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Abstract8

Neural activity encoding recent experiences is replayed during sleep and rest to promote consolidation of the9

corresponding memories. However, precisely which features of experience influence replay prioritisation to10

optimise adaptive behaviour remains unclear. Here, we trained adult male rats on a novel maze-based rein-11

forcement learning task designed to dissociate reward outcomes from reward-prediction errors. Four variations12

of a reinforcement learning model were fitted to the rats’ behaviour over multiple days. Behaviour was best13

predicted by a model incorporating replay biased by reward-prediction error, compared to the same model with14

no replay; random replay or reward-biased replay produced poorer predictions of behaviour. This insight dis-15

entangles the influences of salience on replay, suggesting that reinforcement learning is tuned by post-learning16

replay biased by reward-prediction error, not by reward per se. This work therefore provides a behavioural and17

theoretical toolkit with which to measure and interpret replay in striatal, hippocampal and neocortical circuits.18
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1 Introduction19

To make good decisions, it is typically beneficial to use past experience to guide future behaviour. Actions20

which have previously produced good outcomes in a similar context can be reinforced to adapt behaviour for21

maximising benefit. Crucial to this mechanism is the ability for neuronal spiking activity to drive synaptic plas-22

ticity, strengthening the synaptic connections between neurons to establish functional networks which encode23

task-relevant information or drive task-relevant actions. These functional networks are refined during sleep24

and rest, when many neurons switch to an “offline” state in which they replay activity encoding previous or25

anticipated upcoming experiences rather than current events or behaviours (Yu et al. 2017). This offline replay,26

found across cortical, limbic and basal ganglia regions, has been suggested to play a role in decision-making27

(Pfeiffer and Foster 2013), emotional processing (Cairney et al. 2014), generalising across episodes (Lewis and28

Durrant 2011), and reinforcement learning (Dupret et al. 2010).29

Studies in which replay has been manipulated provide strong evidence for its contributions to memory consol-30

idation. Artificially enhancing replay by presenting odours or sounds during sleep, which had previously been31

paired with object locations or visual stimuli, leads to better subsequent recall of the paired stimuli (Rasch et al.32

2007; Rudoy et al. 2009; Antony et al. 2012; Bendor and Wilson 2012). Disrupting replay events, meanwhile,33

impairs subsequent spatial memory (Girardeau et al. 2009; Ego-Stengel and Wilson 2010; Jadhav et al. 2012;34

Michon et al. 2019).35

An examination of how replay aids these cognitive processes requires assessment of which activity is replayed36

with greatest strength or frequency. Activity which is associated with experiences of reward (Foster and Wilson37

2006; Lansink et al. 2009; Singer and Frank 2009) or fear (Girardeau et al. 2017; Wu et al. 2017), or with38

recent experiences (Cheng and Frank 2008), is replayed preferentially. This suggests a replay bias towards the39

most salient experiences to be processed, consolidated or incorporated into the internal model of the world.40

However, these salient experiences could also be interpreted as those with the highest prediction error, i.e.41

the most informative experiences for updating internal models and for reinforcement learning. Tasks which42

involve learning the locations of rewards often conflate reward with reward-prediction error (RPE), leading to43

the possibility that apparent replay biases towards reward actually reflect biases towards RPE.44

Here we explore the possibility that it is reward prediction errors, rather than reward or salience, which biases45

replay. We used variations of a reinforcement learning model, Q-learning, to estimate the value of actions46

encoded in the striatum during a reinforcement learning task, and varied the amount and type of replay in the47

model to predict behaviour. In the striatum, representations of reward values differ following learning acquired48

over weeks compared to when acquired over minutes (Wimmer et al. 2018), and, correspondingly, reward-49

responsive cells are replayed preferentially in the ventral striatum (Lansink et al. 2009). We therefore propose50

that replay triggers value updates in the striatum, to enhance striatum-dependent reinforcement learning, and51

moreover that activity encoding events that resulted in high RPE is preferentially replayed.52

Q-learning (Watkins 1989) has been used successfully to model reinforcement learning, particularly in humans53

(O’Doherty et al. 2003, Daw et al. 2005) but also in rodents (Kim et al. 2013, Ito and Doya 2009). Q-learning54

models fit both behavioural outcomes and striatal activity, suggesting that they describe mechanisms of updating55

values in the striatum in response to RPEs which in turn guide behaviour (Day et al. 2014, Morris et al. 2010,56

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 26, 2019. ; https://doi.org/10.1101/716290doi: bioRxiv preprint 

https://doi.org/10.1101/716290
http://creativecommons.org/licenses/by-nc-nd/4.0/


Pagnoni et al. 2002, Roesch et al. 2007). Temporal-difference-based RPEs, i.e. the difference between expected57

reward and actual reward which drives the update of Q-values, resemble quite closely the dopaminergic input58

of ventral tegmental area (VTA) to the striatum (McClure et al. 2003, Roesch et al. 2007, Schultz 2016),59

which mediates synaptic plasticity in the striatum (Calabresi et al. 2007) and may provide a mechanism of60

biological implementation of Q-learning. Dyna-Q (Sutton 2014), a variant of Q-learning which incorporates61

offline temporal-difference updates, has been used to model replay in ways which produce learning qualitatively62

similar to animal reinforcement learning (Johnson and Redish 2005). RPE-biased replay incorporated into63

machine learning algorithms show that it can also be very efficient, learning to play Atari games (Andrychowicz64

et al. 2017) or navigate a simulated environment (Karimpanal and Bouffanais 2017) faster and with more65

success compared to replay without such a bias.66

We trained 6 rats on a stochastic reinforcement learning task which elicited both positive and negative RPE, and67

fitted Q-learning parameters to each rat’s behavioural data. We then included replay events between sessions,68

to simulate the effect of replay during sleep on reinforcement learning. Four replay policies were compared,69

prioritising state-action pairs to be updated according to different biases: random replay, replay proportional to70

expected reward, and two forms of RPE-biased replay. Random replay was included as a control, while reward-71

biased replay reflects the prevailing view of how replay is prioritised. Fitting the model parameters showed that72

the two RPE-biased replay policies increased the model’s predictive accuracy, while random and reward-biased73

replay impaired model performance. This suggests that replay between sessions of a probabilistic reinforcement74

learning task in rats is biased by RPE and not by reward.75
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2 Results76

Animals successfully learned a stochastic reinforcement learning task77

Six rats were trained to forage for stochastic sucrose rewards on a three-armed maze, to assess their reinforce-78

ment learning on a task where reward outcome and reward-prediction error (RPE) were dissociable. Each arm79

was assigned as either "high probability", "mid probability" or "low probability", which determined the pro-80

tocol for reward delivery (fig. 1a). For the first 15 training sessions, the high-probability arm delivered a reward81

on 75% legitimate entries to the arm, the mid-probability arm on 50%, and the low-probability arm on 25%. A82

legitimate entry was one in which a different arm had been entered on the previous trial; entering the same arm83

twice in a row was incorrect and did not result in a reward delivery. For sessions 16-20, the reward probabilities84

for the high- and low-probability arms were amplified: reward was delivered on 87.5% and 12.5% legitimate85

entries respectively. For sessions 21-22 the reward probabilities for the high- and low-probability arms were86

switched, such that the (formerly) high- and low- probability arms delivered reward on 12.5% and 87.5% of87

legitimate entries respectively. This set-up meant that receiving a reward in a low-probability arm would elicit88

a higher RPE than the same reward value in a high-probability arm, so reward outcome and RPE could be89

dissociated.90

91

Over 22 sessions, animals learned to distinguish between the high-, mid- and low-probability arms in their92

frequency of visits to each arm, indicating successful learning of the reward probabilities. Rats performed 45.193

