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Summary 11 

 12 

Cells form spatial patterns by coordinating their gene expressions. How a group of mesoscopic 13 

numbers (hundreds-to-thousands) of cells, without pre-defined morphogens and spatial 14 

organization, self-organizes spatial patterns remains incompletely understood. Of particular 15 
importance are dynamic spatial patterns - such as spiral waves that perpetually move and 16 

transmit information over macroscopic length-scales. We developed an open-source, 17 

expandable software that can simulate a field of cells communicating with any number of cell-18 
secreted molecules in any manner. With it and a theory developed here, we identified all 19 

possible "cellular dialogues" - ways of communicating with two diffusing molecules - and core 20 

architectures underlying them that enable diverse, self-organized dynamic spatial patterns that 21 
we classified. The patterns form despite widely varying cellular response to the molecules, 22 

gene-expression noise, and spatial arrangement and motility of cells. Three-stage, "order-23 
fluctuate-settle" process forms dynamic spatial patterns: cells form long-lived whirlpools of 24 
wavelets that, through chaos-like interactions, settle into a dynamic spatial pattern. These 25 

results provide a blueprint to help identify missing regulatory links for observed dynamic-26 
pattern formations and in building synthetic tissues.  27 
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INTRODUCTION 28 

Highly organized spatial patterns can form when multiple cells, without pre-existing 29 
morphogen gradients, communicate with each other to coordinate their gene-expression 30 

levels [Gregor et al., 2010; Lubensky et al., 2011; Sgro et al., 2013; Idema et al., 2013, 31 
Manyukan et al., 2017; Jörg et al., 2019]. Understanding how a group of cells collectively 32 

organize (i.e., the group self-organizes) spatial patterns through cell-cell communications is 33 

crucial for understanding and engineering mammalian tissues [Javaherian et al., 2013]. Many 34 
synthetic and natural mammalian tissues are monolayers of genetically identical cells (e.g., 35 

epithelial sheets) whose gene-expression levels are initially spatially uncorrelated but become 36 

more correlated over time during development, resulting in specialized cell-types within 37 
tissues. This process often involves cell-cell communication [Menendez et al., 2010]. 38 

Recently, there has been a surge of interest in developing and using experimental methods 39 

for spatially arranging individual cells in a monolayer and then observing how such a 40 
heterogeneous tissue - composed of cells at differing locations having different gene-41 

expression levels - develops over time [Javaherian et al., 2014]. Although quantitative models 42 
also now exist to complement such experiments, they are often tailored to specific tissues and 43 

signaling molecules so it is challenging to use them as a general framework that one can 44 
adapt to different gene-circuits, signaling molecules, and cell-types [Drasdo et al., 2007]. 45 
Partly as a result of this deficiency, we currently lack a general, quantitative mechanism for 46 
explaining how spatial patterns emerge in heterogeneous tissues made of realistic, 47 

mesoscopic numbers (hundreds to thousands) of cells, all without morphogen gradients 48 
(Figure 1A - top). Typically, to explain pattern formations, one uses reaction-diffusion 49 
equations and invokes the Turing instability - an instability that arises when amplifications of 50 

initially small chemical-concentration fluctuations in an uniformly spread field of chemicals lead 51 
to spatial patterns (Figure 1A - bottom) [Turing, 1952]. Although this mechanism is insightful, 52 

it applies to continuous fields of chemicals or cells (Figure 1A - bottom), and does not treat 53 

gene expression levels of individual cells when there are biologically realistic (mesoscopic) 54 

numbers of cells (Figure 1B - bottom). Recent work has extended models of biological pattern 55 

formation by including more general mechanisms that go beyond the Turing instability [Halatek 56 

& Frey, 2018], as well as individual cells and mechanical interactions [Lubensky et al., 2011; 57 
Recho et al., 2019]. However, much remains to be explored to obtain a general understanding 58 

of the relationship between the properties of cellular communication - the various ways in 59 

which the cells secrete and sense signaling molecules - and the gene expression patterns that 60 
emerge in a mesoscopic population of cells. 61 

 62 

 We sought to resolve this shortcoming by developing an open-source software that 63 
visually simulates spatial-patterning dynamics - a software that can be easily modified, is 64 
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expandable with more ingredients, and will likely be useful for both research and educational 65 

purposes (https://github.com/YitengDang/MultiCellSim). We also developed algorithms for 66 

analyzing these simulations. With the software and analysis algorithms, we sought to reveal 67 

quantitative mechanisms by which mesoscopic numbers of cells can use their spatially 68 

heterogeneous gene-expression levels as a seed to form spatial patterns. In particular, we 69 
focused on dynamic patterns - patterns that constantly change over time without ever stopping 70 

such as oscillations and spiral waves [Sgro et al., 2013] - instead of static patterns that remain 71 
still after forming (Figure 1B). Through an exhaustive computational search, we discovered all 72 

the ways in which cells can communicate with just two diffusing molecules to form dynamic 73 

patterns, including those that have been experimentally observed. We found that just a few 74 
ways of communicating, which we refer to as "cellular dialogues", can generate a large palette 75 

of complex, dynamic spatial patterns such as chaotic whirlpools of wavelets and travelling 76 

waves of various shapes and orientations. Viewing these simulations as exact numerical 77 
experiments, we devised an analytical (pen-and-paper) approach that recapitulates the 78 
simulations and used it to understand why only certain cellular dialogues can sustain dynamic 79 
spatial patterns. As we will show, we discovered that cells can form dynamic spatial patterns 80 
through a three-stage, "order-fluctuate-settle" process. Starting from a configuration in which 81 

there is no spatial correlation among cells' gene-expression levels, we observed that cells 82 

rapidly become more spatially correlated over time, resulting in whirlpools of wavelets formed 83 

out of their correlated gene-expressions. This is then followed by a prolonged transient phase 84 
in which the whirlpools of wavelets annihilate each other while new ones are being formed. 85 
This results in the spatial correlation fluctuating over time in a seemingly chaotic manner that 86 
is reminiscent of deterministic chaos seen in logistic difference equation for population growth. 87 

Finally, as the fluctuations settle - due to the wavelets settling down - a dynamic spatial pattern 88 
such as a travelling wave emerges. This represents a symmetry-breaking transition in which 89 

the dynamic pattern (e.g., traveling wave) chooses a direction to travel in, even though there 90 

are no earlier indications that any one direction would be preferred over any other direction. 91 
We show that self-organized dynamic patterns survive wide variations in gene-expression 92 

noise, cells' responses to the sensed molecules, spatial arrangements of cells (even when 93 

cells are randomly scattered), and diffusive motions of cells (i.e., each cell randomly moving). 94 
For each of these elements, we quantified how much perturbation is sufficient to disrupt the 95 

formation of dynamic spatial patterns. As a theoretical study, our study focuses on how cells 96 

can form dynamic spatial patterns, rather than how certain cells do form them. Despite not 97 
tailoring our study to a particular multicellular system, our computational search yielded 98 

cellular dialogues that are known to generate dynamic spatial patterns in certain multicellular 99 

systems. Our paper ends by discussing these examples as well as suggesting how one can 100 
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  101 

