:10.1073/pnas.1212089110

311 4. Widder S, Allen RJ, Pfeiffer T, Curtis TP, Wiuf C, Sloan WT, et al. Challenges in microbial 

312 ecology: building predictive understanding of community function and dynamics. ISME J. 

313 2016;10: 2557–2568. doi:10.1038/ismej.2016.45

314 5. Succurro A, Ebenhöh O. Review and perspective on mathematical modeling of microbial 

315 ecosystems. Biochem Soc Trans. 2018; doi:10.1042/BST20170265

316 6. Song H-S, Cannon WR, Beliaev AS, Konopka A. Mathematical Modeling of Microbial 

317 Community Dynamics: A Methodological Review. Processes. 2014;2: 711–752. 

318 doi:10.3390/pr2040711

319 7. Bosi E, Bacci G, Mengoni A, Fondi M. Perspectives and Challenges in Microbial Communities 

320 Metabolic Modeling. Front Genet. 2017;8: 88. doi:10.3389/fgene.2017.00088

321 8. Biggs MB, Medlock GL, Kolling GL, Papin JA. Metabolic network modeling of microbial 

322 communities. Wiley Interdiscip Rev Syst Biol Med. 2015;7: 317–334. doi:10.1002/wsbm.1308

323 9. Zomorrodi AR, Islam MM, Maranas CD. d-OptCom: Dynamic multi-level and multi-objective 

324 metabolic modeling of microbial communities. ACS Synth Biol. 2014;3: 247–57. 

325 doi:10.1021/sb4001307

326 10. Gomez JA, Höffner K, Barton PI. DFBAlab: a fast and reliable MATLAB code for dynamic flux 

327 balance analysis. BMC Bioinformatics. 2014;15: 409. doi:10.1186/s12859-014-0409-8

328 11. Chiu H-C, Levy R, Borenstein E. Emergent biosynthetic capacity in simple microbial 

329 communities. PLoS Comput Biol. 2014;10: e1003695. doi:10.1371/journal.pcbi.1003695

330 12. Louca S, Doebeli M. Calibration and analysis of genome-based models for microbial ecology. 

331 Elife. 2015;4: 1–17. doi:10.7554/eLife.08208

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 26, 2019. ; https://doi.org/10.1101/716126doi: bioRxiv preprint 

https://doi.org/10.1101/716126
http://creativecommons.org/licenses/by/4.0/


18

332 13. Harcombe WR, Riehl WJ, Dukovski I, Granger BR, Betts A, Lang AH, et al. Metabolic resource 

333 allocation in individual microbes determines ecosystem interactions and spatial dynamics. Cell 

334 Rep. 2014;7: 1104–1115. doi:10.1016/j.celrep.2014.03.070

335 14. Karp PD, Latendresse M, Paley SM, Krummenacker M, Ong QD, Billington R, et al. Pathway 

336 tools version 19.0 update: Software for pathway/genome informatics and systems biology. 

337 Brief Bioinform. 2016;17: 877–890. doi:10.1093/bib/bbv079

338 15. Bauer E, Zimmermann J, Baldini F, Thiele I, Kaleta C, Noronha A. BacArena: Individual-based 

339 metabolic modeling of heterogeneous microbes in complex communities. PLOS Comput Biol. 

340 2017;13: e1005544. doi:10.1371/journal.pcbi.1005544

341 16. Varma A, Palsson BO. Stoichiometric flux balance models quantitatively predict growth and 

342 metabolic by-product secretion in wild-type Escherichia coli W3110. Appl Environ Microbiol. 

343 1994;60: 3724–31. 