± 2.5 trials per session, eventually showing a significant preference for the high-probability arm and against94

the low-probability arm, evident by session 6 and stable by session 10. The six animals varied in the degree of95

their discrimination between the arms (fig. 1b), but on average they distinguished between all arms on 13 out96

of 22 sessions (fig. 1c; χ2 test, Bonferroni-corrected), visiting the arms which delivered a higher probability of97

reward more often, primarily in later sessions. The differences in arm discrimination between animals may be98

accounted for by the orientation of the maze in the room; for example, animals may have shown a confounding99

preference for the arm which was closest to the door of the recording room, an effect which was overcome by100

rotating the arm probabilities between animals. (For rats H and K, the mid-probability arm was closest to the101

door; for rats I and L, the high-probability arm was closest to the door; and for rats J and M, the low-probability102

arm was closest to the door.)103

To quantify performance on the task, each trial was coded as optimal or suboptimal according to the animal’s104

choice of arm given the arm most recently visited. Because no reward was given for re-entering the same arm105

visited on the previous trial, the optimal action choice following a visit to the mid- or low-probability arm was106

to visit the high-probability arm; the optimal action following the high-probability arm was the mid-probability107

arm. Over sessions, animals increased the proportion of trials on which they behaved optimally, achieving108

performance significantly above chance from session 3 onwards (fig. 1d, 46 trials optimal out of 106, p = 0.02,109

binomial test, Bonferroni-corrected).110

Reward probabilities were changed twice over the course of learning, triggering clear changes in behaviour. In111
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(a) (b)

(c) (d)

Figure 1: A. Illustration of the maze used to train animals. Lick ports located at the end of each arm delivered
reward with either high, medium or low probabilities. B. Frequency of entry to each arm over all sessions,
shown separately for each rat. C. Average frequency of entry to each arm. * indicates arm choices statistically
different from each other (χ2 test). D. Mean proportion of trials on which the optimal arm was chosen, according
to highest probability of reward. Dashed lines represent chance level (33.3%). Error bars represent standard
error of the mean (s.e.m.).

the revaluation learning stage (sessions 16-20), the reward probabilities at each arm became more distinct: the112

high-probability arm delivering an 87.5% probability of reward compared to 75% in the initial learning stage,113

and the low-probability arm delivering a 12.5% probability of reward compared to 25% in the initial learning114

stage. This change offered a higher incentive to avoid the low-probability arm and, correspondingly, preference115

for the high-probability arm over the low-probability arm increased compared to the previous five sessions116

(fig. 1c; repeated-measures ANOVA, F = 8.7, p = 0.006). As a result, the rate of optimal performance was also117

greater in the revaluation stage than the last five sessions of the initial learning stage (fig. 1d; repeated-measures118

ANOVA, F = 15.2, p = 0.001).119

The definition of optimal behaviour was the same in the initial and revaluation learning stages, because the120

arms did not change. However, optimal behaviour required a different behavioural policy in the reversal learn-121

ing stage (sessions 21-22) when the high- and low-probability arms were switched. As expected, optimal122

performance correspondingly dipped when reward probabilities were reversed in sessions 21 to 22 as this new123

behavioural policy was learned. The frequency of optimal arm choices was lower for the reversal learning stage124

than the last two sessions of the revaluation stage (repeated-measures ANOVA post-hoc test, p = 0.17), although125

it did not differ significantly from the last two sessions of the initial learning stage (repeated-measures ANOVA126
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post-hoc test, p > 0.05). These behavioural data demonstrate that reward probabilities successfully influenced127

learning and behaviour in the task, and that animals were capable of showing flexibility in response to chan-128

ging reward. We therefore went on to test whether reinforcement learning algorithms were able to recapitulate129

rat behaviour and whether instantiating between-session ("offline") replay of different task features improved130

model performance.131

Q-learning modelled animal behaviour132

We trained a Q-learning algorithm with no replay to generate probabilities of each action for each trial, based133

on Q-values estimated from the animals’ previous experience (fig. 2). Q-learning is a reinforcement learning134

algorithm in which an agent selects actions in its environment and observes the outcome, recording at each time135

step t its starting state st, selected action at, resulting reward rt, and resulting state st+1. The agent builds up a136

matrix Q of Q-value estimates for every state-action pair:137


Qs1,a1 Qs1,a2 · · · Qs1,aA

Qs2,a1 Qs2,a2 · · · Qs2,aA
...

...
. . .

...

QsS ,a1 QsS ,a2 · · · QsS ,aA

 (1)

corresponding to the future discounted expected reward, i.e. the temporal difference between the current state138

and the reward state. These Q-value estimates are used to guide actions to maximise reward. At each time step139

t, the Q-value for the state-action pair observed is updated by:140

Q(st, at)← (1− α) ·Q(st, at) + α · (rt + γ ·maxQ(st+1, a)) (2)

where α ∈ (0, 1) is a learning rate parameter which determines the degree to which new information overrides141

old information, and γ ∈ (0, 1) is a discount parameter which determines the importance of long-term gains.142

In this task, entries into a chosen arm (and arrival at the goal location at the end of the arm) were modelled143

as actions, while the arm entered on the previous trial, on which reward probabilities were contingent, were144

modelled as states. Each trial therefore gave rise to one state-action transition out of nine possible state-action145

pairs.146

For each trial, a matrix of Q-values for all state-action pairs was updated based on experience and used to147

calculate predicted action probabilities, which were compared to the observed frequencies of state-action pairs148

to produce a vector of errors for the three available actions. A reliability error was calculated from the summed149

square of the error vector, weighted by the prevalence of the state. This produced a measure of how reliably the150

Q-value estimates predicted behaviour (fig. 2; see Materials and Methods).151
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(a)

(b)

Figure 2: Example of model prediction for one trial, t = 100, in which rat H had most recently visited the high-
probability arm (s = high) and chose the mid-probability arm (a = mid). A. The far left table shows the Q-learning
model’s estimate of the Q-values based on rat H’s experience to date. Other tables show the predicted action
probabilities calculated from the Q-values, the ground-truth of observed action frequencies over all visits to this
state, and the mean square error between them. Far right shows how the error for this trial is calculated. B. A
cartoon illustration of the same trial.

152

Observed action frequency correlated well with predicted action probabilities (fig. 3a), indicating a good153

baseline model for reinforcement learning. Predicted action probabilities were binned in 100 percentile-bins154

for each animal, and for each bin the average frequency of these actions occurring was compared to the average155

predicted probability, resulting in a strong correlation (r = 0.92, p = 7.8e−08, Pearson’s correlation). This result156

was consistent across animals (correlations ranging from r = 0.86 to r = 0.96).157

The error between predicted action probability and observed action frequency spanned a large range, which158

was greatest in the earlier training sessions and diminished towards 0 for later training sessions as Q-values159

were learned (fig. 3b; early trials in blue have larger errors).160

161

Reliability errors spanned a different range for each animal (fig. 3c), so all further analysis was performed162

on reliability errors normalised by the mean reliability error for each animal. On this measure, normalised163

reliability errors were similarly highest in early training sessions, when behaviour is least optimal and most164

unpredictable. Following this, reliability errors became consistently low for most sessions (fig. 3d), confirming165

a consistent fit with behaviour which captured the learning process over multiple sessions and changes in reward166

probabilities.167

As described in Materials and Methods, the reliability error was used as the cost function to optimise three168

parameters in the Q-learning algorithm for each animal: a learning rateα, a discount factor γ, and an exploration169

factor ε. The resulting optimised parameter values are shown in table 1. A perturbation analysis was performed170
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(a) (b)

(c)
(d)

(e)