 
 
Figure 1. Computationally screening cellular dialogues to find ones that enable dynamic patterns to form. (A) Pattern 

formation by cells versus chemicals. (Top) Mechanisms by which an initially disordered field of a mesoscopic number of cells 

(~hundreds to thousands) (left panel) become more ordered through cell-cell communication (right panel) remain poorly 
understood, as is the method to analyze this complex self-organization dynamics. (Bottom) A field of chemicals or a continuum 

of cells (large number of tightly packed cells) initially having no pattern (left) can form a pattern (right) without pre-existing 

morphogens. This is usually modelled by reaction-diffusion equations and can be understood through the Turing mechanism. 
(B) Static versus dynamic patterns. (Top) Static patterns do not change over time. (Bottom) In dynamic patterns, a structure 

changes over time without ever stopping (e.g., shown here is a travelling wave). C) Schematic of cellular dialogues. Brown 

(molecule 1) and green (molecule 2) circles are ligands that bind to their cognate receptors on the cell membrane. Ligand-
bound receptors trigger intracellular signal transductions that either positively or negatively regulate the production and 
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expand our work, including the open-source software, to computationally identify cellular 102 
dialogues that may produce dynamic spatial patterns that are observed in multicellular 103 

systems but whose underlying cellular dialogue remains unknown. 104 

 105 
 106 

RESULTS 107 

Computational search for cellular dialogues that enable self-organized patterns 108 
We built an open-source visualization software that simulates all possible ways in which cells 109 

can communicate - which we call "cellular dialogues" - by secreting, sensing, and responding 110 
to two diffusing molecules (Figure 1C). Our simulations combine reaction-diffusion equations 111 

– these describe the concentrations of the two diffusing molecules – and a cellular automaton 112 
– this describes the cells' gene-expression levels that are set by the concentrations of the two 113 
molecules. We represent a cellular dialogue as a network diagram that consists of two nodes 114 
(one for each molecule) joined by signed arrows, which can be positive (activating) or negative 115 

(repressing). A signed arrow denotes how the sensing of one molecule, represented by the 116 
node on which the arrow begins, increases (for a positive arrow) or decreases (for a negative 117 
arrow) the sensing cell's secretion rate of a molecule that is represented by the node on which 118 

the arrow ends (the same or the other molecule) (Figure 1C). We assume that both molecules 119 
diffuse on a faster timescale than the cells can respond to them - the two molecules "rapidly" 120 

diffuse - as is the case in many multicellular systems [Heemskerk et al., 2019]. We first 121 

considered cells that digitally respond to each molecule: a cell secretes "molecule-i" at either 122 

a low rate ("OFF" state for molecule-i) or a high rate ("ON" state for molecule-i). If molecule-j 123 

activates (represses) molecule-i, then a cell becomes ON (OFF) for molecule-i if and only if it 124 

senses a concentration of molecule-j that is above a set threshold concentration. We will later 125 
relax this assumption and consider cells with continuous response to the sensed molecules. 126 

We first considered these digital cells for two reasons. First, experimental studies have shown 127 

that signal transduction pathways such as MAPK or other phospho-relay cascades that are 128 
triggered by ligand-bound receptors and control gene-expressions downstream, as in our 129 

digital cells (Figure 1C), can have an effective Hill coefficient with a value of 4 or more (e.g., 130 

as high as 32 [Trunnell et al., 2011]). An effective Hill coefficient characterizes the "sharpness" 131 
of cell's response to a ligand [Ferrell & Ha, 2014; Plotnikov et al., 2011; Trunnell et al. 2011]. 132 

secretion of molecules 1 and 2 (molecule 1 can self-promote or self-repress its own secretion while also regulating the 

secretion of molecule 2, and vice versa). Bottom row shows graphic representation of cellular dialogues. (D) Elements that 

we varied in simulations: cellular dialogues of all possible topologies, the values of the parameters for each cellular 
dialogue, and spatial arrangement of cells. Our study first begins with an infinite Hill coefficient (i.e., digital response to 

each of the two signaling molecules) and a regular lattice. After reporting the outcomes of these simulations, we report the 

result of relaxing these two constraints and well as other elements not depicted. 
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Such high numbers are due to multiple molecular parts amplifying each other's effects in 133 

combination. A digital (ON/OFF) response models such high-valued Hill coefficients. Second 134 
reason for considering digital cells is that a digital response simplifies the mathematics used 135 

for describing the response, while retaining its main qualitative features, even when the actual 136 
Hill coefficient of the system being modeled is relatively low [Alon, 2007]. Finally, the digital 137 

cells also have a reporter gene for each molecule, called genes "1" and "2", that are also either 138 

ON or OFF to reflect the secretion state of its corresponding molecule (Figure 1C - brown and 139 
green boxes). In the simulations, we assigned a distinct color to each of the four states, which 140 

are (ON for gene-1, ON for gene-2), (ON, OFF), (OFF, ON), and (OFF, OFF). 141 

 142 
 We began each simulation by randomly assigning the four gene-expression states 143 

(i.e., four colors) to each cell so that the gene expression levels (four colors) were spatially 144 

uncorrelated. Thus, the field of cells initially did not exhibit any spatial organization. We 145 
quantitatively verified this with a "spatial index" metric which is a weighed spatial 146 

autocorrelation function that is zero when cells are completely, spatially disorganized and 147 
increases towards one as cells become more spatially organized (see Section S1.3). We then 148 

observed how each cell’s state (i.e., four colors) changed over time to determine whether a 149 
spatial pattern formed and, if so, what type of a pattern that was. For each cellular dialogue, 150 
we fixed the values of all parameters (e.g., threshold concentrations, secretion rates for each 151 
molecule), and then ran thousands of simulations that each started with a different, randomly-152 

chosen disordered configuration (see Section S2). We ran the simulation for a wide range of 153 
parameter values for every possible cellular dialogue (Figure 1D and see Section S2). We first 154 
performed such a computational search with immobile digital cells that were placed on a 155 

regularly spaced lattice. We will first describe these results in the next sections. Afterwards, 156 
we will describe how these results change when we relax the constraints – by randomly 157 

displacing cells so that they no long form a regular lattice, having each cell randomly and 158 

constantly move, allowing the Hill coefficient to be any finite value (i.e., analogue instead of 159 

digital response), and enabling stochastic gene expressions (Figure 1D). 160 

 161 

 162 
Cellular dialogues enable self-organization of wide array of dynamic patterns 163 

The computational search revealed a surprisingly wide variety of dynamic patterns, from 164 

never-ending and temporally repeating travelling waves (Figure 2A and Video S1) to 165 
temporally non-repeating, complex patterns consisting of whirlpools of wavelets that 166 

perpetually evolved over time in a chaos-like manner (Figure 2B). All patterns self-organized 167 

from completely disorganized fields of cells by their ON/OFF-states becoming more spatially 168 
correlated over time (Figure 2A-B). The time taken to self-organize widely varied and 169 
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depended on the type of pattern formed. For example, if we assume that a gene-expression 170 

change such as an ON-cell becoming an OFF-cell takes one minute – this is one time-step of 171 
the simulation and every cell synchronously changes their ON/OFF states – then horizontal 172 

waves could take nearly six hours to form (Figure 2A) whereas the constantly changing, 173 
complex whirlpool of wavelets would not show any signs of settling into any pattern that 174 

cyclically repeats itself even after a week or longer (i.e., until we terminate the simulation) 175 

