
 

Title: ​Framework for determining accuracy of RNA sequencing data for gene 

expression profiling of single samples 

 

Authors: ​Holly C. Beale​1,2​, Jacquelyn M. Roger​3​, Matthew A. Cattle​3​, Liam T. McKay​3​, 

Katrina Learned​2​, A. Geoffrey Lyle ​1,2​, Ellen T. Kephart ​2​, Rob Currie​2​, Du Linh Lam​2​, 

Lauren Sanders​2,3​, Jacob Pfeil ​2,3​, John Vivian​2,3​, Isabel Bjork ​2,†​, Sofie R. Salama ​2,3,4,†​, 

David Haussler​2,3,4,†​, Olena M. Vaske ​1,2,† 

 

Institutions: 

1 Department of Molecular, Cell and Developmental Biology, UC Santa Cruz, Santa 

Cruz, CA, USA 

2 Genomics Institute, UC Santa Cruz, Santa Cruz, CA, USA 

3 Department of Biomolecular Engineering, School of Engineering, UC Santa Cruz, 

Santa Cruz, CA, USA  

4 Howard Hughes Medical Institute 

† These senior authors contributed equally 

 

Corresponding authors: 

Holly C Beale (​hcbeale@ucsc.edu​) 

Olena M Vaske ( ​olena@ucsc.edu​) 

1 
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 30, 2019. ; https://doi.org/10.1101/716829doi: bioRxiv preprint 

mailto:hcbeale@ucsc.edu
mailto:olena@ucsc.edu
https://doi.org/10.1101/716829
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

  

Abstract 

 

Background 

 

The clinical value of identifying aberrant gene expression in tumors is becoming 

increasingly evident. In order for multi-gene expression analysis to achieve wider 

adoption and eventually be developed as a Clinical Laboratory Improvement 

Amendments (CLIA)-approved test, the input sample requirements, sensitivity, 

specificity and reference ranges must be quantified. 

 

Methods 

 

We analyzed paired-end Illumina RNA sequencing (RNA-Seq) data from 1088 tumor 

samples from 29 projects. We categorized reads based on where and how well they 

map to the genome, as well as their PCR duplicate status. We subsampled 5 deeply 

sequenced samples, identified exceptionally highly expressed genes and samples with 

similar gene expression profiles.  

 

Results 
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We addressed variability in RNA-Seq dataset composition by defining reference ranges 

for four types of reads found in sequencing data: unmapped (0-13%); mapped duplicate 

(2-66%); mapped non exonic (0-26%) and mapped, exonic, non-duplicate (MEND, 

27-76%). With 20 million MEND reads, we detected over-expressed genes (“up-outlier” 

genes) with a median sensitivity of 96.1% and specificity of 99.8%; sample similarity 

had 96.6% sensitivity and 100.0% specificity.  

 

Conclusions 

 

This strategy for measuring RNA-Seq data content and identifying thresholds could be 

applied to a clinical test of a single sample, specifying minimum inputs and defining the 

sensitivity and specificity. We estimate that a sample sequenced to the depth of 70 

million total reads will typically have sufficient data for accurate gene expression 

analysis. 

 

 

Introduction 

 

The role of gene expression profiling in diagnosis, prognosis and treatment selection is 

rapidly expanding (1,2). Diseases with few clinically relevant mutational profiles, like 

most pediatric cancers, have the potential to particularly benefit from this expansion (3). 
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The expression of protein coding genes can be measured across the whole 

transcriptome by sequencing messenger RNA (RNA-Seq). Relative measurements 

generated by this method have been shown by the FDA to be accurate and 

reproducible across platforms and sites (4).  

 

However, to gain widespread adoption in the clinic and obtain CLIA approval, the 

parameters required for an accurate and reproducible result of an RNA-Seq experiment 

must be defined. The accuracy of RNA-Seq measurements depends on the depth of 

sequencing, measured in reads (5,6). Typically, tens of millions of paired-end reads are 

generated in a single RNA-Seq experiment. Each read is computationally assigned to 

its transcript of origin, and the expression level of that transcript is calculated based on 

the number of corresponding reads.  

