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Algorithm|[l|summarizes the Parallel Proximal algorithm [3}22] we propose for optimizing Eq. (2.10).
In Section we further prove that its computational cost is O(p?). More concretely in Algorithml1]
we simplify the notations by denoting B* (X4, 3.) = [T,(X4)] ™! — [T,(.)] 7!, and reformulate
Eq. (2.10) to the following equivalent and distributed formulation:

argmin F (Ayor, ) + Fo(Asory) + G1(Avoty) + G2(Atory)

Nror 2.11)
subject to: Ao, = Ao, = Doty = Doty = Diot
Where Fi(1) = |[We o (Le())lhs G10) = Tyaowe)o(Lie()-B*(SaSo))llwsrns F20) =

€||Lg(-)|lgy,2 and Ga(-) = I"Ltot(')fs*(idyic)llévyggf)\n' Here Z¢(+) represents the indicator func-

tion of a convex set C' denoting that Zo(x) = 0 when © € C and otherwise Z¢(z) = oco. The
detailed solution of each proximal operator is summarized in Table[S:T|and Section[S:2]

Algorithm 1 A Parallel Proximal Algorithm to optimize KDiffNet

input Two data matrices X, and X, The weight matrix Wg and Gy.
Hyperparameters: «, €, v, A, and . Learning rate: 0 < p < 2. Max iteration number iter.
output A L
1: Compute B*(Xq4, X¢) from X4 and X,
: Initialize Ac = [Ipxp Opxpls Ag = [Opxp Ipxpls Atot = [Ipxp Ipxp)s
Aoty + Atoty + Atots + Atory
4

: Initialize Atotl N Atotg, Atotg, Atot4 and Atot =

2
3
4: for i = 0 to iter do ) ‘ ) ) , ,
50 pi= ProX 4y py Alory s Po = ProX 4y p, Alorys D3 = ProX4q, Alorys Pa = ProXyq, Aboty
. 4
6. p'=( _leé)
=
7 for j =1,2,3,4do v _ _
8: Azjtlj = Aiot + p(2pl - A;ot - p;)
9: endfor _ _
10: AL = Al + p(p" — Alor)
11: end for _
12: A= Athiﬁ,‘?
output A

2.6 Analysis of Error Bounds

Based on Theorem|[S:5.3]and conditions in Section[S:5] we have the following corollary about the
convergence rate of KDiffNet . See its proof in Section[S:5.2.7]

Corollary 2.1. In the high-dimensional setting, i.e., p > max(n.,ng), let v := a %.
Then for X\, := 4:;“ % and min(n.,ng) > clogp, with a probability of at least 1 —

2C exp(—Caplog(p)), the estimated optimal solution A has the following error bound:

16x1a max(max; ;(Wg, ;)V/s), €/5a) logp

A A < . .
] ] min; ;(Wg, )k min(ne, ng)

2.12)

where C1,C5,a, ¢, k1 and ko are constants. See s and s¢ in Definition|[S:3.4]

3 Experiments

We aim to empirically show that KDiffNet is adaptive and flexible in incorporating different kinds
of available evidence for improved differential network estimation. Data: This is accomplished by
evaluating KDiffNet and baselines on two sets of datasets: (1) A total of 126 different synthetic
datasets representing various combinations of additional knowledge (details see Section[3.1)); and
(2) one real-world fMRI dataset ABIDE for functional brain connectivity estimation (Section [3.2)).
We obtain the edge-level knowledge from three different human brain atlas [[7, |8} [16]] about brain
connectivity, resulting in three different Wg with p = {116, 160, 246}. For each atlas we compute
WE using the spatial distance between its brain Region of Interests (ROIs). At the same time,
we explore two different types of group knowledge about brain regions from Dosenbach Atlas[/7]
(Section . Baselines: We compare KDiffNet to JEEK[ 18] and NAK][2], that use the extra edge
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Method | Data-EG(Time) | Data-EG(F1-Score) | Data-G(Time) | Data-G(F1-Score)

| W2(p =246) | Wi(p =116) | W2(p = 246) | W3(p =160) | W2(p = 246) | W2(p = 246)

KDiffNet-EG 4.59140.08 0.717+0.05 0.927+0.01 0.934+0.07 * *
KDiffNet-G 0.013£0.01 0.578£0.09 0.565£0.10 0.575£0.09 0.006£0.00 0.891+0.06
KDiffNet-E 0.017£0.01 0.692£0.06 0.872£0.02 0.916£0.02 * *
JEEK [I8] | 10.998+0.11 |  0.57240.10 |  0.581+0.09 |  0.580+0.09 | = #*
NAK[2] | 3.800£0.15 [ 0.226+0.08 [ 0.204£0.07 [ 0.207+0.08 | =] *
SDRE[10] 27.48742.59 0.57340.11 0.568+0.11 0.57440.11 11.76441.23 0.3184+0.10
DIFFEE[19] 0.004£0.00 0.570£0.11 0.560£0.11 0.570£0.11 0.004£0.00 0.135£0.02
JGLFUSED[3] 68.128£1.66 0.502£0.08 0.481£0.08 0.495£0.08 | 144.470£59.68 0.055£0.01

Table 1: Mean Performance(F1-Score) and Computation Time(seconds) with standard deviation
given in parentheses for the same setting of n. and ny of KDiffNet-EG , KDiffNet-E , KDiffNet-G
and baselines for simulated data. * indicates that the method is not applicable for a data setting.

knowledge, two direct differential estimators (SDRE[9], DIFFEE[19]) and MLE based JGLFUSED[3]
(Section[2.T]and detailed equations of each in Section[S:T). We also extend KDiffNet to data situations
with only edge knowledge (KDiffNet-E ) or only group knowledge (KDiffNet-G ). Both variations
(KDiffNet-E and KDiffNet-G ) can be solved by fast closed form solutions ( Section[S:2.2).

Additional details of setup, metrics and hyper-parameters are in Section Hyperparameters:
The key hyper-parameters are tuned as follows:

e v : To compute the proxy backward mapping, we vary v in {0.001¢] = 1,2, ...,1000} (to make
T,(X.) and T}, (X4) invertible).

e )\, : According to our convergence rate analysis in Section An > O/ —28P__ e choose

min(ne,nq)

Ar, from a range of {0.01 x % xili € {1,2,3,...,100}} using cross-validation. For

KDiffNet-G , we tune over A,, from a range of {0.1 x , /% x i € {1,2,3,..., 100}
e ¢: For KDiffNet-EG experiments, we tune ¢ € {0.0001,0.01, 1, 100}.

3.1 Experiment: Simulated Data about Brain Connectivity using Three Real-World Brain
Spatial Matrices and Anatomic Group Evidence from Neuroscience as Knowledge

In this section, we show the effectiveness of KDiffNet in integrating additional evidence through a
comprehensive set of many simulation datasets. Our simulated data settings mimic three possible
types of additional knowledge in the real-world: with both edge and known node group knowledge
(Data-EG), with only edge-level evidence (Data-E) or with only known node groups (Data-G). For
the edge knowledge, we consider three cases of Wg with p = {116, 160, 246} computed from three
human brain atlas about brain regions [[7, 18, [16]]. For the group knowledge, we simulate groups to
represent related anatomic regions inspired by the atlas [7]]. For each simulation dataset, two blocks of
data samples are generated following Gaussian distribution using N (0, 1) and N (0, le) via the
simulated 2. and €24. Each simulated dataset includes a pair of data blocks to estimate its differential
GGM. We conduct a comprehensive evaluation over a total of 126 different simulated datasets by
varying (p), varying the number of samples (. and n4), changing the proportion of edges controlled
by Wk (s) and by varying the number of known groups s¢. The details of the simulation framework
are in Section

We present a summary of our results (partial) in Table [T|using columns showing two cases of data
generation settings (Data-EG and Data-G). Table|l|uses the mean F1-score and the computational
time cost to compare methods (rows). Results about simulated datasets under Data-E case are in
Section[S:6l We can make several conclusions:

(1) KDiffNet outperforms those baselines not considering knowledge. Clearly KDiffNet and its
variations achieve the highest F1-score across all the 126 datasets. SDRE and DIFFEE are direct
differential network estimators but perform poorly indicating that adding additional knowledge
improves differential GGM estimation. MLE based JGLFUSED performs the worst in all cases.