(Figure 2B). Since the simulations are deterministic for now – we will later add gene-176 
expression noise – we can conclude that once a simulation reproduces a spatial configuration 177 

that it had before, the cell population has formed a dynamic pattern that periodically repeats 178 

itself forever. 179 
 180 

 The dynamic patterns that we uncovered differed in their shape, complexity, and 181 

dynamics (Figures. 2C-J, Videos S1-S4, Section S3 and Section 4.1). Among these, the most 182 
prominent and striking were rectilinear travelling waves and spiral waves, both of which have 183 

high degrees of spatial order (Figures 2C-F). In the case of travelling waves – which can be 184 
oriented horizontally, vertically, or diagonally (Figures 2C-D, and 2G) and have a straight or 185 

bent shape (Figures 2D-E) – a rigid shape moves across space over time. Since the 186 
simulations were deterministic and the system had periodic boundary conditions, we 187 
concluded that a spatial configuration recurring over time during a simulation meant that the 188 
simulation would periodically and forever repeat the same dynamics from then on, indicating 189 

that a dynamic pattern had formed. In the case of travelling waves, this meant that the waves 190 
indefinitely repeated themselves, disappearing at one edge of the field and then appearing at 191 
the opposite end. This behavior also applies to patterns that do not propagate over space, but 192 

rather, oscillate in time. In some cases, such oscillations were limited to a few cells that formed 193 
an island (Figure 2H) whereas in others, every cell in the field oscillated together (Figure 2I). 194 

In particular, some islands of cells could collectively oscillate with periods that were higher 195 

than four time-steps (Figure 2H), indicating that individual cells were not just cycling through 196 

a fixed set of four distinct gene-expression states (note that a cell has a total of four distinct 197 

(ON/OFF, ON/OFF) states). If collective oscillations were to arise from synchronizations of 198 

individually oscillating cells, then we would expect a period of four timesteps or less. This 199 
indicates that the collective oscillations with a period greater than four timesteps form through 200 

a more intricate mechanism. Finally, some cellular dialogues yielded temporally non-201 

repeating, complex patterns consisting of whirlpools of wavelets that evolved over time in a 202 
seemingly chaotic manner (Figure 2J) which, in many cases, transiently existed for tens of 203 

thousands of timesteps (i.e., week or longer if one minute represents one time-step) while the 204 

cells were on their way to forming a repeating, well-defined dynamic patterns such as 205 
horizontal waves. 206 
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  207 

 
 
Figure 2. Examples of self-organized dynamic patterns found through computational screening. 
In all the figures shown here, a cell (drawn as a circle) can have four colors. Each color represents a distinct gene-expression 

state, (gene 1 = ON/OFF, gene 2 = ON/OFF): Black means (ON, ON), red means (ON, OFF), blue means (OFF, ON), and 

white means (OFF, OFF). In all the simulations, a field of cells starts with a completely spatial disordered configuration - 

there is no correlation between neighboring cells' gene-expression states - as exemplified by the leftmost picture shown in 
(A). (A) Travelling wave of horizontal bands. Snapshots of the formation process shown at different stages of a simulation. 

Assuming that one timestep in the simulation takes one minute, the clocks show time passed from noon (beginning of the 

simulation). (B) Complex pool of multiple wavelets formed, starting with a spatially disorganized field of cells. Snapshots at 
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 208 

Common structural elements in cellular dialogues that generate dynamic patterns 209 
The wide array of dynamic patterns that we observed fall into two categories (Figure 3A): (1) 210 

dynamic temporal patterns, in which cells periodically oscillate over time but do not 211 

propagate information over space (e.g., Figures 2H-I), and (2) dynamic spatial patterns, in 212 
which cells propagate information over space in the form of a well-defined shape (e.g., a 213 

wave front) that moves from one part of the field to another, often from one edge to the other 214 
edge of the field (e.g., Figures 2C-F). There are 44 distinct cellular dialogues in total (Section 215 

S1.2), that we could group into three categories: (1) those that cannot form any dynamic 216 
patterns, (2) those that can form only dynamic temporal patterns, and (3) those that can form 217 
both dynamic spatial patterns and dynamic temporal patterns. To categorize them, we 218 
developed a method to deduce, for each cellular dialogue, all possible ways that a cell's 219 

state (ON/OFF, ON/OFF) can change over time. Concretely, we constructed a directed 220 
graph for each cellular dialogue (see Section S4) which has four nodes (one for each state) 221 
that are connected by edges with directions that represent the allowed transitions between 222 

the nodes. We deduced how some of the directed edges become inaccessible while others 223 
become accessible as we change the cellular dialogue's parameter values. Then, following 224 

the directed edges from node to node yields all possible ways that a cell's gene-expression 225 

can change over time. By looking for graphs that contained cyclic paths, we identified 226 

cellular dialogues and ranges of their parameter values (e.g., threshold concentrations and 227 

maximal secretion rates for each molecule, cell-cell spacing) that can potentially sustain 228 

dynamic patterns if they were to form. Since self-organization of dynamic patterns can only 229 
occur for parameter values that can sustain dynamic patterns in the first place, we only had 230 

to check these values in simulations to see if they led to dynamic patterns. This method thus 231 

vastly reduced the range of parameter values that we had to screen. For each cellular 232 
dialogue, we generated a large set of random parameters and ran many simulations (10,000 233 

parameter sets with 10 simulations each), each starting with a different, randomly selected 234 

and disordered gene-expression pattern in the field. We checked whether each of these 235 
simulations yielded a dynamic pattern using automated methods (Section S2). 236 

different stages of the simulation are shown. Assuming that one timestep represents one minute, the clock and the days 

elapsed indicate at which timesteps in the simulation the snapshots are taken. (C-J) Each filmstrip shows three non-
contiguous snapshots of a moving, dynamic pattern that formed, starting from a spatially disorganized configuration (not 

shown, see examples in the first snapshots in A). Where shown, the arrows represent the direction of travel. The dynamic 

patterns are: (C) a single travelling horizontal band, (D) travelling vertical bands, (E) a travelling zig-zag band, (F) a spiral 
wave, (G) travelling diagonal bands, (H) a small island of cells (enclosed in the blue hexagon) oscillating over time while 

all cells outside the island remain static, (I) every cell oscillates between red and blue with period 2, and (J) seemingly 

chaotic, never-ending dynamics in which multiple wavelets form and meet and annihilate each other, with the pool of 
wavelets constantly evolving and never repeating the same configuration throughout the simulation. 
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 237 