344 17. Koch S, Benndorf D, Fronk K, Reichl U, Klamt S. Predicting compositions of microbial 

345 communities from stoichiometric models with applications for the biogas process. Biotechnol 

346 Biofuels. 2016;9: 17. doi:10.1186/s13068-016-0429-x

347 18. Hamilton JJ, Calixto Contreras M, Reed JL. Thermodynamics and H2 Transfer in a 

348 Methanogenic, Syntrophic Community. PLOS Comput Biol. 2015;11: e1004364. 

349 doi:10.1371/journal.pcbi.1004364

350 19. Mahadevan R, Edwards JS, Doyle FJ. Dynamic Flux Balance Analysis of Diauxic Growth in 

351 Escherichia coli. Biophys J. 2002;83: 1331–1340. doi:10.1016/S0006-3495(02)73903-9

352 20. Heirendt L, Arreckx S, Pfau T, Mendoza SN, Richelle A, Heinken A, et al. Creation and analysis 

353 of biochemical constraint-based models: the COBRA Toolbox v3.0. Nat Protoc. 2019;14: 639–

354 702. doi:10.1038/s41596-018-0098-2

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 26, 2019. ; https://doi.org/10.1101/716126doi: bioRxiv preprint 

https://doi.org/10.1101/716126
http://creativecommons.org/licenses/by/4.0/


19

355 21. von Kamp A, Thiele S, Hädicke O, Klamt S. Use of CellNetAnalyzer in biotechnology and 

356 metabolic engineering. J Biotechnol. 2017; doi:10.1016/j.jbiotec.2017.05.001

357 22. Lewis NE, Hixson KK, Conrad TM, Lerman JA, Charusanti P, Polpitiya AD, et al. Omic data from 

358 evolved E. coli are consistent with computed optimal growth from genome-scale models. Mol 

359 Syst Biol. 2010;6: 390. doi:10.1038/msb.2010.47

360 23. Segrè D, Vitkup D, Church GM. Analysis of optimality in natural and perturbed metabolic 

361 networks. Proc Natl Acad Sci U S A. 2002;99: 15112–15117. doi:10.1073/pnas.232349399

362 24. Succurro A, Segrè D, Ebenhöh O. Emergent Subpopulation Behavior Uncovered with a 

363 Community Dynamic Metabolic Model of Escherichia coli Diauxic Growth. mSystems. 2019;4: 

364 e00230-18. doi:10.1128/msystems.00230-18

365 25. Richards MA, Lie TJ, Zhang J, Ragsdale SW, Leigh JA, Price ND. Exploring hydrogenotrophic 

366 methanogenesis: A genome scale metabolic reconstruction of Methanococcus maripaludis. J 

367 Bacteriol. 2016;198: 3379–3390. doi:10.1128/JB.00571-16

368 26. Weinrich S, Nelles M. Critical comparison of different model structures for the applied 

369 simulation of the anaerobic digestion of agricultural energy crops. Bioresour Technol. 

370 2015;178: 306–312. doi:10.1016/j.biortech.2014.10.138

371 27. Stams AJM, Plugge CM, de Bok FAM, van Houten BHGW, Lens P, Dijkman H, et al. Metabolic 

372 interactions in methanogenic and sulfate-reducing bioreactors. Water Sci Technol. 2005;52: 

373 13–20. doi:10.2166/wst.2005.0493

374 28. Batstone DJ, Keller J, Angelidaki I, Kalyuzhnyi S V, Pavlostathis SG, Rozzi A, et al. The IWA 

375 Anaerobic Digestion Model No 1 (ADM1). Water Sci Technol. 2002;45: 65–73. 

376 29. Magnúsdóttir S, Heinken A, Kutt L, Ravcheev DA, Bauer E, Noronha A, et al. Generation of 

