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ABSTRACT 

Environmental metabarcoding is an increasingly popular tool for studying biodiversity in 1 

marine and terrestrial biomes. With sequencing costs decreasing, multiple-marker metabarcoding, 2 

spanning several branches of the tree of life, is becoming more accessible. However, bioinformatic 3 

approaches need to adjust to the diversity of taxonomic compartments targeted as well as to each 4 

barcode gene specificities. We built and tested a pipeline based on Illumina read correction with 5 

DADA2 allowing analysing metabarcoding data from prokaryotic (16S) and eukaryotic (18S, COI) 6 

life compartments. We implemented the option to cluster Amplicon Sequence Variants (ASVs) 7 

into Operational Taxonomic Units (OTUs) with swarm v2, a network-based clustering algorithm, 8 

and to further curate the ASVs/OTUs based on sequence similarity and co-occurrence rates using 9 

a recently developed algorithm, LULU. Finally, flexible taxonomic assignment was implemented 10 

via Ribosomal Database Project (RDP) Bayesian classifier and BLAST. We validate this pipeline 11 

with ribosomal and mitochondrial markers using eukaryotic mock communities and 42 deep-sea 12 

sediment samples. The results show that ASVs, reflecting genetic diversity, may not be appropriate 13 

for alpha diversity estimation of organisms fitting the biological species concept. The results 14 

underline the advantages of clustering and LULU-curation for producing more reliable metazoan 15 

biodiversity inventories, and show that LULU is an effective tool for filtering metazoan molecular 16 

clusters, although the minimum identity threshold applied to co-occurring OTUs has to be 17 

increased for 18S. The comparison of BLAST and the RDP Classifier underlined the potential of 18 

the latter to deliver very good assignments, but highlighted the need for a concerted effort to build 19 

comprehensive, ecosystem-specific, databases adapted to the studied communities. 20 

 21 

 22 
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INTRODUCTION 26 

High-throughput sequencing (HTS) technologies are revolutionizing the way we assess 27 

biodiversity. By producing millions of DNA sequences per sample, HTS allows broad taxonomic 28 

biodiversity surveys through metabarcoding of bulk DNA from complex communities or from 29 

environmental DNA (eDNA) directly extracted from soil, water, and air samples. First developed 30 

to unravel cryptic and uncultured prokaryotic diversity, metabarcoding methods have been 31 

extended to eukaryotes as powerful, non-invasive tools, allowing detection of a wide range of taxa 32 

in a rapid, cost-effective way using a variety of sample types (Valentini et al. 2009; Taberlet et al. 33 

2012; Creer et al. 2016; Stat et al. 2017). In the last decade, these tools have been used to describe 34 

past and present biodiversity in terrestrial (Ji et al. 2013; Yoccoz et al. 2012; Yu et al. 2012; Slon 35 

et al. 2017; Pansu et al. 2015), freshwater (Valentini et al. 2016; Deiner et al. 2016; Bista et al. 36 

2015; Dejean et al. 2011; Evans et al. 2016), and marine (Fonseca et al. 2010; Sinniger et al. 2016; 37 

Pawlowski et al. 2011; Massana et al. 2015; De Vargas et al. 2015; Salazar et al. 2016; Boussarie 38 

et al. 2018; Bik et al. 2012) environments. 39 

As every new technique brings on new challenges, a number of studies have put 40 

considerable effort into delineating critical aspects of metabarcoding protocols to ensure robust and 41 

reproducible results (see Fig.1 in Fonseca et al, 2018). Recent studies have addressed many issues 42 

regarding sampling methods (Dickie et al. 2018), contamination risks (Goldberg et al. 2016), DNA 43 

extraction protocols (Brannock and Halanych 2015; Deiner et al. 2015; Zinger et al. 2016), 44 

amplification biases and required PCR replication levels (Nichols et al. 2018; Alberdi et al. 2017; 45 

Ficetola et al. 2015). Similarly, computational pipelines, through which molecular data are 46 

transformed into ecological inventories of putative taxa, have also been in constant improvement. 47 

PCR-generated errors and sequencing errors are major bioinformatic challenges for metabarcoding 48 

pipelines, as they can strongly bias biodiversity estimates (Coissac et al. 2012; Bokulich et al. 49 
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2013). A variety of tools have thus been developed for quality-filtering amplicon data to remove 50 

erroneous reads and improve the reliability of Illumina-sequenced metabarcoding inventories 51 

(Bokulich et al. 2013; Eren et al. 2013; Minoche et al. 2011). Studies that evaluated bioinformatic 52 

processing steps have generally found that sequence quality-filtering parameters and clustering 53 

thresholds most strongly affect molecular biodiversity inventories, resulting in considerable 54 

variation during data analysis(Brannock and Halanych 2015; Clare et al. 2016; Brown et al. 2015; 55 

Xiong and Zhan 2018). 56 

There were historically two main reasons for clustering sequences into Operational 57 

Taxonomic Units (OTUs). The first was to limit the bias due to PCR and sequencing errors (and 58 

to some extent intra-individual variability linked to the existence of pseudogenes) by clustering 59 

erroneous sequences with error-free target sequences. The second was to delineate OTUs as 60 

clusters of homologous sequences (by grouping the alleles/haplotype at the same locus) that 61 

would best fit a “species level”, i.e. the Operational Taxonomic Units defined using a classical 62 

phenetic proxy (Sokal and Crovello 1970). Recent bioinformatic algorithms alleviate the 63 

influence of errors and intraspecific variability in metabarcoding datasets. First, amplicon-64 

specific error correction methods, commonly used to correct sequences produced by 65 

pyrosequencing (Coissac et al. 2012), have now become available for Illumina-sequenced data. 66 

Introduced in 2016, DADA2 effectively corrects Illumina sequencing errors and has quickly 67 

become a widely used tool, particularly in the microbial world, producing more accurate 68 

biodiversity inventories and resolving fine-scale genetic variation by defining Amplicon 69 

Sequence Variants (ASVs) (Callahan et al. 2016; Nearing et al. 2018). Second, LULU is a 70 

recently developed curation algorithm designed to filter out spurious clusters, originating from 71 

PCR and sequencing errors, or intra-individual variability (pseudogenes, heteroplasmy), based on 72 

their similarity and co-occurrence rate with more abundant clusters, allowing obtaining curated 73 
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datasets while avoiding arbitrary abundance filters (Frøslev et al. 2017). The authors validated 74 

their approach on metabarcoding of plants using ITS2 (nuclear ribosomal internal transcribed 75 

spacer region 2) and evaluated it on several pipelines. Their results show that ASV definition 76 

with DADA2, subsequent clustering to address intraspecific variation, and final curation with 77 

LULU is the safest pathway for producing reliable and accurate metabarcoding data. The authors 78 

concluded that their validation on plants is relevant to other organism groups and other markers, 79 

while recommending future validation of LULU on mock communities as LULU’s minimum 80 

match parameter may need to be adjusted to less variable marker genes. 81 

The impact of errors being strongly decreased by correction algorithms such as DADA2 82 

and LULU, the relevance of clustering sequences into OTUs is now being debated. Indeed, after 83 

presenting their new algorithm on prokaryotic communities, the authors of DADA2 proposed that 84 

the reproducibility and comparability of ASVs across studies challenge the need for clustering 85 

sequences, as OTUs have the disadvantage of being study-specific and defined using arbitrary 86 

thresholds (Callahan et al. 2017). However, clustering sequences may still be necessary in 87 

metazoan datasets, where very distinct levels of intraspecific polymorphism can exist in the same 88 

gene region among taxa due to both evolutionary and biological specificity (Bucklin et al. 2011; 89 

Phillips et al. 2019). ASV-based inventories will thus be biased in favour of taxa with high levels 90 

of intraspecific diversity, even though the latter are not necessarily the most abundant ones (Bazin 91 

et al. 2006). Such bias in biodiversity inventories based on ASVs is likely to be magnified in 92 

presence-absence metabarcoding datasets, commonly used for metazoan communities (Ji et al. 93 

