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Abstract 
 

Much research in cognitive neuroscience supports prediction as a canonical computation of cognition in 

many domains. Is such predictive coding implemented by feedback from higher-order domain-general 

circuits, or is it locally implemented in domain-specific circuits? What information sources are used to 

generate these predictions? This study addresses these two questions in the context of language 

processing. We present fMRI evidence from a naturalistic comprehension paradigm (1) that predictive 

coding in the brain’s response to language is domain-specific, and (2) that these predictions are sensitive 

both to local word co-occurrence patterns and to hierarchical structure. Using a recently developed 

deconvolutional time series regression technique that supports data-driven hemodynamic response 

function discovery from continuous BOLD signal fluctuations in response to naturalistic stimuli, we 

found we found effects of prediction measures in the language network but not in the domain-general, 

multiple-demand network. Moreover, within the language network, surface-level and structural prediction 

effects were separable. The predictability effects in the language network were substantial, with the model 

capturing over 37% of explainable variance on held-out data. These findings indicate that human sentence 

processing mechanisms generate predictions about upcoming words using cognitive processes that are 

sensitive to hierarchical structure and specialized for language processing, rather than via feedback from 

high-level executive control mechanisms. 
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Introduction 
 

The human brain is an efficient prediction engine (James, 1890). Facilitation in processing expected 

information, as well as processing costs of violated expectations, have been reported in many domains. In 

the domain of language comprehension, various results show that listeners and readers actively predict 

upcoming words and structures (e.g., Kutas & Hillyard, 1984; MacDonald et al., 1994; Tanenhaus et al., 

1995; Rayner et al., 2004; Frank & Bod, 2011; Smith & Levy, 2011, 2013; Staub & Benetar, 2013; Frank 

et al., 2015; Kuperberg & Jaeger, 2016). However, the cognitive and neural mechanisms that support 

predictive language processing are not well understood. Under one widely held view, predictive language 

processing is implemented by domain-general executive (inhibitory control and working memory) 

resources. This perspective receives support from numerous studies showing that prediction effects during 

language comprehension are absent or less pronounced for populations with reduced executive resources, 

such as children, older individuals, and non-native speakers (e.g., Federmeier et al., 2002; Federmeier & 

Kutas, 2005; Dagerman, et al., 2006; Federmeier et al., 2010; Mani & Huettig, 2012; Wlotko & 

Federmeier, 2012; Martin et al., 2013; Kaan, 2014; Mitsugi & Macwhinney, 2016; Gambi et al., 2018; 

Payne & Federmeier, 2018; cf. Dave et al., 2018; Havron et al., 2019). Furthermore, several 

neuroimaging studies have reported sensitivity to linguistic manipulations in what appear to be cortical 

regions thought to support domain-general executive function (e.g., Kaan & Swaab; 2002; Kuperberg et 

al., 2003; Novick et al., 2005; Rodd et al., 2005; Novais-Santos, 2007; January et al., 2009; Peelle et al., 

2010; Rogalsky & Hickock, 2011; Nieuwland et al., 2012; Wild et al., 2012; McMillan et al., 2012, 

2013), suggesting that such regions may also be implicated in language processing, including perhaps 

prediction. These results have led some to conclude that predictive coding for language is implemented by 

domain-general executive control resources (Linck et al., 2014; Huettig & Mani, 2016; Pickering & 

Gambi, 2018; Strijkers et al., 2019). 

However, this interpretation is subject to several objections. First, most prior work on linguistic prediction 

has relied on behavioral and electrophysiological measures which are well suited for identifying global 

response patterns but cannot spatially localize the source of these effects in the brain to a certain 

functional region or network. Second, the (alleged) between-population differences in prediction noted 

above are consistent with accounts that do not directly invoke executive resources, including (1) possible 

qualitative differences between populations in the kind of information that is being predicted and the 

consequent need for population-specific norms to detect prediction effects, or (2) differences in how often 

predictions are correct, which may modulate the likelihood of engaging in predictive behavior (see 

Ryskin et al., this issue, for discussion). And third, past studies that did employ neuroimaging tools with 

high spatial resolution and consequently reported linguistic prediction responses – typically neural 

response increases for violations of linguistic structure – localized to executive control regions (e.g., 

Newman et al., 2001; Kuperberg et al., 2003; Nieuwland et al., 2012; Schuster et al., 2016) may have 

been influenced by task artifacts; indeed, some have argued that artificially constructed laboratory stimuli 

and tasks increase general cognitive load in comparison to naturalistic language comprehension (e.g., 

Blanco-Elorietta & Pylkkanen, 2017; Blank & Fedorenko, 2017; Campbell & Tyler, 2018; Wehbe et al., 

submitted; Diachek et al., in prep.). To ensure that findings from the laboratory paradigms truly reflect the 

cognitive phenomenon of interest, it is important to validate them in more naturalistic experimental 

settings that better approximate the typical conditions of human sentence comprehension (Hasson & 

Honey, 2012; Hasson et al., 2018). 

Despite the growing number of fMRI studies of naturalistic language comprehension (e.g., Speer et al., 

2007; Yarkoni et al., 2008; Speer et al., 2009; Whitney et al., 2009; Wehbe et al., 2014; Hale et al., 2015; 

Henderson et al., 2015, 2016; Huth et al., 2016; Sood & Sereno, 2016; Brennan, 2016; Desai et al., 2016; 

de Heer et al., 2017, Dehghani et al., 2017; Bhattasali et al., 2018), only a handful have directly 

investigated effects of word predictability (Willems et al., 2015; Brennan et al., 2016; Henderson et al., 
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2016; Lopopolo et al., 2017; see Table 1 for summary), a well-established predictor of behavioral 

measures in naturalistic language comprehension (Demberg & Keller, 2008; Frank & Bod, 2011; Smith & 

Levy, 2013; van Schijndel & Schuler, 2015). These previous naturalistic studies of linguistic prediction 

effects in the brain – using estimates of prediction effort such as surprisal, the negative log probability of 

a word given its context, or entropy, an information-theoretic measure of the degree of constraint placed 

by the context on upcoming words (Hale, 2001) – have yielded mixed results on the existence, type, and 

functional location of such effects. For example, of the lexicalized and unlexicalized (part-of-speech) 

bigram and trigram models of word surprisal explored in Brennan et al. (2016), only part-of-speech 

bigrams positively modulated neural responses in most regions of the functionally localized language 

network. Lexicalized bi- and trigrams and part-of-speech trigrams yielded generally null or negative 

results (16 out of 18 comparisons). By contrast, Willems et al. (2015) found lexicalized trigram effects in 

regions typically associated with language processing (e.g., anterior and posterior temporal lobe). In 

addition, Willems et al. (2015) and Lopopolo et al. (2017) found prediction effects in regions that are 

unlikely to be specialized for language processing, including (aggregating across both studies) the brain 

stem, amygdala, putamen, and hippocampus, as well as in superior frontal areas more typically associated 

with domain-general executive functions like self-awareness and coordination of the sensory system 

(Goldberg et al., 2006). It is therefore not yet clear whether predictive coding for language relies on 

domain-general mechanisms in addition to, or instead of, language-specific ones, especially in naturalistic 

contexts. 

In addition to questions about the functional localization of linguistic prediction, substantial prior work 

has also investigated the structure of the predictive model, seeking to shed light on the nature of linguistic 

representations in the mind. If effects from theoretical constructs like hierarchical natural language syntax 

can be detected in online processing measures, this would constitute evidence that such constructs are 

present in human mental representations and used to comprehend language. This position is widely 

supported by behavioral and electrophysiological experiments using constructed stimuli (see Lewis & 

Collins, 2015 for review) and by some behavioral (Roark et al., 2009; Fossum & Levy, 2012; van 

Schijndel & Schuler, 2015; Shain et al., 2016), electrophysiological (Brennan & Hale, 2019) and 

neuroimaging (Brennan et al., 2016) experiments using naturalistic stimuli. However, other naturalistic 

studies reported null or negative syntactic effects (Frank & Bod, 2011; van Schijndel & Schuler, 2013; 

Shain & Schuler, 2018 contra Shain et al., 2016), or mixed syntactic results within the same set of 

experiments (Demberg & Keller, 2008; Henderson et al, 2016), leading some to argue that the 

representations used for language comprehension (in the absence of task artifacts from constructed 

stimuli) contain little hierarchical structure (Frank & Christiansen, 2018). Furthermore, the few 

naturalistic fMRI studies that have explored structural prediction effects have yielded incongruent 

localizations for these effects. For example, Brennan et al. (2016) found context-free grammar surprisal 

effects throughout the functional language network except in inferior frontal gyrus, whereas inferior 

frontal gyrus is the only region in which Henderson et al. (2016) found such effects. 

The current study used fMRI to determine whether a signature of predictive coding during language 

comprehension – increased response to less predictable words, i.e. surprisal (e.g., Smith & Levy, 2013) – 

is primarily evident during naturalistic sentence processing in (1) the domain-specific, fronto-temporal 

language (LANG) network (Fedorenko et al., 2011), or (2) the domain-general, fronto-parietal multiple 

demand (MD) network (Duncan, 2010). The MD network supports top-down executive functions (e.g., 

inhibitory control, attentional selection, conflict resolution, maintenance and manipulation of task sets) 

across both linguistic and non-linguistic tasks (e.g., Duncan & Owen, 2000; Fedorenko et al., 2013; 

Hughdahl et al., 2015; for discussion, see: Fedorenko, 2014) and has been shown to be sensitive to 

surprising events (Corbetta & Shulman, 2002). 