Figure 3: A. Reliability diagram (trials pooled across all animals). Observed frequency indicates how often an
action was chosen by the animal, averaged over similar predicted action probabilities. Colour scale indicates
the average session in which the predicted action probabilities occurred, for each bin; blue data points indicate
predicted actions generally early in learning while yellow data points indicate predicted actions generally late
in learning. Solid line represents regression (r = 0.92, p=7.8e−244); dashed line indicates perfect correlation.
B. Histogram of residuals of the data in A. Colour scale indicates on average what session the residuals within
each bin occurred in. C. Range of reliability errors (calculated from residuals) for each animal. A reliability error
of 0 reflects perfect modelling of action choices. Boxes represent 25th and 75th percentiles, circles represent
median. D. Reliability errors for each trial grouped into training sessions, normalised to the average reliability
error for each animal (shown in table 1). Data points show normalised reliability error for all trials; solid line
represents mean for all animals. Error bars represent s.e.m. E. Change in reliability error, normalised to the
optimised reliability error for each animal, with varying perturbations to the optimised parameter values. The
optimised values for learning rate α, discount factor γ and exploration factor ε were individually perturbed by
1%-25% above and below the optimised value and the Q-learning algorithm was trained on behavioural data
according to the perturbed parameter values 1,000 times to obtain an average.

to verify that the Q-learning results were sufficiently insensitive to perturbations to the optimised parameter171

values. At the optimised values, the average normalised reliability error over all trials was, by definition, 1.172

Perturbing these values by up to 25% in either direction increased the normalised reliability error by less than173

0.05 in most cases (fig. 3e) and less than 0.1 in all cases, indicating that reliability errors were not overly174

sensitive to small changes in parameter values.175
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α γ ε Reliability error
Rat H 0.009470 3.340e-09 0.3451 8.688
Rat I 0.01399 0.2972 0.4035 4.355
Rat J 0.02591 0.5153 0.3173 10.08
Rat K 0.06887 1.000 0.09363 10.66
Rat L 0.6522 1.000 0.3117 18.72
Rat M 0.1345 1.000 0.3137 16.92
Table 1: Optimised parameter values for Q-learning algorithm
trained on each animal’s behavioural data. α is the learning rate,
γ is the discount factor, and ε is the exploration factor.

In summary, the Q-learning algorithm proved able to recapitulate rat behaviour over the course of training and176

adaptation to new task conditions. The model was robust across a range of parameter values and established a177

sound basis on which to quantify the effects of mimicking replay by updating Q values between sessions.178

Adding RPE-biased replay to the Q-learning model improved prediction179

accuracy, whereas reward-biased and random replay both reduced ac-180

curacy181

Against the baseline of no-replay, a variant of the Q-learning algorithm with replay was trained on the same182

data, with a specified number of samples chosen from all the trials experienced so far to be replayed between183

each session. Q-learning parameters were optimised for a fixed (1 ≤ n ≤ 100) number of replay events184

between each session, for each replay policy. All trials experienced by the animal were stored in a memory185

buffer, and for each replay event a state-action pair was chosen according to the replay policy and a sample186

trial from this state-action pair was used to update its Q-value. With a random replay policy, all state-action187

pairs that had been experienced were sampled at random. With a reward-biased replay policy, state-action pairs188

were sampled in proportion to their Q-values, so that state-action pairs at which rewards had been experienced189

most frequently would be replayed most. With an RPE-prioritised replay policy, the state-action pair with the190

highest recent average RPE was sampled. With an RPE-proportional replay policy, state-action pairs were191

sampled in proportion to their recent average RPE. These latter policies offered two variations on preferentially192

updating state-action value(s) which had generated the greatest errors, concentrating efforts on correcting the193

most erroneous expectations of reward.194

Compared to the no-replay Q-learning baseline, replay biased by RPE produced a more reliable model of learn-195

ing, while replay that was random or biased by reward produced a less reliable model (fig. 4a; orange and196

purple compared to blue and green). Both the random and reward-biased replay policies resulted in higher reli-197

ability errors (p=8.8e−11 random, p=1.6e−08 reward-biased, Wilcoxon signed rank test, Bonferroni-corrected),198

even with a small amount of replay. Conversely, both the RPE-biased replay polices resulted in lower reli-199

ability errors (p = 6.6e−12 RPE-prioritised, p = 6.3e−10 RPE-proportional). This was true even when one200

additional sample was replayed between sessions (fig. 4b) and remained true when more samples were re-201

played between sessions (fig. 4c-4e). Replay of information encoded during trials associated with the most202

unexpected outcomes therefore significantly improved learning in the model, whereas replay of rewarded trials203

proved detrimental.204
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(a) (b) (c)

(d) (e)

Figure 4: A. Normalised reliability error with varying numbers of samples replayed between sessions, averaged
over all trials, according to the four replay policies shown. Reliability errors normalised to the average reliability
with no replay, for each animal. Dashed line represents baseline with no replay. B-C. Average reliability
error for each session, normalised to the average reliability error for no-replay for each animal. With 1 sample
replayed between each session (B.) and 20 samples replayed between each session (C.). Error bars represent
s.e.m. D-E. Average normalised reliability error for each session, with varying numbers of samples replayed.
D. RPE-prioritised replay policy. E. RPE-proportional replay policy.

205

The superiority of the two RPE-biased replay policies was not uniform over the whole training period, however,206

and two patterns emerged. First, all replay policies showed improvements over no-replay in early sessions, but207

this effect disappeared in the random and reward-biased policies after roughly the seventh session. This initial208

superiority of all replay policies over no-replay cannot be due to replay itself because it begins in session 1,209

before any replay has taken place in the model; rather, it must be due to the non-replay parameters. Specifically,210

the optimised exploration parameter ε was higher in all replay policies than no-replay, so it may be the case211

that animals tended more towards exploration and relied on Q-values less in early training sessions. The higher212

ε value in the replay policies therefore better modelled behaviour in early sessions, whereas the differences in213

Q-values resulting from different replay policies impacted behaviour only later.214

The second notable pattern is the fluctuations in the reliability errors over training sessions. In the no-replay215

baseline, reliability error increased in sessions 18-20 and in session 22 (t=3.54, p=1.8e.−3, t-test compared216

to reliability error in sessions 15-17 and session 21). This mirrors an increase in optimal behaviour in these217
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sessions during the revaluation stage and reversal stage respectively, suggesting that the model failed to capture218

subtleties in the learning pattern at these points when animals were adapting their behaviour to changes in re-219

ward probabilities. As animals re-evaluated the state-action pairs in sessions 18-20 and adjusted their behaviour220

accordingly, replay by any policy was sufficient to overcome the increase in reliability error seen in the baseline,221

so there was no increase at these sessions (fig. 4c; p=0.37 for random replay, p=0.94 for reward-biased replay,222

p=0.081 for RPE-prioritised replay, p=0.06 for RPE-proportional replay with 20 samples replayed, sessions 18-223

20 compared to sessions 15-17). This may reflect the faster learning enabled by replaying recently experienced224

trials. However, as animals reversed their behaviour in session 22, requiring a substantial update to Q-values225

and a dramatic change in behaviour, increased random replay or reward-biased replay did not improve reliabil-226

ity error. With increased RPE-prioritised or RPE-proportional replay, on the other hand, increasing replay had a227

particularly strong effect on improving reliability error in session 22 (fig. 4d-4e). This raises the possibility that228

RPE-biased replay is especially important for behavioural flexibility of the kind seen in the reversal learning229

stage.230

RPE-biased replay did not improve predictions when trained on shuffled231

data232

Given the indication that replay might play different roles in different learning stages, it is important to control233

for the possibility that parameter values were optimised for the general statistics of rewards and actions in the234

task, rather than truly modelling the learning curve. Otherwise, the apparent superiority of RPE-biased replay235

may result from anomalous irregularities in the learning patterns and not true cognitive processes. Therefore,236

the same algorithms were trained on shuffled behavioural data in which the order of trials was randomly per-237

muted 1,000-fold. This preserved the average frequency of state-action pairs and their associated rewards,238

as well as the lengths of training sessions, but altered the learning curve including revaluation and reversal239

learning.240

Overall, the reliability errors for Q-learning with no replay were lower for shuffled data than real data, because241

shuffled behaviour was necessarily more consistent over time and therefore more predictable. Similarly to real242

data, reliability errors decreased sharply in early training sessions before reaching an asymptotic level (fig. 5),243

because Q-values in early training sessions were distorted by unrepresentative rewards as a result of a small244

sample size of trials experienced. Unlike real data, the approach to asymptotic reliability error was smooth and245

monotonic.246

247

Crucially, compared to the no-replay baseline, no replay policy improved reliability error. All replay policies248

resulted in higher normalised reliability errors than no-replay (p=6.9e−6 random, p=6.9e−6 reward-biased,249

p=1.6e−5 RPE-prioritised, p=3.4e−5). This confirms that the improvement in reliability error in the real data is250

a result of better predictions of the learning process, and not better convergence to general statistics in the task.251
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(a) (b)

Figure 5: A. Normalised reliability error with varying numbers of samples replayed between sessions, trained
on shuffled data in which trial data (state, action and reward) are randomly permuted. Dashed line represents
baseline with no replay. B. Average reliability error for each session of shuffled data, normalised to the average
reliability error for no-replay for each animal, with 15 samples replayed between each session. Error bars
represent s.e.m.