(2) KDiffNet outperforms those baselines considering knowledge, especially when group
knowledge exist. When under the Data-EG setting, while JEEK and NAK include the extra edge
information, they cannot integrate group information and are not for differential estimation. This

*We use the same range to tune A1 for SDRE and A2 for JGLFUSED. We use A1 = 0.0001(a small value)
for JGLFUSED to ensure only the differential network is sparse. Tuning NAK is done by the package itself.
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results in lower F1-Score(0.581 and 0.204 for W2) compared to KDiffNet-EG (0.927 for W2). The
advantage of modeling both edge and node groups evidence is also indicated by the higher F1-Score
of KDiffNet-EG with respect to KDiffNet-E and KDiffNet-G on the Data-EG setting (Top 3 rows
in Table[I). On Data-G cases, none of the baselines can model node group evidence. On average
KDiffNet-G performs 6.4 x better than the baselines for p = 246 with respect to F1.

(3) KDiffNet achieves reasonable time cost versus the baselines and is scalable to large p. Fig-
ure[I[a) shows each method’s time cost per A, for large p = 2000. Consistently KDiffNet-EG is
faster than JEEK, JGLFUSED and SDRE (Column 1 in Table E]) KDiffNet-E and KDiffNet-G are
faster than KDiffNet-EG owing to closed form solutions. On Data-G dataset and Data-E datasets
(Section[S:6.2), our faster closed form solutions achieve much more significant computational all
the baselines. For example on datasets using W2 p = 246, KDiffNet-E and KDiffNet-G are on an
average 21000 and 7400 faster (Column 5 in Table([T) than the baselines, respectively. We have
all detailed results and figures about F1-Score and time cost for all 126 data settings in Section[S:6.2]
Besides F1-Score, we also present the ROC curves from all methods when varying \,,. KDiffNet
achieves the highest Area under Curve (AUC) in comparison to all other baselines.

3.2 Experiment: Functional Connectivity Estimation from Real-World Brain fMRI Data

In this experiment, we evaluate KDiffNet in a real-world downstream classification task on a publicly
available resting-state fMRI dataset: ABIDE[6]. This aims to understand how functional dependencies
among brain regions vary between normal and abnormal and help to discover contributing markers
that influence or cause the neural disorders [17]. ABIDE includes two groups of human subjects:
autism and control. We utilize three types of additional knowledge: W based on the spatial distance
between 160 regions of the brain[7] and two types of available node groups from Dosenbach Atlas[[7]]:
one with 40 unique groups about macroscopic brain structures (G1) and another with 6 higher level
node groups having the same functional connectivity(G2). We use Quadratic Discriminant Analysis
(QDA) in downstream classification to assess the ability of the estimators to learn the differential
patterns about the connectome structures. (Details of the ABIDE dataset, baselines, design of
the additional knowledge Wr matrix, cross-validation and the QDA classification method are in
Section[S:6.4]) Figure [I(b) compares KDiffNet-EG , KDiffNet-E , KDiffNet-G and baselines on
ABIDE, using the y axis for classification test accuracy (the higher the better) and the x axis for the
computation speed (negative log seconds, the more right the better). KDiffNet -EG1, incorporating
both edge(Wx) and (G1) group knowledge, achieves the highest accuracy of 57.2% for distinguishing
the autism subjects versus the control subjects without sacrificing computation speed
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Figure 1: (a)(LEFT) Computation Time (log milliseconds) per A, for large p = 2000: KDiffNet-EG
has reasonable time cost with respect to baseline methods. KDiffNet-E and KDiffNet-G are fast
closed form solutions. (b) (RIGHT) ABIDE Dataset: KDiffNet-EG achieves highest Accuracy
without sacrificing computation speed (points towards top right are better).

4 Conclusions

We propose a novel method, KDiffNet , to incorporate additional knowledge in estimating differential
GGMs. KDiffNet elegantly formulates existing knowledge based on the problem at hand and avoids
the need to design knowledge-specific optimization. We sincerely believe the scalability and flexibility
provided by KDiffNet can make differential structure learning of GGMs feasible in many real-world
tasks. We plan to generalize KDiffNet from Gaussian to semi-parametric distributions or to Ising
Model structures. As node group knowledge is particularly important and abundant in genomics, we
plan to evaluate KDiffNet on more real-world genomics data with multiple types of group information.

*We cannot compare to NAK and SDRE because they do not provide precision matrix required for QDA
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Appendix
Adding Extra Knowledge in Scalable Learning of
Sparse Differential Gaussian Graphical Models

S:1 Connecting to Relevant Studies

S:1.1 Differential GGM Estimation

JGLFUSED|6]: This study extends the previously mentioned MLE based GLasso(Section
estimator for sparse differential GGM estimation. An additional sparsity penalty on the differential
network, called the fused norm, is included as part of the optimization objective:
argmin n.(—logdet(Q.)+ < Q¢, X >)
Qc,Q24>0,A
+ngq(—logdet(Qy)+ < Qg, Xgq >)

FA2([[Qell1 + [[Qall1) + An|Allx
The alternating direction method of multipliers (ADMM) method was used to solve Eq. (S:1.1)) that
needs to run expensive SVD in one sub-procedure [6].

(S:1.1)

DIFFEE[23]:  Computationally, EEs are much faster than their regularized convex program
peers for GM estimation. [23]] proposed the so-called DIFFEE for estimating sparse changes in
high-dimensional GGM structure using EE:
argmin ||Al];
A R (S:1.2)
Subject to: ||A — B* (X4, L)oo < An

~

[23] use a closed form and well-defined proxy function 6, = B*(id,ic) =
([T S = [Tv(fc)]_l) to approximate the backward mapping (the vanilla MLE solution)

for dlfferentlal sGGMs. We explain the proxy backward mapping and its statistical propertles in Sec-

tion The DIFFEE solution is a closed-form entry-wise thresholding operatlon on B* (Ed, 5 c)
to ensure the desired sparsity structure of its final estimate. Here A\,, > 0 is the tuning parameter.
Eq. is a special case of Eq. (2.3)), in which R(-) is the ¢1-norm for sparsity and the differential
network A is the 6 we aim to estimate.

As claimed by [[10]] direct estimation of differential GGMs can be more efficient both in terms of the
number of required samples as well as the computation time cost. Besides, it does not require to
assume each precision matrix as sparse. For instance recent literature in neuroscience has suggested
that each subject’s functional brain connection network may not be sparse, even though differences
across subjects may be sparse [1]. When identifying how genetic networks vary between two
conditions, each individual network may contain hub nodes, therefore not entirely sparse [[L1]].

SDRE|12]: [12] proposed to estimate Sparse differential networks in exponential families by Density
Ratio Estimation using the following formulation:
argglaxﬁKLIEp(A) — )\n || A Hl —)\2 || A ||2 (513)

Lxiep minimizes the KL divergence between the true probability density pg(z) and the estimated
pa(z) = r(z; A)p.(z) without explicitly modeling the true p.(x) and py(z). This estimator uses the
elastic-net penalty for enforcing sparsity. We use the sparseKLIEPEl, that uses sub-gradient descent
optimization as a baseline to our method.

'http://allmodelsarewrong.net/kliep_sparse/demo_sparse.html

Preprint. Under review.
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2

Diff-CLIME[25]]: This study directly learns A through a constrained optimization formulation.
argmin ||A||4
Rl R (S:1.4)
Subject to: ||XAXG — (Ze — Za)||oo < A
The optimization reduces to multiple linear programming problems, which in turn makes this method
less scalable to large p with a computational complexity of O(p®).