On the one hand, given that the language network plausibly stores linguistic knowledge, including the 

statistics of language input, it might directly carry out predictive processing. Such a result would align 

with a growing body of cognitive neuroscience research supporting prediction as a “canonical 
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computation” (Keller & Mrsic-Flogel, 2018) locally implemented in domain-specific circuits (Montague 

et al, 1996; Rao & Ballard, 1999; Alink et al., 2010; Bubic et al., 2010; Bastos et al., 2012; Wacogne et 

al., 2011, 2012; Singer et al., 2018). This hypothesis is also supported by prior findings of linguistic 

prediction effects in portions of the language network (Willems et al., 2015; Brennan et al., 2016; 

Henderson et al., 2016; Lopopolo et al., 2017). 

On the other hand, given that the MD network has been argued to encode predictive signals across 

domains and relay them as feedback to other regions (Strange et al., 2005; Cristescu et al., 2006; Egner et 

al., 2008; Wacogne et al., 2011; Chao et al., 2018), it might be recruited to predict upcoming words and 

structures in language. There is an extensive literature on neural signatures of prediction, such as activity 

associated with prediction errors, in brain regions that appear to belong to the MD network, including 

bilateral areas in the dorsolateral pre-frontal cortex, the inferior frontal gyrus, the anterior cingulate 

cortex, and the parietal lobe (for a review, see Dehaene et al., 2015; for a meta-analysis, see D’Astolfo & 

Rief, 2017). These areas are sensitive to rule violations in non-linguistic sequences, including 

hierarchically structured ones, in different sensory domains (e.g., auditory and visual; Bekinschtein et al., 

2009; Ahlheim et al., 2014; Uhrug et al., 2014; Wang et al., 2015; Wang et al., 2017; Chao et al., 2018). 

In addition, they are recruited during learning of structured sequences in the motor domain (Bischoff-

Grethe et al., 2004; Eickhoff et al., 2010). Beyond representing deterministic rules, such regions are also 

engaged in probabilistic predictions (Strange et al., 2005; Meyniel & Dehaene, 2017). Such predictions 

can be based on either inferring a generative model underlying the input sequence (Gläscher et al., 2010; 

Schapiro et al., 2013) or on reward contingencies (Koch et al., 2008; Zarr & Brown, 2016; Alexander & 

Brown, 2018; for a review, see: Rushworth & Behrens, 2008). There are two main hypotheses in the 

contemporary literature that link predictive processing in the MD network with increased activity to more 

surprising words. First, the MD network might provide additional resources (“cognitive juice”) to various 

cognitive processes, including language. Under this scenario, MD regions might “come to the rescue” of 

the language network when processing demands are increased, which would be the case when surprisal is 

higher. Indeed, prior work suggests that the MD network could be recruited when language processing 

becomes effortful, e.g., under acoustic (Adank, 2012; Hervais-Adelman et al., 2012; Wild et al., 2012; 

Scott & McGettigan, 2013; Vaden et al., 2013) or syntactic (Kuperberg et al., 2003; Nieuwland et al., 

2013) noise; in healthy aging (for reviews, see Wingfield & Grossman, 2006; Shafto & Tyler, 2014); 

during recovery from aphasia (Brownsett et al., 2014; Geranmayeh et al., 2014, 2016, 2017; Meier et al., 

2016; Sims et al., 2016; Hartwigsen, 2018); and in L2 processing and multi-lingual control (e.g., 

Wartenburger et al., 2003; Rüschemeyer et al., 2005; Yokoyama et al., 2006; de Bruin et al., 2014; Grant, 

Fang, & Li, 2015; Kim et al., 2016; for reviews, see Perani & Abutalebi, 2005; Sakai, 2005; Abutalebi, 

2008; Kotz, 2009; Hervais-Adelman, Moser-Mercer, Golestani, 2011; Pliatsikas & Luk, 2016). Second, 

the MD network, especially in the prefrontal cortex, may construct abstract representations of context, 

which serve as working memory for guiding behavior (Alexander & Brown, 2018). The main goal of such 

representations is to minimize prediction errors in other brain regions, so they are communicated in a top-

down manner to the language networks or other domain-specific networks (e.g., sensory areas). Such 

high-level, abstract predictive signals are potentially useful because they could perhaps “explain away” 

some more local prediction errors computed in the language network (e.g., in a sentence like “the cat that 

the dog chased on the balcony escaped”, the verb “escaped” might be unexpected based on the local 

context of the previous few words, but its occurrence could be explained away by a more global and 

abstract representation that looks farther into the past and predicts a verb for “the cat” in the main clause). 

In essence, then, signals from the MD network could bias representations in the language network in 

favor of the features that are most relevant in a given context (for a similar reasoning for sensory cortices, 

see Miller & Cohen, 2001; Sreenivasan et al., 2014; D'Esposito & Postle, 2015). However, these higher-

level predictions still make errors, and when these errors propagate back to the MD network, its regions 

would be triggered to adjust their predictive model in order to minimize future errors. This “model 

revision” process may register as increased neural processing (Chao et al., 2018). 
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To distinguish the hypotheses above, we searched for neural responses in LANG vs. MD regions to the 

contextual predictability of words as estimated by two model implementations of surprisal: a surface-level 

5-gram model and a hierarchical probabilistic context-free grammar (PCFG) model. N-gram surprisal 

estimates are sensitive to word co-occurrence patterns but are limited in their ability to model hierarchical 

natural language syntax, since they contain no explicit representation of grammatical categories or 

syntactic composition and have limited memory for preceding words in the sentence (in our case, up to 

four preceding words). PCFG surprisal estimates, by contrast, are based on structured syntactic 

representations of the unfolding sentence but struggle to capture surface-level word co-occurrence 

patterns. Correlations between each of these measures and human neural responses would shed light on 

the relative importance assigned to these two information sources (word co-occurrences and syntactic 

structures) in computing predictions about upcoming words. 

In linking PCFG surprisal with structural processing, we acknowledge that PCFG surprisal is one of many 

possible operationalizations of structural effects in human sentence comprehension, which also include 

PCFG entropy (Roark et al., 2009) and entropy reduction (Hale, 2006), embedding difference (Wu et al., 

2010), successor surprisal (Kliegl et al., 2006), the number of open nodes based on a particular parsing 

strategy (top-down, bottom-up, or left-corner; Brennan and Pylkkanen, 2016), dependency locality costs 

(storage cost, memory cost, integration cost, or dependency length; Gibson, 2000), and ACT-R 

processing costs (encoding or retrieval interference; Lewis and Vasishth, 2005). It is beyond the scope of 

the present paper to test all of these structural predictors, so we simply adopted a measure which has 

received extensive consideration in the experimental literature: PCFG surprisal (e.g., Demberg and 

Keller., 2008; Frank & Bod, 2011; Fossum & Levy, 2012; Frank et al, 2015; van Schijndel and Schuler, 

2015; Brennan et al., 2016; Henderson et al., 2016; Brennan & Hale, 2019; Shain, 2019). 

To avoid the problem of reverse inference from anatomy to function (Poldrack 2006, 2011; Figure 1), we 

functionally defined the LANG and MD networks in each individual participant using an independent 

“localizer” task (Saxe et al., 2006; Fedorenko et al., 2010), and then examined the response of those 

functional regions to each estimate of surprisal. Our results show significant independent effects of 5-

gram and PCFG surprisal in LANG, but no such effects in MD, as well as significant differences in 

surprisal effect sizes between the two networks. This finding supports the hypothesis that predictive 

coding for language is primarily carried out by language-specialized rather than domain-general cortical 

circuits and exploits both surface-level and structural cues. 

 

Materials and Methods 
 

General Approach 
 

Several features set the current study apart from other cognitive neuroscience investigations of linguistic 

prediction. 
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Study # Participants Stimulus 

length 

HRF model Functional 

localization 

Out-of-

sample 

evaluation  

Willems et al., 2015 24 19 min Canonical No No 

Brennan et al., 2016 26 12 min Canonical Yes No 

Henderson et al., 2016 40 22 

paragraphs 

Canonical No No 

Lopopolo et al., 2017 22 19 min Canonical No No 

Current study 78 13.5 min 

(avg per 

participant) 

Data-driven 

(DTSR) 

Yes Yes 

Table 1: Previous fMRI studies of prediction effects in naturalistic sentence comprehension 

First, we used naturalistic language stimuli rather than controlled stimuli constructed for a particular 

experimental goal. Naturalistic stimuli improve ecological validity compared to isolated constructed 

stimuli, which may introduce task artifacts that do not generalize to everyday cognition (Demberg & 

Keller, 2008; Hasson & Honey, 2012; Richlan et al., 2013; Schuster et al., 2016; Campbell & Tyler, 

2018), and prior work indicates that naturalistic stimuli yield more reliable BOLD signals than artificial 

tasks (Hasson et al., 2010). Minimizing such artifacts is crucial in studies of the MD network, which is 

highly sensitive to task variables (Miller & Cohen, 2001; Sreenivasan et al., 2014; D'Esposito & Postle, 

2015; Diachek et al., in prep.). 