2013). Similarly, imposing a “universal” clustering threshold on metabarcoding datasets is also 94 

introducing bias, penalizing groups with lower interspecific divergence, and overestimating species 95 

diversity in groups with higher interspecific divergence. However, this can be alleviated with tools 96 

such as swarm v2, a single-linkage clustering algorithm (Mahe et al. 2015). Based on network 97 
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theory, swarm v2 aggregates sequences iteratively and locally around seed sequences and 98 

determines coherent groups of sequences, independent of amplicon input order, allowing highly 99 

scalable and fine-scale clustering. Finally, it is widely recognized that homogeneous entities 100 

sharing a set of evolutionary and ecological properties, i.e. species (Mayr 1942; de Queiroz 2005), 101 

sometimes referred to “ecotypes” for prokaryotes (Cohan 2001; Gevers et al. 2005), represent a 102 

fundamental category of biological organization that is the cornerstone of most ecological and 103 

evolutionary theories and empirical studies. Maintaining ASV information for feeding databases 104 

and cross-comparing studies is not incompatible with their clustering into OTUs, and this choice 105 

depends on the purpose of the study, i.e. providing a census of the extent and distribution of genetic 106 

polymorphism for a given gene, or a census of biodiversity to be used and manipulated in 107 

ecological or evolutionary studies.  108 

Here we evaluate DADA2 and LULU, using them alone and in combination with swarm 109 

v2, to assess the performance of these new tools for metabarcoding of metazoan communities. 110 

Using both mitochondrial COI (Leray et al. 2013) and the V1-V2 region of 18S ribosomal RNA 111 

(rRNA) (Sinniger et al. 2016), we evaluated the need for clustering  and the effectiveness of LULU 112 

curation to select pipeline parameters delivering the most accurate resolution of two deep-sea mock 113 

communities. We then test the different bioinformatic tools on a deep-sea sediment dataset in order 114 

to select an optimal trade-off between inflating biodiversity estimates and loosing rare biodiversity. 115 

As a baseline for comparison, and in the perspective of the joint study of metazoan and microbial 116 

taxa, we also analysed the 16S V4-V5 rRNA barcode on these natural samples (Parada et al. 2016). 117 

Our objectives were to (1) discuss the use of ASV vs OTU-centred datasets depending on 118 

taxonomic compartment and study objectives, and (2) determine the most adequate swarm-119 

clustering and LULU curation thresholds that avoid inflating biodiversity estimates while retaining 120 

rare biodiversity.  121 
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 122 

1 MATERIALS AND METHODS 123 

1.1 Preparation of samples 124 

Mock communities 125 

Genomic-DNA mass-balanced metazoan mock communities (5 ng/µL) were prepared 126 

using standardized 10 ng/µL DNA extracts of ten deep-sea specimens belonging to five taxonomic 127 

groups (Polychaeta, Crustacea, Anthozoa, Bivalvia, Gastropoda; Table S1). Specimen DNA was 128 

extracted using a CTAB extraction protocol, from muscle tissue or from whole polyps in the case 129 

of cnidarians. The mock communities differed in terms of ratios of total genomic DNA from each 130 

species, with increased dominance of three species and secondary species DNA input decreasing 131 

from 3% to 0.7%. We individually barcoded the species present in the mock communities: PCRs 132 

of both target genes were performed using the same primers as the ones used in metabarcoding (see 133 

below). The PCR reactions (25 μL final volume) contained 2 µL DNA template with 0.5 μM 134 

concentration of each primer, 1X Phusion Master Mix, and an additional 1 mM MgCl2 for COI. 135 

PCR amplifications (98 °C for 30 s; 40 cycles of 10 s at 98 °C, 45 s at 48 °C (COI) or 57 °C (18S), 136 

30 s at 72 °C; and 72 °C for 5 min) were cleaned up with ExoSAP (Thermo Fisher Scientific, 137 

Waltham, MA, USA) and sent to Eurofins (Eurofins Scientific, Luxembourg) for Sanger 138 

sequencing. The barcode sequences obtained for all mock specimens were added to the databases 139 

used for taxonomic assignments of metabarcoding datasets, and were submitted on Genbank under 140 

accession numbers MN826120-MN826130 and MN844176-MN844185.  141 

 142 

Environmental DNA 143 

Sediment cores were collected from thirteen deep-sea sites ranging from the Arctic to the 144 

Mediterranean during various cruises (Table S2). Sampling was carried out with a multicorer or 145 
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with a remotely operated vehicle. Three tube cores were taken at each sampling station (GPS 146 

coordinates in Table S2). The latter were sliced into depth layers that were transferred into zip-lock 147 

bags, homogenised, and frozen at −80°C on board before being shipped on dry ice to the laboratory. 148 

The first layer (0-1 cm) was used in the present study. DNA extractions were performed using 149 

approximately 10 g of sediment with the PowerMax Soil DNA Isolation Kit (Qiagen, Hilden, 150 

Germany). To increase the DNA yield, the elution buffer was left on the spin filter membrane for 151 

10 min at room temperature before centrifugation. The ~5 mL extract was then split into three parts, 152 

one of which was kept in screw-cap tubes for archiving purposes and stored at -80°C. For the four 153 

field controls, the first solution of the kit was poured into the control zip-lock bag, before following 154 

the usual extraction steps. For the two negative extraction controls, a blank extraction (adding 155 

nothing to the bead tube) was performed alongside sample extractions. 156 

 157 

1.2 Amplicon library construction and high-throughput sequencing 158 

Two primer pairs were used to amplify the mitochondrial COI and the 18S V1-V2 rRNA 159 

barcode genes specifically targeting metazoans, and one pair of primer was used to amplify the 160 

prokaryote 16S V4-V5 region. PCR amplifications, library preparation, and sequencing were 161 

carried out at Genoscope (Evry, France) as part of the eDNAbyss project.  162 

 163 

Eukaryotic 18S V1-V2 rRNA gene amplicon generation 164 

Amplifications were performed with the Phusion High Fidelity PCR Master Mix with GC 165 

buffer (Thermo Fisher Scientific, Waltham, MA, USA) and the SSUF04 (5’- 166 

GCTTGTCTCAAAGATTAAGCC-3’) and SSUR22mod (5’- CCTGCTGCCTTCCTTRGA-3’) 167 

primers (Sinniger et al. 2016), preferentially targeting metazoans, the primary focus of this study. 168 

The PCR reactions (25 μL final volume) contained 2.5 ng or less of DNA template with 0.4 μM 169 
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concentration of each primer, 3% of DMSO, and 1X Phusion Master Mix. PCR amplifications 170 

(98 °C for 30 s; 25 cycles of 10 s at 98 °C, 30 s at 45 °C, 30 s at 72 °C; and 72 °C for 10 min) of all 171 

samples were carried out in triplicate in order to smooth the intra-sample variance while obtaining 172 

sufficient amounts of amplicons for Illumina sequencing.  173 

 174 

Eukaryotic COI gene amplicon generation 175 

Metazoan COI barcodes were generated using the mlCOIintF (5’-176 

GGWACWGGWTGAACWGTWTAYCCYCC-3’) and jgHCO2198 (5’- 177 

TAIACYTCIGGRTGICCRAARAAYCA-3’) primers (Leray et al. 2013). Triplicate PCR 178 

reactions (20 μl final volume) contained 2.5 ng or less of total DNA template with 0.5 μM final 179 

concentration of each primer, 3% of DMSO, 0.175 mM final concentration of dNTPs, and 1X 180 

Advantage 2 Polymerase Mix (Takara Bio, Kusatsu, Japan). Cycling conditions included a 10 min 181 

denaturation step followed by 16 cycles of 95 °C for 10 s, 30s at 62°C (−1°C per cycle), 68 °C for 182 

60 s, followed by 15 cycles of 95 °C for 10 s, 30s at 46°C, 68 °C for 60 s and a final extension of 183 

68 °C for 7 min.  184 

Prokaryotic 16S rRNA gene amplicon generation 185 

Prokaryotic barcodes were generated using 515F-Y (5’- GTGYCAGCMGCCGCGGTAA-186 

3’) and 926R (5’- CCGYCAATTYMTTTRAGTTT-3’) 16S-V4V5 primers (Parada et al. 2016). 187 

Triplicate PCR mixtures were prepared as described above for 18S-V1V2, but cycling conditions 188 

included a 30 s denaturation step followed by 25 cycles of 98 °C for 10 s, 53 °C for 30 s, 72 °C for 189 