 We discovered that cellular dialogues, when grouped into the three categories 238 
mentioned above, form distinct tree structures (Figures 3B-D) in which a node denotes a 239 

particular cellular dialogue and an edge connects two nodes if one node (cellular dialogue) 240 
comes from the other node (another cellular dialogue) by adding or removing one 241 

interaction. The fact that tree structures emerged, which link the different cellular dialogues 242 

together if they form the same type of patterns, suggests that there may be common 243 
elements in the cellular dialogues that belong to the same tree. Indeed, we found that all ten 244 

cellular dialogues (Figure 3B) that can only generate static configurations, and no dynamic 245 

patterns at all, consist of two molecules that do not mutually regulate each other and also do 246 
not have any self-repressions. We also found that twenty-six cellular dialogues can produce 247 

dynamic temporal patterns but not dynamic spatial patterns (Figure 3C). Their common 248 

feature is that they all contain a self-repression and/or a mutual feedback of the same sign 249 
(i.e., both molecules either activate or repress each other's production). The sole exception 250 

to this rule, within this family of cellular dialogues, is cellular dialogue 14 (Figure 3C). As a 251 
result, it is disconnected from the tree of cellular dialogues that form dynamic temporal 252 

patterns (Figure 3C). Cellular dialogue 14 consists of an activator-inhibitor pair, whereby one 253 
molecule promotes the production of the second molecule, which in turn represses the 254 
production of the first molecule. Here, neither molecule regulates its own production. Cellular 255 
dialogue 14 is also special because we discovered that all cellular dialogues that one can 256 

obtain from it by adding one or more self-interactions - there are eight such cellular 257 
dialogues in total - can yield dynamic spatial patterns, in addition to dynamic temporal 258 
patterns (Figure 3D). We could further divide these eight cellular dialogues into two classes: 259 

ones that contain only self-repressions (Figure 3D - blue boxes) and ones that contain at 260 
least one self-activation (Figure 3D - red boxes). The three cellular dialogues that contain 261 

only self-repressions produce dynamic spatial patterns in which the moving shape 262 

periodically changes its gene-expression-composition (Figure S1 and Video S3) whereas the 263 

five cellular dialogues that contain at least one self-activation yield dynamic spatial patterns 264 

such as travelling waves (Figures 2C-G) in which the pattern moves across the field of cells 265 

without changing in shape or composition. 266 
 267 

 268 

Grouping cellular dialogues based on how fast they form patterns is equivalent to 269 
grouping them based on their shared structural elements  270 

So far, we analyzed the patterns formed to determine the category (tree) that a cellular 271 

dialogue belongs to (Figures 3B-D). Next, we asked whether we could also obtain this   272 
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Figure 3. Computational search revealed tree structures that group cellular dialogues based on their ability to 
generate either static patterns, dynamic temporal patterns, or dynamic spatial patterns. (A) Two classes of dynamic 
patterns. (Top): Dynamic temporal patterns repeat themselves over time without transmitting information across space. 

(Bottom): Dynamic spatial patterns involve cells that transmit information over space through a coherent structure that moves 

across the field. (B-D) Tree diagrams show a full classification of all 44 unique, non-trivial cellular dialogues into three distinct 
classes (Section S1.2). In each tree diagram, a cellular dialogue is a leaf (box) that is joined by branches to other cellular 

dialogues. As one moves from one leaf to the next, an edge is either removed or added to the cellular dialogue. 
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classification from any statistical measures based on our large set of simulations (Figure 3E 274 
and Figure S2). Surprisingly, we discovered that if we analyze the typical times or the 275 

longest time that a cellular dialogue takes to form a pattern (static configuration or a dynamic 276 
pattern), and then group the cellular dialogues based on those times, then we would identify 277 

the same three categories of cellular dialogues (Figure 3E). Specifically, we found that all 278 
eight cellular dialogues that can form dynamic spatial patterns stood out as taking the 279 
longest times to form patterns compared to the other cellular dialogues, by at least about 280 
100-fold longer durations (Figure 3E - circles). As we will later discuss, we found that these 281 

long self-organization times (~1 week if one time-step represents one minute) are due to a 282 
chaos-like process that is intrinsic to the pattern formation process. We found that all cellular 283 
dialogues that cannot form dynamic spatial patterns but do form dynamic temporal patterns 284 

take less times to form patterns, by at least a 100-fold less, than the ones that form dynamic 285 
spatial patterns (Figure 3E - triangles). Finally, we discovered that the cellular dialogues that 286 

cannot form any dynamic patterns and thus only form static configurations – some of which 287 

are highly organized patterns – require the least amounts of time to form these 288 

configurations (Figure 3E - squares). 289 

 290 

 291 
Analytical framework explains how cells collectively sustain dynamic spatial patterns 292 

Although we have identified the five cellular dialogues that enable cells to form and sustain 293 

dynamic spatial patterns, we have not yet explained why these cellular dialogues enable 294 
cells to sustain the dynamic spatial patterns after having formed them. To find the answer, 295 

we developed a theory that does not use simulations and still correctly predicts when 296 

dynamic spatial patterns occur and explains how the cells sustain them (Figures 4A-C). The 297 
key idea behind this analytical approach is that a common structure exists at the core of a  298 

(B) Tree diagram showing all cellular dialogues that cannot generate any dynamic patterns. All cellular dialogues here lack 

mutual interactions and self-repressions. (C) Tree diagram showing all cellular dialogues that can generate dynamic 
temporal patterns but not dynamic spatial patterns. These all have either a self-repression (red boxes), a mutual interaction 

of the same sign (blue boxes), or both (purple boxes). Cellular dialogue 14 is an exception - it has mutual interactions of 

different signs and no self-interactions. (D) Tree diagram showing all cellular dialogues that can generate dynamic spatial 
patterns - these can all also generate dynamic temporal patterns. These are all generated by adding at least one additional 

self-interaction to cellular dialogue 14. Cellular dialogues in the five red boxes have at least one positive feedback loop, 

and can generate non-oscillatory dynamic spatial patterns (e.g., traveling waves). Cellular dialogues in the blue boxes 
have only negative self-interactions and produce dynamic spatial patterns but always with a concurrent dynamic temporal 

pattern (e.g. a traveling wave where the cells oscillate simultaneously) (see Fig. S1 for examples). (E) The maximum 

observed simulation time is a metric that naturally separates the three classes of cellular dialogues (B-D) (see Fig. S2 for 

other metrics). A node represents a cellular dialogue and the node's shape represents the type of cellular dialogue (one 
of the three (B-D)). A node's color indicates the longest observed simulation time among a large set of simulations that 