S:1.2 Incorporating Additional Knowledge in GGM Estimation

While previous studies do not use available additional knowledge for differential structure estimation,
a few studies have tried to incorporate edge level weights for other types of GGM estimation.
NAK [3]: For the single task sGGM, one recent study [3] (following ideas from [17]]) proposed to
use a weighted Neighborhood selection formulation to integrate edge-level Additional Knowledge
(NAK) as: 37 = argmin £|| X7 — X 3||3 + ||r; o 8]|1. Here 37 is the j-th column of a single sSGGM
B5=
Q. Specifically, 8] = 0 if and only if ﬁkj = 0. r; represents a weight vector designed using
available extra knowledge for estimating a brain connectivity network from samples X drawn from a
single condition. The NAK formulation can be solved by a classic Lasso solver like glmnet.
JEEK]|22]: Two related studies, JEEK[22] and W-SIMULE[18]] incorporate edge-level extra knowl-
edge in the joint discovery of K heterogeneous graphs. In both these studies, each sGGM corre-
sponding to a condition 7 is assumed to be composed of a task specific sSGGM component QY) and a
shared component )¢ across all conditions, i.e., Q) = Q(Il) + Qg. The minimization objective of
W-SIMULE is as follows: objective:
argminZHWon)Hl+6K||WOQSH1 (S:1.5)
af’.Qs

subject to: || S + Qg) — I[joo < Apy i=1,..., K

W-SIMULE is very slow when p > 200 due to the expensive computation cost O(K*p®). In
comparison, JEEK is an EE-based optimization formulation:

argmin ||V o Q77"||1 + [[W§” 0 Q|

foot7QgOt

1 ~
o Qtot — B* - S An
i © el S

o (! — B*())loe < Mn

subject to: ||

=
Wéot
Qtot — QtSOt + Qi}ot
Here, Q! = (le), Q?), e QgK)) and Q¥ = (Qg, Qs,..., Qs). The edge knowledge of the
task-specific graph is represented as weight matrix {W(Z)} and Wy for the shared network. JEEK

differs from W-SIMULE in its constraint formulation, that in turn makes its optimization much faster
and scalable than WSIMULE. In our experiments, we use JEEK as our baseline.

Drawbacks: However, none of these studies are flexible to incorporate other types of additional
knowledge like node groups or cases where overlapping group and edge knowledge are available
for the same target parameter. Further, these studies are limited by the assumption of sparse single
condition graphs. Estimating a sparse difference graph directly is more flexible as it does not rely on
this assumption.

S:1.3 Computational Complexity

We optimize KDiffNet through a proximal algorithm, while KDiffNet-E and KDiffNet-G through
closed-form solutions. The resulting computational cost for KDiffNet is O(p?®), broken down into the
following steps:

e Estimating two covariance matrices: The computational complexity is O(max(n., ng)p?).

e Backward Mapping: The element-wise soft-thresholding operation [T, (-)] on the estimated covari-
ance matrices, that costs O(p?). This is followed by matrix inversions [T}, (-)] ™! to get the proxy
backward mapping, that cost O(p?).

e Optimization: For KDiffNet , each operation in the proximal algorithm is group entry wise or entry
wise, the resulting computational cost is O(p?). In addition, the matrix multiplications cost O(p?).
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Regularized | _ _ o) Proxy Backward Elementary
MLE Solution Mapping Estimator

Additional Knowledge] Estimated Differential GGM

—

Known Edges  Known Node Groups

Figure S:1: Schematic Diagram of KDiffNet : integrating extra edge and node groups knowledge
for directly estimating the sparse change in the dependency structures of two p-dimensional GGMs
(differential GGMs)

For KDiffNet-E and KDiffNet-G versions, the solution is the element-wise soft-thresholding
operation Sy, that costs O(p?).

n?’

S:2  Optimization of KDiffNet and Its Variants

S:2.1 Optimization via Proximal Solution

We assume Ay = [Ag; Ag], where ; denotes row wise concatenation. Consider operator Lg(A¢ot) =
Ae and Lg(Atot) = Ag, Lt()t(AtOt) = Ae “+ Ag.

argininHWE o (Le(Atot))||1 + €l | Lg(Atot)llgy 2
st ||(1@ We) o (Lm(Am) - ([Tv(id)]-l - [Tv(ic)]‘l>) oo < A (S:2.1)
Ltot(Bror) = (€)™ = [LE ™) I3, 2 < €A

This can be rewritten as:
argimn Fi(Agor,) + Fo(Avor,) + G1(Ators) + G2(Atory)

(S:2.2)
Atot = At()t1 = Atotg = Atot3 = Ai&ot4
Where:
Fi() = Wgo (Le())llh
G10) = L 10We)o(Lior ()~ ([T Ea)l -1~ (70 (B 1)) low SAn 523
Fo() = €l|Lg(llgy 2 o
G2() = 41,0 ()= (I B~ (10 Bl 2 Sern
Here, L.,L4 and L, can be written as Affine Mappings. By Lemma in [],
Le = AeAtot
A= [Ipxp Opo]
L, =A,A
g 7 gt (S:2.4)

Ag = [0pxp  Ipxyp
Lot = AtotAtot
Atot = [Ipxp  Tpxp
if AAT = I, and h(x) = g(Ax),
prozy(z) = 2 — BAT (Az — prozg-1,(Az)) (5:2.5)
59 =1, 8. = 1 and Bio = 2.

Solving for each proximal operator:
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A. F1(Atot) = |[WEg o (Le(Ator)) |1
Le(Atot) = AeAtot = Ae~

prozypi(y) =y — AeT(x — prox¢(z))

S:2.6
r= Ay ( )
Here, z; 1 = A, .-
prox. s, (x) = PIOXy [ |w-|y ()
s O] ,
Lk YWj k> %jk > YWj,k (527)
= _ 0, \x$k| < ywjk
T YW w0, < W
Here j,k = 1,...,p. This is an entry-wise operator (i.e., the calculation of each entry is only related
to itself). This can be written in closed form:
prox, ;s (¥) = max((x;r — ywjk),0) + min(0, (z;x + yw;x)) (S:2.8)
We replace this in Eq. (S:2.6).
B. FQ(Atot) = €||L9(At0t)||gv,2 Here, Lg(Atot) = AgAtot = Ag.
x=Agy
(S:2.9)

provpa(y) = y — AT(x — pro,, (x))
Here, ;1 = Agm,
Prox, p, (g) = Prox, g, (zg)
Tg — €’Y||;ﬁ’ ||33g||2 > ey (S:2.10)

0, [[zg||2 < ey
Here g € Gy. This is a group entry-wise operator (computing a group of entries is not related to other
groups). In closed form:

Prox., s, () = ProX.y i, , (Zg)

ey
=z,max((1 — +——),0)
! (eI

(S:2.11)

We replace this is Eq. (S:2.9).

C. Gl(Atot) = IH(I@WE)O(Ltm,(Af,m,)—([Tv(id)]’l—[Tv(ic)]’l))l|oc§>\n Here, Ltot = AtotAtot and

Ator = [Ipo Ipo]~

r = Aoty
- (S:2.12)
prozyc1(y) =y — 2455 (¢ — prowy-1,,, (7))

ProX. g, (%) = Projj19(Wp)o(z—a)l | <An
{ Tk |Tj 0 — k| < wjkAn (S:2.13)

aj Lk + wjyk)\n, Tjk > G5+ wj,k)\n
Qj.k — wj7k)\n, Tik < Qjk — wj,k)\n
In closed form:
Prox.,,, () = projjj, | <x,
= min(max(z; p — 4k, —W; kM), WjkAn) + )k
We replace this in Eq. (S:2.12).

(S:2.14)

D. GQ(Atot) = I{\\Lt,,t(Am,,)—B*||§’2§e>\n} Here, Liot = Aot Aior and Ayop = [Ipo Ipo]-

x = Aoty
- (S:2.15)
prozge(y) =y — 245, (v — ProXa-iyg, (z))

ProXyg, (l‘q) = proj||ﬂc—aH5,2fsz\n
Tg, |[Tg — agllz < €An (S:2.16)
€A

n;l‘;gg:jgslg + ag, [Ty — agll2 > €A,
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Table S:1: The four proximal operators

[prox, g, ()54 | (e — yw;),0) + min(0, (25 +708)
prox () zgmax((1 — IR |I2) 0)
[prox . (x)]gll)C min(max(z; k — ajk, —WjkAn)s WjkAn) + @k

1 >\n
prox. s, () mln(m’ D(zg —ag) + a4

This operator is group entry-wise. In closed form:
prox., g, (z) = PrOJjjz—a||3 ,<An

€A, (S8:2.17)

=min(————,1)(z, —a,) + a
(||xg_ag”2 )( g (]) g

We replace this in Eq. (S:2.15).
S:2.2  Close form solutions if incorporating Only Edge Or Only Node Group Knowledge

In cases, where we do not have superposition structures in the differential graph estimation, we can
estimate the target A through a closed form solution, making the method scalable to larger p. In
detail:

KDiffNet-E Only Edge-level Knowledge Wy: If additional knowledge is only available in the
form of edge weights, the Eq. (S:2.T) reduces to :
argmin ||[Wg o Al];
A

~ N (S:2.18)
st [l W) o (A = (IT(Ea)] ™ = [T ™) ) lloo < An
This has a closed form solution: R R
A = Sy, swp (B*(Ed, Ec)) (S:2.19)
Here
[S)\ij We,; (A)]l] = Sign(Aij) max(lAij‘ - )\nWEl] , 0) (S:2.20)

KDiffNet-G Only Node Groups Knowledge Gy : If additional knowledge is only available in the
form of groups of vertices Gy, the Eq. (S:2.1)) reduces to :
argmin ||Al|g, 2
A (S:2.21)
Subject to: [|[A — B* (X4, Xe)lg, 2 < An
Here, we assume nodes not in any group as individual groups with cardinality= 1. The closed form
solution is given by:

= (SQV A (B (B4, 2e))) (S:2.22)

Where [Sg », (u)]g = max(||ug||2 — )\n, 0) = and max is the element-wise max function.