Replay-biased RPE was the best predictor for all state-action pairs252

We next accounted for the skew in training data towards the state-action pairs that were chosen most frequently.253

The transition from the high-probability arm to the mid-probability arm and vice versa (as they were in the254

initial and revaluation learning stages) were the most commonly experienced state-action pairs, representing255

42% of trials overall, and the reliability error was weighted by the frequency of each state such that errors in256

the more common states contributed more to the overall reliability error than errors in the less common states.257

We therefore confirmed that Q-learning with RPE-biased replay learned to correctly predict all actions and not258

just the more-frequently chosen actions to which the cost function was skewed.259

Figure 6 shows the improvement in reliability errors for each replay policy over no-replay baseline, for each260

state-action pair separately. Despite the skew in training data, the RPE-biased replay policies outperformed ran-261

dom and reward-biased replay policies for every state-action pair, although the improvement was not identical262

in each case. Nevertheless, the broad conclusion can be reached that RPE-biased replay policies better predicted263

learning than either no-replay, random replay or reward-biased replay for all state-action pairs.264
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Figure 6: Change in reliability error for all trials on which a given state-action pair was expressed, with 15
samples replayed, relative to no-replay baseline. Intersection of "State = high prob. arm" and "Action = mid
prob. arm" indicates a transition from high-probability arm to mid-probability arm.
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3 Discussion265

We trained rats on a reinforcement learning task designed to dissociate reward outcome (presence or absence266

of reward) from reward prediction error (RPE; an unexpected reward or absence of reward) on each trial. We267

trained variations of a Q-learning reinforcement learning model to predict behaviour on the task, and found that268

Q-learning with replay prioritised by RPE was the best predictor of learning.269

Our first main result was that Q-learning can suitably model rats’ learning of the stochastic reinforcement270

learning task, producing low reliability-errors when trained on rats’ behaviour and predicting the likelihood of271

actions on each trial. This is consistent with other studies showing that Q-learning can predict behaviour in272

a range of tasks in rodents, monkeys and humans (Ito and Doya 2009). Given this result, we then proposed273

that adding replay to the Q-learning model between sessions might better reflect learning and therefore better274

predict behaviour. However, under a policy of replaying state-action pairs randomly, this produced higher275

reliability errors overall, indicating a worse model of the cognitive processes underlying reinforcement learning.276

Similarly, biasing replay by sampling from state-action pairs which had produced the largest recent reward also277

increased reliability errors relative to no-replay.278

In contrast, biasing replay by sampling from state-action pairs which had produced the largest recent RPE de-279

creased reliability errors. From this we conclude that the cognitive processes involved in the learning of this task280

are influenced by offline activity that takes place between sessions. Performance on memory tasks has widely281

been found to improve following a period of sleep (Stickgold 2005; Marshall and Born 2007; Diekelmann and282

Born 2010), associated with replay of activity which encodes recent experiences during hippocampal sharp-283

wave ripples (Ólafsdóttir et al. 2018). We therefore propose that such offline replay underlies the RPE-biased284

offline updating of state-action values which influenced reinforcement learning in this task.285

The suggestion that hippocampal replay might be biased by RPEs differs from the commonly held view that286

replay is biased by reward itself (Ambrose et al. 2016; Atherton et al. 2015; Gruber et al. 2016; Singer and287

Frank 2009). However, the studies on which this conclusion is based generally do not use tasks which explicitly288

dissociate reward from RPE, so these results in the literature are not inconsistent with our suggestion that RPE289

biases replay.290

Our conclusion that RPE-biased replay (but not random or reward-biased replay) improved model predictions291

is strengthened by the fact that this result did not hold when training data was shuffled. When the trial order was292

shuffled, such that there was no correlation between learning and behaviour, all replay policies produced higher293

reliability errors in predicting the animals’ behaviour. This means that the influence of RPE is a feature of the294

learning process and not an epiphenomenon resulting from the general statistics of behaviour. Moreover, the295

result did hold for all state-action pairs, despite the overrepresentation in training data of those most frequently296

experienced. This gives credence to the notion that the Q-learning model with replay biased by RPE is a good297

overall model of state-action values held by the brain.298

Despite the prevalence of the idea that reward biases replay, our alternative theory that RPE biases replay fits299

better with existing research on the role of dopamine. Dopaminergic projections from the ventral tegmental area300

(VTA) to CA1 in the hippocampus have been found to modulate both replay during sleep following exposure to301
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a novel environment, and subsequent memory performance in the same environment (McNamara et al. 2014). It302

is suggested that dopaminergic neuromodulation might tag synapses by upregulating plasticity-related proteins,303

causing long-lasting potentiation which allows the stabilisation of the memory trace during subsequent sleep304

and rest (Frey and Morris 1998; Redondo and Morris 2011). Phasic dopaminergic inputs to the hippocampus305

are triggered not only in response to novelty, but also in the context of reward (Schultz et al. 1997), offering306

a likely mechanism by which reward-related information might influence replay. Indeed, post-task replay has307

been found in reward-related VTA cells (Gomperts et al. 2015; Valdés et al. 2015). However, such phasic308

dopamine activations are typically elicited in response to anticipation of reward and RPEs rather than reward309

itself (D’Ardenne et al. 2008; Dayan and Niv 2008; Montague et al. 1996; Schultz 1998; Schultz et al. 1997).310

These phasic dopamine signals could therefore bias hippocampal replay towards activity associated with RPEs;311

it is less clear how activity associated with reward per se might bias replay.312

Several studies have expressly linked replay to reward, ostensibly in contrast with our results, but often RPE is313

a confounding factor in these which cannot be discounted. In humans, high monetary reward (but not low mon-314

etary reward) is linked to sleep-dependent improvements in associative memory (Igloi et al. 2015; Studte et al.315

2017); in this task RPE was not estimated but would presumably be higher overall in the high-reward than low-316

reward condition, conflating reward-dependent effects with RPE-dependent effects. In rodents, newly-rewarded317

behaviour has been associated with replay more than behaviour which had been rewarded in previous sessions318

(Singer and Frank 2009); here, the authors attributed this replay bias to novelty, but it is also consistent with in-319

creased RPE when new behaviours are rewarded for the first time. Moreover, following extended reinforcement320

of both behaviours, the replay bias for the newly-rewarded behaviour was eliminated. In a third study, results321

were more mixed: following an increase in reward magnitude at one end of a linear track, there was more replay322

associated with the larger-magnitude end than the unchanged-magnitude end, correlated with both reward and323

RPE (Ambrose et al. 2016). However, following an elimination of reward at one end, there was a reduction in324

replay following a reduction in reward despite the increase in RPE. This is more consistent with reward-biased325

than RPE-biased replay, although the authors noted a rebound effect when the eliminated reward was reinstated:326

greater replay was found at the reinstated-reward end than the unchanged-reward end, despite identical reward327

magnitudes. This leaves open the possibility of bias by positive over negative RPEs. A fourth study found more328

replay of large-reward-related activity than small-reward-related activity on a maze task (Michon et al. 2019),329

but because reward was received on every trial analysed, any effects of reward magnitude are conflated with330

positive reward-prediction error.331

Conversely, the specific case for RPE-biased replay is supported by findings that neural sensitivity to RPEs in332

humans predicts the amount of awake replay during a reinforcement learning task, and replay amount correlated333

with subsequent performance in a task requiring behavioural flexibility (Momennejad et al. 2018).334