30 s, and a final extension of 72 °C for 10 min.  190 

 191 

 192 
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Amplicon library preparation 193 

PCR triplicates were pooled and PCR products purified using 1X AMPure XP beads 194 

(Beckman Coulter, Brea, CA, USA) clean up. Aliquots of purified amplicons were run on an 195 

Agilent Bioanalyzer using the DNA High Sensitivity LabChip kit (Agilent Technologies, Santa 196 

Clara, CA, USA) to check their lengths and quantified with a Qubit fluorimeter (Invitrogen, 197 

Carlsbad, CA, USA). One hundred nanograms of pooled amplicon triplicates were directly end-198 

repaired, A-tailed and ligated to Illumina adapters on a Biomek FX Laboratory Automation 199 

Workstation (Beckman Coulter, Brea, CA, USA). Library amplification was performed using a 200 

Kapa Hifi HotStart NGS library Amplification kit (Kapa Biosystems, Wilmington, MA, USA) with 201 

the same cycling conditions applied for all metagenomic libraries and purified using 1X AMPure 202 

XP beads. 203 

 204 

Sequencing library quality control 205 

Amplicon libraries were quantified by Quant-iT dsDNA HS assay kits using a Fluoroskan 206 

Ascent microplate fluorometer (Thermo Fisher Scientific, Waltham, MA, USA) and then by qPCR 207 

with the KAPA Library Quantification Kit for Illumina Libraries (Kapa Biosystems, Wilmington, 208 

MA, USA) on an MxPro instrument (Agilent Technologies, Santa Clara, CA, USA). Library 209 

profiles were assessed using a high-throughput microfluidic capillary electrophoresis system 210 

(LabChip GX, Perkin Elmer, Waltham, MA, USA). 211 

 212 

Sequencing procedures 213 

Library concentrations were normalized to 10 nM by addition of 10 mM Tris-Cl (pH 8.5) 214 

and applied to cluster generation according to the Illumina Cbot User Guide (Part # 15006165). 215 

Amplicon libraries are characterized by low diversity sequences at the beginning of the reads due 216 
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to the presence of the primer sequence. Low-diversity libraries can interfere in correct cluster 217 

identification, resulting in a drastic loss of data output. Therefore, loading concentrations of 218 

libraries were decreased (8–9 pM instead of 12–14 pM for standard libraries) and PhiX DNA spike-219 

in was increased (20% instead of 1%) in order to minimize the impacts on the run quality. 220 

Libraries were sequenced on HiSeq2500 (System User Guide Part # 15035786) instruments 221 

(Illumina, San Diego, CA, USA) in a 250 bp paired-end mode.  222 

 223 

1.3 Bioinformatic analyses 224 

All bioinformatic analyses were performed using a Unix shell script on a home-based 225 

cluster (DATARMOR, Ifremer), available on Gitlab (https://gitlab.ifremer.fr/abyss-project/). The 226 

mock communities were analysed alongside the natural samples, and used to validate the 227 

metabarcoding pipeline in terms of detection of correct species and presence of false-positives. The 228 

details of the pipeline, along with specific parameters used for all three metabarcoding markers are 229 

listed in Table S3. 230 

 231 

Reads preprocessing 232 

Our multiplexing strategy relies on ligation of adapters to amplicon pools, meaning that 233 

contrary to libraries produced by double PCR, the reads in each paired sequencing run can be 234 

forward or reverse. DADA2 correction is based on error distribution differing between R1 and R2 235 

reads. We thus developed a custom script (abyss-preprocessing in abyss-pipeline) allowing 236 

separating forward and reverse reads in each paired run and reformatting the outputs to be 237 

compatible with DADA2. Briefly, the script uses cutadapt v1.18 to detect and remove primers, 238 

while separating forward and reverse reads in each paired sequence file to produce two pairs of 239 

sequence files per sample named R1F/R2R and R2F/R1R. Cutadapt parameters (Table S3) were 240 
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set to require an overlap over the full length of the primer (default: 3 nt), with 2-4 nt mismatches 241 

allowed for ribosomal loci, and 7 nt mismatches allowed for COI (default: 10%). Each identified 242 

forward and reverse read is then renamed which the correct extension (/1 and /2 respectively), 243 

which is a requirement for DADA2 to recognize the pairs of reads. Each pair of renamed sequence 244 

files is then re-paired with BBMAP Repair v38.22 in order to remove singleton reads (non-paired 245 

reads). Optionally, sequence file names can also be renamed if necessary using a CSV 246 

correspondence file. 247 

 248 

Read correction, amplicon cluster generation and taxonomic assignment 249 

Pairs of Illumina reads were corrected with DADA2 v.1.10 (Callahan et al. 2016) following 250 

the online tutorial for paired-end HiSeq data 251 

(https://benjjneb.github.io/dada2/bigdata_paired.html). Reads were filtered and trimmed with the 252 

filterAndTrim function and all reads containing ambiguous bases removed. The parameters were 253 

set based on tutorial recommendations and trimming lengths were adjusted based on sequence 254 

quality profiles, so that Q-scores remained above 30 (truncLen at 220 for 18S and 16S, 200 for 255 

COI, maxEE at 2, truncQ at 11, maxN at 0).  256 

The error model was calculated for forward and reverse reads (R1F/R2R pairs and then 257 

R2F/R1R pairs) with learnErrors based on 100 million randomly chosen bases (default), and reads 258 

were dereplicated using derepFastq. After read correction with the dada function, forward and 259 

reverse reads were merged with a minimum overlap of 12 nucleotides, allowing no mismatches 260 

(default). The amplicons were then filtered by size. The size range was set to 330-390 bp for the 261 

18S SSU rRNA marker gene, 300-326 bp for the COI marker gene, and 350-390 bp for the 16S 262 

rRNA marker gene.  263 
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Chimeras were removed with removeBimeraDenovo and ASVs were taxonomically 264 

assigned via the RDP naïve Bayesian classifier method, the default assignment method 265 

implemented in DADA2. A second taxonomic assignment method was optionally implemented in 266 

the pipeline, allowing assigning ASVs using BLAST+ (Basic Local Alignment Search Tool v2.6.0) 267 

based on minimum similarity and minimum coverage (-perc_identity 70 and –qcov_hsp 80). An 268 

initial test implementing BLASTn+ to assign taxonomy only to the COI dataset using a 96% 269 

percent identity threshold led to the exclusion of the majority of the clusters. Given observed inter-270 

specific mitochondrial DNA divergence levels of up to 30% within a same polychaete genus (Zanol 271 

et al. 2010) or among some closely related deep-sea shrimp species (Shank et al. 1999), and 272 

considering our interest in the identities of multiple, largely unknown taxa in poorly characterized 273 

communities, more stringent BLAST thresholds were not implemented at this stage. The Silva132 274 

reference database was used for the 16S and 18S SSU rRNA marker genes (Quast et al. 2012), and 275 

MIDORI-UNIQUE (Machida et al. 2017) was used for COI. The databases were downloaded from 276 

the DADA2 website (https://benjjneb.github.io/dada2/training.html) and from the FROGS website 277 

(http://genoweb.toulouse.inra.fr/frogs_databanks/assignation/). Finally, to evaluate the effect of 278 

clustering, ASV tables produced by DADA2 were clustered with swarm v2 (Mahe et al. 2015) at 279 

d=1,3,4,5 and 11 for 18S and 16S, and d=1,5,6,7, and 13 for COI in FROGS 280 

(http://frogs.toulouse.inra.fr/) (Escudié et al. 2018). Resulting OTUs were taxonomically assigned 281 

via RDP and BLAST+ using the databases stated above. 282 

Molecular clusters were refined in R v.3.5.1 (R Core Team 2018). A blank correction was 283 

made using the decontam package v.1.2.1 (Davis et al. 2018), removing all clusters that were 284 

prevalent (more frequent) in negative control samples. ASV/OTU tables were refined 285 

taxonomically based on their RDP or BLAST taxonomy. For both assignment methods, unassigned 286 

clusters were removed. Non-target 18S and COI clusters (bacterial, non-metazoan) as well as all 287 
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clusters with a terrestrial assignment (taxonomic groups known to be terrestrial-only, such as 288 