Algorithm[T] shows the detailed steps of the KDiffNet estimator. Being non-iterative, the closed form
solution helps KDiffNet achieve significant computational advantages.

TTugll2 |

Algorithm 1 KDiffNet-E and KDiffNet-G

input Two data matrices X. and X,4. The weight matrix Wg OR Gy.
input Hyper-parameter: \,, and v
output A

1: Compute [T}, (ic)] and [T,(S4)] " from 3. and .
2: Computel’j’ (Ed, )

3: Compute A from Eq. ( .2.19 if Wg only; else from Eq. (S:2.22) if only Gy
output A

S:3 More Proof about KEV Norm and Its Dual Norm

S:3.1 Proof for KEV Norm is a norm

We reformulate KEV norm as
R(A) = |[Wg o Acl[1 + €|[Agllgy 2 (S:3.1)
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to
R(A) = Ri(A) + R2(A); Ra() = [We o -[[1;Ra(-) = €l - [lgy (8:3.2)

Theorem S:3.1. kEV Norm is a norm if and only if R1(-) and Ra(-) are norms.

Proof. By the following Theorem Ri(:) is anorm. If € > 0, Ry(-) is a norm. Sum of two
norms is a norm, hence kKEV Norm is a norm. O

Lemma S:3.2. For kEV-norm, Wg; ;. # 0 equals to Wg ;. > 0.

Proof. 1f WEj,k < 0, then ‘WEj,kAj,k| = ‘ — WEj,kAj,k‘~ Notice that _WEj,k > 0. ]

Theorem S:3.3. Ry(-) = ||Wg o ||y is a norm if and only if V1 > j, k < p, WEg . # 0.

Proof. Proof. To prove the R1(-) = ||[Wg o -||1 is a norm, by Lemma (S:4.2)) we need to prove that
f(z) = ||Woz||1 is anorm function if W; ; > 0. 1. f(az) = |[aW oz||1 = |a|||W oz||1 = |a|f(x).
2. f(w+y) = IWo(z+y)lh = [Woo+Wopll < W oully + W oyl = F(z) + F().
3. f(z) > 0. 4. If f(z) =0, then ) |[W; jx; ;| = 0. Since W; ; # 0, z; ; = 0. Therefore, z = 0.
Based on the above, f(x) is a norm function. Since summation of norm is still a norm function, R4 (-)
is a norm function. O

O

S:3.2 KEV Norm is a decomposable norm

We show that kEV Norm is a decomposable norm within a certain subspace, with the following
structural assumptions of the true parameter A*:

(EV-Sparsity): The ’true’ parameter of A* can be decomposed into two clear structures—{A,*
and A,"}. A." is exactly sparse with s non-zero entries indexed by a support set Sg and A" is
exactly sparse with /s non-zero groups with atleast one entry non-zero indexed by a support set
Sy. Sg() Sy = 0. All other elements equal to 0 (in (Sg | Sy )©).

Definition S:3.4. (EV-subspace)
M(Sg|JSv) =1{0; =0vj ¢ S| ) Sv} (S:3.3)

Theorem S:3.5. kEV Norm is a decomposable norm with respect to M and M+

Proof. Assume u € M and v € ML, R(u +v) = ||[Wg o (ue + ve)||1 + €||(ug + vg)|lay 2 =
[IWE ouellr + |[[WE ove|l1 +€l|ugllay 2 + €]|vg]lay 2 = R(u) + R(v). Therefore, KEV-norm is a
decomposable norm with respect to the subspace pair (M, M™*). O

S:3.3 Proofs of Dual Norms for KEV Norm

1
Theorem S:3.6. Dual Norm of kEV Norm is R*(u) = max(||(1 @ Wg) o u||co, EHUHEVQ)
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Proof. Suppose R(0) = > caRa(fa), where > 6, = 6. Then the dual norm R*(-) can be
acl acl
derived by the following equation.

N <6,u>
Riw) =sup =25y
Z <u,l, >
an a(0a)
Z <ufcy,0q >
TSR]
%RZ(U/%)R(%)
S SR
< max Ry (u)/ca

Connecting R1(-) = ||WEg - ||1 and R2(:) = €| - ||, - By the following Theorem|[S:3.7] R} (u) =
[|(1 @ Wg) o u||s. From [13], for R2(02) = ||Al|g, 2. the dual norm is given by

sup

(S:3.4)

(S:3.5)

lollg.ar =, max flva;

1 1

where — + — = 1 are dual exponents. where sg denotes the number of groups. As special cases
Qi

of this general duality relation, this leads to a block (o0, 2) norm as the dual.

Hence, R3(u) = ||ul|g, o- Hence, the dual norm of KEV norm is R*(u) = max(|[(1 @ Wg) o

U *
o, 1 Hgv,z). -
€
Theorem S:3.7. The dual norm of ||Wg o -||1 is:
Ri() =110 Wg) o ulls (S:3.6)
For Ri(:) = ||Wg o ||1, the dual norm is given by:
sup  ulz
[[Woul|1 <1

p

< sup Z |||k

[|[Woull1 <1 =1

|uk||xk|\wk|
= sup 7|w |
w <14 k
[|[Woul|; < k;1 (S3.7)

T,
= sup Z |wkuk|)w—k

IWoul[1 <1 573

p
Tk
sup E |lwgug] | max |—
k=1,...p lwg

HWOUH1<1 k=1

=[Ill.

S:4 Appendix: More Background of Proxy Backward mapping and
Theorems of 7, Being Invertible

Essentially the MLE solution of estimating vanilla graphical model in an exponential family distri-
bution can be expressed as a backward mapping that computes the target model parameters from
certain given moments. For instance, when learning Gaussian GM with vanilla MLE, the backward
mapping is S~ that estimates € from the sample covariance matrix (moment) S3. However, this
backward mapping is normally not well-defined in high-dimensional settings. In the case of GGM,
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when given the sample covariance 5, we cannot just compute the vanilla MLE solution as [i]_l

when high-dimensional since S is rank-deficient when p > n. Therefore Yang et al. [24]] proposed to
use carefully constructed proxy backward maps for Eq. (2.4) that are both available in closed-form,

and well-defined in high-dimensional settings for exponential GM models. For instance, [T}, (f))] -1
in Eq. (2.3) is the proxy backward mapping [24] used for GGM.

S:4.1 Backward mapping for an exponential-family distribution:

The solution of vanilla graphical model MLE can be expressed as a backward mapping[21] for an
exponential family distribution. It estimates the model parameters (canonical parameter ) from
certain (sample) moments. We provide detailed explanations about backward mapping of exponential
families, backward mapping for Gaussian special case and backward mapping for differential network
of GGM in this section.

Backward mapping: Essentially the vanilla graphical model MLE can be expressed as a backward
mapping that computes the model parameters corresponding to some given moments in an exponential
family distribution. For instance, in the case of learning GGM with vanilla MLE, the backward
mapping is ¥~ that estimates 2 from the sample covariance (moment) 3.