 

If too few reads are generated, the resulting quantifications may be inaccurate due to 

undersampling the transcriptome. However, even a deeply sequenced sample can be 

inaccurate. For instance, reads that cannot be mapped to a transcript do not contribute 

to its quantification; nor do reads mapped to non-exonic parts of the genome. 

Additionally, reads with identical sequences (duplicates) can result from technical 

artifacts or real biological abundance of the transcript. Consequently, to accurately 

measure gene expression, not only must the number of reads be sufficient, but the 

counted reads must contribute to the quantification and represent the biology of the 

original sample.  
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Previous studies of sufficient sequencing depth have measured input in total or mapped 

reads and have focused on average performance across many genes or sets of 

samples. ​ Here we show that an alternative to counting the total number of reads is 

required for predicting accuracy in RNA-Seq experiments. We describe a method for 

measuring mapped, exonic, non-duplicate (MEND) reads, and we identify relevant 

MEND thresholds for two precision medicine assays, gene expression outlier and 

molecular similarity analyses. We also use our analysis to define the number of total 

reads in a sequencing project required to achieve sufficient MEND reads. 

 

 

Methods 

 

Tumor RNA-Seq data was obtained as previously described (2). All analyzed data was 

generated with Illumina sequencers from paired end libraries generated with polyA 

selection.  

 

Quantifying gene expression in RNA-Seq data 

 

RNA-Seq data is processed using the RNA-Seq CGL pipeline (7). Specifically, adapters 

are removed with CutAdapt v1.9 (8). FastQC v0.11.5 is used to obtain quality metrics on 
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each FASTQ input file (9). Reads are then aligned by STAR v 2.4.2a using indices 

generated from the human reference genome GRCh38 and the human gene models 

Gencode 23 (10). RSEM 1.2.25 is used to quantify gene expression (11). 

 

Subsampling RNA-Seq fastq data 

 

Subset generation is performed using the seqtk 1.3-r106 sample command 

(https://github.com/lh3/seqtk) using the FASTQ-formatted sequences from the top level 

(parent) samples as input. Random seeds are set to support reproducibility 

(Supplemental Table 2). 

 

MEND pipeline 

 

The genome-aligned reads generated by STAR in the RNA-Seq CGL pipeline are 

sorted by name using sambamba v0.6.1 (12), piped to Samblaster 0.1.22 for duplicate 

marking (13) and then sorted by coordinate by sambamba. The tool read_distribution.py 

from RSeQC v2.7.10 identifies exonic reads and quantifies them as tags (14). The 

pipeline, which combines these tools with a scripted calculation described below, is 

freely available at ​https://github.com/UCSC-Treehouse/mend_qc​. 

 

 

MEND analysis 
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Here and throughout the work the number of reads is reported in pairs. One million 

reads consists of two million sequences, one from each end of a million nucleotide 

fragments.  

 

We gather 5 statistics from the RNA-Seq and MEND pipelines. The total number of 

reads is obtained from the FastQC output variable "total sequences." The counts of 

uniquely mapped reads and multiply mapped reads are extracted from the 

STAR-generated log ("Log.final.out ") where they are reported as "Uniquely mapped 

reads number" and "Number of reads mapped to multiple loci" respectively. These 

numbers are added to determine the number of mapped reads. The number of 

non-duplicate reads is obtained from the output of RSeQC's read_distribution tool where 

it is reported as "Total Reads" (the tool ignores reads that have been marked as 

duplicates). The number of mapped, exonic, non duplicate (MEND) reads are also 

derived from the output of RSeQC's read_distribution tool. We 1) calculate the number 

of reads per tag (from the top table of the read_distribution.py output, "Total 

Reads"/"Total Tags"); 2) calculate the number of exonic tags (from the bottom table, the 

sum of the Tag_count column for the rows "CDS_Exons," "5'UTR_Exons" and 

"3'UTR_Exons"). 3) multiply and halve the two previously calculated numbers: "number 