In addition to human and rodent studies, findings from the literature on machine learning show some con-335

sistency with our results. A number of machine learning studies have found that storing new information in336

memory buffers and sampling from it at regular intervals, similar to hippocampal replay, can speed up learning337

(Lin 1992; Mnih et al. 2013, Mnih et al. 2015), and more so when replay is biased by prediction errors (Cichosz338

1999; Schaul et al. 2016). RPE-biased replay may therefore represent an adaptive focus whereby resources are339

focused on areas of a cognitive model which needs updating.340

We do not claim that this tells the whole story: RPE is almost certainly not the only factor that biases replay341
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and the phenomenon is likely to be much more multifaceted than this model suggests. First, phasic dopamine342

signalling to hippocampus may encode other kinds of prediction errors or aspects of reward to which the VTA is343

sensitive (Keiflin et al. 2019; Sharpe et al. 2019; Takahashi et al. 2017), and bias replay by the same mechanism.344

Reward itself may bias replay, especially if positive RPEs influence replay more than negative RPEs; there is345

also evidence that novelty (Hirase et al. 2001; Kudrimoti et al. 1999), the expectation of reward (Gruber et al.346

2016), frequency of experience (Gupta et al. 2010) and strength of encoding (Schapiro et al. 2018) bias replay347

too. Furthermore, in addition to aiding reinforcement learning, replay has been associated with other memory-348

related functions including planning (Ólafsdóttir et al. 2017; Pfeiffer and Foster 2013), processing of emotional349

memories (Genzel et al. 2015), creative problem-solving (Lewis et al. 2018), and generalising from episodic350

memories to abstractions (Lewis and Durrant 2011), all of which are likely to necessitate some biasing of replay351

distinct from RPEs. In sum, we submit that hippocampal replay is more complex than the model outlined here.352

Our model assumes that a cache of all experience is stored from which to be sampled, which is expensive and353

unrealistic at large scales. This may not be necessary if memory for individual trials is gradually forgotten354

and subsumed into cortical long-term memory, for example over the course of hours over which cell assembly355

activation decays (Giri et al. 2019).356

Finally, this model leaves open some questions. It will be necessary to directly test this theory by recording357

neural data from which replay can be directly observed, comparing replay of reward-associated activity with358

that of RPE-related activity in the VTA or striatum. There is also an open question about possible diverging359

roles of replay during behaviour compared to prolonged rest and sleep. Here we have considered replay between360

sessions, which is likely to take place at least partly during sleep; but replay during wake has also been shown361

to be necessary for learning (Jadhav et al. 2012).362

In summary, we found that a Q-learning-based reinforcement learning model which assumes offline updates363

between sessions is a better predictor of learning behaviour than one which does not assume offline updates.364

Specifically, this is true when updates are prioritised according to experiences that have recently elicited high365

RPEs, and not when they are prioritised according to reward or random recent experiences. This finding offers366

a reinterpretation of how offline activity during rest and sleep might aid reinforcement learning, in terms of367

RPE rather than reward.368
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4 Materials and Methods369

Behavioural task370

All procedures were performed in accordance with the United Kingdom Animals (Scientific Procedures) Act371

1986 and European Union Directive 2010/63/EU and were reviewed by the University of Bristol Animal Wel-372

fare and Ethical Review Board.373

Six adult male Lister hooded rats (weighing 260-330g, Charles River Laboratories, UK) were individually374

housed with environmental enrichment, and food-restricted to no less than 85% of their pre-restriction body375

weight. They were trained during the light part of a 12:12 light/dark cycle to forage on a 3-armed radial376

maze for liquid sucrose rewards in a dimly-lit room. The maze consisted of a raised central platform 25cm in377

diameter, with three arms (60cm x 7cm) protruding from it (fig. 1a). Arms were separated from the central378

platform by inverted-guillotine doors, which raised to block access to the arms, and fell below the maze floor to379

allow access. Turning zones (10 x 10cm) with lick ports were positioned at the end of each arm, at which 20%380

sucrose solution rewards were delivered. Door movements and reward delivery were operated automatically381

according to the animal’s position, tracked using a webcam mounted above the maze, using custom MATLAB382

(The MathWorks) code. Following at least three days of habituation to the recording room and maze-operation383

sounds, each animal performed 22 training sessions, between 5 and 7 days per week, lasting 1 hour each.384

Trials began when a rat entered, or was placed by the experimenter on, the central platform with all doors385

closed. Doors opened following a 5-second delay period. When the animal reached the lick port, reward was386

probabilistically delivered or withheld, and doors to the other two arms were closed; the third door was closed387

when the animal re-entered the central platform to begin a new trial.388

Each arm was assigned as either “high probability”, “mid probability” or “low probability”, which determined389

the protocol for reward delivery. These assignments remained fixed throughout training for each animal, but390

were counter-balanced between animals. For the first 15 training sessions, the high-probability arm delivered391

a reward on 6 out of 8 (75%) legitimate entries to the arm, the mid-probability arm on 4 out of 8 (50%), and392

the low-probability arm on 2 out of 8 (25%). A legitimate entry was one in which a different arm had been393

entered on the previous trial; entering the same arm twice in a row was incorrect and did not result in a reward394

delivery. For sessions 16-20, the reward probabilities for the high- and low-probability arms were amplified:395

reward was delivered on 7 out of 8 (87.5%) and 1 out of 8 (12.5%) legitimate entries respectively. For sessions396

21-22 the reward probabilities for the high- and low-probability arms were switched, such that the (formerly)397

high- and low- probability arms delivered reward on 1 out of 8 (12.5%) and 7 out of 8 (87.5%) of legitimate398

entries respectively.399
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Q-learning400

We trained several variations of a Q-learning algorithm on the behavioural data to predict choices of which401

arm would be entered on each trial. Q-learning is a reinforcement learning algorithm developed for Markov402

decision processes in which an agent selects actions in its environment and observes the outcome, recording at403

each time step t its starting state st, selected action at, resulting reward rt, and resulting state st+1. The agent404

builds up a matrix Q of Q-value estimates for every state-action pair:405


Qs1,a1 Qs1,a2 · · · Qs1,aA

Qs2,a1 Qs2,a2 · · · Qs2,aA
...

...
. . .

...

QsS ,a1 QsS ,a2 · · · QsS ,aA

 (3)

corresponding to the future discounted expected reward, i.e. the temporal difference between the current state406

and the reward state. These Q-value estimates are used to guide actions to maximise reward. At each time step407

t, the Q-value for the state-action pair observed is updated by:408

Q(st, at)← (1− α) ·Q(st, at) + α · (rt + γ ·maxQ(st+1, a)) (4)

where α ∈ (0, 1) is a learning rate parameter which determines the degree to which new information overrides409

old information, and γ ∈ (0, 1) is a discount parameter which determines the importance of long-term gains.410

In this task, entries into a chosen arm (and arrival at the goal location at the end of the arm) were modelled411

as actions, while the arm entered on the previous trial, on which reward probabilities were contingent, were412

modelled as states. Each trial therefore gave rise to one state-action transition out of nine possible state-action413

pairs.414

Q-learning with replay415

We used four variants of Q-learning in which additional "offline" updates are performed between "online"416

trials, based on sequences already experienced, to boost learning. This has the effect of learning from several417

trials per actual trial of experience, and is similar to the Dyna-Q algorithm which has been shown to speed418

up learning compared to Q-learning alone (Sutton 2014) in a manner which may underlie the function of419

hippocampal replay (Johnson and Redish 2005). Generally, sequences are selected randomly from a memory420

buffer of recently-acquired experiences, without bias towards any trial or type of trial. Given the observed bias421

reported in the literature towards salient experiences, such as those rewarded or aversive, we modified Dyna-Q422

to perform updates only between sessions and to reflect hypothesised biases in four different ways.423
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Parameter-fitting424