Suppose a random variable X € RP? follows the exponential family distribution:
P(X;0) = h(X)exp{< 0,¢(0) > —A(0)} (S:4.1)
Where 6 € © C R? is the canonical parameter to be estimated and © denotes the parameter space.
#(X) denotes the sufficient statistics as a feature mapping function ¢ : R? — R?, and A(6) is the log-
partition function. We then define mean parameters v as the expectation of ¢(X): v(0) := E[¢(X)],
which can be the first and second moments of the sufficient statistics ¢(X) under the exponential
family distribution. The set of all possible moments by the moment polytope:
M = {v|dpis a distribution s.t. E,[¢(X)] = v} (S:4.2)
Mostly, the graphical model inference involves the task of computing moments v(f) € M given the
canonical parameters 6 € @ We denote this computing as forward mapping :

A:(H)—» M (S:4.3)

The learning/estimation of graphical models involves the task of the reverse computing of the forward
mapping, the so-called backward mapping [21]. We denote the interior of M as M". backward
mapping is defined as:

A* MO @ (S:4.4)
which does not need to be unique. For the exponential family distribution,
A" v(0) = 0 = VA*(v(0)). (S:4.5)

Where A*(v(0)) = sup < 0,v(8) > —A(6).

oe(E)

Backward Mapping: Gaussian Case If a random variable X € RP follows the Gaussian
Distribution N(u, X). then 6 = (X7'y, —3571). The sufficient statistics ¢(X) = (X, XX7),
h(z) = (27)~ %, and the log-partition function
1 1
A(9) = iuTE*m + 5 log(|Z) (S:4.6)
When performing the inference of Gaussian Graphical Models, it is easy to estimate the mean vector
v(#), since it equals to E[X, X X T].

When learning the GGM, we estimate its canonical parameter @ through vanilla MLE. Because ¥~ !
is one entry of @ we can use the backward mapping to estimate ¥ .

6= (S"1u, —%2—1) = A*(v) = VA*(v)
= (Bo[ X XT] — Bg[X|Eg[X]T) ' Eg[X], (S:4.7)

5 (EolXXT] ~ Eg[X]Eo[X]7) ™).

By plugging in Eq. (S:4.6) into Eq. (S:4.5)), we get the backward mapping of  as (Eq[X XT] —
Eg[X]Ep[X]T)~1) = X1, easily computable from the sample covariance matrix.
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S:4.2 Backward Mapping for Differential GGM

When the random variables X., Xy, € RP follows the Gaussian Distribution N (u.,>.) and
N (g, Xq), their density ratio (defined by [12]]) essentially is a distribution in exponential fam-
ilies:

_ pa(z)
r(z,A) = o)

_ Vdet(Se) exp (=3 (z — pa) T2 (@ — pa))

V/det(X,) exp (— (x— uC)ngl(w - Mc))
= expl(— 5z — 1) "5 (&~ pa)

(S:4.8)

(log(det(Xa)) — log(det(%,))))

1
=exp ( —5A2% + paz — A(pia, A))
Here A =%, — S and pa = 55 g — S5 e

The log-partition function

1 1 e
Aua,A) = 5#5% Y — 5#325 Yot

. . (S:4.9)
3 log(det(24)) — B log(det(%.))

The canonical parameter

. _ 1, -
= (Ed 1/de - Ec liucv _i(zd t- Ec 1))
(S:4.10)

2 (
The sufficient statistics ¢([X., X4]) and the log-partition function A(6):
o([Xe, Xa]) = ([Xe, Xdl, [XCX;Fv Xng])
1

1 e B
A(0) = S1a¥q Ha = Gpe T et (S:4.11)

5 108(det(5) — 3 lo(det(5))

_ _ 1
= (Zd 1Md - X 1/~LC7 -5 A))

And h(z) = 1.

Now we can estimate this exponential distribution (6) through vanilla MLE. By plugging Eq. (S:4.11)
into Eq. (5:4.5), we get the following backward mapping via the conjugate of the log-partition
function:

_ _ 1, - _
0= <Zd1,ud—zc 1Mc,_§(2d1 _ch))

=A*(v) = VA*(v)
The mean parameter vector v(6) includes the moments of the sufficient statistics qﬁg) under the
exponential distribution. It can be easily estimated through E[([X,, X4, [X. X7, X4 X11)].

Therefore the backward mapping of 6 becomes,
0 =(((Eo[XaX7] — Eo[Xa]Eg[Xa]") 'Eo[X4]

— (B[ X XT] — Eg[X |Eo[X.]T) ' Eo[ X)),

(S:4.12)

X ] o (S:4.13)
— 5 (Eo[XaX7] — Eo[Xa|Eg[Xa)") ™"~

(Bo[X XT] — Eg[X ]JEo[Xc]T) ™).
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Because the second entry of the canonical parameter 6 is (Z;l — % 1), we get the backward mapping

of A as
(Bg[XaX ] — Eg[Xq]Eg[Xa]") ™!
—(Ep[XcX[] — Eg[Xc|Eo[X]) ™) (S:4.14)
S L Y

This can be easily inferred from two sample covariance matrices id and flc (Att: when under
low-dimensional settings).

S:4.3 Theorems of Proxy Backward Mapping 7', Being Invertible
Based on [24]] for any matrix A, the element wise operator T, is defined as:

Ay +v ifi=j
[T (Al {szgn(Aij)(|Aij| —v) otherwise,i # j
XTXx XTXx
Suppose we apply this operator T}, to the sample covariance matrix to obtain 7, ( ).
XT
Then, T, ( ) under high dimensional settings will be invertible with high probability, under the

following conditions:

Condition-1 (X-Gaussian ensemble) Each row of the design matrix X € R™*? is i.i.id sampled from
N(0,%).

Condition-2 The covariance ¥ of the ¥-Gaussian ensemble is strictly diagonally dominant: for all

row i, §; 1= ¥j; — Xj4i > Omin > 0 where 0,5, is a large enough constant so that |[3||oo <

5min
XT

This assumption guarantees that the matrix T, ( ) is invertible, and its induced /., norm is well

bounded. Then the following theorem holds:

Theorem S:4.1. Suppose Condition-1 and Condition-2 hold. Then for any v >
107 log p’ T
8(maaci2”-)\ﬂ7

forp' := max{n, p} and any constant T > 2.

X'X _
), the matrix T, ( ) is invertible with probability at least 1 — 4 /p'” >

S:4.4 Useful lemmacs) of Error Bounds of Proxy Backward Mapping 7,

Lemma S:4.2. (Theorem 1 of [16]). Let 6 be max;; \[XTTX]” — ;. Suppose that v > 25. Then,
under the conditions (C-SparseX.), and as p,(-) is a soft-threshold function, we can deterministically
guarantee that the spectral norm of error is bounded as follows:

IT,(Z) = 2l|oe < 5 9co(p) + 3v % (p)é (S:4.15)

Lemma S:4.3. (Lemma 1 of [15]]). Let A be the event that

XTXx 1071 /
5= = Bl < 8(max )/ ——25 (S:4.16)
1

where p' := max(n,p) and T is any constant greater than 2. Suppose that the design matrix X is
i.i.d. sampled from ¥-Gaussian ensemble with n > 40 max; X;;. Then, the probability of event A
occurring is at least 1 — 4/p'™ 2.

S:5 Theoretical Analysis of Error Bounds

S:5.1 Background: Error bounds of Elementary Estimators

KDiffNet formulations are special cases of the following generic formulation for the elementary
estimator.
argmin R (0)
0 N (S:5.1)
subject to:R*(0 — 0,,) < A\,
Where R*(-) is the dual norm of R(-),
R*(v) :=sup ——— = su u,v > . S:5.2
( ) u;ﬁl?) R(u) R(u)pgl S ( )
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Following the unified framework [13], we first decompose the parameter space into a subspace
pair(M, MJ‘) where M is the closure of M. Here M+ = {v € RP| < u,v >= 0,Vu €
M}. M is the model subspace that typically has a much lower dimension than the original high-
dimensional space. M is the perturbatlon subspace of parameters. For further proofs, we assume
the regularization function in Eq. (S:5.1) is decomposable w.r.t the subspace pair (M, M™).

(C1) R(u +v) = R(u) + R(v), Vu € M,vu € M+,

[13]] showed that most regularization norms are decomposable corresponding to a certain subspace
pair.

Definition S:5.1. Subspace Compatibility Constant

Subspace compatibility constant is defined as ¥(M,| - |) :=  sup Tl which captures the
ue M\ {0}
relative value between the error norm | - | and the regularization function R(-).

For simplicity, we assume there exists a true parameter §* which has the exact structure w.r.t a certain
subspace pair. Concretely:

(C2) 3 a subspace pair (M, M=) such that the true parameter satisfies proj y,. (0*) = 0
Then we have the following theorem.

Theorem S:5.2. Suppose the regularization function in Egq. satisfies condition (C1), the true
parameter of Eq. satisfies condition (C2), and \,, satisfies that \,, > R*(0,, — 6*). Then, the
optimal solution 0 of Egq. satisfies:

R*(0 — 6%) < 2\, (S:5.3)
16— 6%]]5 < 47, ¥ (M) (S:5.4)
R(O — 6*) < 8A\, U (M)? (S:5.5)

Proof. Letd := 6 — 6* be the error vector that we are interested in.