Second, we used participant-specific functional localization to identify regions of interest constituting the 

LANG and MD networks (Fedorenko et al., 2010). This approach is crucial because many functional 

regions do not exhibit a consistent mapping onto macro-anatomical landmarks (Frost & Goebel, 2012), 

especially in the frontal (Amunts et al., 1999; Tomaiuolo et al., 1999), temporal (Jones and Powell, 1970; 

Figure 1: Inter-individual variability in the mapping of function onto anatomy. Each column demonstrates variability in a 

different coordinate in MNI space, specified at the top (in mm). For each coordinate, sagittal T1 slices from four participants are 

shown, with the coordinate circled on each slice (participants differ across columns). In each case, the top two participants show 

a Sentences > Nonwords effect in this coordinate (colored in red-yellow), whereas the bottom two participants show the 

opposite, Nonwords > Sentences effect in this same coordinate (colored in green-blue). In all cases, the effect size of the circled 

coordinate is strong enough to be included among the participant-specific fROIs. Other voxels exhibiting strong contrast effects 

in the localizer task (namely, among the top 10% of voxels across the neocortical gray matter) are superimposed onto the 

anatomical slices, in color. Colorbars show p-values associated with each of the two localizer contrasts. 
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Gloor, 1997; Wise et al., 2001) and parietal (Caspers et al., 2006; Caspers et al., 2008; Scheperjans et al., 

2008) lobes, which house the language and MD networks. Due to this inconsistent functional-to-

anatomical mapping, a given stereotactic coordinate might belong to the language network in some 

participants but to the MD network in others, as is indeed the case in our sample (Figure 1) (see also 

Fedorenko et al., 2012a; Blank et al., 2017; Fedorenko & Blank, submitted). Such inter-individual 

variability severely compromises the validity of both anatomical localization (Juch et al., 2005; Poldrack, 

2006; Fischl et al., 2007; Frost and Goebel, 2012; Tahmasebi et al., 2012) and group-based functional 

localization (Saxe et al., 2006; Fedorenko and Kanwisher, 2009): these approaches risk both decreased 

sensitivity (i.e., failing to identify a functional region due to insufficient spatial alignment across 

participants) and decreased functional resolution (i.e., mistaking two functionally distinct regions as a 

single region due to apparent spatial overlap across the sample). In contrast, participant-specific 

functional localization allows us to pool data from a given functional region across participants even in 

the absence of strong anatomical alignment and is therefore better suited for the kind of questions we 

study here (Nieto-Castañón & Fedorenko, 2012). 

Third, we analyzed the BOLD times-series using a recently developed statistical framework – 

deconvolutional time series regression (DTSR; Shain & Schuler, 2018) – that is designed to overcome 

problems in hemodynamic response modeling that are presented by naturalistic experiments. The variable 

spacing of words in naturalistic language prevents direct application of discrete-time, data-driven 

techniques for hemodynamic response function (HRF) discovery, such as finite impulse response 

modeling (FIR) or vector autoregression. Because DTSR is a parametric continuous-time deconvolutional 

method, it can infer the hemodynamic response directly from naturalistic time series, without 

distortionary preprocessing steps such as predictor interpolation (cf. Huth et al., 2016). Thus, unlike prior 

naturalistic fMRI studies of prediction effects in language processing (Table 1), we do not assume the 

shape of the HRF. 

Fourth, unlike studies in Table 1, we evaluated hypotheses using non-parametric statistical tests of model 

fit to held-out (out-of-sample) data, an approach which builds external validity directly into the statistical 

test and should thereby improve replicability (e.g., Demšar, 2006). 

Finally, to our knowledge, this is the largest fMRI investigation to date (78 subjects) of prediction effects 

in naturalistic language comprehension. 

 

Experimental Design 

Participants 

Seventy-eight native English speakers (30 males), aged 18-60 (M±SD = 25.8±9, Med±SIQR = 23±3), 

from MIT and the surrounding Boston community participated for payment. Each participant completed a 

passive story comprehension task (the critical experiment) and a functional localizer task designed to 

identify the language and MD networks. 

Sixty-nine participants (88%) were right-handed, as determined by either the Edinburgh handedness 

inventory (n=66) (Oldfield, 1971) or self-report (n=11) (handedness data were not collected for one 

participant). Eight participants were left-handed, but seven of these showed typical left-lateralized 

language activations, as determined by examining their activation patterns for the language localizer task 

(see below); the remaining participant had a right-lateralized language network. We chose to include the 

latter participant’s data in the analyses, to err on the conservative side. 

All participants gave informed consent in accordance with the requirements of MIT’s Committee on the 

Use of Humans as Experimental Subjects (COUHES). 
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Stimuli and procedure 

The localizer task and critical (story comprehension) experiment were run either in the same scanning 

session (67 participants) or in two separate sessions (11 participants, who have performed the localizer 

task while participating in other studies; see Mahowald & Fedorenko, 2016, for evidence of high stability 

of language localizer activations across sessions). For the critical experiment, each participant listened to 

one or more stories (one story: n=34; two stories: n=14; three stories: n=13; four stories: n=2; five stories: 

n=4; six stories: n=5; seven stories: n=1; or eight stories: n=5). In each session, participants performed a 

few other, unrelated tasks, with scanning sessions lasting approximately 2h. 

Localizer task. We used a single localizer task to identify functional regions of interest in both the 

language and MD networks, using opposite task contrasts across these networks as described below. This 

task, which has been described in more detail elsewhere (Fedorenko et al., 2010), consisted of reading 

sentences and lists of unconnected, pronounceable nonwords in a standard two-condition blocked design 

with a counterbalanced order across runs. Stimuli were presented one word / nonword at a time. For some 

participants (n=18), every trial ended with a memory probe item, and they had to indicate via a button 

press whether or not this probe had appeared in the preceding sentence / nonwords sequence; in contrast, 

most participants (n=60) read these materials passively (and pressed a button at the end of each trial, to 

sustain alertness). In addition, different participants performed versions of the task differing in stimulus 

timing, number of blocks, etc., i.e., features that that do not affect the robustness of the contrast (e.g., 

Fedorenko et al., 2010; Mahowald & Fedorenko, 2016) (for experimental parameters, see Table 2). A 

version of this localizer is available at https://evlab.mit.edu/funcloc/download-paradigms. 

To identify language regions, we used the contrast sentences > nonwords. This contrast targets higher-

level aspects of language, to the exclusion of perceptual (speech / reading) and motor-articulatory 

processes (for discussion, see Fedorenko & Thompson-Schill, 2014; or Fedorenko, in press). Critically, 

this localizer has been extensively validated over the past decade across diverse parameters: it generalizes 

across task (passive reading vs. memory probe), presentation modality (visual vs. auditory), and materials 

(e.g., Fedorenko et al., 2010; Braze et al., 2011; Vagharchakian et al., 2012), including both coarser 

contrasts (e.g., between natural speech and an acoustically degraded control: Scott et al., 2017) and 

narrower contrasts (e.g., between lists of unconnected, real words and nonwords lists: Fedorenko et al., 

2010; Blank et al., 2016). Whereas there are many potential differences (linguistic and otherwise) 

between the processing of sentences vs. nonwords, all regions localized with the sentences > nonwords 

contrast show a similar response profile: on the one hand, they exhibit sensitivity to various aspects of 

linguistic processing, including (but not limited to) lexical, phrasal, and sentence-level semantic and 

syntactic processing (e.g., Fedorenko et al., 2012b, 2018; Blank et al., 2016; Blank & Fedorenko, 2016; 

Mollica et al., 2018; Blank & Fedorenko, submitted; similar patterns obtain in electrocorticographic data 

with high temporal resolution: Fedorenko et al., 2016). On the other hand, they show robust language-

selectivity in their responses, with little or no response to non-linguistic tasks, including domain-general 

contrasts targeting, e.g., working memory or inhibitory control (Fedorenko et al., 2011, 2012a). In other 

words, the localizer shows both convergent construct validity with other linguistic contrasts and 

discriminant construct validity against non-linguistic contrasts. Moreover, the functional network 

identified by this contrast is internally synchronized yet strongly dissociated from other brain networks 

during naturalistic cognition (e.g., Blank et al, 2014; Paunov et al., 2019; for evidence from inter-

individual effect-size differences, see: Mineroff et al., 2018), providing evidence that the localizer task is 

ecologically valid. Thus, a breadth of evidence demonstrates that the sentences > nonwords contrast 

identifies a network that is engaged in language processing and appears to be a “natural kind” in the 

functional architecture of the human brain. 

To identify MD regions, we used the nonwords > sentences contrast, targeting regions that increase their 

response with the more effortful reading of nonwords compared to that of sentences. This “cognitive 

effort” contrast robustly engages the MD network and can reliably localize it. Moreover, it generalizes 
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across a wide array of stimuli and tasks, both linguistic and non-linguistic including, critically, contrasts 

targeting executive functions such as working-memory and inhibitory control (Fedorenko et al., 2013; 

Mineroff et al., 2018). Supplementary Figures 1 and 2 demonstrate that the MD regions thus localized 

robustly respond to a difficulty (i.e., memory load) manipulation in a non-linguistic, spatial working-

memory task (administered to a subset of participants in the current dataset). 