Insecta, Arachnida, Diplopoda, Amphibia, terrestrial mammals, Stylommatophora, Aves, 289 

Onychophora, Succineidae, Cyclophoridae, Diplommatinidae, Megalomastomatidae, Pupinidae, 290 

Veronicellidae) were removed. Samples were checked to ensure that a minimum of 10,000 291 

metazoan reads were left after refining. Finally, as tag-switching is always to be expected in 292 

multiplexed metabarcoding analyses (Schnell et al. 2015), an abundance renormalization was 293 

performed to remove spurious positive results due to reads assigned to the wrong sample 294 

(Wangensteen and Turon 2016, script from 295 

https://github.com/metabarpark/R_scripts_metabarpark). 296 

To test LULU curation (Frøslev et al. 2017), refined 18S and COI ASVs/OTUs were 297 

curated with LULU v.0.1 following the online tutorial (https://github.com/tobiasgf/lulu). The 298 

LULU algorithm detects erroneous clusters by comparing their sequence similarities and co-299 

occurrence rate with more abundant (“parent”) clusters. LULU was tested with a minimum relative 300 

co-occurrence of 0.90, using a minimum similarity threshold (minimum match) at 84% (default) 301 

and slightly higher at 90%, following recommendations of the authors for less variable loci than 302 

ITS.  303 

The vast majority of prokaryotes usually show low levels (< 1% divergence) of intra 304 

genomic variability for the 16S SSU rRNA gene (Acinas et al. 2004; Pei et al. 2010). These low 305 

intragenomic divergence levels can be efficiently removed with swarm clustering at d=1. Although 306 

LULU curation may still be useful to merge redundant phylotypes in specific cases such as 307 

haplotype network analyses, this was not tested in this study. Indeed, parallelization not being 308 

currently available for LULU curation, the richness of prokaryote communities implied an 309 

unrealistic calculation time, even on a powerful cluster (e.g. LULU curation was at 20-40% after 4 310 

days of calculation on our cluster). 311 
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 312 

1.4 Statistical analyses 313 

Sequence tables were analysed using R with the packages phyloseq v1.22.3 (McMurdie and 314 

Holmes 2013) following guidelines on online tutorials (http://joey711.github.io/phyloseq/tutorials-315 

index.html), and vegan v2.5.2 (Oksanen et al. 2018). The datasets were normalized by rarefaction 316 

to their common minimum sequencing depth, before analysis of mock communities and natural 317 

samples. 318 

To evaluate the functionality of the pipeline with the mock communities, taxonomically 319 

assigned metazoan clusters were considered as derived from one of the ten species used for the 320 

mock communities when the assignment delivered the corresponding species, genus, family, or 321 

class. Clusters not fitting the expected taxa were labelled as ‘Others’. Apart from PCR errors, these 322 

non-target clusters may also originate from contamination by external DNA from associated 323 

microfauna, or gut content in the case of whole polyps used for cnidarians. 324 

Alpha diversity detected using each pipeline in the natural samples was evaluated with the 325 

number of observed target-taxa in the rarefied datasets via analyses of variance (ANOVA) on 326 

generalized linear models based on quasipoisson distribution models. Homogeneity of multivariate 327 

dispersions were verified with the betapart package v.1.5.1 (Baselga and Orme 2012). Beta-328 

diversity patterns were visualised via Principal Coordinates Analyses (PCoA), using Jaccard 329 

dissimilarities for metazoans and Bray-Curtis dissimilarities for prokaryotes. The effect of site and 330 

LULU curation on community composition was tested by means of PERMANOVA, using the 331 

function adonis2 (vegan), with the same dissimilarities as in PCoAs, and permuting 999 332 

times.Finally, BLAST and RDP taxonomic assignments of the mock samples and the global dataset 333 

were compared at the most adequate pipeline settings for each locus. BLAST-refined (minimum 334 

identity at 70%) and RDP-refined (minimum phylum bootstrap at 80%) datasets were compared 335 
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on ASV-level for prokaryotes, and OTU-level for metazoans (swarm d=3, LULU at 84% for COI 336 

and 90% for 18S). As trials on MIDORI-UNIQUE resulted in very poor performance of RDP for 337 

COI (assignments belonging mostly to Insecta), the comparison was performed with MIDORI-338 

UNIQUE subsampled to marine taxa only. 339 

 340 

2 RESULTS 341 

2.1 Alpha diversity in mock communities 342 

A number of 2 million (18S) and 1.5 million (COI) raw reads were obtained from the two 343 

mock communities (Table S4).After refining, these numbers were decreased to 1.3 million for 18S 344 

and 0.7 million for COI. 345 

Seven out of ten mock species were recovered in the 18S dataset and all species were 346 

detected in the COI dataset (Table 1), even with minimum relative DNA abundance levels as low 347 

as 0.7% (Mock 5). Taxonomically unresolved species were correctly assigned up to their common 348 

family or class level. Dominant species generally produced more reads in both the clustered and 349 

non-clustered datasets (Table S6). 350 

When ASVs were clustered with swarm v2, this generally led to a slight loss of taxonomic 351 

resolution: Chorocaris sp. was not detected in Mock 5 for 18S at d > 1, and the two bivalves P. 352 

kilmeri and C. regab were taxonomically misidentified for COI at d ≥ 1.  353 

Clustering sequences with swarm v2 reduced the number of clusters produced per species, 354 

but some species still produced multiple OTUs even at d values as high as d=11 for 18S (A. 355 

arbuscula, Munidopsis sp., and E. norvegica) and d=13 for COI D. dianthus, A. muricola, 356 

Chorocaris sp., and Paralepetopsis sp.). Curating with LULU allowed reducing the number of 357 

clusters produced per species to nearly one for both loci, but the best results were obtained in 358 

datasets clustered at d > 1 for 18S and d ≥ 1 for COI. Moreover, LULU curation tended to decrease 359 
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the number of non-target clusters (“Others”) (Table 1). In the clustered COI dataset, curating with 360 

LULU at 84% minimum match resulted in the most accurate detection of community composition, 361 

and this for all d values tested. However, curating with LULU the 18S data (ASVs or OTUs) led 362 

to the loss of one shrimp species (Chorocaris sp) when the minimum match parameter was at 90% 363 

and an additional species was lost (the limpet Paralepetopsis sp.) when this parameter was at 84%. 364 

LULU consistently merged the shrimp species Chorocaris sp with another shrimp species as the 365 

latter were always co-occurring in our mock samples. 366 

  367 
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  368 

Table 1. Number of ASVs/OTUs detected per species in the mock communities using different 
bioinformatic pipelines. White cells indicate an exact match with the number of OTUs expected, 
grey cells indicate a number of OTUs differing by ±3 from the number expected, and dark grey 
cells indicate a number of OTUs >3 from the one expected. 