of exonic tags" * "number of reads per tag" /2. This calculation is performed by the 

authors' script parseReadDist.R (https://github.com/UCSC-Treehouse/mend_qc).  
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From these pipeline milestones, the read type composition of an RNA-Seq sample is 

inferred. The number of "Not mapped" reads is the difference between FastQC's total 

sequences and mapped reads. The number of duplicate reads is the difference between 

mapped reads and mapped, non-duplicate (MND) reads. The number of non-exonic 

reads is the difference between the MND and MEND read counts. MEND reads are 

counted as described above. Together, the four types of reads (unmapped, duplicates, 

non exonic and MEND) account for the total sequencing depth. As a further QC 

measure, the number of multi-mapped reads is divided by the sum of the mapped reads 

to determine the fraction of mapped reads that are multi-mapped. 

 

Outlier genes 

 

To detect gene expression outliers in an index sample, the expression in the sample is 

compared to expression in a cohort for each gene independently. Here the cohort was 

the Treehouse public compendium v9 

( ​https://treehousegenomics.soe.ucsc.edu/explore-our-data/​ & 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE129326​), composed of 11,454 

Illumina polyA RNA-Seq samples that were processed with the RNA-Seq CGL pipeline. 

For each gene, the cohort's outlier threshold is the third quartile + (1.5 * interquartile 

range) (2) of expression of that gene in all samples the cohort. If a gene in the index 

sample is expressed above the threshold, and if the expression is also among the 5% 

most of expressed genes within the sample, the gene is considered an over-expression 
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outlier in the index sample. 58,580 genes are measured; 2920 genes are among the 5% 

most of expressed genes any given sample. 

 

Correlated samples 

 

To identify samples correlated to an index sample, the Spearman correlation of the 

expression of genes in the index sample and each of the 11,454 samples in the 

compendium is calculated. Only genes expressed in more than 20% of all samples and 

among the 80% most variable subset of the remaining genes are used in the 

calculation. A correlated sample is defined as any sample with 1) the same diagnosis 

and 2) a correlation above a background correlation level (estimated as the 95th 

percentile of all correlations in the compendium, here 0.875). 

 

Additional computation 

 

The RNA-Seq CGL and MEND pipelines were run on OpenStack 

( ​https://www.openstack.org/ ​) instances with 64GB of memory and 12 VCPUs. Analysis 

was performed and figures were generated using the software program R versions 3.4.4 

and 3.5.2 (15), the RStudio IDE (RStudio Team, 2016), and the tidyverse, knitr, cowplot, 

gridGraphics, viridis and janitor packages (16–21). The code necessary to reproduce 

the analysis reported in this paper is in 

https://github.com/UCSC-Treehouse/mend_qc_publication​. 
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Results 

 

Individual gene measurements 

 

To determine the required depth of sequence for a single RNA-Seq tumor sample, we 

first measured the effect of sequencing depth on gene expression. We measured gene 

expression in five samples with at least 80 million paired end reads (Table 1; 

Supplemental Table 2). We compared those measurements to the gene expression 

obtained when using only a subset of the original input data (Figures 1 and S1). The 13 

subsets of each parent sample (the original five samples) ranged in depth from 1 million 

reads to over 90 million reads (Supplemental Table 3). With 1 million reads, the values 

of the measured cancer genes ranged from 65 to 578% of the values measured at the 

maximum depth; with 5 million reads, the range was 0 to 133%; with 10 million reads, 

the range was 88 to 120%. 

  

Genes with similar expression 

 

To assess how variable gene expression is at a given depth, we examined three sets of 

genes that span the range of expression observed for typical cancer genes in Figure 

1A. For each parent sample, we looked at the value of each gene at the greatest depth 

it was sequenced (we considered this the final gene expression value) (Figure 1B and 
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S1B). The first bin contained genes that had a final value between 5.48 and 5.52 

log2(TPM+1); the second between 3.48 and 3.52 log2(TPM+1) and the third between 

1.48 and 1.52 log2(TPM+1). In order to make the comparisons equivalent, each boxplot 

was limited to 73 measurements, the number of genes in the smallest set. Consistent 

with previously published results (6, 22), measurements taken at greater depths were 

more consistent than measurements at lower depths within each expression bin. At the 

same depth, genes with low expression had more variability than genes with high 

expression. 