 

 

 

 Version 

 A B C D 

Number of participants 60 6 5 7 

Task (Passive Reading / Memory) PR M M M 

Words / nonwords per trial 12 12 8 12 

Trial duration (ms) 6,000 6000 4,800 6000 

   Fixation 100 300 300 300 

   Presentation of each word / nonword 450 350 350 350 

   Probe (M) + button press (M/PR)  400 1000 1350 1000 

   Fixation 100 500 350 500 

Trials per block 3 3 5 3 

Block duration (s) 18 18 24 18 

Blocks per condition (per run) 8 8 4 6 

Conditions Sentences 

Nonwords 

Sentences 

Nonwords 

Sentences 

Nonwords 

Word-lists* 

Sentences 

Nonwords 

Word-lists* 

Fixation block duration (s) 14 18 16 18 

Number of fixation blocks 5 5 3 4 

Total run time (s) 358 378 336 396 

Number of runs 2 2 3-4 2-3 

Table 2: Experimental parameters for the different versions of the localizer task. 

*Used for the purposes of another experiment; see (Fedorenko et al., 2010). 

Main (story comprehension) task. Participants listened to stories from the publicly available Natural 

Stories Corpus (Futrell et al., 2018). These stories were adapted from existing texts (fairy tales and short 

stories) to be “deceptively naturalistic”: they contained an over-representation of rare words and syntactic 

constructions embedded in otherwise natural linguistic context. Behavioral data indicate that these stories 

effectively manipulate predictive processing, as self-paced reading times from an independent sample 

show robust effects of surprisal (Futrell et al., 2018). Stories were recorded by two native English 

speakers (one male, one female) at a 44.1 kHz sampling rate, ranged in length from 4m46s to 6m29s 

(983-1099 words), and were played over scanner-safe headphones (Sensimetrics, Malden, MA). 

Following each story, some participants answered six (n=29) or twelve (n=12) comprehension questions, 

presented in a two-alternative forced-choice format. For all but 4 of these participants, accuracy was 

significantly above chance (binomial test for each participant: all ps < 0.046, uncorrected). For the 

remaining participants, comprehension questions were not part of the experimental design (n=30), were 

not collected due to equipment malfunction (n=4), or were lost (n=3). We note that BOLD time-series 

show indistinguishable levels of stimulus-locked activity regardless of whether comprehension questions 

are administered or not, at least in the networks studied here (Blank & Fedorenko, 2017). 

Data acquisition and preprocessing 

Data acquisition. Structural and functional data were collected on a whole-body 3 Tesla Siemens Trio 
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scanner with a 32-channel head coil at the Athinoula A. Martinos Imaging Center at the McGovern 

Institute for Brain Research at MIT. T1-weighted structural images were collected in 176 axial slices with 

1mm isotropic voxels (repetition time (TR)=2,530ms; echo time (TE)=3.48ms). Functional, blood 

oxygenation level-dependent (BOLD) data were acquired using an EPI (echo-planar imaging) sequence 

with a 90o flip angle and using GRAPPA (GeneRalized Autocalibrating Partial Parallel Acquisition) with 

an acceleration factor of 2; the following parameters were used: thirty-one 4.4mm thick near-axial slices 

acquired in an interleaved order (with 10% distance factor), with an in-plane resolution of 

2.1mm×2.1mm, FoV (field of view) in the phase encoding (Anterior>>Posterior) direction 200mm and 

matrix size 96mm×96mm, TR=2000ms and TE=30ms. The first 10s of each run were excluded to allow 

for steady state magnetization. 

Spatial preprocessing. Data preprocessing was carried out with SPM5 and custom MATLAB scripts. 

Preprocessing of anatomical data included normalization into a common space (Montreal Neurological 

Institute (MNI) template), resampling into 2mm isotropic voxels, and segmentation into probabilistic 

maps of the gray matter, white matter (WM) and cerebrospinal fluid (CSF). Note that SPM was only used 

for preprocessing and basic first-level modeling, aspects that have not changed much in later versions; we 

used an older version of SPM because data for this study are used across other projects spanning many 

years and hundreds of participants, and we wanted to keep the SPM version the same across all the 

participants. Preprocessing of functional data included motion correction, normalization, resampling into 

2mm isotropic voxels, smoothing with a 4mm FWHM Gaussian kernel and high-pass filtering at 200s. 

Temporal preprocessing. Data from the story comprehension runs were additionally preprocessed using 

the CONN toolbox (Whitfield-Gabrieli and Nieto-Castañon, 2012) with default parameters, unless 

specified otherwise. Five temporal principal components of the BOLD signal time-courses from the WM 

were regressed out of each voxel’s time-course; signal originating in the CSF was similarly regressed out. 

Six principal components of the six motion parameters estimated during offline motion correction were 

also regressed out, as well as their first time derivative. 

Participant-specific functional localization of the language and MD networks 

Modeling localizer data. A general linear model estimated the voxel-wise effect size of each condition in 

each experimental run of the localizer task. These effects were each modeled with a boxcar function 

(representing entire blocks/events) convolved with the canonical Hemodynamic Response Function 

(HRF). The model also included first-order temporal derivatives of these effects, as well as nuisance 

regressors representing entire experimental runs and offline-estimated motion parameters. The obtained 

beta weights were then used to compute the two functional contrasts of interest: sentences > nonwords for 

identifying language regions, and nonwords > sentences for identifying MD regions. These contrasts 

were computed only for voxels whose probability of belonging to the gray matter was greater than 1/3, 

based on the segmentation of the participant’s anatomical data. All other voxels were not considered 

further. 

Defining functional regions of interest (fROIs). For each participant, functional ROIs were defined by 

combining two sources of information (Fedorenko et al., 2010; Julian et al., 2012): (i) the participant’s 

activation map for the relevant localizer contrast (converted from beta weights to t-scores), and (ii) group-

level constraints (“masks”; available for download from https://evlab.mit.edu/funcloc/download-parcels). 

The latter demarcated brain areas within which most or all individuals in prior studies showed activity for 

the localizer contrasts (Fig. 2). 

For the language fROIs, we used masks derived from a group-level probabilistic representation of the 

sentences > nonwords contrast in a set of 220 participants. These masks were similar to the masks 

derived from 25 participants, as originally reported in Fedorenko et al. (2010), and covered extensive 

portions of the left lateral frontal, temporal, and parietal cortices. In particular, six masks were used: in 
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the inferior frontal gyrus (IFG) and its orbital part (IFGorb), middle frontal gyrus (MFG), anterior 

temporal cortex (AntTemp), posterior temporal cortex (PostTemp), and angular gyrus (AngG). 

For the MD fROIs, we used masks derived from a group-level probabilistic representation of data from a 

previously validated MD-localizer task in a set of 197 participants. The task, described in detail in 

Fedorenko et al. (2011), contrasted hard and easy versions of a visuo-spatial working memory task (we 

did not use masks based on the nonwords > sentences contrast in order to maintain consistency with other 

current projects in our lab, and because prior work has established the similarity of the activation 

landscapes for these two contrasts; Fedorenko et al., 2013). These masks were constrained to be 

bilaterally symmetric by averaging individual hard > easy contrast maps across the two hemispheres prior 

to generating the group-level representation (only the group-based masks, covering large swaths of 

cortex, were constrained in this way; fROIs in the current study were free to vary in their location across 

hemispheres, within the borders of these masks). The topography of these masks largely overlapped with 

anatomically based masks that we had used in previous work (e.g., Fedorenko et al., 2013; Blank et al., 

2014; Paunov et al., 2018). In particular, 10 masks were used in each hemisphere: in the posterior 

(PostPar), middle (MidPar), and anterior (AntPar) parietal cortex, precentral gyrus (PrecG), superior 

frontal gyrus (SFG), middle frontal gyrus (MFG) and its orbital part (MFGorb), opercular part of the 

inferior frontal gyrus (IFGop), the anterior cingulate cortex and pre-supplementary motor cortex 

(ACC/pSMA), and the insula (Insula). 

These group-level masks, in the form of binary maps, were used to constrain the selection of participant-

specific fROIs. In particular, for each participant, 6 language fROIs were created by (i) intersecting each 

language mask with each individual participant’s unthresholded t-map for the sentences > nonwords 

contrast; and then (ii) choosing the 10% of voxels with highest t-scores in the intersection. Similarly, 20 

MD fROIs were created by intersecting each MD mask with each participant’s unthresholded t-map for 

the nonwords > sentences contrast and selecting the 10% of voxels with the highest t-scores within each 

intersection. This top-10% criterion balances the trade-off between choosing only voxels that respond 

robustly to the relevant contrast and having a sufficient number of voxels in each fROI of each 

participant. Moreover, this criterion guarantees fROIs of identical size across participants (occupying 

10% of each mask). Few exceptions to this criterion were made for those cases where less than 10% of 

the voxels in a mask showed a t-score greater than 0; here, we only included the subset of voxels with 

positive t-scores in the fROI, and excluded those voxels showing effects in the opposite direction. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 28, 2019. ; https://doi.org/10.1101/717512doi: bioRxiv preprint 

https://doi.org/10.1101/717512
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 

 

 

Prior to the critical statistical analyses, we ensured that all fROIs showed the expected functional 

signatures, i.e., a sentences > nonwords effect for the language fROIs, and a nonwords > sentences effect 

for the MD fROIs. To this end, the reliability of each contrast effect (i.e., the difference between the beta 

estimates of the two localizer conditions) was tested using a 2-fold across-run cross-validation: for each 

participant, fROIs were defined based on odd (even) run(s) and, subsequently, independent estimates of 

the relevant contrast effect were obtained from the left-out even (odd) run(s). These contrast effects were 

averaged across the two partitions (odd/even) and tested for significance across participants, via a 

dependent samples t-test (FDR-corrected for the number of fROIs within each network). The sentence > 

nonwords effect was highly reliable throughout the language network (for all six fROIs: t(77) > 9.5, p < 10-

12 corrected; conservative effect size based on an independent samples test: Cohen’s d > 0.82), and the 

nonwords > sentences effect was highly reliable throughout the MD network (for all 20 fROIs: t(77) > 

2.25, p < 0.05; conservative effect size based on an independent samples test: Cohen’s d > 0.16) (see also 

Supplementary Figures 1 and 2 for evidence of overlap with a spatial working memory contrast, as in 

Fedorenko et al., 2013). 