18S DADA2
DADA2
+LULU 

90%

DADA2+
LULU 
84%

DADA2+swarm
d1/d3/d4/d5/d11

DADA2+swarm 
d1/d3/d4/d5/d11 + 

LULU 90%

DADA2+swarm 
d1/d3/d4/d5/d11 + 

LULU 84%
Mock 3
Alcyonacea;A.arbuscula 64 1 1 Alcyonacea;A.arbuscula 29/11/9/7/6 1/1/1/1/1 1/1/1/1/1
Caryophylliidae;D.dianthus 2 1 1 Caryophylliidae;D.dianthus 2/2/1/1/1 1/1/1/1/1 1/1/1/1/1
Alvinocaris muricola 2 1 1 Alvinocaris muricola 2/1/1/1/1 1/1/1/1/1 1/1/1/1/1
Chorocaris  sp. 1 0 0 Chorocaris  sp. 2/1/1/1/1 0/0/0/0/0 0/0/0/0/0
Munidopsis  sp. 6 1 1 Munidopsis  sp. 5/4/3/3/2 1/1/1/1/1 1/1/1/1/1
Gastropoda;Paralepetopsis  sp. 1 1 0 Gastropoda;Paralepetopsis  sp. 1/1/1/1/1 1/1/1/1/1 0/0/0/0/0
Vesicomyidae;P. kilmeri/C. regab/V. gigas 8 1 1 Bivalvia;P. kilmeri/C. regab/V. gigas 5/4/4/4/2 1/2/2/2/1 1/1/1/1/1
Polychaeta;E.norvegica 8 3 2 Polychaeta;E.norvegica 5/4/4/4/3 3/2/2/2/2 2/1/2/2/2
Others 3 3 2 Others 4/4/4/4/4 2/2/2/2/3 2/2/2/2/2
Mock 5
Alcyonacea;A.arbuscula 54 1 1 Alcyonacea;A.arbuscula 28/11/9/7/6 1/1/1/1/1 1/1/1/1/1
Caryophylliidae;D.dianthus 1 1 1 Caryophylliidae;D.dianthus 1/1/1/1/1 1/1/1/1/1 1/1/1/1/1
Alvinocaris muricola 1 1 1 Alvinocaris muricola 1/1/1/1/1 1/1/1/1/1 1/1/1/1/1
Chorocaris  sp. 1 0 0 Chorocaris  sp. 1/0/0/0/0 0/0/0/0/0 0/0/0/0/0
Munidopsis  sp. 4 1 1 Munidopsis  sp. 4/3/3/3/2 1/1/1/1/1 1/1/1/1/1
Gastropoda;Paralepetopsis  sp. 1 1 0 Gastropoda;Paralepetopsis  sp. 1/1/1/1/1 1/1/1/1/1 0/0/0/0/0
Vesicomyidae;P. kilmeri/C. regab/V. gigas 5 1 1 Bivalvia;P. kilmeri/C. regab/V. gigas 5/3/3/3/2 1/1/1/1/1 1/1/1/1/1
Polychaeta;E.norvegica 11 3 2 Polychaeta;E.norvegica 5/4/4/4/3 3/2/2/2/1 2/1/2/2/2
Others 4 3 2 Others 3/4/4/4/2 4/2/2/2/1 4/2/2/2/3

COI DADA2
DADA2
+LULU 

90%

DADA2+
LULU 
84%

DADA2+swarm
d1/d5/d6/d7/d13

DADA2+swarm 
d1/d5/d6/d7/d13 + 

LULU 90%

DADA2+swarm 
d1/d5/d6/d7/d13 + 

LULU 84%
Mock 3
Acanella arbuscula 1 1 1 Acanella arbuscula 1/1/1/1/1 1/1/1/1/1 1/1/1/1/1
Hexacorallia;D.dianthus 3 3 3 Hexacorallia;D.dianthus 3/4/4/4/3 3/3/3/3/3 3/3/3/3/3
Alvinocaris ;A. muricola 26 2 2 Alvinocaris;A. muricola 21/12/10/10/5 1/1/1/1/1 1/1/1/1/1
Chorocaris  sp. 2 1 1 Chorocaris  sp. 3/3/3/3/3 1/1/1/1/1 1/1/1/1/1
Munidopsis  sp. 2 1 1 Munidopsis  sp. 3/2/1/1/1 2/1/1/1/1 1/1/1/1/1
Gastropoda;Paralepetopsis  sp. 8 2 3 Gastropoda;Paralepetopsi s sp. 3/3/3/3/2 2/2/2/2/2 2/2/2/2/2
Phreagena kilmeri 2 1 1 Bivalvia;P. kilmeri
Bivalvia;C. regab 2 1 1 Bivalvia;C. regab
Vesicomya gigas 1 1 1 Vesicomya gigas 1/1/1/1/1 1/1/1/1/1 1/1/1/1/1
Polychaeta;E.norvegica 3 2 1 Eunice norvegica 2/1/1/1/1 2/1/1/1/1 1/1/1/1/1
Others 7 6 6 Others 3/3/3/3/4 4/5/5/5/5 5/5/5/5/5
Mock 5
Acanella arbuscula 1 1 1 Acanella arbuscula 1/1/1/1/1 1/1/1/1/1 1/1/1/1/1
Hexacorallia;D.dianthus 3 3 3 Hexacorallia;D.dianthus 3/3/3/3/3 3/3/3/3/3 3/3/3/3/3
Alvinocaris ;A. muricola 26 2 2 Alvinocaris;A. muricola 21/12/10/10/5 1/1/1/1/1 1/1/1/1/1
Chorocaris  sp. 1 1 1 Chorocaris  sp. 2/2/2/2/2 1/1/1/1/1 1/1/1/1/1
Munidopsis  sp. 2 1 1 Munidopsis  sp. 2/2/1/1/1 1/1/1/1/1 1/1/1/1/1
Gastropoda;Paralepetopsis  sp. 5 2 2 Gastropoda;Paralepetopsis  sp. 3/2/2/2/2 2/2/2/2/2 2/2/2/2/2
Phreagena kilmeri 1 1 1 Bivalvia;P. kilmeri
Bivalvia;C. regab 2 1 1 Bivalvia;C. regab
Vesicomya gigas 1 1 1 Vesicomya gigas 1/1/1/1/1 1/1/1/1/1 1/1/1/1/1
Polychaeta;E.norvegica 3 2 1 Eunice norvegica 2/2/2/2/2 1/1/1/1/1 1/1/1/1/1
Others 6 5 4 Others 2/2/2/2/2 1/2/2/2/2 1/1/1/1/1

2/3/3/3/3 2/2/2/2/22/2/2/2/2

2/2/2/2/2 2/2/2/2/22/2/2/2/2
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 369 

. 370 

2.2 Alpha-diversity patterns in natural samples 371 

High-throughput sequencing results 372 

A number of 44 million (18S), 33 million (COI) and 16 million (16S) reads were obtained 373 

from 42 sediment samples, 4 field controls, 2 extraction blanks, and 4-10 PCR blanks (Table S4). 374 

Two sediment samples failed amplification for the COI marker gene (PCT_FA_CT2_0_1 and 375 

CHR_CT1_0_1). For metazoans, less reads were retained after bioinformatic processing in 376 

negative controls (36% for 18S, 47% for COI) compared to true samples (~60% for 18S, ~70% 377 

for COI), while the opposite was observed for 16S (74% of reads retained in control samples 378 

against 53% in true samples). Negative control samples (field, extraction, and PCR controls) 379 

contained 2,186,230 (~8%) 18S reads, 1,015,700 (~4%) COI reads, and 2,618,729 (28%) 16S 380 

reads. These reads were mostly originating from the field controls for metazoans (48% for 18S, 381 

55% for COI) and extractions controls for 16S (50%).  382 

After blank correction, data refining, and abundance renormalization, rarefaction curves 383 

showed that a plateau was achieved for all samples in both clustered and non-clustered datasets, 384 

suggesting an overall sequencing depth adequate to capture the diversity present (Fig. S1). The 385 

final 18S datasets (with and without clustering at selected d values) contained 8.9-9.6 million 386 

marine metazoan reads in 42 sediment samples (Table S4), and comprised 57,661 ASVs and 387 

19,504-44,948 OTUs (Table S6). The final COI datasets contained 4.5-6.9 million marine 388 

metazoan reads in 40 sediment samples, and comprised 78,785 ASVs and 44,684-64,669 OTUs. 389 

The 16S datasets contained from 6.6 to 6.7 million prokaryotic reads in 42 sediment samples, 390 

producing 56,577 ASVs and 41,746-14,631 OTUs. 391 

 392 
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Number of clusters among pipelines 393 

The number of metazoan clusters detected in the deep-sea sediment samples varied 394 

significantly between bioinformatic pipelines chosen (, and also varied significantly among sites 395 