were performed with different parameters. 
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Figure 4. Analytical framework predicts and explains how cells can sustain dynamic spatial patterns. 
(A-C) Three-step overview of an analytical (pen-and-paper) approach to understanding the simulations (see section S5). (A) 
Step 1: Decompose straight (top) and bent (bottom) waves into distinct layers of cells - cells of the same layer have the same 

gene-expression state. (B) Step 2: Estimate the total concentrations of molecules that a cell senses by exactly calculating the 

portions of those concentrations that are due to the cell itself and its nearest neighbors, and by approximating the portions of 
the total concentrations that are due to further-away cells (approximation scheme in section S5). (C) Step 3: (right) Directed 

graph-representation showing how a cell must transition to distinct layers shown in (A) at each timestep, which is explained 
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wide variety of dynamic spatial patterns, from the complex whirlpools of wavelets to spiral 300 

waves: we realized that one can build diverse dynamic spatial patterns by gluing together 301 

multiple rectilinear waves (i.e., horizontal, vertical, and bent waves - Figure 2) just as gluing 302 
together straight, tangent lines can build smooth curves. Thus, if we can understand how 303 

cells can sustain rectilinear waves, we can piece them together to understand the more 304 
complex shapes that are built out of them. Each rectilinear wave has six distinct layers of 305 

gene-expression states (Figure 4A). Three of the layers – "front", "middle", and "back" 306 

(Figure 4A - red, black, blue cells) – constitute the wave itself and continuously move 307 

forward while the other three layers – “exterior front”, “exterior” and “exterior back” – consist 308 
of all the other cells. After one timestep, each layer adopts the identity of the layer just 309 
behind it (e.g., the exterior-front layer, which is just in front of the front layer, becomes the 310 
front layer) (Figure 4C). This must occur at every timestep in order for the wave to 311 

continuously propagate, meaning that the concentrations of the two molecules within each 312 
layer must coordinately change so that the layers can synchronously move forward. We 313 

developed a method to estimate the concentrations of the molecules in each layer (Figure 314 
4B and Section S5). Using this method, we derived six mathematical inequalities, one for 315 

each layer, that must all be satisfied in order for the concentrations of the two molecules to 316 

coordinately change, which would ensure that a rectilinear wave can propagate (Figure 4C). 317 
The inequalities impose relationships among the different parameters of the cellular 318 

dialogues, such as the maximal secretion rates and sensing thresholds (Figure 1D; Sections 319 

S5.3 and 5.4). By solving these inequalities, we found that only five cellular dialogues – the 320 
exact same ones that we computationally identified – can satisfy all six inequalities and thus 321 

generate non-oscillatory dynamic spatial patterns (i.e., the ones that do not involve 322 
concurrent dynamic temporal patterns) (Figure 3D - red boxes). In accordance with the 323 

computational screening, the analytical approach revealed that only two types of rectilinear 324 

waves are possible, each differing by which gene-expression state is assigned to each layer: 325 

all cellular dialogues with cellular dialogue 15 as the common motif (i.e., molecule-1 326 
promotes its own secretion) generate one type of rectilinear wave (Figure 4D - top row) while 327 

by six mathematical inequalities that are derived through step 2 (see section S5). (D) Numerically solving the six inequalities in 

(C) shows that only two types of waves, shown here, are possible and which cellular dialogues can produce them (cellular 
dialogues 15, 36, and 33 for wave type 1; cellular dialogues 19, 33, and 34 for wave type 2). (E) Adding self-activation to cellular 

dialogue 14 yields, in the left column, cellular dialogues 15 and 19. Directed graph-representation showing the gene-expression 

transition of a cell for each cellular dialogue is shown (details in Section S4). (F) Parameter values that allow for sustaining of 
rectilinear waves, when represented as red points, form a dense region (red region) as shown in these spider charts. These 

parameter values satisfy the six inequalities derived by the analytical theory (C) (see Fig. S5 for a direct comparison with 

parameter values found purely through computational search). The spider charts show the following parameters: threshold 

concentrations 𝐾(#$) for each molecular interaction and the maximum secretion rate 𝐶'(
($) for each of the two molecules. 
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the others, having cellular dialogue 19 as the common motif (i.e., molecule-2 promotes its 328 

own secretion), generate the other type of rectilinear wave (Figure 4D - bottom row). As an 329 
exception, cellular dialogue 33 can generate both types of travelling waves because nested 330 

inside it as subgraphs are both cellular dialogues 15 and 19. 331 
 332 

 To understand why only these five cellular dialogues (Figure 4D) generate dynamic 333 

spatial patterns, we considered the directed-graph representation of the cellular dynamics 334 
that we introduced earlier (Section S4). For a wave, the directed graph must contain a cyclic 335 

path that goes through all four nodes – one node for each gene-expression state – since an 336 

exterior cell must eventually become a front-layer cell, then a middle-layer cell, then a back-337 
layer cell, and then finally an exterior cell again (Figure 4C). We can intuitively see that 338 

cellular dialogue 14, which is the backbone of all five cellular dialogues that generate 339 

dynamic spatial patterns (Figure 3D - red boxes), can potentially produce a cyclic graph with 340 
these four nodes (Figure 4E - left panel) as long as they permit parameter values that allow 341 

for the cyclic traversal by each cell. This is because starting with a gene-expression state of 342 
(1, 0) – where the 1 means ON-state for molecule-1 and the 0 means OFF-state for 343 

molecule-2 – may lead to (1, 1) due to molecule-1 promoting molecule-2 secretion, which 344 
then may lead to (0, 1) due to molecule-2 repressing molecule-1 secretion, which then may 345 
lead to (0, 0) due to there being not enough molecule-1 for promoting molecule-2 secretion, 346 
and finally, this may lead back to the starting state, (1, 0), due to there being not enough 347 

molecule-2 for inhibiting molecule-1 secretion. However, such a cycle through the four nodes 348 
alone is insufficient for sustaining a wave because the exterior cells must remain as exterior 349 
cells unless they are adjacent to the front or back layer (Figure 4C). But if the exterior cells 350 

have state (0, 0) and the front-layer cells have state (1, 0), then the exterior cells near the 351 
front layer (i.e., the exterior-front cells) would sense more molecule-1 than the exterior cells 352 

that are further away from the wave. Modifying cellular dialogue 14 by having molecule-1 353 

promoting its own secretion, as in cellular dialogue 15, would create the possibility of the 354 

exterior-front cells activating molecule-1 secretion and thus transition to (1,0) at the next 355 

timestep, thereby becoming front-layer cells whereas the exterior-layer cells remain in the (0, 356 

0) state (Figure 4E - top right). A similar qualitative reasoning also deduces an analogous 357 
result for cellular dialogue 19 (Figure 4E - bottom right). 358 