 

Statistical analysis 
 

Predictor definitions 

To estimate word predictability in naturalistic data, we used an information-theoretic measure known as 

surprisal (Shannon, 1948; Hale, 2001): the negative log probability of a word given its context. Surprisal 

Figure 2: Defining participant-specific fROIs in the language (top) and MD (bottom) networks (only the left-hemisphere is 

shown). All images show approximated projections from functional volumes onto the surface of an inflated brain in common 

space. (A) Group-based masks used to constrain the location of fROIs. Contours of these masks are depicted in white on all 

brains in (B)-(D). (B) Overlap maps of localizer contrast effects (Sentence > Nonwords for the language network, Nonwords > 

Sentences for the MD network) across the 78 participants in the current sample (these maps were not used in the process of 

defining fROIs and are shown for illustration purposes). Each non gray-scale coordinate is colored according to the percentage of 

participants for whom that coordinate was among the top 10% of voxels showing the strongest localizer contrast effects across 

the nerocortical gray matter. (C) Overlap map of fROI locations. Each non gray-scale coordinate is colored according to the 

number of participants for whom that coordinate was included within their individual fROIs. (D) Example fROIs of three 

participants. Apparent overlap across language and MD fROIs within an individual is illusory and due to projection onto the 

cortical surface. Note that, because data were analyzed in volume (not surface) form, some parts of a given fROI that appear 

discontinuous in the figure (e.g., separated by a sulcus) are contiguous in volumetric space. 
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can be computed in many ways, depending on the choice of probability model. Three previous naturalistic 

fMRI studies (Willems et al., 2015; Brennan et al., 2016; Lopopolo et al., 2017) searched for surface-level 

n-gram surprisal effects, using words and/or parts of speech as the token-level representation. In addition, 

two previous naturalistic fMRI studies (Brennan et al., 2016; Henderson et al., 2016) probed structure-

sensitive PCFG surprisal measures (Hale, 2001; Roark et al., 2009). As discussed in the Introduction, 

results from these studies failed to converge on a clear answer as to the nature and functional location of 

surprisal effects.  In this study, we used the following surprisal estimates: 

•  5-gram Surprisal: 5-gram surprisal for each word in the stimulus set from a KenLM (Heafield et 

al., 2013) language model with default smoothing parameters trained on the Gigaword 3 corpus 

(Graff et al., 2007). 5-gram surprisal quantifies the predictability of words as the negative log 

probability of a word given the four words preceding it in context. 

• PCFG Surprisal: Lexicalized probabilistic context-free grammar surprisal computed using the 

incremental left-corner parser of van Schijndel et al. (2013) trained on a generalized categorial 

grammar (Nguyen et al., 2012) reannotation of Wall Street Journal sections 2 through 21 of the 

Penn Treebank (Marcus et al., 1993). 

Models also included the control variables Sound Power, Repetition Time (TR) Number, Rate, Frequency, 

and Network, which were operationalized as follows: 

• Sound Power: Frame-by-frame root mean squared energy (RMSE) of the audio stimuli computed 

using the Librosa software library (McFee et al., 2015).  

• TR Number: Integer index of the current fMRI sample within the current scan. 

• Rate: Deconvolutional intercept. A vector of ones time-aligned with the word onsets of the audio 

stimuli. Rate captures influences of stimulus timing independently of stimulus properties (see 

e.g., Brennan et al., 2016; Shain & Schuler, 2018). 

• Frequency: Corpus frequency computed using a KenLM unigram model trained on Gigaword 3. 

For ease of comparison to surprisal, frequency is represented here on a surprisal scale (negative 

log probability), such that larger values index less frequent words (and thus greater expected 

processing cost). 

• Network: Numeric predictor for network ID, 0 for MD and 1 for LANG. 

Models additionally included the mixed-effects random grouping factors Participant and fROI. Prior to 

regression, all predictors were rescaled by their standard deviations in the training set except Rate (which 

has no variance) and Network (which is an indicator variable). Reported effect sizes are therefore in 

standard units. 

 

Deconvolutional time series regression 

Naturalistic language stimuli pose a challenge for established statistical methods in fMRI because the 

stimuli (words) (1) are variably spaced in time and (2) do not temporally align with response samples 

recorded by the scanner. Previous approaches to address this issue have various drawbacks. Some fMRI 

studies of naturalistic language processing have assumed a canonical shape for the hemodynamic 

response function (Boynton et al., 1994) and used it to convolve stimulus properties into response-aligned 

measures (Willems et al., 2015; Brennan et al., 2016; Lopopolo et al., 2017). This approach is unable to 

account for regional variation in the shape of the hemodynamic response, even though the canonical HRF 

is known to be a poor fit to some brain regions (Handwerker et al., 2004). Discrete-time methods for data-

driven HRF identification such as finite impulse response modeling (FIR; Dayal et al., 1996) and vector 

autoregression (VAR; Sims, 1980) are widely used to overcome the limitations of the canonical HRF for 

fMRI research (e.g., Friston et al., 1994; Harrison et al., 2003) but are of limited use in the naturalistic 

setting because they assume (multiples of) a fixed time interval between stimuli that does not apply to 
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words in naturally-occurring speech. Some studies (e.g. Huth et al., 2016) address this problem by 

continuously interpolating word properties, resampling the interpolated signal so that it temporally aligns 

with the fMRI record, and fitting FIR models using the resampled design matrix. However, this approach 

can be distortionary in that word properties (e.g., surprisal) are not temporally continuous. 

Our study employed a recently developed deconvolutional time series regression (DTSR) technique that 

accurately infers parametric continuous-time impulse response functions – such as the HRF – from 

arbitrary time series (Shain & Schuler, 2018). Because DTSR is data-driven, it can address the potential 

impact of poor fit in the canonical HRF, and because it is defined in continuous time, it eliminates the 

need for distortionary preprocessing steps like continuous interpolation. DTSR models in this study used 

the following two-parameter HRF kernel based on the widely-used double-gamma canonical HRF 

(Lindquist et al., 2009): 

ℎ(𝑥; 𝛼, 𝛽) =
𝛽𝛼𝑥𝛼−1𝑒

−𝑥
𝛽

𝛤(𝛼)
−
1

6

𝛽𝛼+10𝑥𝛼+9𝑒
−𝑥
𝛽

𝛤(𝛼 + 10)
 

where α and β are initialized to the SPM defaults of 6 and 1, respectively. More complex kernels (e.g., 

that fit the amplitude of the second term, rather than fixing it at 1/6) were avoided because of their 

potential to overfit. 

The parametric continuous-time nature of DTSR is similar to that of models used, for example, by 

Kruggel & von Camon (1999), Kruggel et al. (2000), Miezin et al. (2000), Lindquist & Wager (2007), 

and Lindquist et al. (2009) for nonlinear estimation of gamma-shaped HRFs. The main advantages of 

DTSR over these approaches are that it (1) exploits the Tensorflow (Abadi et al., 2015) and Edward (Tran 

et al., 2016) libraries for optimizing large-scale variational Bayesian computation graphs using state of the 

art estimation techniques from deep learning – this study used the Adam optimizer with Nesterov 

momentum (Kingma & Ba, 2014; Nesterov, 1983; Dozat, 2016); (2) supports mixed effects modeling of 

effect coefficients and HRF parameters; and (3) supports parameter tying, constraining the solution space 

by ensuring that all predictors share a common HRF shape in a given region (with potentially differing 

amplitudes). Predictors in these models were given their own coefficients (which rescale h above), but the 

parameters α and β of h were tied across predictors, modeling the assumption of a fixed-shape blood 

oxygenation response to neural activity in a given cortical region. 

The DTSR models applied in this study assumed improper uniform priors over all parameters in the 

variational posterior and were optimized using a learning rate of 0.001 and stochastic minibatches of size 

1024. Following standard practice from linear mixed-effects regression (Bates et al., 2014), random 

effects were L2-regularized toward zero at a rate of 1.0. Convergence was declared when the loss was 

uncorrelated with training time by t-test at the 0.5 level for at least 250 of the past 500 training epochs. 