Parameter-fitting for Q-learning425

First, a Q-learning algorithm (without replay) was trained, to obtain a baseline score against which various426

replay policies could be compared. Q-values were stored for each state-action pair on the task, and updated427

according to each animal’s experience. A state st was defined as the arm visited on the previous trial t− 1, and428

an action at was defined as the arm chosen on the current trial t. Following each trial of an animal’s training,429

the Q-value Q(st, at) was updated according to the reward received, r ∈ {0, 1} by equation 4, and Q-values430

were transformed into a forecast probability of choosing each arm on the subsequent trial.431

The learning rate α, discount factor γ, and exploration factor ε were free parameters that were tuned to each432

rat, using the following optimisation procedure. Here we used a reliability score (Murphy and Murphy 1973),433

generated based on the forecast probabilities of all trials, to quantify the consistency of the forecast probabilities434

with the animals’ behaviour. The mean observed frequency was calculated for each state-action pair, i.e. the435

proportion of trials on which a given action was chosen in a given state, and the reliability score Rt for a given436

trial t was calculated according to:437

Rt = nst ·
na∑
a=1

(pa − ost,a)2 (5)

where st is the animal’s state on trial t, nst is the number of trials on which the animal was in state st, na is the438

number of possible actions (3) pa is the forecast probability for entering arm a, and os,a is the mean observed439

frequency of state-action pair s, a.440

Parameter optimisation was performed using the reliability error as the cost function. Because the parameter441

state-space was vulnerable to local minima, and also because it was highly stochastic under replay policies (see442

description below), a two-step approach was taken to optimise parameters. In the first step, simulated annealing443

was run 32 times for a maximum of 1000 iterations (or until the reliability error could not be improved by more444

than 1e−6), using the MATLAB function simulannealbnd. Reliability error was averaged over 1,000 runs445

when computing the cost function, to minimise stochasticity. This function performs a probabilistic variation of446

gradient descent by taking increasingly smaller steps in random directions, to approximate a global minimum447

without becoming stuck in local minima. The resulting 32 rough estimates of the optimal parameter values448

were used as the initial values for the second step: a simple quasi-Newton method using gradient descent,449

implemented by the MATLAB optimisation function fmincon, for a further maximum 1000 iterations. Of the450

32 final sets of parameter values, the one which produced the smallest reliability error was used for analysis.451

All analyses were performed on the average reliability error over 1,000 runs using the given parameter values.452
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Parameter-fitting for Q-learning with replay453

Against the baseline of no-replay, the same optimisation procedure was performed with increasing amounts of454

replay according to four replay policies. Following each session, a specified number of samples were chosen455

from all the trials experienced so far. How the samples were selected depended on the replay policy (detailed456

below); a probability P (s, a) was assigned to each state-action pair to determine which pair to sample from.457

From the chosen state-action pair, a sample trial was chosen according to the probability P (i) in which a458

recency parameter ensured that more recent trials were exponentially more likely to be chosen. Q-values were459

then updated according to the state, action and reward of the sampled trial, in the same manner as "online"460

Q-value updates described in equation 4.461

Each replay policy required the same three parameters to be optimised as in Q-learning without replay, plus462

additional parameters for recency and/or RPE-weighting. Table 2 shows the number of free parameters for each463

replay policy.464

Replay policy Number of parameters
No replay 3
Random replay 4
Reward-biased replay 4
RPE-prioritised replay 5
RPE-proportional replay 5

Table 2

These were optimised according to the same procedure as for Q-learning with no replay, described above,465

for n = {1, 3, 5, 10, 15, 20, 30, 40, 50, 75, 100} replay events between each session, resulting in 11 sets of466

parameter values for each replay policy and each animal. Comparing this to plausible quantities of replay467

events in animals is not trivial, but studies in which discrete replay events are enumerated report 100-200 bursts468

of hippocampal activity that can be statistically related to prior experience, over the first one or two hours after469

experience (Ólafsdóttir et al. 2016; Michon et al. 2019). Separately, reactivation of cell pairs has been found to470

decay to baseline well within that time period following exposure to familiar environments (Giri et al. 2019),471

so the first one to two hours is likely to be when most replay of recent experience in a familiar environment472

occurs.473

Random replay474

Random replay, biased by nothing but the recency of an action, was included as a control. For each replay475

event, a state-action pair was chosen at random out of all state-action pairs experienced so far:476

P (s, a) =
1

nsa
(6)

where nsa is the number of state-action pairs experienced (up to 9). The subset of trials experienced, i ∈ (1, I),477

which represented this state-action pair were ordered chronologically, and the probability P (i) of a trial i being478

replayed was determined according to a recency parameter ϕ:479
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P (i) =
iϕ∑I
i=1 pi

(7)

Reward-biased replay480

Reward-biased replay represents the predominant interpretation of how reward influences replay (Atherton et al.481

2015, Carr et al. 2011). For each replay event, a state-action pair s, a was chosen probabilistically in proportion482

to its Q-value:483

P (s, a) =
Q(s, a)∑ns

s=1

∑na
a=1Q(s, a)

(8)

The subset of trials experienced which represented the chosen state-action pair were ordered chronologically,484

and determined according to equation 7.485

RPE-prioritised replay486

RPE-prioritised replay represents the policy of replaying trials associated with the most surprising outcomes,487

i.e. where the difference between expectation (Q-values) and experience (reward) was greatest. For each trial488

t, RPE was calculated as the difference between actual reward and expected reward:489

rpet = r + γ ·Q(st+1, at+1)−Q(st, at) (9)

For every trial i ∈ (1, I) which was an example of a given state-action pair, its absolute value was weighted,490

determined by a parameter ϕ raised to the power of its recency i:491

wrpei =| rpei | ·ϕi (10)

The weighted RPEs, wpre, were then averaged to produce an overall weighted-average RPE, RPEs,a, for each492

state-action pair s, a, which was more heavily influenced by recent trials:493

RPEs,a =

∑I
i=1 wrpei
I

(11)

The state-action pair with the highest RPE was selected, and the subset of trials experienced which represented494

the chosen pair were ordered chronologically, and determined according to equation 7. Once replayed, the rpet495

for the trial sampled was updated to reflect the RPE resulting from the replay event.496

RPE-proportional replay497
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RPE-proportional replay is a variant of RPE-prioritised replay, in which state-action pairs are chosen in propor-498

tion to their weighted-average-RPE instead of choosing the pair with the highest weighted-average-RPE. The499

RPE was calculated according to eq. 11 and a state-action pair to be sampled from was chosen probabilistically500

according to:501

ps,a =
RPEs,a∑

RPEs,a
(12)

The subset of trials experienced which represented the chosen state-action pair were ordered chronologically,502

and determined according to equation 7. Once replayed, the rpet for the trial sampled was updated to reflect503

the RPE resulting from the replay event.504

Shuffling procedure505

As an additional control, the parameters were also optimised for shuffled data, in which trial order was randomly506

permuted 1,000-fold. This preserved the large-scale information in the training data, such as the mean observed507

frequency and average rewards of state-action pairs and the number of trials in each session between replays,508

but disrupted the specific structure of how this information was acquired over time.509

Code Availability510

All data and code used in this study are available at https://github.com/eroscow/QlearningReplay.511
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680âĂŞ683558

Frey, U. & Morris, R. G. (1998). Synaptic tagging: implications for late maintenance of hippocampal559

long-term potentiation. Trends Neurosci. 21(5), 181–188. doi:10.1016/S0166-2236(97)01189-2560