 

Composition of RNA-Seq datasets 

 

We next assessed composition of 1088 RNA-Seq datasets. We sequentially applied 

four measures that estimated the numbers of total reads, mapped reads, non-duplicate 

reads and exonic reads. With these numbers we determined the composition of the 

dataset with respect to four types of reads: unmapped; duplicate; non-exonic; and 

mapped, exonic, non-duplicate (MEND). Figure 2A shows the types of reads present in 

55 representative datasets from the available cohort of 1088 samples. Unmapped reads 

(dark grey), and non-exonic reads (light grey) are not used for gene expression 

quantification and therefore these reads are subsequently excluded from read counts 

when determining the relationship between 1) read depth and 2) sensitivity and 

specificity. Duplicate reads (light green) can include technical artifacts as well as reads 

that represent true transcript abundance. Removal of duplicate reads reduces false 
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positives but also causes false negatives (23). We include duplicate reads in gene 

expression quantification. However, we exclude them from the tally of reads that are 

definitively informative. The dark green reads in Figure 2A are MEND reads and the 

samples are ordered by descending total read count. The number of reads of each type 

are not consistently predictable based on the total read count. We therefore chose 

MEND as a read count measure that consistently represented biological signal in an 

RNA-Seq dataset. We subsequently assess the sensitivity and specificity of RNA-Seq 

analysis assays based on the number of MEND reads rather than total reads. 

 

Reference ranges of read types 

 

Reference range, defining which assay outputs are statistically normal is required by the 

CLIA framework 

( ​https://www.cms.gov/Regulations-and-Guidance/Legislation/CLIA/Downloads/6064bk.p

df​). Considering only the 834 of the 1088 samples with more than 20 million MEND 

reads (a threshold discussed below), we sought to define the typical composition of a 

tumor RNA-Seq sample. We calculated the mean and standard deviation (Fig 2B) of the 

fraction represented by each read type. We defined the reference range of a pediatric 

RNA-Seq tumor sample as the mean +/- 2 standard deviations (sd) for each read type: 

unmapped reads, duplicate (mapped) reads, and non-exonic (mapped, non-duplicate) 

reads. We also observed variability in the fraction of subtypes of mapped reads (Fig 

S2A). We defined a reference range for the subset of mapped reads mapped to multiple 
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positions (multi-mapped) rather than single positions (uniquely mapped) (Fig S2B). We 

then retained 690 of the 1088 samples that had read type composition values within the 

reference ranges. Because the median number of MEND reads in these samples was 

37.4 million, we analyzed the effects of MEND read depth on samples with up to 48 

million MEND reads. 

 

Effect of sequencing depth on outlier analysis 

 

Outlier analysis identifies genes with exceptionally high or low expression in single 

RNA-Seq datasets(2). This method compares an individual gene measurement to the 

expression value of the same gene in a cohort. The up outlier threshold for a gene is the 

75th percentile of expression in the cohort plus 1.5 times the interquartile range. An 

up-outlier is a gene that both exceeds the up-outlier threshold for a cohort and is among 

the 5% of most highly expressed genes within the sample. We performed outlier 

analysis on the 65 subsamples from the 5 parent samples (Table 1 and Supplemental 

Table 1). We defined a true up outlier as one that was present in at least 3 of the 4 

deepest subsets, 36, 40, 44 or 48 million MEND reads. Figure 3A shows the outlier calls 

in the 13 subsets of sample TH_Eval_019. False negative and false positive calls were 

more common at lower depths but were not entirely eliminated at high depths.  