For computational efficiency, predictor histories were truncated at 256 timesteps (words), which yields a 

maximum temporal coverage in our data of 48.34s (substantially longer than the effective influence of the 

canonical HRF). Prediction from the network used an exponential moving average of parameter iterates 

(Polyak, 1992) with a decay rate of 0.999, and models were evaluated using maximum a posteriori 

estimates obtained by setting all parameters in the variational posterior to their means. This approach is 

valid because all parameters are independent Gaussian in the DTSR variational posterior (Shain & 

Schuler, 2018). 
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Model specification 

 

The following DTSR model specification was fitted to responses from each of the LANG and MD fROIs, 

where italics indicate predictors convolved using the fitted HRF and bold indicates predictors that were 

ablated for hypothesis tests: 

 

BOLD ~ TRNumber + soundPower + Rate + Frequency + 5gram + PCFG + 

(TRNumber + soundPower + Rate + Frequency + 5gram + PCFG | fROI) + (1 

| Participant) 

 

The random effect by fROI indicates that the model included zero-centered by-fROI random variation in 

response amplitude and HRF parameters for each functional region of interest. As shown, the model also 

included a random intercept by participant (the data do not appear to support richer by-participant random 

effects, e.g. including random slopes and HRF shapes, since such models explained no held-out variance 

in early analyses, indicating overfitting). The above model can test whether the surprisal variables help 

predict neural activation in a given cortical region. However, it cannot be used to compare the magnitudes 

of response to surprisal across networks (Nieuwenhuis et al., 2011). Therefore, we directly tested for a 

difference in influence by fitting the combined responses from both LANG and MD using the following 

model specification with the indicator variable Network: 

 

BOLD ~ TRNumber + soundPower + Rate + Frequency + 5gram + PCFG + 

Network + TRNumber:Network + soundPower:Network + Rate:Network + 

Frequency:Network + 5gram:Network + PCFG:Network + (1 | fROI) + (1 | 

Participant) 

 

The random effects by fROI were simplified in comparison to that of the single-network models because 

the Network variable exactly partitions the fROIs. Thus ablated models can fully capture network 

differences as long as they have by-fROI random effects for surprisal. Indeed, initial tests showed 

virtually no difference in held-out likelihood between full and ablated combined models when those 

models included full by-fROI random effects despite large-magnitude estimates for the interactions with 

Network in the full model. Furthermore, the fitted parameters suggested that the by-fROI term was being 

appropriated in ablated models to capture between-network differences. In the full model, the 5-gram 

Surprisal estimates for 50% of LANG fROI and 45% of MD fROI were positive, while in the model with 

5gram:Network ablated, 100% of LANG fROI and only 20% of MD fROI were positive, indicating that 

differences in response to 5-gram Surprisal had been pushed into the by-fROI random term. For this 

reason, we used simpler models for the combined test, despite their insensitivity to by-fROI variation in 

HRF shape or response amplitude. 

In interactions between Network and convolved predictors, the interaction was computed following 

convolution but prior to rescaling with that predictor’s coefficient. Thus, the interaction term represents 

the offset in the estimated coefficient from the MD network to the LANG network, as is the case for 

binary interaction terms in linear regression models. 

Finally, exact deconvolution from continuous predictors like Sound Power is not possible, since such 

predictors do not have an analytical form that can be integrated. Instead, we sampled sound power at 
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fixed intervals (100ms), in which case the event-based DTSR procedure reduces to a Riemann sum 

approximation of the continuous convolution integral. Note that the word-aligned predictors (e.g. 5-gram 

Surprisal) therefore have different timestamps than Sound Power, and as a result the history window 

spans different regions of time (up to 128 words into the past for the word-aligned predictors and up to 

100ms × 128 = 12.8s of previous Sound Power samples). 

 

Ablative statistical testing 

In order to avoid confounds from (1) collinearity in the predictors and/or (2) overfitting to the training 

data, we followed a standard testing protocol from machine learning of evaluating differences in 

prediction performance on out-of-sample data using ablative non-parametric paired permutation tests for 

significance (Demšar, 2006). This approach can be used to assess the presence of an effect by comparing 

the prediction performance of a model that contains the effect against that of an ablated model that does 

not contain it. Specifically, given two pre-trained nested models, we computed the out-of-sample by-item 

likelihoods from each model over the evaluation set and constructed an empirical p value for the 

likelihood difference test statistic by randomly swapping by-item likelihoods n times (where n=10,000) 

and computing the proportion  of obtained likelihood differences whose magnitude exceeded that 

observed between the two models. To ensure a single degree of freedom for each comparison, only fixed 

effects were ablated, with all random effects retained in all models. 

The data partition was created by cycling TR numbers e into different bins of the partition with a different 

phase for each subject u: 

partition(e; u) = ⌊
𝑒+𝑢

30
⌋   mod 2 

assigning output 0 to the training set and 1 to the evaluation set. Since TR duration is 2s, this procedure 

splits the BOLD times series into 60 second chunks, alternating assignment of chunks into training and 

evaluation sets with a different phase for each participant. Partitioning in this way allowed us to (1) obtain 

a model of each participant, (2) cover the entire time series, and (3) sub-sample different parts of the time 

series for each participant during training, while at the same time suppressing correlation between the 

training and evaluation responses by using a relatively long period of alternation (30 TRs or 60s). 

 

Accessibility 

Access instructions for software and supplementary data needed to replicate these experiments (e.g. 

librosa, PyMVPA, DTSR, KenLM, Gigaword 3, etc.) are given in the publications cited above. Post-

processed fMRI timeseries are publicly available at the following URL: https://osf.io/eyp8q/. These 

experiments were not pre-registered. 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 28, 2019. ; https://doi.org/10.1101/717512doi: bioRxiv preprint 

https://osf.io/eyp8q/
https://doi.org/10.1101/717512
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 

 

Results 
 

 

 

 

 

 

 

 

 Language Network Multiple Demand Network 

 37% relative held-out variance explained 0% relative held-out variance explained 

– Rate    – Sound power     – Frequency    – 5-gram Surprisal     – PCFG Surprisal 

Figure 3: Estimated overall double-gamma hemodynamic response functions (HRFs) by network 
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 IFGorb MFG PostTemp 

– Rate    – Sound power     – Frequency    – 5-gram Surprisal     – PCFG Surprisal 

Figure 4: Estimated language-network HRFs by fROI 

fROI 

 

Hemisphere 5-gram 

estimate 

PCFG 

estimate 

% Held-Out 

Variance Explained 

AngG L 0.030 0.156 0.0% 

AntTemp L 0.215 0.017 5.1% 

IFG L 0.287 0.309 2.2% 

IFGorb L 0.010 0.318 1.3% 

MFG L 0.382 0.346 2.3% 

PostTemp L 0.242 0.258 6.1% 
Table 3: LANG surprisal estimates by fROI. Estimates given are the area under the fitted HRF. Models explain held-out 

variance in all regions but AngG. 
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fROI 

 

Hemisphere 5-gram 

estimate 

PCFG 

estimate 

% Held-Out 

Variance Explained 

AntPar L 0.102 -0.523 0.0% 

IFGop L 0.009 0.141 0.0% 

Insula L -0.200 0.284 0.0% 

MFG L 0.074 -0.026 0.0% 

MFGorb L -0.215 0.252 0.5% 

MidPar L 0.116 -0.051 0.0% 

mPFC L -0.125 0.257 0.0% 

PostPar L 0.083 -0.006 0.0% 

PrecG L 0.078 0.048 0.0% 

SFG L 0.180 0.025 0.0% 

AntPar R 0.016 -0.077 0.0% 

IFGop R -0.011 0.075 0.0% 

Insula R -0.185 0.227 0.0% 

MFG R 0.058 -0.006 0.0% 

MFGorb R -0.004 0.019 0.0% 

MidPar R 0.040 -0.110 0.0% 

mPFC R -0.321 0.440 0.0% 

PostPar R -0.312 0.434 0.0% 

PrecG R 0.034 0.118 0.0% 

SFG R 0.066 -0.034 0.0% 
Table 4: MD surprisal estimates by fROI. Estimates given are the area under the fitted HRF. Models explain no held-out 

variance in any region except left MFGorb. 
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 Coefficient 

 

Predictor 

 

LANG MD Combined 

Sound Power 

 

-0.055 -0.006 -0.003 

TR Number 

 

-0.148 0.048 -0.005 

Rate 

 

0.242 0.146 0.048 

Frequency 

 

-0.060 -0.199 -0.134 

5-gram Surprisal 

 

0.209 -0.025 0.003 

PCFG Surprisal 

 

0.235 0.097 0.038 

Network 

 

-- -- -1.32 

Sound Power by Network 

 

-- -- -0.050 

TR Number by Network 

 

-- -- -0.008 

Rate by Network 

 

-- -- 0.269 

Frequency by Network 

 

-- -- 0.040 

5-gram Surprisal by 

Network 

-- -- 0.212 

PCFG Surprisal by 

Network 

-- -- 0.193 

Table 5: Model effect estimates. 

 

 LANG 

 

MD Combined 

% Total % Relative % Total % Relative % Total % Relative 

Ceiling 

 

6.18% 100% 1.34% 100% 2.63% 100% 

Model (train) 

 

3.68% 59.5% 0.75% 56.0% 1.18% 44.9% 

Model 

(evaluation) 

 

2.30% 37.2% 0.00% 0.00% 0.71% 27.0% 

Table 6: Model percent variance explained compared to a “ceiling” linear model regressing against the mean response of all other 

participants for a particular story/fROI. “% Total” columns show absolute percent variance explained, while “% Relative” 

columns show percent variance explained relative to the ceiling. 
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Comparison 

 

p LL 

Improvement 

Effect Estimate 

5-gram over 

neither 

 

0.0001*** 182 0.307 

PCFG over 

neither 

 

0.0001*** 183 0.352 

5-gram over 

PCFG 

 

0.0001*** 61 0.209 

PCFG over 

5-gram 

0.0001*** 61 0.235 

Table 7: LANG result. Significance in LANG by paired permutation test of log-likelihood improvement on the evaluation set 

from including a fixed effect for each of 5-gram Surprisal and PCFG Surprisal, over (1) a baseline with neither fixed effect and 

(2) baselines containing the other fixed effect only. The Effect Estimate column shows the estimated effect size from the model 

containing the fixed effect (i.e. the area under the estimated HRF). 