Genzel, L., Spoormaker, V., Konrad, B. & Dresler, M. (2015). The role of rapid eye movement sleep561

for amygdala-related memory processing. Neurobiol. Learn. Mem. 122, 110–121. doi:10.1016/562

J.NLM.2015.01.008563

Girardeau, G., Benchenane, K., Wiener, S. I., Buzsáki, G. & Zugaro, M. B. (2009). Selective sup-564

pression of hippocampal ripples impairs spatial memory. Nat. Neurosci. 12(10), 1222–1223.565

doi:10.1038/nn.2384566

Girardeau, G., Inema, I. & Buzsáki, G. (2017). Reactivations of emotional memory in the hippocam-567

pus–amygdala system during sleep. Nat. Neurosci. 20(11), 1634–1642. doi:10.1038/nn.4637568

Giri, B., Miyawaki, H., Mizuseki, K., Cheng, S. & Diba, K. (2019). Hippocampal Reactivation Ex-569

tends for Several Hours Following Novel Experience. J. Neurosci. 39(5), 866–875. doi:10.1523/570

JNEUROSCI.1950-18.2018571

Gomperts, S. N., Kloosterman, F., Wilson, M. A., Cardinal, R., Parkinson, J., Hall, J., . . . Sejnowski, T.572

(2015). VTA neurons coordinate with the hippocampal reactivation of spatial experience. Elife,573

4, 321–352. doi:10.7554/eLife.05360574

Gruber, M. J., Ritchey, M., Wang, S.-F., Doss, M. K. & Ranganath, C. (2016). Post-learning Hippo-575

campal Dynamics Promote Preferential Retention of Rewarding Events. Neuron, 89(5), 1110–576

1120. doi:10.1016/j.neuron.2016.01.017577

Gupta, A. S., van der Meer, M. A., Touretzky, D. S. & Redish, A. D. (2010). Hippocampal Replay Is Not578

a Simple Function of Experience. Neuron, 65(5), 695–705. doi:10.1016/J.NEURON.2010.01.034579

Hirase, H., Leinekugel, X., Czurkó, A., Csicsvari, J. & Buzsáki, G. (2001). Firing rates of hippocam-580

pal neurons are preserved during subsequent sleep episodes and modified by novel awake581

experience. Proc. Natl. Acad. Sci. U. S. A. 98(16), 9386–90. doi:10.1073/pnas.161274398582

Igloi, K., Gaggioni, G., Sterpenich, V. & Schwartz, S. (2015). A nap to recap or how reward regulates583

hippocampal-prefrontal memory networks during daytime sleep in humans. doi:10.7554/eLife.584

07903.001585

Ito, M. & Doya, K. (2009). Validation of Decision-Making Models and Analysis of Decision Variables586

in the Rat Basal Ganglia. J. Neurosci. 29(31), 9861–9874. doi:10.1523/jneurosci.6157-08.2009587

Jadhav, S. P., Kemere, C., German, P. W. & Frank, L. M. (2012). Awake Hippocampal Sharp-Wave588

Ripples Support Spatial Memory. Science (80-. ). 336(6087), 1454–1458. doi:10.1126/SCIENCE.589

1217230590

Johnson, A. & Redish, A. D. (2005). Hippocampal replay contributes to within session learning in a591

temporal difference reinforcement learning model. Neural Networks, 18(9), 1163–1171. doi:10.592

1016/J.NEUNET.2005.08.009593

Karimpanal, T. G. & Bouffanais, R. (2017). Experience Replay Using Transition Sequences. Front.594

Neurorobot. 12, 32. doi:10.3389/fnbot.2018.00032. arXiv: 1705.10834595

25

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 26, 2019. ; https://doi.org/10.1101/716290doi: bioRxiv preprint 

https://doi.org/10.1101/716290
http://creativecommons.org/licenses/by-nc-nd/4.0/


Keiflin, R., Pribut, H. J., Shah, N. B. & Janak, P. H. (2019). Ventral Tegmental Dopamine Neurons596

Participate in Reward Identity Predictions. Curr. Biol. 29(1), 93–103.e3. doi:10.1016/J.CUB.2018.597

11.050598

Kim, H., Lee, D. & Jung, M. W. (2013). Signals for Previous Goal Choice Persist in the Dorsomedial,599

but Not Dorsolateral Striatum of Rats. J. Neurosci. 33(1), 52–63. doi:10.1523/jneurosci .2422-600

12.2013601

Kudrimoti, H. S., Barnes, C. A. & McNaughton, B. L. (1999). Reactivation of hippocampal cell assem-602

blies: effects of behavioral state, experience, and EEG dynamics. J. Neurosci. 19(10), 4090–603

101. doi:10.1523/JNEUROSCI.19-10-04090.1999604

Lansink, C. S., Goltstein, P. M., Lankelma, J. V., McNaughton, B. L. & Pennartz, C. M. A. (2009).605

Hippocampus Leads Ventral Striatum in Replay of Place-Reward Information. PLoS Biol. 7 (8),606

e1000173. doi:10.1371/journal.pbio.1000173607

Lewis, P. A. & Durrant, S. J. (2011). Overlapping memory replay during sleep builds cognitive schemata.608

Trends Cogn. Sci. 15(8), 343–351. doi:10.1016/j.tics.2011.06.004609

Lewis, P. A., Knoblich, G. & Poe, G. (2018). How Memory Replay in Sleep Boosts Creative Problem-610

Solving. Trends Cogn. Sci. 22(6), 491–503. doi:10.1016/J.TICS.2018.03.009611

Lin, L.-J. (1992). Self-improving reactive agents based on reinforcement learning, planning and teach-612

ing. Mach. Learn. 8(3-4), 293–321. doi:10.1007/BF00992699613

Marshall, L. & Born, J. (2007). The contribution of sleep to hippocampus-dependent memory consol-614

idation. Trends Cogn. Sci. 11(10), 442–450. doi:10.1016/J.TICS.2007.09.001615

McClure, S. M., Berns, G. S. & Montague, P. (2003). Temporal Prediction Errors in a Passive Learning616

Task Activate Human Striatum. Neuron, 38(2), 339–346. doi:10.1016/S0896-6273(03)00154-5617

McNamara, C. G., Tejero-Cantero, Á., Trouche, S., Campo-Urriza, N. & Dupret, D. (2014). Dopaminer-618

gic neurons promote hippocampal reactivation and spatial memory persistence. Nat. Neurosci.619

17 (12), 1658–1660. doi:10.1038/nn.3843620

Michon, F., Sun, J.-J., Kim, C. Y., Ciliberti, D. & Kloosterman, F. (2019). Post-learning Hippocampal621

Replay Selectively Reinforces Spatial Memory for Highly Rewarded Locations. Curr. Biol. 29(9),622

1436–1444.e5. doi:10.1016/J.CUB.2019.03.048623

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D. & Riedmiller, M. (2013).624

Playing Atari with Deep Reinforcement Learning. arXiv: 1312.5602. Retrieved from http://arxiv.625

org/abs/1312.5602626

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., . . . Hassabis, D.627

(2015). Human-level control through deep reinforcement learning. doi:10.1038/nature14236628

Momennejad, I., Otto, R., Daw, N. D. & Norman, K. A. (2018). Offline replay supports planning in629

human reinforcement learning. doi:10.7554/eLife.32548.001630

Montague, P. R., Dayan, P. & Sejnowski, T. J. (1996). A framework for mesencephalic dopamine631

systems based on predictive Hebbian learning. J. Neurosci. 16(5), 1936–47. doi:10 . 1523 /632

JNEUROSCI.16-05-01936.1996633

Morris, G., Schmidt, R. & Bergman, H. (2010). Striatal action-learning based on dopamine concen-634

tration. Exp. Brain Res. 200(3-4), 307–317. doi:10.1007/s00221-009-2060-6635

Murphy, A. H. & Murphy, A. H. (1973). A New Vector Partition of the Probability Score. J. Appl.636