 359 

 To realize the qualitative scenario described above, a cellular dialogue must contain 360 
parameter values that satisfy all six inequalities that we derived (Figure 4C). We found that 361 

the five cellular dialogues indeed admit such parameter values and that these values - 362 

obtained through the analytical approach - nearly perfectly match those found in the 363 
computational screen (Figure S3 and Figure S7C). We can represent these parameter 364 
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values as spider charts (Figure 4F and Figure S7C), which show that each of the five cellular 365 

dialogues can still realize dynamic spatial patterns even after we vary the parameter values 366 
over many orders of magnitude. The spider charts also geometrically reveal a common 367 

feature among the five cellular dialogues: the threshold concentration must be low for a 368 
molecule that promotes its own secretion (Figure 4F - note the inward indentations in the red 369 

spider webs along the axis that represents the threshold concentration). This makes sense 370 

because, for all types of rectilinear waves (Figure 4D), the exterior-front cells need to turn on 371 
the secretion of a molecule that promotes its own secretion by sensing it from the other 372 

layers and having a low activation threshold for that molecule would facilitate this. Taken 373 

together, our analytical approach unveiled how cells can sustain dynamic spatial patterns. 374 
 375 

 376 

Self-organization occurs through a three-stage, "order-fluctuate-settle" mechanism 377 
We now turn to the self-organization process itself. Given that many of the dynamic spatial 378 

patterns are travelling waves and that more complex dynamic spatial patterns can be built 379 
from gluing together multiple rectilinear waves, we focused on travelling waves and the core 380 

features of their self-organization processes. Our simulations revealed that travelling waves 381 
form in three stages (Figure 5A and Video S2). First, a field of cells whose gene-expression 382 
levels form a completely disorganized spatial configuration rapidly becomes more spatially 383 
ordered, meaning that the gene-expression levels of neighboring cells tend to become more 384 

correlated over time. To quantify the degree of spatial organization, we used a "spatial 385 
index" - a metric that our previous work established whose value is zero for a completely 386 
disorganized spatial configuration and increases towards one as the spatial configuration 387 

becomes more organized (Figure 5B - left panel's inset) [Maire & Youk, 2015; Olimpio et al, 388 
2018]. In the following, we equate one timestep of a simulation with one minute and express 389 

time in minute or hours. Then we find that this rapid spatial ordering typically takes less than 390 

an hour (Figure 5A - green arrow and Figure 5B - left panel). At the end of this process, the 391 

cells have formed multiple whirlpools of wavelets (Figure 5A - frame at 0.33 hours). Thus 392 

begins the second stage of self-organization: long-lived complex dynamics - lasting for days 393 

or even weeks - in which multiple wavelets travel through the field of cells, meeting and 394 
annihilating each other, all the while as the cells form new wavelets to replace the destroyed 395 

ones (Figure 5A - filmstrip from 0.33 hours to 55 hours). During this days-long dynamics, the 396 

spatial organization neither stably increases nor decreases - the spatial index wildly and 397 
unpredictably fluctuates over time (Figure 5B - left panel and Figure S4). This wild fluctuation 398 

in the spatial index (Figure 5C - left panel and Figure S4) represents multiple wavelets 399 

forming and annihilating at various, seemingly random locations and wavelets unpredictably 400 
morphing over time, all despite the fact that the simulations are completely deterministic. 401 
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Figure 5. Three-step, "order-fluctuate-settle" process leads to formation of dynamic spatial patterns. 
(A) Snapshots of a simulation showing the three stages of a traveling-wave formation - the three stages are described above 

the filmstrip. Assuming that one time-step of a simulation represents one minute, indicated above each snapshot is the 

elapsed time in hours. Color scheme for cells is the same as in Fig. 2. (B) Two macroscopic parameters - the spatial index 
and the fractions of cells with a particular gene ON - plotted as a function of time for the wave-forming simulation shown in 

(A). One minute represents one timestep. (Left panel) The spatial index - with magnitude between zero and one - measures 

the degree of spatial organization (zero means complete disorder, i.e. no spatial correlation in gene-expression among cells, 

and increasing values correspond to more spatial organization). Inset shows the spatial index rapidly increasing for the first 
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Crucially, we verified that the same spatial configuration is never repeated throughout the 403 
days-long dynamics which could, in fact, last for weeks or longer if we do not terminate the 404 

simulations (i.e., some fields of cells never reach a steady-state and never attain a dynamic 405 
pattern within our observation times). Such unpredictable, chaos-like dynamics is followed 406 

by the third and final stage of the self-organization process: the wavelets die down and as 407 

this occurs, a more rigid, spatially ordered structure that travels as a wave emerges (Figure 408 

5A - last frame). During this final process, the spatial index's fluctuation rapidly decays, 409 
typically over a few hours. The spatial index then eventually settles at a value that is higher 410 
than the value that it had, on average, during the wild fluctuations. This settling process 411 
takes a few minutes to several hours (Figure 5A - purple arrow and Figure 5B - left panel). 412 

Importantly, leading up to this last stage, there are no clear indications that a well-organized 413 
regular shape will emerge. This highlights the unpredictable, seemingly chaotic nature of the 414 

self-organization dynamics. 415 
 416 

 The spatial index, one for each gene, represents a macrostate variable - it is a single 417 

number that measures how much of a spatial correlation there is for a single gene among 418 
cells. Another macrostate variable is the fraction of cells that have the same gene-419 

expression level (i.e., fractions of cells that have gene-i in the ON-state). There are two such 420 

fractions, one for each gene. During the self-organization process, the values of these two 421 
fractions wildly fluctuate over time - just like the spatial indices - as the constantly modulating 422 

wavelets keep changing their shapes and meeting and annihilating each other for days. 423 
Afterwards, the two fractions' fluctuations quickly decay over time - the decay takes a few 424 

hours whereas the whole self-organization process takes days - and eventually settle at 425 

steady-state values (Figure 5B-C: right panel and Figure S4). When we view the temporal 426 

change of these two fractions as a trajectory in a plane defined by the two fractions (i.e., 427 
phase space), we see an irregular orbit that eventually stops at a single point (Figure 5D - 428 

twenty timesteps. Spatial index for gene 1 (red) and gene 2 (blue). (Right panel) Fractions of cells with gene 1 ON (red) and 

of gene 2 ON (blue) for a typical wave-formation process. Inset shows the first twenty timesteps. (C) For data in (B) and 
genes 1 (red) and 2 (blue), we used a moving window to compute the moving coefficient of variations in the spatial index 