R0 — 6%) =R*(0 — 0, + 0, — 6%)
< R* (0 — 0) + R* (0, — 0%) < 2\,
By the fact that 0% ., = 0, and the decomposability of R with respect to (M, M)

(S:5.6)

(S:5.7)

E

0" + 5] + R[4 (0)] — R[4 (0)]
Here, the inequality holds by the triangle inequality of norm. Since Eq. (S:5.1)) minimizes R(g), we
have R(0* + A) = R(0) < R(6*). Combining this inequality with Eq. lb we have:

R s (0)] < R (9)] (S:5.8)
Moreover, by Holder’s inequality and the decomposability of R(-), we have:

1A = (6,8) < R*(8)R(8) < 22, R(6)
= 20 [R(I 1 (6)) + R(ILgq (9))] < AN R(IL(8)) (5:5.9)
< AN T (M)|IL (9)]]2

where W (M) is a simple notation for U(M, || - ||2).
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Since the projection operator 1s defined in terms of || - ||2 norm, it is non-expansive: ||II o (A)[]2 <
[|All2. Therefore, by Eq. (S:5.9), we have:

[[TL (0)]]2 < 4N\, T(M), (S:5.10)
and plugging it back to Eq. (S:5.9) yields the error bound Eq. (S:5.4).

Finally, Eq. (S:5.5)) is straightforward from Eq. (S:5.8) and Eq. (S:5.10).

()S R(IL(9)) S5
20 (M)[|TLyg(8)]]2 < 8X, W (M)?. -

O

S:5.2 Error Bounds of KDiffNet

Theorem [S:5.2] provides the error bounds via \,, with respect to three different metrics. In the
following, we focus on one of the metrics, Frobenius Norm to evaluate the convergence rate of our
KDiffNet estimator.

S:5.2.1 Error Bounds of KDiffNet through )\, and

Theorem S:5.3. Assuming the true parameter A* satisfies the conditions (CI1)(C2) and N\, >
R* (A A*), then the optimal point A has the following error bounds:

1A - A%||r < (4 max(max(W, ,)v/s), ev/56)An (S:5.12)

Proof: KDiffNet uses R(-) = |[|[Wg o -||1 + €]| - ||g,2 because it is a superposition of two norms:
Ry =||Wgol|li and Ry = €|| - ||g,2. Based on the results in[13], ¥(M;) = max; j(Wg, ,)+/s and
U(Mz) = /3G, where s is the number of nonzero entries in A and sg is the number of groups in
which there exists at least one nonzero entry. Therefore, (M) = max(max; ;(Wg, ,)/s), €\/5¢).

Hence,Using this in Equation Eq. l) 1A = A*||p < 4(max(max; ;(Wg, ;)v/s), €4/5G) An.

S:5.2.2  Proof of Corollary (2.1)-Derivation of the KDiffNet error bounds

To derive the convergence rate for KDiffNet , we introduce Athe following two sufficient conditions on
the ¥, and X4, to show that the proxy backward mapping 8,, = B*(¢) = [T,,(34)] ™ — [T,(Zq)]
is well-defined[23]]:

(C-MinInf—X): The true €2} and Q) of Eq. have bounded induced operator norm, i.e.,

[[Ze"wl| — [[Ea"wl|
Wil < o and 100l = sup Il < ko

1€ [loo := sup
w#0ERP

(C-Sparse-X): The two true covariance matrices ¥} and X} are “approximately sparse” (following

P
[2). For some constant 0 < ¢ < 1 and cy(p), max Y |[23]i;]? < co(p) and max Z |[Z5)55]7 <
voj=1 =1
Co(p)ﬂ
We additionally require  inf Hﬁzw‘l"" > kpand  inf 12a@le >
w#0ERP wloo w#OERP [w][eo

We assume the true parameters 2 and 2; satisfies C-MinInfX and C-SparseX conditions.

Using the above theorem and conditions, we have the following corollary for convergence rate of
KDiffNet (Att: the following corollary is the same as the Corollary in the main draft. We repeat
it here to help readers read the manuscript more easily):

Corollary S:5.4. In the high-dimensional setting, i.e., p > max(n.,nq), let v := a %.
Then for A\, := 4’:;“ % and min(n.,ng) > clogp, with a probability of at least

*This indicates for some positive constant d, [$5];; < d and [2%];; < d for all diagonal entries. Moreover,
if ¢ = 0, then this condition reduces to ¥} and X being sparse.
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1 —2C exp(—Caplog(p)), the estimated optimal solution A has the following error bound.:

16k a((max(max; j(Wg, ;)v/s),€\/5a) logp

S:5.13
min; ;(Wg, ;)k2 min(ne, ng) ( )

1A — A" <

where a, ¢, k1 and Ko are constants.

Proof. In the following proof, we first prove ||€2* — [T, (S¢)] ™ |oo < An.. Here A,,. = 4}’2—;“1 / 105—”/
and p’ = max(p, n.)
The condition (C-Sparse3)) and condition (C-MinInfX) also hold for 2 and ¥%. In order to uti-

lize Theorem (S:5.3) for this specific case, we only need to show that || — [Ty(2:)] " |oe < An,

4ki1a  [logp’.
Ko Ne

for the setting of \,,, =

< T (Ee) )l oo | T0 (Ee)E — I]]oo
= 11T (E)] ™ oo 1922 (L0 (Ze) — 5)]oo
< N E) ™ Mol oo 1 To (Be) = Bk o

We first compute the upper bound of [||[T0(2e)]"Y||oe. By the selection v in the statement,
Lemma (S:4.2) and Lemma (S:4.3) hold with probability at least 1—4/p'"~2. Armed with Eq. ( m
we use the triangle 1nequa11ty of norm and the condition (C-SparseX): for any w,

192F = [T0(E)] Yoo = [[[To(E)] M (T0(E)Q% = 1|0
) (S:5.14)
)

5
5

T (Ee)wlloe = |70 (Ee)w — Sw + Swl|o
> 12wl — [(Tu(Ee) — D)l
> hiol[w]]oe = [|(To(Ee) = Z)w]oc

> (k2 = [[(To(Ec) = Z)wloo)[|wl]o
Where the second inequality uses the condition (C-SparseX). Now, by Lemma (S:4.2)) with the
selection of v, we have

(S:5.15)

PN log p’
IIT(E0) = Bllloe < e2(Z2E) 17072 (p) (8:5.16)

(&
where c; is a constant related only on 7 and max; Y;;. Specifically, it is defined as 6.5 X

(16(max; E“)\/IOT)l_‘I Hence, as long as ne > (20%‘2](”))1%1 log p' as stated, so that ||| T, (3.) —
E|||Oo < %2 we can conclude that ||T,(Sc)wl|s > 2 ||w|| o, Which implies T (Z)] ™ H||oe <
Ko

The remaining term in Eq. (S:5.14) is || T, (E.) — 25|03 || T0 (Ze) — Bt loo < [|T0(Ze) — el +
IS — = Hoo By construction of T, (+) in (C-Thresh) and by Lemma (S:4.3), we can confirm that
IT(S0) = S| as well as [|S, — ¥*||oo can be upper-bounded by v.

Similarly, the [T, (S4)] ! has the same result.
Finally,

ltoWs)e (A" = (ILED ™ = [1E] ™)) lls (8:5.17)

<1 We)o (2~ TS0 ™) oo + 1@ Wr) 0 (2 = [Tu(Se)] ) le  (5:5.18)

o1 4ma\/@ 4ma\/@ (S:5.19)
min; ; W; ;

Because by Theorem |[S:5.3] we know if \,, > R*( A— A*),
||A A*|lp < (4max(max(WE IVS), e/56) A
0.
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Suppose p > max(n., nq) we have that

16k 1a max(max; ;(Wg, ;)v/s), €/5G) logp
mini,j (WE1J )Kz min(nc, nd>

1A - A%||r < (5:5.20)
By combining all together, we can confirm that the selection of \,, satisfies the requirement of Theo-
rem (S:5.3)), which completes the proof. O

S:6 More about Experiments

S:6.1 Experimental Setup
The hyper-parameters in our experiments are v, A,, € and 9. In detail:

e To compute the proxy backward mapping in (S:2.1), DIFFEE, and JEEK we vary v for soft-
thresholding v from the set {0.0014[i = 1,2,...,1000} (to make T}, (X.) and T3, (X,) invertible).
e )\, isthe hr—parameter in our KDiffNet formulation. According to our convergence rate analysis

in Section 2.6} A, > C', / %, we choose A, from a range of {0.01 x 4 /minl(‘i% X ili €

{1,2,3,...,100}}. For KDiffNet-G case, we tune over \,, from a range of {0.1 x log p

min(ne,nq)
ili € {1,2,3,...,100}}. We use the same range to tune A; for SDRE. Tuning for NAK is done
by the package itself.
e c: For KDiffNet-EG experiments, we tune ¢ € {0.0001,0.01,1,100}}.
e )y controls individual graph’s sparsity in JGLFUSED. We choose A; = 0.0001 (a very small
value) for all experiments to ensure only the differential network is sparse.