Meteorol. 12(4), 595–600. doi:10.1175/1520-0450(1973)012<0595:ANVPOT>2.0.CO;2637

26

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 26, 2019. ; https://doi.org/10.1101/716290doi: bioRxiv preprint 

https://doi.org/10.1101/716290
http://creativecommons.org/licenses/by-nc-nd/4.0/


O’Doherty, J. P., Dayan, P., Friston, K., Critchley, H. & Dolan, R. J. (2003). Temporal Difference Models638

and Reward-Related Learning in the Human Brain. Neuron, 38(2), 329–337. doi:10.1016/S0896-639

6273(03)00169-7640

Ólafsdóttir, H. F., Bush, D. & Barry, C. (2018). The Role of Hippocampal Replay in Memory and641

Planning. Curr. Biol. 28(1), R37–R50. doi:10.1016/j.cub.2017.10.073642

Ólafsdóttir, H. F., Carpenter, F. & Barry, C. (2016). Coordinated grid and place cell replay during rest.643

Nat. Neurosci. 19(6), 792–794. doi:10.1038/nn.4291644

Ólafsdóttir, H. F., Carpenter, F. & Barry, C. (2017). Task Demands Predict a Dynamic Switch in the645

Content of Awake Hippocampal Replay. Neuron, 96(4), 925–935.e6. doi:10.1016/J.NEURON.646

2017.09.035647

Pagnoni, G., Zink, C. F., Montague, P. R. & Berns, G. S. (2002). Activity in human ventral striatum648

locked to errors of reward prediction. Nat. Neurosci. 5(2), 97–98. doi:10.1038/nn802649

Pfeiffer, B. E. & Foster, D. J. (2013). Hippocampal place-cell sequences depict future paths to re-650

membered goals. Nature, 497 (7447), 74–9. doi:10.1038/nature12112651

Rasch, B., Büchel, C., Gais, S. & Born, J. (2007). Odor cues during slow-wave sleep prompt declar-652

ative memory consolidation. Science (80-. ). Retrieved from http://science.sciencemag.org/content/653

315/5817/1426.short654

Redondo, R. L. & Morris, R. G. M. (2011). Making memories last: the synaptic tagging and capture655

hypothesis. Nat. Rev. Neurosci. 12(1), 17–30. doi:10.1038/nrn2963656

Roesch, M. R., Calu, D. J. & Schoenbaum, G. (2007). Dopamine neurons encode the better option in657

rats deciding between differently delayed or sized rewards. Nat. Neurosci. 10(12), 1615–1624.658

doi:10.1038/nn2013659

Rudoy, J., Voss, J., Westerberg, C. & Paller, K. (2009). Strengthening individual memories by react-660

ivating them during sleep. Science (80-. ). Retrieved from http://science.sciencemag.org/content/661

326/5956/1079.short662

Schapiro, A. C., McDevitt, E. A., Rogers, T. T., Mednick, S. C. & Norman, K. A. (2018). Human663

hippocampal replay during rest prioritizes weakly learned information and predicts memory664

performance. Nat. Commun. 9(1), 3920. doi:10.1038/s41467-018-06213-1665

Schaul, T., Quan, J., Antonoglou, I., Silver, D. & Deepmind, G. (2016). Prioritized Experience Replay.666

arXiv: 1511.05952v4. Retrieved from https://arxiv.org/pdf/1511.05952.pdf667

Schultz, W., Dayan, P. & Montague, P. R. (1997). A neural substrate of prediction and reward. Science,668

275(5306), 1593–9. doi:10.1126/SCIENCE.275.5306.1593669

Schultz, W. (1998). Predictive Reward Signal of Dopamine Neurons. J. Neurophysiol. 80(1), 1–27.670

doi:10.1152/jn.1998.80.1.1671

Schultz, W. (2016). Dopamine reward prediction error coding. Dialogues Clin. Neurosci. 18(1), 23–672

32. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/27069377%20http://www.pubmedcentral.673

nih.gov/articlerender.fcgi?artid=PMC4826767674

Sharpe, M. J., Batchelor, H. M., Mueller, L. E., Chang, C. Y., Maes, E. J., Niv, Y. & Schoenbaum, G.675

(2019). Dopamine transients delivered in learning contexts do not act as model-free prediction676

errors. bioRxiv, 574541. doi:10.1101/574541677

Singer, A. C. & Frank, L. M. (2009). Rewarded Outcomes Enhance Reactivation of Experience in the678

Hippocampus. Neuron, 64(6), 910–921. doi:10.1016/j.neuron.2009.11.016679

Stickgold, R. (2005). Sleep-dependent memory consolidation. Nature, 437 (7063), 1272–1278. doi:10.680

1038/nature04286681

27

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 26, 2019. ; https://doi.org/10.1101/716290doi: bioRxiv preprint 

https://doi.org/10.1101/716290
http://creativecommons.org/licenses/by-nc-nd/4.0/


Studte, S., Bridger, E. & Mecklinger, A. (2017). Sleep spindles during a nap correlate with post sleep682

memory performance for highly rewarded word-pairs. Brain Lang. 167, 28–35. doi:10.1016/J.683

BANDL.2016.03.003684

Sutton, R. S. (2014). Integrated Architectures for Learning, Planning, and Reacting Based on Approx-685

imating Dynamic Programming. Mach. Learn. Proc. 1990, 216–224. doi:10.1016/b978-1-55860-686

141-3.50030-4687

Takahashi, Y. K., Batchelor, H. M., Liu, B., Khanna, A., Morales, M. & Schoenbaum, G. (2017).688

Dopamine Neurons Respond to Errors in the Prediction of Sensory Features of Expected Re-689

wards Article Dopamine Neurons Respond to Errors in the Prediction of Sensory Features of690

Expected Rewards. Neuron, 95. doi:10.1016/j.neuron.2017.08.025691

Valdés, J. L., McNaughton, B. L. & Fellous, J.-M. (2015). Offline reactivation of experience-dependent692

neuronal firing patterns in the rat ventral tegmental area. J. Neurophysiol. 114(2), 1183–95.693

doi:10.1152/jn.00758.2014694

Watkins, C. J. (1989). Learning form delayed rewards. Ph. D. thesis, King’s Coll. Univ. Cambridge.695

Retrieved from https://ci.nii.ac.jp/naid/10007782517/696

Wimmer, G. E., Li, J. K., Gorgolewski, K. J. & Poldrack, R. A. (2018). Reward Learning over Weeks697

Versus Minutes Increases the Neural Representation of Value in the Human Brain. J. Neurosci.698

38(35), 7649–7666. doi:10.1523/jneurosci.0075-18.2018699

Wu, C.-T., Haggerty, D., Kemere, C. & Ji, D. (2017). Hippocampal awake replay in fear memory700

retrieval. Nat. Neurosci. 20(4), 571–580. doi:10.1038/nn.4507701

Yu, J. Y., Kay, K., Liu, D. F., Grossrubatscher, I., Loback, A., Sosa, M., . . . Frank, L. M. (2017). Dis-702

tinct hippocampal-cortical memory representations for experiences associated with movement703

versus immobility. Elife, 6. doi:10.7554/eLife.27621704

705

Acknowledgements: We are grateful to Rui Ponte Costa and Mark Humphries for useful discussions and com-706

ments, and to Aleksander Domanski and Andrew New for assistance with experimental set-up. This research707

was funded by a Wellcome Trust PhD scholarship.708

Author Contributions: E.L.R., M.W.J. and N.F.L. conceived and designed the study. E.L.R. carried out the709

experiments and analysed the data. E.L.R. performed the computational modelling under the guidance of N.F.L.710

E.L.R. and N.F.L. prepared the paper with critical revision from M.W.J.711

Competing interests: The authors declare no competing interests.712

28

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 26, 2019. ; https://doi.org/10.1101/716290doi: bioRxiv preprint 

https://doi.org/10.1101/716290
http://creativecommons.org/licenses/by-nc-nd/4.0/