 

We combined the results from the 5 parent samples and evaluated the fractions of the 

accurate outlier calls. The trends observed in the parent sample S5 (Figure 3A) were 
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also observed in the other parent samples (Figure 3B): False calls are common at low 

coverage, decrease substantially, and continue at a low frequency even at high 

coverage. We calculated the sensitivity and specificity at each depth for each parent 

sample (Figure 3C). Table 2 reports the median sensitivity and specificity at each depth. 

Sensitivity increases sharply at 0-12 million MEND reads, then increases at a slower 

rate at 13-28 million reads. The highest four depths (36, 40, 44, and 48 million MEND 

reads) contribute to the definition of a true outlier which potentially confounds those 

sensitivity measurements. The 32 million MEND read data points have sensitivity and 

specificity similar to those at higher depths. To optimize sensitivity and specificity, we 

propose that the threshold for outlier analysis should be between 20 and 32 million 

MEND reads. 

 

Molecular similarity analysis  

 

We determined the effect of decreasing coverage on a second individual RNA-Seq 

analysis assay, gene expression correlation, which is used to characterize the similarity 

of a patient's sample to a disease cohort (Figure 4). A sample that was found to be 

correlated in 3 of the 4 deepest subsamples was considered to be a sample that was 

truly correlated to the parent. In contrast to outlier detection, false negatives were more 

common at low depths. Where 87 percent of outliers were detectable with 1 million 

MEND reads (the dark blue portion of the left-most blue bar, Figure 1B), only 2 percent 

of correlated samples were detectable with 1 million MEND reads (the dark purple 
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portion of the left-most purple bar, Figure 4B). Also in contrast to outlier detection, false 

positive correlated samples (light orange, Figure 4B) were much rarer than false 

positive outliers (light red, Figure 3B), and occured at high depths, rather than the low 

depths at which most false positive outliers were found.  

 

Specificity and sensitivity were calculated for the 59 correlated background samples 

from four parent samples (Figure 4C, Table 2). Sensitivity increased sharply from 1 to 

12 million MEND reads and slowly between 12 and 40 million MEND reads. The highest 

four depths (36, 40, 44, and 48 million MEND reads) contributed to the definition of a 

true correlation which potentially confounds those sensitivity measurements. The 

sensitivity and specificity at depths between 20 and 32 million MEND were identical.  

 

 

Specifying the optimal number of total reads for a sequencing project 

 

We revisited the original question of how much sequencing data is needed for gene 

expression outlier and molecular similarity assays. We considered each MEND read 

subset depth as a candidate threshold (e.g. 1 million MEND reads, 4 million MEND 

reads, etc). Taking the 690 samples that are within the read composition reference 

ranges described in Figure 2, we rescaled read counts for each to estimate the total 

number of reads required for that sample to meet the MEND read threshold. There is a 

degree of imprecision in the prediction because the fraction of duplicate reads is 
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depth-dependent. In rescaling, the fraction of each read type remains consistent and 

independent of depth. Table 2 contains the 95th percentile of the 690 required total read 

counts predicted for each threshold.  

 

The two RNA-Seq analysis assays described here, outlier and molecular similarity 

analysis, both rely on having representative comparison cohorts. A threshold of 20 

million MEND reads captures most of the achievable specificity and sensitivity while 

retaining sufficiently large comparison cohorts. By analyzing the predictions of total 

reads required for 20 million MEND reads, we see that 99.7% of samples with 70 million 

total reads will contain 20 million MEND reads, provided the samples are within the read 

composition reference ranges described in Figure 2 . Predictions for 38 samples are 

shown in Figure 2c. 

 

 

Computing requirements for MEND pipeline  

 

Based on the processing times of 65 subsamples on computers with 64GB of memory 

and 12 VCPUs, the expression quantification pipeline has a minimum duration of 28.4 

minutes, and processing each million total reads requires, on average, an additional 6.7 

minutes. The MEND QC pipeline has a minimum duration of 1.6 minutes for every 

RNA-Seq dataset plus 2.1 minutes per million total reads present in the data. For a 

sample with 70 million total reads, the expression pipeline would be predicted to take 
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497 minutes (8.3 hours). Adding MEND QC would increase the duration by 149 minutes 

(2.5 hours), increasing the total time by 30 percent relative to running only the 

STAR/RSEM expression pipeline. 