(left panel) and in the fractions of cells with the specified gene ON (Section S1.3). (D) For a typical simulation that self-

organizes into a travelling wave, we plot the trajectory in phase space formed by the fractions of cells with gene 1 ON and 
gene 2 ON. The trajectory begins at the square (first timestep of the simulation) and terminates at the circle (last timestep 

of the simulation). (E) Analogy for the three-stage self-organization process - a billiard ball rolls down a bowl, bounces around 

on the flat circular bottom, and then fall through a tunnel after finding a small hole drilled into the circular bottom. (F) 
Probability of forming a traveling wave for each of the five cellular dialogues (detailed results in Fig. S8). Averages are over 

all parameter sets for which at least one travelling wave formed in the computational screening (Section S2). Error bars are 

standard errors of the mean. (G) Distributions of the time taken to form a traveling waves for each of the five cellular dialogues 

that enable cells to form dynamic spatial patterns (detailed results in Figure S5). 
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black circle). Specifically, a point in the two-dimensional phase space - representing the 429 

values of the two fractions at a given time - moves erratically within a restricted region of the 430 
plane. If we follow the trajectory with a pencil, we would obtain a jagged curve that densely 431 

and nearly entirely fills the whole space within the restricted region - reminiscent of 432 
trajectories of a chaotic system - that encloses the single point at which the trajectory 433 

eventually terminates (Video S4). This description remains unchanged if we restart the 434 

simulation with different starting values of the two fractions. 435 
 436 

 The phase-space trajectory described above suggests the following analogy for the 437 

self-organization dynamics (Figure 5E): a ball quickly rolls down a steep side of a large bowl, 438 
speeding up as it does so, until it reaches the bowl's flat bottom. This is the first stage of self-439 

organization in which the decreasing height represents more spatial ordering (Figure 5E - 440 

green arrow). After reaching the frictionless, flat circular bottom, the ball rapidly bounces off 441 
the side walls, like a billiard ball, without ever losing its speed (Figure 5E - brown dashed 442 

lines). This bouncing ball, which would produce seemingly chaotic yet deterministic motion - 443 
as Newton's laws of motion are deterministic - represents the second stage of self-444 

organization in which multiple whirlpools of wavelets are created and destroyed. Eventually, 445 
the ball would find the small hole, fall into it, and then spiral its way downwards along the 446 
side walls of the trench through the hole, until it settles at the bottom of the trench (Figure 5E 447 
- purple arrow). This would represent the third and the final stage of the self-organization. 448 

The shape of the bowl and the location of the trench would be determined by the parameters 449 
of the cellular dialogue. 450 
 451 

 For each of the five cellular dialogues that can yield dynamic spatial patterns, we 452 
found that for parameter values that enable dynamic pattern formations, approximately 30% 453 

of the initially disorganized configurations successfully self-organized travelling waves 454 

(Figure 5F). Furthermore, for all five cellular dialogues, we discovered that the probability of 455 

forming a travelling wave at a given time is well described by an exponential distribution 456 

(Figure 5G and Figure S5A), with a characteristic decay time of thousands of timesteps (i.e., 457 

tens of hours if one timestep is one minute). This strongly suggests that travelling wave 458 
formation is a memoryless process whereby at each timestep, the probability that the next 459 

timestep yields a travelling wave remains the same regardless of at which timestep the 460 

simulation is at. This reflects our observation that the self-organization dynamics seems 461 
unpredictable and chaotic, meaning that watching simulations that yield a traveling wave or 462 

another dynamic spatial pattern does not give the observer a sense that the cells are getting 463 

anywhere closer to forming a travelling wave as time passes by (Figure S5B-D). 464 
  465 
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Figure 6. Dynamic spatial patterns still form even with more complex elements. 
(A) Schematic of four additional, more complex elements that we added to our computational screen. (B) We examined two 

features with the elements in (A): (Top) Can a disorganized field of cells still self-organize dynamic spatial patterns? (Bottom) 

Starting with a travelling wave - since it is the most ubiquitous form of dynamic spatial patterns - can the cells sustain it? (C) 
Examples of dynamic spatial patterns formed for each of the elements shown in (A). Colored boxes that enclose the filmstrips 

correspond to the colors used for each element shown in (A). (D) Fraction of simulations that form a dynamic pattern as a 

function of the deviation from the more idealized setting - cells placed on a regular lattice and responding digitally with an 
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 467 
Dynamic patterns with more complex elements 468 

We next extended our investigation by relaxing the two main constraints in the simulations - 469 

the infinite Hill coefficient and having cells on a regular lattice. We modified the simulations 470 
by separately adding four, more complex elements (Figure 6A and Section S6): (1) 471 

stochastic response to the signaling molecules (Figure 6A - top left), (2) a finite Hill 472 
coefficient that could vary over a wide range (i.e., cells no longer digitally respond to the 473 
signaling molecules) (Figure 6A - top right), (3) randomized locations of cells instead of each 474 

cell residing on a regular lattice (Figure 6A - bottom left), and (4) random (diffusive) motion 475 
of each cell (Figure 6A - bottom right). We quantitatively tuned each element (i.e., we varied 476 
and quantified by how much each cell moved). For each element, we asked two questions: 477 
(1) Can the cells still form travelling waves if they start with a completely disordered spatial 478 

configuration? (Figure 6B - top) - this probes the self-organization capability - and (2) can 479 
cells still sustain travelling waves after forming them? (Figure 6B - bottom) - this probes 480 

whether dynamic spatial patterns can be sustained after forming. In general, we found that 481 
cells could still form a wide range of dynamic spatial patterns with the four additional 482 
elements (Figure 6C). For example, we discovered that cells under the influence of a 483 
moderate noise could form a band that travels as a wave despite a number of cells 484 

stochastically obtaining the “wrong” (incoherent) gene-expression state. In this case, the 485 
wave thus propagates while stochastically evolving (Figure 6C - top left and Video S6). As 486 

another example, we discovered that even when we randomly arrange cells in space, 487 
instead of on a regular lattice, the cells could still form never-ending, complex wavelets 488 

(Figure 6C - bottom left and Video S7). More generally, by running many simulations for 489 
each of the four complex elements, we discovered that the dynamic spatial patterns that we 490 

previously observed, on a regular lattice with an infinite Hill coefficient (Figure 2), still formed 491 

as long as the amount of the deviation introduced by the four elements, relative to the 492 
regularity of the lattice and the infinite Hill coefficient, was not too large but still not negligible 493 

(Figure 6D). For instance, we found that with a moderate noise, dynamic spatial patterns 494 

continued to form and persist (Figure 6D-E - top left and Figure S6A). By varying the Hill 495 

infinite Hill coefficient - in which the results for Figures 1-5 were reported. Four colored boxes, with each color corresponding 

to colored box in (A) that shows the modified element in the simulations. For each data point, we ran a large set of simulations 
with random initial conditions and classified their final states (see Figure S6 for a detailed classification). For finite Hill 

coefficient, we included all dynamic patterns including never-ending wavelets. For all other cases, we report the fraction of 

dynamic spatial patterns. All results here are for cellular dialogue 15. (E) Fraction of simulations with cellular dialogue 15 that 
can sustain a travelling wave for at least one full period after starting with a travelling wave. We took parameter values for 

which the simulations with simpler elements (i.e., infinite Hill coefficient and cells on a regular lattice) can propagate travelling 

waves. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 28, 2019. ; https://doi.org/10.1101/717595doi: bioRxiv preprint 

https://doi.org/10.1101/717595
http://creativecommons.org/licenses/by-nc-nd/4.0/


 23 

coefficient over a wide range, we discovered that dynamic patterns could still form for 496 

sufficiently low Hill coefficients, up to a value of ~3, but these did not typically include pure 497 
(single) travelling waves (Figure 6D - top right and Figure S6B). However, already formed 498 