Evaluation Metrics:

e Fl-score: We use the edge-level Fl-score as a measure of the performance of each method.

— 2-Precision-Recall ision = 1P — _TIp i
Fl = $csont Reeall » Where Precision = 5555 and Recall = 75 The better method achieves

a higher F1-score. We choose the best performing )\,, using validation and report the performance
on a test dataset.

e Time Cost: We use the execution time (measured in seconds or log(seconds)) for a method as a
measure of its scalability. The better method uses less timfﬂ

S:6.2 Simulation Dataset Generation

We first use simulation to evaluate KDiffNet for improving differential structure estimation by making
use of extra knowledge. We generate simulated datasets with a clear underlying differential structure
between two conditions, using the following method:

Data Generation for Edge Knowledge (KE): Given a known weight matrix Wg (e.g., spatial
distance matrix between p brain regions), we set W = inv.logit(—Wg). We use the assumption
that higher the value of W;;, lower the probability of that edge to occur in the true precision matrix.
This is motivated by the role of spatial distance in brain connectivity networks: farther regions are
less likely to be connected and vice-versa. We select different levels in the matrix W ¢, denoted by
s, where if Wi‘; > s, Af.lj = 0.5, else Afj = 0, where A% € RP*P. We denote by s as the sparsity,
i.e. the number of non-zero entries in A?. B; is a random graph with each edge B 1,; = 0.5 with
probability p. §. and J, are selected large enough to guarantee positive definiteness.

Qg =AY+ By + 641 (S:6.1)
Q.= By + 6.1 (S:6.2)
A=Q,—Q (S:6.3)

There is a clear differential structure in A = Q4 — €, controlled by A?. To generate data from
two conditions that follows the above differential structure, we generate two blocks of data samples
following Gaussian distribution using N (0, ') and N (0, "). We only use these data samples to
approximate the differential GGM to compare to the ground truth A.

3The machine that we use for experiments is an Intel Core i7 CPU with a 16 GB memory.
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Data Generation for Vertex Knowledge (KG): In this case, we simulate the case of extra knowl-
edge of nodes in known groups. Let the node group size,i.e., the number of nodes with a similar
interaction pattern in the differential graph be m. We select the block diagonals of size m as groups
in AY. If two variables 4, j are in a group ¢/, in Afj = 0.5, else Afj = 0, where A9 € RP*P, We
denote by s¢ as the number of groups in AY. By is a random graph with each edge By, = 0.5 with

probability p.
Qq =A%+ By + 641 (S:6.4)
Q.= Br+9d.1 (S:6.5)
A=Qq—Q (S:6.6)

0. and &4 are selected large enough to guarantee positive definiteness. We generate two blocks of
data samples following Gaussian distribution using N'(0,-1) and N(0,Q;").

Data Generation for both Edge and Vertex Knowledge (KEG): In this case, we simulate the
case of overlapping group and edge knowledge. Let the node group size,i.e., the number of nodes
with a similar interaction pattern in the differential graph be m. We select the block diagonals of
size m as groups in A9. If two variables ¢, j are in a group ¢, in Afj =1/3, else Afj = 0, where
A9 € RP*P,

For the edge-level knowledge component, given a known weight matrix Wz, we set W¢ =
inv.logit(—Wg). Higher the value of Wg,,, lower the value of Wg, hence lower the probabil-
ity of that edge to occur in the true precision matrix. We select different levels in the matrix W9,
denoted by s, where if Wg- > 51, we set Afj =1/3, else Agj = 0. We denote by s as the number of

non-zero entries in A?. By is a random graph with each edge B 1,, = 1/3 with probability p.

Qq =A%+ A9+ By + 641 (S:6.7)
Q.= By + 6.1 (S:6.8)
A=Q,— Q. (S:6.9)

0. and &4 are selected large enough to guarantee positive definiteness. Similar to the previous
case, we generate two blocks of data samples following Gaussian distribution using N (0, !) and
N(0, Q;l). We only use these data samples to approximate the differential GGM to compare to the
ground truth A.

S:6.3 Simulation Experiment Results

We consider three different types of known edge knowledge W generated from the spatial distance
between different brain regions and simulate groups to represent related anatomical regions. These
three are distinguished by different p = {116, 160, 246} representing spatially related brain regions.
We generate three types of datasets:Data-EG (having both edge and vertex knowledge), Data-G(with
edge-level extra knowledge) and Data-V(with known node groups knowledge). We generate two
blocks of data samples X and X4 following Gaussian distribution using N (0, 2;!) and N (0, ").
We use these data samples to estimate the differential GGM to compare to the ground truth A.
The details of the simulation are in Section [S:6.2] We vary the sparsity of the true differential
graph (s) and the number of control and case samples (n. and n4 respectively) used to estimate the
differential graph. For each case of p, we vary n. and ng in {p/2,p/4,p, 2p} to account for both
high dimensional and low dimensional cases. The sparsity of the underlying differential graph is
controlled by s = {0.125,0.25,0.375, 0.5} and s¢; as explained in Section[S:6.2] This results in 126
different datasets representing diverse settings: different number of dimensions p, number of samples
n. and ng, multiple levels of sparsity s and number of groups s¢ of the differential graph for both
KE and KEG data settings.

Edge and Vertex Knowledge (KEG): We use KDiffNet (Algorithm [I)) to infer the differential
structure in this case.

Figure[S:2|a) shows the performance in terms of F1 Score of KDiffNet in comparison to the baselines
for p = 116, corresponding to 116 regions of the brain. KDiffNet outperforms the best baseline in
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Figure S:2: KDiffNet Edge and Vertex Knowledge Simulation Results for p = 116 for different
settings of n., ng and s: (a) The test F1-score and (b) The average computation time (measured in

seconds) per A\, for KDiffNet and baseline methods.
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each case by an average improvement of 414%. KDiffNet-EG does better than JEEK and NAK that
can model the edge information but cannot include group information. SDRE and DIFFEE are direct
estimators but perofrm poorly indicating that adding additional knowledge aids differential network
estimation. JGLFUSED performs the worst on all cases. We list the detailed results in Section[S:6.3]

Figure[S:2]b) shows the average computation cost per ), of each method measured in seconds. In all
settings, KDiffNet has lower computation cost than JEEK, SDRE and JGLFUSED in different cases
of varying n. and n4, as well as with different sparsity of the differential network. KDiffNet is on
average 24x faster than the best performing baseline. It is slower than DIFFEE owing to DIFFEE’s
non-iterative closed form solution, however, DIFFEE does not have good prediction performance.
Note that B*() in KDiffNet , JEEK and DIFFEE and the kernel term in SDRE are precomputed only
once prior to tuning across multiple \,,. In Figure [S:3[a), we plot the test F1-score for simulated
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Figure S:3: KDiffNet Edge and Vertex Knowledge Simulation Results for p = 160 for different
settings of n., ng and s: (a) The test F1-score and (b) The average computation time (measured in
seconds) per A\, for KDiffNet and baseline methods.

datasets generated using W with p = 160, representing spatial distances between different 160
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regions of the brain. This represents a larger and different set of spatial brain regions. In p = 160
case, KDiffNet outperforms the best baseline in each case by an average improvement of 928%.
Including available additional knowledge is clearly useful as JEEK does relatively better than the
other baselines. JGLFUSED performs the worst on all cases. Figure[S:3|b) shows the computation
cost of each method measured in seconds for each case. KDiffNet is on average 37x faster than the
best performing baseline.
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Figure S:4: KDiffNet Edge and Vertex Knowledge Simulation Results for p = 246 for different
settings of n., ng and s: (a) The test F1-score and (b) The average computation time (measured in
seconds) per \,, for KDiffNet and baseline methods

In Figure[S:4{a), we plot the test F1-score for simulated datasets generated using a larger Wy with
p = 246, representing spatial distances between different 246 regions of the brain. This represents a
larger and different set of spatial brain regions. In this case, KDiffNet outperforms the best baseline
in each case by an average improvement of 1400% relative to the best performing baseline. In this
case as well, including available additional knowledge is clearly useful as JEEK does relatively better
than the other baselines, which do not incorporate available additional knowledge. JGLFUSED again
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performs the worst on all cases. Figure[S:4[b) shows the computation cost of each method measured
in seconds for each case. In all cases, KDiffNet has the least computation cost in different settings
of the data generation. KDiffNet is on average 20x faster than the best performing baseline. For
detailed results, see Section[S:6.5]

We cannot compare Diff-CLIME as it takes more than 2 days to finish p = 246 case.