 

 

Comparison 

 

p LL 

Improvement 

Effect Estimate 

5-gram over 

neither 

 

0.137 3 0.019 

PCFG over 

neither 

 

1.0 -29 

 

0.081 

5-gram over 

PCFG 

 

1.0 -8 -0.025 

PCFG over 

5-gram 

1.0 -40 0.097 

Table 8: MD result. Significance in MD by paired permutation test of log-likelihood improvement on the evaluation set from 

including a fixed effect for each of 5-gram Surprisal and PCFG Surprisal, over (1) a baseline with neither fixed effect and (2) 

baselines containing the other fixed effect only. A p-value of 1.0 is assigned by default to comparisons in which held-out 

likelihood improved under ablation. The Effect Estimate column shows the estimated effect size from the model containing the 

fixed effect (i.e. the area under the estimated HRF). 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 28, 2019. ; https://doi.org/10.1101/717512doi: bioRxiv preprint 

https://doi.org/10.1101/717512
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 

 

 

 

Comparison 

 

p LL 

Improvement 

Effect Estimate 

5-gram:Network 

over neither 

 

0.0001*** 144 0.212 

PCFG:Network 

over neither 

 

0.0001*** 144 

 

0.193 

5-gram:Network 

over 

PCFG:Network 

 

0.0001*** 53 0.301 

PCFG:Network 

over  

5-gram:Network 

0.0001*** 53 0.317 

Table 9: Combined result. Significance in the combined data by paired permutation test of log-likelihood improvement on the 

evaluation set from including a fixed interaction for each of 5-gram Surprisal and PCFG Surprisal with Network, over (1) a 

baseline with neither fixed interaction and (2) baselines containing the other fixed interaction only. The Effect Estimate column 

shows the estimated interaction size from the model containing the fixed interaction (i.e. the difference in effect estimate between 

LANG and MD). 

 

 

Comparison 

 

Median LL 

Improvement 

by Participant 

% Participants 

Improved 

Num Removable 

Participants 

5-gram over 

neither 

 

1.236 

 

71.8% 19 

PCFG over 

neither 

 

0.732 64.1% 14 

5-gram over 

PCFG 

 

0.335 61.5% 7 

PCFG over 

5-gram 

0.498 60.3% 5 

Table 10: Generality of LANG surprisal effects across participants. Median likelihood improvement in LANG on the 

evaluation set by participant, percent of participants whose held-out predictions improved due to surprisal effects, and the number 

of participants with the largest held-out improvement whose data can be removed without changing the significance of the effect 

at a 0.05 level. Held-out likelihood improves for most participants in every comparison, and at least 5 of the most responsive 

participants can be removed in each comparison without changing the significance of the effect. 
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Figure 7: LANG likelihood improvement by participant. Spread of by-participant likelihood 

improvements in each comparison. Most improvements are positive, and effects are not driven by large 

positive outliers (see Table 10). 
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The DTSR-estimated mean double-gamma hemodynamic response functions (HRFs) for the LANG and 

MD networks are given in Figure 3, the estimated HRFs by fROI in LANG regions are shown in Figure 

4, surprisal estimates and percent variance explained by region are given in Tables 3 and 4, and 

population-level effect estimates (i.e., areas under the estimated HRFs) are reported in Table 5. MD 

estimates by region are plotted in Supplementary Figures 3 and 4; they are of little relevance because 

they do not generalize (Tables 4 & 6). As shown, HRF shapes resemble but deviate slightly from the 

canonical HRF (Boynton et al., 1996) to varying degrees in each region, highlighting both consistency 

with HRF estimates established by prior research as well as the potential of DTSR to discover subtle 

differences in HRF shape between cortical regions (Handwerker et al., 2004) in naturalistic data. The 

models find positive effects of similar strength for both 5-gram Surprisal and PCFG Surprisal in LANG, 

and smaller effects of surprisal (even negative in the case of 5-gram Surprisal) in MD. 

At the level of individual regions, the models explained held-out variance in all but one of the language 

fROIs (the exception was the AngG fROI). In contrast, the models explained no held-out variance in any 

but one MD fROI (the left MFGorb fROI). We leave these two exceptions to future research, but overall, 

the results demonstrate that surprisal effects are generally present throughout the language network and 

generally absent throughout the MD network. The differences between the individual-network models are 

largely replicated in the Combined model (Table 5), where main effects represent the estimated mean 

response in MD while interactions with Network represent the estimated difference in mean response 

between LANG and MD. As shown, Combined model estimates of both 5-gram:Network and 

PCFG:Network are positive and large-magnitude, indicating that the model estimates these variables to 

yield greater increases in neural activity in LANG over MD. 

Table 6 reports model percent variance explained compared to a theoretical ceiling computed by 

regressing responses against responses from the same brain region in all other participants exposed to that 

stimulus. This ceiling is designed to quantify the variance that can be explained based on the stimuli 

alone, independently of inter-participant variation. As shown, models explain a substantial amount of the 

available variance in LANG. MD models explain no variance on the evaluation set, suggesting that the 

MD model did not learn generalizable patterns. 

Because fROIs were modeled as random effects in these analyses, pairwise statistical testing of between-

region differences in effect amplitude is not straightforward, and systematic investigation of regions / 

subnetworks within each broader functional network is left to future work. However, a qualitative 

examination of the by-region estimates suggests potentially interesting functional differences within the 

language network (Table 3). In particular, the IFG, MFG, and PostTemp fROIs all responded roughly 

equally to both measures of surprisal. The IFGorb fROI responded more to PCFG than 5-gram Surprisal 

(an unexpected finding given that this is not the language region that is traditionally most strongly 

associated with syntactic processing; e.g., Friederici, 2011; Blank et al., 2016). The AngG fROI showed a 

similar pattern, but the models did not explain held-out variance for this fROI. And the AntTemp fROI 

responded more to 5-gram than PCFG Surprisal. Although the differences in effect sizes between the two 

surprisals are significant in each of IFGorb, AngG, and AntTemp by Monte Carlo estimated credible 

intervals tests, such tests are anticonservative in DTSR (Shain & Schuler, submitted). Nonetheless, they 

suggest that different regions of the language network might be differentially sensitive to surface-level vs. 

structural properties of language. The internal architecture of the language network has been long 

debated, and a number of proposals have been put forward (e.g., Friederici, 2011, 2012; Baggio and 

Hagoort, 2011; Tyler et al., 2011; Duffau et al., 2014; Ullman, 2016). However, no consensus has yet 

been reached about whether different regions support different aspects of language processing, and, if so, 

which regions support which linguistic computations (see e.g., Fedorenko et al., 2018, for discussion). 

Perhaps neural investigations of naturalistic language comprehension, combined with the power of the 

novel DTSR approach and stringent statistical evaluation, can help inform this ongoing debate. 
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Tables 7-9 show the main finding of this study: fixed effects for 5-gram Surprisal and PCFG Surprisal 

significantly improve held-out likelihood in the LANG network over a model containing neither, as well 

as over one another. The difference in effect size between the LANG and MD networks is statistically 

significant, as shown by the significant likelihood improvements yielded by interactions of the surprisal 

variables with Network. 

As shown in Figure 3, the effects signs for Frequency in both networks are negative. The lack of a 

positive effect of Frequency is not what would be expected if word frequency modulated neural activity 

(Staub, 2015), but it is consistent with recent naturalistic behavioral evidence against distinct effects of 

frequency and predictability (Shain, 2019), as well as with previous theoretical claims that apparent 

frequency effects are underlyingly effects of predictability (Levy, 2008). Negative effects like these 

indicate suppression of the BOLD response and pose a challenge for interpretation (Harel et al., 2002). 

Prior work has suggested that such negative effects can arise from increased processing load elsewhere in 

the brain through hemodynamic factors (“vascular steal”) (Lee et al., 1995; Saad et al., 2001; Harel et al., 

2002; Kannurpattie et al., 2004) and/or neuronal ones such as inhibition by an attention mechanism 

(Smith et al., 2000; Shmuel et al., 2002; Shmuel et al., 2006). The means by which such mechanisms 

might give rise to negative frequency effects in these experiments are not currently clear. Since frequency 

effects are not central to our present research question, we leave targeted investigation of their existence 

and direction to future research. 

Figure 7 and Table 10 assess the generalizability of surprisal effects across participants. Figure 7 shows 

most by-participant improvements clustered around a positive median, without strong visual indication of 

large-magnitude positive outliers that might exclusively drive the effect. This intuition is quantified in 

Table 10. As shown, held-out likelihood improves for most participants in all comparisons. Furthermore, 

at least 5 of the most responsive participants in each comparison can be removed without changing the 

significance of the effect. Participant removal is a stringent criterion not only because it excludes the most 

responsive participants from consideration but also because it reduces the power of the permutation test 

by shrinking the evaluation set. These participant-level analyses demonstrate that surprisal effects in 

LANG are not merely driven by a small number of outlier participants. 