Discussion 

Here we showed that gene expression measurements increase in consistency with 

depth of sequencing and that the biologically relevant fraction of sequence varies 

greatly between samples. We have described a method for measuring MEND reads and 

demonstrated how to use it to identify specificity, sensitivity and appropriate input 

thresholds for two clinically relevant RNA-Seq assays, identification of over-expressed 

genes in a sample and identification of samples with similar gene expression profiles. 

We define reference ranges for read types in tumor RNA-Seq data. For 99.7% of 

samples within reference range for all four read types, a sample with 70 million total 

reads has at least 20 million MEND reads. 

 

Measurements of RNA degradation, concentration, and purity are critical upstream 

quality measurements that are used to determine whether a sample should be 

sequenced (24). However, a sample with adequate upstream quality will not necessarily 

yield reproducible data. MEND analysis is a downstream assay that can detect the 

consequences of upstream problems with RNA input as well as problems caused by 

cross-species contamination, PCR overamplification and insufficient sequencing depth. 

MEND results can be used to determine how input amount affects the accuracy of 
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RNA-Seq-based assays. We showed that MEND reads are the most appropriate read 

type for defining quality standards for gene expression application of RNA-Seq data. We 

suggest that upstream quality measures, such as RNA Integrity Number (RIN), and 

MEND quality measures should be used in concert (25).  

 

FastQC, RSeQC and other tools can interrogate the quality of RNA-Seq data (26). Like 

the upstream assays, many RNA-Seq quality tools are specific and useful for 

troubleshooting. MEND analysis uses logs generated by STAR and output from FastQC 

and RSeQC to quantify read types. With reference ranges defined by read type counts 

of representative cohorts, MEND analysis can be applied to single samples to provide a 

broad determination about whether a sample is sufficient for measuring gene 

expression. MEND analysis was developed as part of the Treehouse project 

(treehousegenomics.ucsc.edu), which relies on comparisons of single RNA-Seq 

datasets to large tumor cohorts. We needed a tool that allowed us to determine which 

available samples were appropriate for these cohorts.  

 

Previous studies have demonstrated the dependence of RNA-Seq accuracy on 

sequencing depth (5,6,22,27). We took two steps to expand this observation . First, we 

defined input thresholds using the relevant read types (MEND). Secondly, we focused 

on clinically relevant analyses of the RNA-Seq data that can be applied to a single 

patient. 
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RNA-Seq is a powerful technology that has great clinical potential. However, 

performance parameters of this technology for single samples need to be rigorously 

studied and defined before the full potential of this technology is realized. Here we 

proposed the MEND framework that can be used to establish ​accuracy, precision, 

sensitivity, specificity, reference range of gene expression applications of single Illumina 

RNA-Seq experiments. We hope that this framework will pave the way for more 

RNA-Seq applications in the clinic and will contribute to the development of RNA-Seq 

gene expression profiling as clinical assays for individual patients. 
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Tables 
 

Table 1. RNA-Seq datasets used in the study. 

Sample Source Disease Sequence 
Length (per 
read end) 

Percent 
Duplicates 

S1 SRA: SRP040454 embryonal 
rhabdomyosarcoma 

75 28 

S2 doi: 
10.24370/SD_BHJXBDQK 

glioma (astrocytoma) 100 26 

S3 EGA: EGAD00001000158 medulloblastoma 100 11 
S4 dbGap: phs000673.v2.p1 undifferentiated spindle cell 

sarcoma 
100 38 

S5 EGA: EGAD00001001927 primitive neuroectodermal 
tumor of the central nervous 
system 

101 26 

 

Table 2. Sensitivity and specificity at MEND depths 

 

 

MEND reads 
(million) 