Edge Knowledge (KE): Given known Wg, we use KDiffNet-E to infer the differential structure
in this case.
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Figure S:5: KDiffNet-E Simulation Results for p = 116 for different settings of n., n4 and s: (a) The
test F1-score and (b) The average computation time (measured in seconds) per \,, for KDiffNet-E
and baseline methods.

Figure [S:3[a) shows the performance in terms of F1-Score of KDiffNet-E in comparison to the
baselines for p = 116, corresponding to 116 spatial regions of the brain. In p = 116 case, KDiffNet-
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E outperforms the best baseline in each case by an average improvement of 23%. While JEEK,
DIFFEE and SDRE perform similar to each other, JGLFUSED performs the worst on all cases.

Figure [S:5(b) shows the computation cost of each method measured in seconds for each case. In
all cases, KDiffNet-E has the least computation cost in different cases of varying n. and ng4, as
well as with different sparsity of the differential network. For p = 116, KDiffNet-E , owing to an
entry wise parallelizable closed form solution, is on average 2356 faster than the best performing
baseline. In Figure[S:6(a), we plot the test F1-score for simulated datasets generated using W with
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Figure S:6: KDiffNet-E Simulation Results for p = 160 for different settings of n., nq and s: (a) The
test F1-score and (b) The average computation time (measured in seconds) per A, for KDiffNet-E
and baseline methods.

p = 160, representing spatial distances between different 160 regions of the brain. This represents a
larger and different set of spatial brain regions. In p = 160 case, KDiffNet-E outperforms the best
baseline in each case by an average improvement of 67.5%. Including available additional knowledge
is clearly useful as JEEK does relatively better than the other baselines, which do not incorporate
available additional knowledge. JGLFUSED performs the worst on all cases. Figure[S:6(b) shows the
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computation cost of each method measured in seconds for each case. In all cases, KDiffNet-E has the
least computation cost in different cases of varying n. and ng4, as well as with different sparsity of
the differential network. KDiffNet-E is on average 3300x faster than the best performing baseline.
In Figure[S:7(a), we plot the test F1-score for simulated datasets generated using a larger W with
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Figure S:7: KDiffNet-E Simulation Results for p = 246 for different settings of n., nq and s: (a) The
test F1-score and (b) The average computation time (measured in seconds) per A, for KDiffNet-E
and baseline methods.

p = 246, representing spatial distances between different 246 regions of the brain. This represents
a larger and different set of spatial brain regions. In this case, KDiffNet-E outperforms the best
baseline in each case by an average improvement of 66.4% relative to the best performing baseline.
Including available additional knowledge is clearly useful as JEEK does relatively better than the
other baselines, which do not incorporate available additional knowledge. JGLFUSED performs the
worst on all cases. Figure[S:7(b) shows the computation cost of each method measured in seconds
for each case. In all cases, KDiffNet-E has the least computation cost in different cases of varying
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n. and ng, as well as with different sparsity of the differential network. KDiffNet-E is on average
3966 x faster than the best performing baseline.

Node Group Knowledge : We use KDiffNet-G to estimate the differential network with the known
groups as extra knowledge. We vary the number of groups s¢ and the number of samples n. and
ng for each case of p = {116,160, 246}. Figure shows the F1-Score of KDiffNet-G and the
baselines for p = 116. KDiffNet-G clearly has a large advantage when extra node group knowledge
is available. The baselines cannot model such available knowledge.
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Figure S:8: KDiffNet-G Simulation Results for p = 246 for different settings of n., nqg and s: (a) The
test F1-score and (b) The average computation time (measured in seconds) per \,, for KDiffNet-E
and baseline methods.

Varying proportion of known edges: We generate W matrices with p = 150 using Erdos
Renyi Graph [9]. We use the generated graph as prior edge knowledge Wg. Additionally, we
simulate 15 groups of size 10 as explained in Section[S:6.2] We simulate (2. and 4 as explained in
Section[S:6.2] Figre[S:9|presents the performance of KDiffNet-EG , KDiffNet-E and DIFFEE with
varying proportion of known edges.

KDiffNet-EG has a higher F1-score than KDiffNet-E as it can additionally incorporate known group
information. As expected, with increase in the proportion of known edges, F1-Score improves for
both KDiffNet-EG and KDiffNet-E . In contrast DIFFEE cannot make use of additional information
and the F1-Score remains the same.

Scalability in p:  To evaluate the scalability of KDiffNet and baselines to large p, we also generate
larger W matrices with p = 2000 using Erdos Renyi Graph [9], similar to the aforementioned
design. Using the generated graph as prior edge knowledge Wr, we design €. and §2,4 as explained
in Section [S:6.2] For the case of both edge and vertex knowledge, we fix the number of groups
to 100 of size 10. We evaluate the scalability of KDiffNet-EG and baselines measured in terms of
computation cost per A,.

Figure shows the computation time cost per A, for all methods. Clearly, KDiffNet takes the
least time, for large p as well.

Choice of \,;: For KDiffNet , we show the performance of all the methods as a function of choice
of \,. Figure|S:10[shows the True Positive Rate(TPR) and False Positive Rate(FPR) measured by
varying A, for p = 116, s = 0.5 and n. = ng = p/2 under the Data-EG setting. Clearly, KDiffNet-
EG achieves the highest Area under Curve (AUC) than all other baseline methods. KDiffNet-EG also
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Figure S:9: F1-Score of KDiffNet-EG ,KDiffNet-E and DIFFEE with varying proportion of known
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Figure S:10: Area Under Curve (AUC) Curves for KDiffNet and baselines at different hyperparameter
values A.
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outperforms JEEK and NAK that take into account edge knowledge but cannot model the known
group knowledge.

S:6.4 More Experiment: Brain Connectivity Estimation from Real-World fMRI

ABIDE Dataset: This data is from the Autism Brain Imaging Data Exchange (ABIDE) [7], a
publicly available resting-state fMRI dataset. The ABIDE data aims to understand human brain
connectivity and how it reflects neural disorders [[19]. The data is retrieved from the Preprocessed
Connectomes Project [4]], where preprocessing is performed using the Configurable Pipeline for the
Analysis of Connectomes (CPAC) [5] without global signal correction or band-pass filtering. After
preprocessing with this pipeline, 871 individuals remain (468 diagnosed with autism). Signals for
the 160 (number of features p = 160) regions of interest (ROIs) in the often-used Dosenbach Atlas
[8l] are examined. We also include two types of available node groups : one with 40 unique groups
of regions belonging to the same functional network and another with 6 node groups about nodes
belonging to the same broader anatomical region of the brain.

Cross-validation: Classification is performed using the 3-fold cross-validation suggested by the
literature [14]][20]. We tune over \,, and pick the best \,, using cross validation. The subjects are
randomly partltloned into three equal sets: a training set, a validation set, and a test set. Each estimator
produces Q — Qd using the training set. Then, these differential networks are used as inputs to
Quadratic discriminant analysis (QDA), which is tuned via cross-validation on the validation set.
Finally, accuracy is calculated by running QDA on the test set. This classification process aims to
assess the ability of an estimator to learn the differential patterns of the connectome structures.

S:6.5 Detailed Simulation Results

Table [S:2] Table and Table present a summary of results for KDiffNet-EG , KDiffNet-E
and KDiffNet-G in terms of F1-Score, respectively. We report the average F1-Score(along with
standard deviation across the same setting of n. and n4) across all simulation settings for each
p. Table [S:5]Table [S:6] and Table [S:7] present a summary of computation time for KDiffNet-EG ,
KDiffNet-E and KDiffNet-G , respectively. We report the average computation time per A,, across all
simulation settings for each p.
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