(Table 2). However, the pipeline effect was consistent across sites although mean cluster numbers 396 

detected per sample spanned a wide range in all loci (100-800 for 18S, 150-1,500 for COI datasets, 397 

and 1,500-5,000 for 16S, Fig. 1). 398 

Expectedly, clustering significantly reduced the number of detected clusters per sample for 399 

all loci. Consistent to results observed in mock communities, clustering at d=1-13 resulted in 400 

comparable OTU numbers for COI, while significantly higher OTU numbers were obtained at d=1 401 

than with d >1 for ribosomal loci (Fig. 1, Table 2). DADA2 detected on average 863 (SE=61) 402 

metazoan COI ASVs per sample, and clustering reduced this number to around 500, regardless the 403 

d-value. For ribosomal loci, clustering at d=3-5 reduced OTU numbers of around 25-30% 404 

compared to without clustering, while at d=11, cluster numbers were halved.  405 

 406 

 407 

Table 2. Effect of pipeline and site on the number of metazoan and prokaryote clusters. Results of the 
analysis of variance (ANOVA) of the rarefied cluster richness for the three genes studied. Pairwise 
comparisons were performed with Tukey's HSD tests. DS: Dada2+swarm; DSL: Dada2+swarm+LULU; 
d: swarm d-value. Significance codes: ***: p<0.001; **: p<0.01; *: p<0.05. 
LOCUS F-value p-value Significant pairwise comparisons
COI
Pipeline 123.13 p<0.001  Dada2 > DS***;  DS(d1) > DS(d13)***;
Site 356.37 p<0.001 Dada2 > DL***; DS > DSL 84%***; D(S)L 90% > D(S)L 84%***

Pipeline x Site
0.16 p>0.05

DL > DSL***; DL 90% > DS***
18S V1-V2
Pipeline 129.16 p<0.001 Dada2 > DS(d>1)***;  DS(d1) > DS(d>1)***; DS(d11) < DS(d1-5)***;
Site 154.52 p<0.001 Dada2 > DL***; DS > DSL 84%***; D(S)L 90% > D(S)L 84%***;
Pipeline x Site 0.49 p>0.05 DL 84% < DS***
16S V4-V5
Pipeline 179.19 p<0.001 Dada2 > DS***;
Site 18.46 p<0.001 DS(d1) > DS(d>1)***; DS(d11) < DS(d1-5)***
Pipeline x Site 0.06 p>0.05
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 408 

Figure 1. Number of COI, 18S, and 16S 
clusters detected in sediment of 14 deep-sea 
sites with the DADA2 metabarcoding 
pipeline, with and without swarm-clustering 
at different d values, and with and without 
LULU curation at 84% and 90% minimum 
match. Cluster abundance was obtained after 
rarefaction to minimal sequencing depth. 
Boxplots represent medians with first and 
third quartiles. Red dots indicate means. 
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LULU curation of metazoan ASVs significantly decreased the number of clusters detected 409 

at both tested minimum match values (Table 2). For OTU datasets, the decrease was significant 410 

only when the minimum match parameter was at 84%. The effect of LULU curation was stronger 411 

at a lower minimum match value for both loci, as LULU curation at 90% of ASVs or OTUs resulted 412 

in significantly more clusters than when the minimum match was at 84% (Table 2). The effect of 413 

LULU curation of was also more pronounced for the 18S locus: LULU decreased by 31-65% the 414 

number of 18S ASVs/OTUs, compared to 7-33% for COI. LULU curation of ASVs or OTUs 415 

resulted in comparable cluster numbers in the 18S datasets, regardless the d-value used for 416 

clustering. For example, at 84% minimum match, LULU curation produced on average 137 ± 7 and 417 

140 ± 8 clusters per sample after application on ASVs and OTUs (d=4) respectively. At 90%, these 418 

numbers were at 189 ± 11 and 200 ± 12 (Fig. 1). This was not the case for COI, where LULU 419 

curation of ASVs resulted in significantly more clusters (574 ± 38 at 84% and 742 ± 53 at 90%) 420 

than LULU curation of OTUs (334 ± 21 and 433 ± 31 for d=6). 421 

Looking at mean ASV and OTU numbers detected per phylum with each pipeline showed 422 

consistent effects of swarm clustering and LULU curation, but highlighted strong differences in 423 

the amount of intragenomic variation between taxonomic groups. For all loci investigated, some 424 

taxa displayed high ASV to OTU ratios, while others were hardly affected by clustering or LULU 425 

curation in terms of numbers of clusters detected (Fig S2). 426 

 427 

2.3 Patterns of beta-diversity between pipelines 428 

Community differences were visualized using PCoA ordinations (Jaccard and Bray-Curtis 429 

dissimilarities for metazoans and prokaryotes respectively) in clustered and non-clustered datasets 430 

(Fig. 2, Fig. S3). Expectedly, PERMANOVAs confirmed that sites differed significantly in terms 431 

of community structure, accounting from 45% to 89% of variation in data. Evaluating the effect of 432 
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LULU curation (at 84% and 90%) for metazoans showed that LULU-curated data resolved similar 433 

ecological patterns than non-curated data, accounting from 0.5% (COI) to 1.3% (18S) of variation 434 

in data (Fig. 2).  435 

Although ASV and OTU datasets detected similar levels of variation due to sites in 436 

PERMANOVAs, clustering levels affected the ecological patterns resolved by ordinations in rRNA 437 

loci (Fig 2). At low d values (d=1-3), ecological patterns were consistent to patterns observed in 438 

the ASV datasets, with samples segregating by site and depth. Increasing d values produced 439 

stronger segregation among sites, thus resulting in differentiation among ocean basins rather than 440 

depth. This change in resolution occurred with d values as low as d=4 for 18S but was strongest at 441 

d=11 for both rRNA loci (Fig. S3, Fig. 2). 442 

  443 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 30, 2019. ; https://doi.org/10.1101/717355doi: bioRxiv preprint 

https://doi.org/10.1101/717355
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 
 

 444 

 445 

  446 

Figure 2. Beta-diversity patterns in ASV and OTU-centred datasets. PCoA ordinations 
showing community differentiation observed between sites and LULU vs not LULU curated 
samples, for the DADA2 metabarcoding pipeline with and without clustering. Metazoan 
datasets were clustered at d=1-13 (COI) d=1-11 (18S) and curated with LULU at two 
minimum match values. The prokaryote 16S dataset was clustered at d=1-11. R2 values and 
associated p-values obtained in PERMANOVAs are shown in the ordination plots. 
Significance codes: ***: p<0.001; **: p<0.01; *: p<0.05. Colour codes: Green: 
Mediterranean < 1,000 m; Red-yellow: Mediterranean-Atlantic transition zone 300-1,000 m; 
Blue: North Atlantic < 1,000 m; Purple: Arctic < 1,000 m. 
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2.4 Taxonomic assignment quality 447 

BLAST and RDP Bayesian Classifier assignments were compared in the mock 448 

communities and natural samples, on data clustered at d=3 and curated with LULU at 84% for COI 449 

and 90% for 18S. For prokaryotes, assignment methods were compared on the ASV-level. BLAST 450 

and RDP assigned similar amounts of OTUs in the prokaryote dataset, but BLAST assigned 20-451 

70% less OTUs in the metazoan datasets (Table S7). Assigning with BLAST at a minimum of 70% 452 

hit identity resulted in comparable results as described above. Eight of the ten species were 453 

recovered with COI and six species were recovered with 18S, while the vesicomyid bivalves were 454 

taxonomically unresolved with both loci (Fig. S4). Although most species produced one single 455 

OTU, between one and three species still resulted in 2-3 OTUs in each mock sample. Assigning 456 

the 18S dataset with RDP resulted in comparable taxonomic resolutions, although more species 457 

produced more than one OTU. Assigning the COI dataset with RDP using the MIDORI-UNIQUE 458 

database resulted in assignments of the mock samples that did not match the expected taxa and 459 

were mostly belonging to arthropods, a problem not observed with BLAST (data not shown). When 460 

the database was reduced to marine-only taxa, all 10 species were detected, and this at expected 461 

OTU abundances, once data was filtered for phylum bootstrap levels ≥ 80% (Fig S4). However, 462 

applying a phylum bootstrap minimum of 80% resulted in a strong decrease in the number of final 463 

target OTUs, particularly for COI where only 226 OTUs remained after filtering (Table S7). This 464 

reduced recovery with RDP after applying a minimum phylum bootstrap level was not observed in 465 

prokaryotes, where 51,000-55,000 ASVs were left after filtering with both assignment methods 466 

(Table S7). 467 

BLAST hit identities of the overall datasets varied strongly depending on phyla and 468 

marker gene (Fig. 3). For 18S, most clusters had hit identities ≥ 90%. Poorly assigned clusters 469 