Discussion 
 

The current study examined signatures of predictive processing during naturalistic story comprehension in 

two functionally distinct cortical networks: the domain-specific language (LANG) network, and the 

domain-general multiple demand (MD) network. Specifically, we tested which of these networks 

increased their responses with lower word predictability, operationalized using both 5-gram and 

probabilistic context-free grammar (PCFG) surprisal. The main results, yielded by deconvolutional time 

series regression (DTSR) analysis of surprisal effects in the two networks, are shown in Tables 7-9: in 

LANG, both 5-gram Surprisal and PCFG Surprisal have positive effects that yield statistically significant 

improvements to held-out likelihood, both over a baseline containing neither fixed effect as well as over 

one another. By contrast, in MD, neither surprisal effect is significant in any comparison. A direct test for 

a difference in surprisal effects across the two networks (Table 9) shows that the interactions of both 

surprisals with network are positive and statistically significant, indicating that the BOLD response to 

both surface-level (5-gram) and structural (PCFG) word predictability is larger in LANG than MD. These 

results are over a baseline that includes an effect for lexical frequency (log unigram probability), despite 

the strong natural correlation between surprisal and frequency, both generally (Demberg & Keller, 2008) 

and in the current experimental materials (r = 0.78 overall). This finding suggests that the surprisal effects 

reported here are indeed driven by predictive coding and not merely by the cost of retrieving infrequent 

words. Together, these results demonstrate that predictive coding for upcoming words is primarily a 

canonical computation carried out by domain-specific cortical circuits, rather than by feedback from 
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higher, domain-general executive control circuits, and that these predictions depend on both surface-level 

and structural information sources. 

This finding bears on an ongoing discussion in cognitive neuroscience about the compartmentalization of 

language processing. Early investigations of the functional organization of the brain argued for the 

existence of neuroanatomical modules dedicated to specific linguistic functions, from lower-level 

perceptual and motor components of language to higher-level ones like phonological, lexical, and 

combinatorial syntactic and semantic processing (Broca, 1861; Dax, 1863; Wernicke, 1874; Fodor, 1983; 

Petersen et al., 1988; Levelt, 1989; Pinker 1994). This position has been called into question by 

subsequent work stressing the distributed nature of cognition (e.g., Mesulam, 1998; Thompson-Schill et 

al., 2005; Blumstein & Amso, 2013), based on evidence both (1) that brain regions conventionally 

believed to be language-specific are also recruited for non-linguistic tasks (e.g., Dehaene et al., 1999; 

Stanescu-Cosson et al., 2000; Maess et al., 2001; Kaan and Swaab, 2002; Koelsch et al., 2002; Koechlin 

and Jubault, 2006; Hein and Knight, 2008; Blumstein, 2009; January et al., 2009), and (2) that brain 

regions conventionally believed to support domain-general cognitive control are also recruited for 

language processing, especially under difficult comprehension conditions (e.g., Kaan & Swaab; 2002; 

Kuperberg et al., 2003; Novick et al., 2005; Rodd et al., 2005; Novais-Santos, 2007; January et al., 2009; 

Peelle et al., 2010; Rogalsky & Hickock, 2011; Nieuwland et al., 2012; Wild et al., 2012; McMillan et al., 

2012, 2013, Hsu & Novick, 2016). Although such results might raise doubts about the necessity and 

sufficiency of the putative language network for language processing, they are counterbalanced by 

rigorous non-replications of (1) the engagement of language regions in arithmetic, working memory, or 

cognitive control tasks (Fedorenko et al., 2011; Monti et al., 2012; Almaric et al., 2018), and (2) the 

engagement of cognitive control (MD) regions in language processing (Blank & Fedorenko, 2017; Wehbe 

et al., submitted), leading some to conclude that there does indeed exist a functionally specific cortical 

language network (Fedorenko, 2014; Fedorenko & Thompson-Schill, 2014) and that MD engagement in 

many previous studies of language processing was induced by experimental task artifacts (Campbell & 

Tyler, 2018; Wehbe et al., submitted; Diachek et al., in prep.). 

The aforementioned debate about the compartmentalization of language processing has largely focused on 

controlled experimental paradigms which are prone to induce task artifacts that confound functional 

differentiation of neural structures. By showing strong prediction-based functional differentiation between 

the LANG and MD networks during naturalistic language comprehension, the present study provides 

evidence that predictive coding for language is primarily carried out by language-specific rather than 

domain-general mechanisms. 

This finding also contributes to the growing literature on predictive coding in the mammalian brain, 

which has recently produced evidence that neurons are tuned to predict upcoming inputs but has also 

primarily focused on low-level perceptual processing (Rao & Ballard, 1999; Alink et al., 2010; Bubic et 

al. 2010; Keller & Mrsic-Flogel, 2018; Singer et al., 2018). The present study suggests that prediction 

extends to high-level cognitive functions like language comprehension and is similarly implemented as a 

domain-specific canonical computation in regions that store our linguistic knowledge. 

The finding that surprisal computed by marginalizing over syntactic structures (PCFG Surprisal) 

modulates the LANG response independently of surface-level n-gram surprisal is evidence that 

participants are indeed computing such structures during incremental sentence processing (Hale, 2001; 

Levy, 2008; Fossum & Levy, 2012; Rasmussen & Schuler, 2018) and is inconsistent with previous 

arguments that the human sentence processing response is largely insensitive to such structures (Frank & 

Bod, 2011; Frank et al., 2012; Frank & Christiansen, 2018). At the same time, the finding that 5-gram 

Surprisal modulates the LANG response independently of PCFG Surprisal is evidence that the human 

sentence processing mechanism is sensitive to word co-occurrence patterns in ways that are not well 

captured by a strictly context-free parser. This suggests either (1) that the human parser is not strictly 

context-free (see e.g. tree-adjoining grammars, Joshi, 1985; adaptor grammars, Johnson et al., 2007; and 
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other context-sensitive grammar formalisms for natural language), or (2) that participants track both 

hierarchical structure and word co-occurrence patterns separately and simultaneously when generating 

predictions. Evaluating these hypotheses is left to future work. The lack of structured prediction effects in 

MD is of interest given prior proposals that ground structural effects in constraints on working memory 

(Abney & Johnson, 1991; Resnik, 1992; Rasmussen & Schuler, 2018). To the extent that the memory 

resources used for prediction are also expected to register a signal proportional to prediction error, the 

failure to find such a signal in MD suggests that these memory resources may also be specific to the 

functional language network, rather than domain general (e.g., Caplan & Waters, 1999). 

Estimates at the fROI level shed light on results from prior naturalistic fMRI experiments (Willems et al., 

2015; Brennan et al., 2016; Henderson et al., 2016; Lopopolo et al., 2017). We found strong effects of 

both surface-level and structural estimates of word predictability in roughly the union of left-hemisphere 

language regions for which such effects have been reported in prior work (e.g., temporal and inferior 

frontal regions). At the same time, we did not find clear evidence of predictive coding in regions linked 

with the multiple demand network, like superior frontal gyrus (cf. Lopopolo et al., 2017), in part because 

our use of held-out significance tests helped us avoid reporting MD surprisal effects that fail to generalize 

(e.g., left-hemisphere SFG, Table 4). The lack of held-out testing in earlier studies may therefore have 

contributed to prior findings of surprisal effects in MD regions. Finally, we obtained significant positive 

effects for surprisal implementations in language regions that have previously been reported null or 

negative (e.g., lexicalized trigrams in IFG and PTL or PCFG surprisal in IFG, per Brennan et al., 2016; 

PCFG surprisal in the temporal lobe, per Henderson et al., 2016). It is possible that the size of the present 

study increased sensitivity to these effects, since studies using less data are more likely to yield sign and 

magnitude errors (Gelman & Carlin, 2014). The picture that emerges more clearly from our results than 

from those of prior studies is of a predictive coding mechanism that is specific to the functional language 

network, generalized throughout it, and sensitive to hierarchical structure. 

In focusing on prediction effects, we recognize that language comprehension involves a good deal more 

than simply minimizing surprise – meanings conveyed by partially-complete words and syntactic 

structures are rapidly and incrementally recognized, stored, and integrated into existing knowledge 

representations as the discourse unfolds (Tanenhaus et al., 1995; Altmann & Kamide, 1999). Numerous 

studies have probed the computations involved in storage, retrieval, and integration during human 

sentence comprehension (MacDonald et al., 1992; Kluender & Kutas, 1993; Gibson & Ko, 1998; Felser et 

al., 2003; Hsiao & Gibson, 2003; Aoshima et al., 2004; Grodner & Gibson, 2005; Lewis & Vasishth, 

2005; Fiebach et al., 2005; Fedorenko et al., 2006, 2007; Rasmussen & Schuler, 2018), and a complete 

account of human language processing will likely involve both prediction-based and integration-based 

computations (Levy et al., 2013; Levy & Gibson, 2013). We have targeted surprisal-based measures of 

prediction effects in this study because they are robustly attested in human responses across modalities, 

using both controlled and naturalistic stimuli, and because prediction may subserve memory retrieval and 

integration (Altmann, 1998). The fMRI dataset produced by this study will hopefully support further 

investigation into the interplay of memory and expectation in the language-selective and domain-general 

networks. 

It is also possible that the prediction effects reported here may, to some extent, be amenable to 

interpretation as effects of integration. That is, researchers who view “prediction” as a conscious lexically 

specific activity may view these results as evidence of conceptual preactivation or preparedness that eases 

integration once a word is observed (see Ferreira and Chantavarin, 2018, for an overview of this 

distinction). We leave to future work a fuller investigation of this distinction and simply note that our 

results indicate that any such preactivation processes only occur in the LANG network, rather than 

invoking the MD network, and are strongly correlated with probabilistic measures of word predictability. 
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In summary, our findings based on a large-scale naturalistic fMRI experiment support a view of linguistic 

prediction as implemented by domain-specific cortical circuits, sensitive to both surface-level and 

syntactic information sources, and generalized throughout the functional language network. 
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