377 genome-scale metabolic reconstructions for 773 members of the human gut microbiota. Nat 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 26, 2019. ; https://doi.org/10.1101/716126doi: bioRxiv preprint 

https://doi.org/10.1101/716126
http://creativecommons.org/licenses/by/4.0/


20

378 Biotechnol. 2017;35: 81–89. doi:10.1038/nbt.3703

379

380

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 26, 2019. ; https://doi.org/10.1101/716126doi: bioRxiv preprint 

https://doi.org/10.1101/716126
http://creativecommons.org/licenses/by/4.0/


21

381 Supplemental Material

382 Installing µbialSim
383 The simulator µbialSim is implemented as Matlab code and can be obtained from the UFZ git server 
384 at https://git.ufz.de/UMBSysBio/microbialsim or via git clone 
385 https://git.ufz.de/UMBSysBio/microbialSim.git. µbialSim can be configured to use 
386 the COBRA Toolbox or CellNetAnalyzer for performing FBA calculations. The provided examples make 
387 use of the former. After installing the COBRA Toolbox, the appropriate path needs to be configured in 
388 lines 87ff in the main simulator file microbialSimMain.m.

389 Simulation output
390 Two files are generated at the end of the simulation with a date and time stamp in the filename 
391 indicating the start of the simulation. Both files hold Matlab data structures. The file 
392 “*_restartInit.mat” records the final state of the simulator and can be used as the initial 
393 conditions to continue the simulation in a subsequent run of µbialSim. The other file holds the 
394 simulated trajectory in the Matlab structure trajectory. The fields time, compounds, 
395 biomass, and mu hold the time, compound concentrations, biomass concentrations, and specific 
396 growth rates for each integration step. The field FBA stores data for each FBA model, including the 
397 temporal dynamics of all metabolic fluxes, and the mass balance for all exchange reactions.

398 Running the examples

399 Example 1: methanogenic monoculture

400 The first example in which batch-culture growth of a single hydrogenotrophic species 
401 (Methanococcus maripaludis) is simulated can be run with the command 
402 microbialSimMain(1). Once the simulation is finished, the trajectory is automatically visualized 
403 in three Matlab figures (Fig S1).
404
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405
406 Fig S1. Automatically generated figure for Example 1. Simulation trajectory showing all microbiome 
407 member species and reactor compounds (Figure 1). Plot of biomass concentration as an offset to the 
408 initial concentration for all microbiome member species and individual plots for all reactor 
409 compounds (Figure 2). Plotting non-zero exchange fluxes over time which are coupled to reactor 
410 compounds (left), or not (right) for all microbiome member species (Figure 3).

411 Example 2: binary syntrophic community

412 Batch-culture growth of binary methanogenic community is started by
413 microbialSimMain(2).
414
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415
416 Fig S2. Automatically generated figure for Example 2. Simulation trajectory showing all microbiome 
417 member species and reactor compounds (Figure 1). Plot of biomass concentration as an offset to the 
418 initial concentration for all microbiome member species and individual plots for all reactor 
419 compounds (Figure 2). Plotting non-zero exchange fluxes over time which are coupled to reactor 
420 compounds (left), or not (right) for all microbiome member species (Figure 3).
421

422 Example 3: human gut microbiome with 773 species

423 Running Example 3 first requires the unpacking of the file AGORA-1.01-Western-Diet.zip 
424 containing the AGORA model collection. Note that for running the simulation with all species, 64GB 
425 of RAM are necessary (loading models as a Matlab data structure after the initial loading as SBML 
426 files cuts memory demand in half). The simulation of batch growth can then be started by 
427 microbialSimMain(3). Simulation time can considerably be reduced by setting the parameter 
428 solverPars.maxDeviation to "inf" in microbialSimMain.m at the expense of 
429 numerical accuracy. Note that also arbitrary subsets of the model collection can be selected for the 
430 simulation (see commented example in the code). 
431
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432
433 Fig S3. Automatically generated figure for Example 3. Simulation trajectory showing all microbiome 
434 member species and reactor compounds (Figure 1). Plot of biomass concentration as an offset to the 
435 initial concentration for all microbiome member species and individual plots for all reactor 
436 compounds (Figure 2). Plotting non-zero exchange fluxes over time which are coupled to reactor 
437 compounds (left), or not (right) for all microbiome member species (Figure 3).
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