(hit identity < 90%) represented less than 20% of the dataset and were mostly assigned to 470 
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Nematoda, Cnidaria, Tardigrada, Porifera, and Xenacoelomorpha. For COI, nearly all clusters 471 

had similarities to sequences in databases lower than 90%. Overall, arthropods and echinoderms 472 

were detected at similar levels by both markers. The 18S barcode marker performed better in the 473 

detection of nematodes, annelids, platyhelminths, and xenacoelomorphs while COI mostly 474 

detected cnidarians, molluscs, and poriferans (Fig. 3), highlighting the complementarity of these 475 

two loci. BLAST hit identity was much higher for prokaryotes, with most clusters assigned with 476 

more than 90% similarity to sequences in databases. When datasets were filtered for RDP 477 

phylum bootstrap levels ≥ 80%, most assignments also had high genus bootstrap values for 478 

ribosomal loci. However, for COI, a considerable number of OTUs assigned to arthropods, 479 

cnidarians, molluscs, vertebrates, and poriferans still had genus bootstraps < 60%. 480 

 481 

  482 
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 483 

 484 

 485 

Figure 3. Taxonomic assignment quality of BLAST and RDP methods on metazoan 
and prokaryote metabarcoding datasets of 14 deep-sea sites. BLAST hit identity of all 
target clusters detected is given at hit identities > 70%. RDP-assigned data was filtered 
for phylum bootstraps ≥ 80%, and associated genus bootstraps are displayed. 
Taxonomic assignments were performed on the Silva132 database for 18S and 16S, 
and on the MIDORI-UNIQUE database, subsampled to marine taxa for COI. 
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3 DISCUSSION 486 

3.1  ASVs and OTUs for genetic vs species diversity 487 

The rise of HTS and the subsequent use of DNA metabarcoding have revolutionized 488 

microbiology by unlocking the access to uncultivable microorganisms, which represent by far the 489 

great majority of prokaryotes (Klappenbach et al. 2001). The development and improvement of 490 

molecular and bioinformatic methods to perform inventories were historically primarily developed 491 

for 16S rRNA barcode loci, before being transferred to the eukaryotic kingdom based on the use 492 

of barcode markers such as 28S and 18S rRNA, ITS, or mitochondrial markers such as COI 493 

(Valentini et al. 2009; Bellemain et al. 2010). Thus, most bioinformatics pipelines were initially 494 

developed accounting for intrinsic properties of prokaryotes and concepts inherent to microbiology 495 

(Caporaso et al. 2010; Schloss et al. 2009; Boyer et al. 2016), before being transferred to eukaryotes 496 

in general, or metazoans in particular. Such application transfers require adaptations to account for 497 

differences in both concepts and basic biological features. One example is the question of the 498 

relevance of using ASVs, advocated to replace OTUs “as the standard unit of marker-gene analysis 499 

and reporting” (Callahan et al., 2017): an advice for microbiologists that may not apply when 500 

working on metazoans. 501 

First, metazoans are well known to exhibit variable and sometimes very high intraspecific 502 

polymorphism in 18S-V1 and above all in COI. Second, the results on the mock samples showed 503 

that single individuals produced very different numbers of ASVs, indicating that ASV-centred 504 

datasets do not reflect actual species composition in metazoans. As this “demultiplication” will be 505 

highly variable across taxa (as seen in Fig. S2, and references such as Plouviez et al. 2009 and 506 

Teixeira et al. 2013), the taxonomic compositions of samples based on ASVs will reflect genetic 507 

rather than species diversity.  508 
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Clustering ASVs into OTUs and/or curating with LULU alleviated the numerical inflation, 509 

but some species still produced more than one OTU, even at d-values as high as d=11-13. While 510 

clustering and LULU curation improved numerical results in the mock communities, they were 511 

associated with a decrease in taxonomic resolution, especially for 18S where some closely related 512 

species were merged with increasing clustering/filtering thresholds (i.e. the vesicomyid bivalves, 513 

the gastropod, and the shrimp species; Table 1). When studying natural habitats, very likely to 514 

harbour closely related co-occurring species, both LULU curation and clustering are thus likely to 515 

lead to the loss of true species diversity, particularly for low-resolution markers such as 18S. 516 

Optimal results in the mock samples, i.e. delivering the best balance between the limitation of 517 

spurious clusters and the loss of true species diversity, were obtained with LULU curation at 90% 518 

for 18S and 84% for COI, highlighting the importance of adjusting bioinformatic correction tools 519 

to each barcode marker, a step for which mock communities are most adequate. 520 

 521 

3.2 ASVs vs OTUs in natural communities: adapting pipeline parameters to marker 522 

properties 523 

Life histories of organisms, together with intrinsic properties of marker genes, determine 524 

the level of intragenomic and intraspecific diversity. Intraspecific variation is a recognised problem 525 

in metabarcoding, known to generate spurious clusters (Brown et al. 2015), especially in the COI 526 

barcode marker. Indeed, this gene region has increased intragenomic variation due to its high 527 

evolutionary rate but also due to heteroplasmy and the abundance of pseudogenes, such as NUMTs, 528 

playing an important part of the supernumerary OTU richness in COI-metabarcoding (Bensasson 529 

et al. 2001; Song et al. 2008). Together with clustering, LULU curation at 84% proved effective in 530 

limiting the number of multiple clusters produced by single individuals, confirming its efficiency 531 

to correct for intragenomic diversity (Table 1).  532 
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The mock communities we used here did not contain several haplotypes of the same species 533 

(intraspecific variation), as is most often the case in environmental samples. This prevents us from 534 

generalizing the comparable results obtained after LULU curation of ASVs and OTUs, and the 535 

apparently limited effect of clustering in the mock samples to communities that are more complex. 536 

However, LULU curation of ASVs is not suited to account for natural haplotype diversity: not all 537 

haplotypes co-occur and when they do so, they may vary in proportion and dominance 538 

relationships, making clustering more suited to account for natural haplotypic diversity. Thus, 539 

clustering ASVs will still be necessary to produce inventories of metazoan communities that reflect 540 

species rather than gene diversity. 541 

As expected, evaluation of clustering and LULU curation on natural samples showed 542 

distinct results for 18S and COI. Indeed, concerted evolution, a common feature of SSU rRNA 543 

markers such as 16S (Hashimoto et al. 2003; Klappenbach et al. 2001) and 18S (Carranza et al. 544 

1996), limits the amount of intragenomic polymorphism. In metazoans, a lower level of diversity 545 

is expected for the slower evolving 18S gene (Carranza et al. 1996), than for COI which exhibits 546 

faster evolutionary rates (Machida and Knowlton 2012; Machida et al. 2012). This is reflected in 547 

the lower ASV (DADA2) to OTU (DADA2+swarm) ratios observed here for 18S (1.0-2.2.) 548 

compared to COI (2.0-2.7) data at clustering d-values comprised between one and seven (Table 549 

S6), underlining the different influence –and importance– of clustering on these loci, and the need 550 

for a versatile, marker by marker choice for clustering and curation parameters. When applying 551 

LULU to ASVs (DADA2) versus OTUs (DADA2+swarm) on 18S, similar cluster numbers were 552 

obtained (Fig. 1), suggesting a limited added effect of clustering for this marker once DADA2 and 553 

LULU are applied. This is in line with its slow evolutionary rate (Carranza et al. 1996) leading to 554 

a limited number of haplotypes per species compared to COI. In contrast, for COI, LULU curation 555 

of the ASV dataset led to nearly twice the number of clusters (574 ± 38 at 84% and 742 ± 53 at 556 
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90%) compared to LULU curation of OTUs (at d=6: 334 ± 21 for 84% and 433 ± 31 for 90%). 557 

This confirms the higher intraspecific diversity of COI, and the need to combine clustering with 558 

LULU curation to account for intraspecific diversity in natural samples, especially with highly 559 

polymorphic markers such as COI.  560 

Finally, the reproductive mode and pace of selection in microbial populations may lead to 561 

locally lower levels of intraspecific variation than the one expected for metazoans. Prokaryotic 562 

alpha diversity was however also affected by the clustering of ASVs (Fig. 1), supporting the 563 

estimation of a 2.5-fold greater number of 16S rRNA variants than the actual number of bacterial 564 