 

Outlier Correlation Approximate 
total reads 

needed 
(millions) 

 
Median 

sensitivity 
Median 

specificity Sensitivity Specificity 

1 0.8649 0.9822 0.0172 1.0000 3.3 

4 0.9442 0.9917 0.5690 1.0000 13.1 

8 0.9571 0.9942 0.7759 1.0000 26.3 

12 0.9742 0.9964 0.9483 1.0000 39.4 

16 0.9805 0.9953 0.9483 1.0000 52.6 

20 0.9610 0.9982 0.9655 1.0000 65.7 

24 0.9798 0.9975 0.9655 1.0000 78.8 

28 0.9805 0.9974 0.9655 1.0000 92.0 

32 0.9871 0.9975 0.9655 1.0000 105.1 

36 0.9910 0.9986 0.9828 1.0000 118.3 

40 0.9914 0.9989 1.0000 1.0000 131.4 
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44 1.0000 0.9985 1.0000 1.0000 144.5 

48 0.9957 0.9989 1.0000 0.9920 157.7 
 

The approximate total reads needed is the 95th percentile of all total read counts 

predicted by rescaling. For each of the 690 samples with read types in the reference 

ranges, for each MEND threshold (column 1), we retained the fractional composition of 

the RNA-Seq sample, multiplying the number of reads for each read type by the factor 

required to have the desired number of MEND reads. The resulting read counts were 

summed to determine the number of total reads required to reach that threshold.  

 

 

Figure Captions 
 

Figure 1. Reproducibility of gene expression measurement increases with depth 

of sequence. 

Caption: ​Gene expression (y-axis) is plotted against total reads used for the 

measurement. Data is shown for two parent samples (S1 and S2), see also 

Supplemental Figure 1A. Points show individual gene expression at various depths. B. 

Similarly expressed genes describe a range of measured expression. Each boxplot 

represents 73 gene measurements. Genes with expression 5.​48-5.52, 3.48-3.52, or 

1.48-1.52 ​ log2(TPM+1) (horizontal blue lines) at the highest depth are grouped. 
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Figure 2. Total number of reads in a sample does not predict the number of MEND 

reads.  

Caption: A. Four read types are present in fifty-five representative RNA-Seq datasets, 

including mapped, exonic, non-duplicate (MEND) reads. Asterisks indicate parent 

samples from Table 1. Samples with text annotations NM (not mapped), D (duplicates), 

NE (non-exonic), MM (multi-mapped), or M (MEND) have read type ratios outside the 

limits (Figs 2B, S2B). B. The typical range of each read type fraction (μ ± 2σ) are shown 

for the 834 samples with more than 20 million MEND reads. C. Read types in 38 of the 

55 representative samples were rescaled to 20 million MEND reads.  

 

Figure 3. Identification of the number of MEND reads required for accurate outlier 

analysis.  

Caption:  ​The outlier status of S5 (A) and the frequency in all 5 samples (Table 1) (B) of 

genes (y-axis) at increasing depths (x-axis) is dark blue for true positive, dark red for 

true negative, light blue for false negative, and light red for false positive. ​C. ​Sensitivity 

(blue) and specificity (red) at increasing depths (x-axis) for each parent sample. A 

locally weighted regression estimate (line) and confidence interval (CI) is depicted for 

sensitivity and specificity. The CI for specificity is narrower than the plotted line. 

 

 

 

Fig. 4. Definition of MEND threshold for sample similarity analysis.  
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Caption: A. ​The correlation status of cohort samples (y-axis) for each parent sample at 

increasing depths (x-axis) is dark purple for true positive, dark orange for true negative, 

light purple for false negative, and light orange for false positive. ​B. ​Frequency of calls 

in A, colored as in A. ​C. ​Sensitivity (purple) and specificity (orange) are plotted for each 

parent sample. A locally weighted regression estimate (line) and confidence interval (CI) 

is depicted for sensitivity and specificity. The CI for specificity is narrower than the 

plotted line. 
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