“species” (Acinas et al. 2004). The significant decrease in the number of OTUs after clustering at 565 

d=1 (Table 2, Fig. 1, decrease of ~25%) suggests the occurrence of very closely related 16S rRNA 566 

sequences, possibly belonging to the same ecotype/species. Such entities may still be important to 567 

delineate in studies aiming for example at identifying species associations (i.e. symbiotic 568 

relationships) across large distances and ecosystems, where drift or selection can lead to slightly 569 

different ASVs in space and time, with their function and association remaining stable.  570 

 571 

3.3 Influence on beta diversity 572 

After focusing on alpha diversity estimates, i.e. on the numerical accuracy of inventories, 573 

the analysis of community structures showed that the LULU-curated datasets resolved similar 574 

ecological patterns as datasets not curated with LULU. However, clustering affected resolution of 575 

ecological patterns in ribosomal loci when d values were high, and this was not the case for COI, 576 

where similar patterns were resolved in all datasets (Fig. 2). This is in accordance with other studies 577 

reporting severe impacts of bioinformatic parameters on alpha diversity while comparable patterns 578 

of beta diversity are observed in ASV and OTU datasets, at least down to a minimum level of 579 

clustering stringency (Xiong and Zhan 2018; Bokulich et al. 2013).  580 
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Clustering and LULU curation mainly led to the decrease of the number of clusters assigned 581 

to particular taxa in both loci, such as annelids, arthropods, nematodes, or platyhelminthes for 18S, 582 

and chordates, cnidarians, echinoderms, or poriferans for COI (Fig. S2). The strong decrease in 583 

cluster numbers observed in these phyla suggests that the latter have greater intraspecific 584 

polymorphism, although the decrease could also be due to the merging of closely related species, 585 

as both markers have lower taxonomic resolution in particular taxa. This has been acknowledged 586 

for 18S in general, but in nematodes in particular (Derycke et al. 2010), and reported in cnidarians 587 

with COI (Hebert et al. 2003). 588 

Overall, based on alpha and beta diversity results observed in mock communities and 589 

natural samples, applying LULU at 84% seems to efficiently curate metazoan COI datasets without 590 

significant loss of species, but clustering is required, at least at d=1, in order to address high 591 

intraspecific polymorphism. For 18S, LULU curation seems to require values above 84% (e.g. 592 

90%) in order to avoid the loss of species, as seen in the mock communities. However, the low 593 

taxonomic resolution obtained with this marker suggests that clustering should be performed at low 594 

d-values (d<4) to address intraspecific polymorphism without affecting beta-diversity patterns. For 595 

prokaryotes, clustering 16S ASVs at d=1 reduces the number of detected clusters by ~25%, which 596 

may help addressing intragenomic variation when needed. 597 

 598 

3.4 Taxonomic resolution and assignment quality 599 

The COI locus allowed the detection of all ten species present in the mock samples, 600 

compared to seven in the 18S dataset (Table 1). This locus also provided much more accurate 601 

assignments, most of them correct at the genus (and species) level, confirming that COI uncovers 602 

more metazoan species and offers a better taxonomic resolution than 18S (Tang et al. 2012; Clarke 603 

et al. 2017; Andújar et al. 2018). Our results also support approaches combining nuclear and 604 
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mitochondrial markers to achieve more comprehensive biodiversity inventories (Cowart et al. 605 

2015; Drummond et al. 2015; Zhan et al. 2014). Indeed, strong differences exist in amplification 606 

success among taxa (Bhadury et al. 2006; Carugati et al. 2015), exemplified by nematodes, which 607 

are well detected with 18S but not with COI (Bucklin et al. 2011). The high complementarity of 608 

COI and 18S in terms of targeted taxa (highlighted in Fig. S2), also supports the approach taken 609 

by Stefanni et al. (2018), as subsampling each gene dataset for its “best targeted phyla” and 610 

subsequently combining both seems to be a very efficient way to produce comprehensive and non-611 

redundant biodiversity inventories. 612 

Finally, compared to BLAST assignments, similar taxonomic resolution was observed 613 

using the RDP Bayesian Classifier on the mock samples for 18S (Fig. S4) and for COI when using 614 

the MIDORI-UNIQUE marine-only database. Poor performance of RDP using the full MIDORI 615 

database is likely due to the size of the database, and to its low coverage of deep-sea species. The 616 

problem of underrepresentation of deep-sea taxa is especially apparent with the BLAST 617 

assignments, which generally displayed low identities to sequences in databases, especially for COI 618 

(Fig. 3). Using minimum similarities of 80% for COI and 86% for 18S as cut-off values for 619 

metazoans has been shown to improve the taxonomic quality of metazoan metabarcoding datasets 620 

(Stefanni et al. 2018). However, phylogenies of marine invertebrates have found high levels of 621 

species divergence (up to ~30%), even within genera (Zanol et al. 2010). Consequently, studies on 622 

deep-sea taxa have found that some invertebrate species had COI sequences diverging more than 623 

20% from any other species present in molecular databases (Shank et al. 1999; Herrera et al. 2015). 624 

At present, it thus seems difficult to work at taxonomic levels beyond phylum-level with deep-sea 625 

metabarcoding data when using large public databases. Small databases, taxonomically similar to 626 

the targeted communities, and with sequences of the same length as the amplified fragment of 627 

interest, are known to maximise accurate identification (Macheriotou et al. 2019). When using the 628 
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reduced marine-only COI database, RDP provided the most accurate assignments in the mock 629 

samples when the phylum bootstrap level was ≥ 80 (Fig. S 4), although this filtering threshold 630 

drastically reduced the number of OTUs in the overall dataset (Table S7). The development of 631 

custom-built marine RDP training sets, without overrepresentation of terrestrial species, is 632 

therefore needed for this Bayesian assignment method to be effective on deep-sea datasets. With 633 

reduced and more specific databases, removing clusters with phylum bootstrap-level < 80 should 634 

be an efficient way to increase taxonomic quality of deep-sea metabarcoding datasets. At present, 635 

if accurate taxonomic assignments are sought while using universal primers, we advocate assigning 636 

taxonomy in two steps: first, using BLAST and a large database including all phyla amplifiable by 637 

the primer set, extracting the clusters belonging to the groups of interest, then re-assigning 638 

taxonomy to these target taxa using RDP and a smaller, taxon-specific database.  639 

 640 

CONCLUSIONS AND PERSPECTIVES 641 

Using mock communities and natural samples, we evaluate several recent algorithms and 642 

assess their capacity to improve the quality of molecular biodiversity inventories of metazoans and 643 

prokaryotes. Our results support the fact that ASV data should be produced and communicated for 644 

reusability and reproducibility following the recommendations of Callahan et al. (2017). This is 645 

especially useful in large projects spanning wide geographic zones and time scales, as different 646 

ASV datasets can be easily merged a posteriori, and clustered if necessary afterwards. 647 

Nevertheless, clustering ASVs into OTUs will be required to obtain accurate species-level 648 

inventories, at least for metazoan communities, with a more severe influence of clustering observed 649 

on alpha diversity estimates than beta-diversity patterns. Considering 16S polymorphism observed 650 

in prokaryotic species (Acinas et al. 2004) and the possible geographic segregation of their 651 

populations, clustering may also be required in prokaryotic datasets, for example in studies 652 
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screening for species associations (i.e. symbiotic relationships) as symbionts may be prone to 653 

differential fixation through enhanced drift (Shapiro, Leducq, & Mallet, 2016).  654 

Our results also demonstrated that LULU effectively curates metazoan biodiversity 655 

inventories obtained through metabarcoding. They also underline the need to adapt parameters for 656 

curation (e.g. LULU curation at 90% for 18S and 84% for COI) and clustering to each gene used 657 

and taxonomic compartment targeted, in order to identify an optimal balance between the 658 

correction for spurious clusters and the merging of closely related species. 659 

Finally, our findings also showed that accurate taxonomic assignments of deep-sea species 660 

can be obtained with the RDP Bayesian Classifier, but only with reduced databases containing 661 

ecosystem-specific sequences. 662 

The pipeline is publicly available on Gitlab (https://gitlab.ifremer.fr/abyss-project/), and 663 

allows the use of sequence data obtained from libraries produced by double PCR or adaptor ligation 664 

methods, as well as having built-in options for using six commonly used metabarcoding primers. 665 

 666 
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