traveling waves were able to persist up to values of Hill coefficient up to ~4 (Figure 6E - top 499 
right). This indicates that the finiteness of the Hill coefficient is mainly detrimental to the self-500 

organization of travelling waves whereas it is less detrimental to formation of more complex 501 

dynamic spatial patterns (e.g. composed of multiple rectilinear waves) and the cells' ability to 502 
sustain a travelling wave once it is formed. With a Monte Carlo algorithm that randomly 503 

displaces cells and quantifies the amount of the resulting “lattice disorder” (Section S6.3), we 504 

found that dynamic spatial patterns still formed and persisted even with a high degree of 505 
spatial disorder (Figure 6D-E - bottom left; Figure S7C). Notably, even with saturating 506 

amounts of spatial disorder, we still observed self-organized wavelets that propagated, albeit 507 

with a lesser degree of regularity than in a regular lattice. When we caused the cells to 508 
diffusively move about throughout the field - we tuned the cells' motility by adjusting the 509 

diffusivity of their Brownian motion (Section S6.4) - we found that large-scale, uncoordinated 510 
motion of cells prevented any kind of dynamic spatial patterns from stably propagating, as 511 

large variations between the local environments of individual cells tended to diminish the 512 
cells’ ability to reliably propagate information across space (Figure 6D - bottom right). 513 
However, we found that motile cells could still propagate waves, once formed, for an 514 
extended amount of time before the wave disintegrated even when the cells had a high 515 

degree of diffusive motion (Figure 6E - bottom right). Together, these results strongly 516 
suggest that diffusively moving cells can sustain travelling waves as long as the waves travel 517 
sufficiently rapidly (i.e., compared to the average speed of the cells' motion). Finally, we 518 

considered the influence of external gradients, modelled as spatially varying parameters 519 
(Section S6.5), on travelling wave formation. Researchers have suggested that parameter 520 

gradients can influence the orientation of Turing patterns such as stripes [Hiscock & 521 

Megason, 2015]. Despite our system not being a Turing-patterning system, we observed 522 

that a simple step function profile in one of the parameters can have a considerable 523 

influence on the direction in which the travelling waves moved. Namely, the waves tended to 524 

align perpendicularly to the gradient (Figure S6C). 525 

 526 

 527 

DISCUSSION 528 
Dynamic-pattern producing cellular dialogues that we identified are found in 529 

experimental systems 530 
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Some of the dynamic-pattern forming cellular dialogues that we identified have already been 531 

observed in diverse natural and synthetic biological networks. These cellular dialogues, as a 532 
common feature, all have interlocked positive and negative feedbacks (Figure 3D). 533 

Experimentalists have observed that, in autonomous cells (i.e. without cell-cell 534 
communication), such interlocked feedbacks can cause gene-expression levels to robustly 535 

oscillate over time with a tunable frequency [Stricker et al., 2008, Tsai et al., 2008, Li et al., 536 

2017]. Experimentalists have also observed that when a synthetic circuit enables E. coli cells 537 
to communicate through a cellular dialogue that resembles our cellular dialogue 20 (Figure 538 

3D), the cells' gene-expression levels (GFP-level) collectively and synchronously oscillate 539 

over time and, under certain conditions, spontaneously form travelling waves [Danino et al., 540 
2010]. More generally, the activator-inhibitor structure that is at the core of cellular dialogue 541 

15 is qualitatively similar to the structure of the FitzHugh-Nagumo (FHN) model, which is a 542 

prototype model for describing excitable systems such as cells whose gene-expression, 543 
metabolite, or ion levels oscillate over time and/or form traveling waves [Gelens et al., 2014; 544 

Sgro et al., 2015; Hubaud et al., 2017]. Cellular dialogue 15 has an activating molecule that 545 
promotes its own production and an indirect negative feedback through the second molecule. 546 

This indirect negative feedback is analogous to the slow repression that exists in the FHN 547 
model. As a related matter, the interlocked positive-negative feedback loops of the dynamic-548 
pattern forming cellular dialogues resemble the activator-inhibitor systems that generate 549 
Turing patterns [Kondo & Miura, 2010]. However, the mesoscopic numbers of cells in our 550 

simulations, with these cellular dialogues, do not generate Turing patterns such as stripes or 551 
spots of a fixed size. Conversely, while our simulated cells generate travelling waves under a 552 
wide variety of conditions, Turing systems with just two diffusing and reacting chemicals are 553 

thought to only generate static patterns, with dynamic patterns only arising when three or more 554 
molecules are considered [Turing, 1952]. These are in contrast with our findings based on 555 

two-molecule cellular dialogues. 556 

 557 

 558 

Our computational and analytical framework may guide in identifying currently 559 

unknown mechanisms in experimental systems 560 
Although we focused on cellular dialogues with two molecules and the two genes that they 561 

control, our software can easily be modified to include multiple - more than two - extracellular 562 

molecules and genes as well as arbitrary regulations of those genes (as showcased by our 563 
inclusion of finite Hill coefficients). These extensions would allow one to explore more complex 564 

ways that cellular dialogues can mediate dynamic pattern formations. These extensions, the 565 

analytical method for analyzing the simulations that we established here, and this study's 566 
results on two-molecule cellular dialogues may together shed light on poorly understood 567 
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systems in which multiple signaling molecules interact with each other. For many experimental 568 

systems, the regulatory links among the various molecular players remain unknown (Figure 569 
7). For example, to form somites, researchers have found that three signaling molecules - Fgf, 570 

Notch and Wnt - are regulate one another. But how Wnt and Notch regulate each other so 571 
that their levels coordinately oscillate over time remains unknown (Figure 7A) [Oates et al., 572 

2012; Harima & Kageyama, 2013; Sonnen et al., 2017]. Modifying our software to include 573 

three-molecule cellular dialogues, and then applying our analysis method to analyze those 574 
simulations, may address this question. Doing so may also help identify, in stem cells, the as-575 

yet unknown regulatory links among three signaling molecules - Bmp, Wnt, and Nodal - that 576 

lead to self-organized spatiotemporal waves (Figure 7B) for which the Turing mechanism is 577 
not involved [Chhabra et al., 2019]. In the Arabidopsis Thaliana leaves, the circadian clocks 578 

of individual cells are thought to be synchronized through self-organized travelling waves 579 

[Wenden et al., 2012; Gould et al., 2018] (Figure 7C). While these waves are known to occur 580 
through local cell-to-cell interactions, the exact interaction mechanism remains unknown 581 

[Greenwood et al., 2019]. Since the cells within these leaves are on a nearly regular lattice, 582 
our results for cells on a regular lattice may be relevant to this system. Finally, in planarian - 583 

an organism that regenerates its body after it is cut into pieces - a self-organized Wnt gradient 584 
specifies where the tail should be reformed after it is excised. Researchers believe that an as-585 
yet unidentified signaling molecule may interact with Wnt in a mutually antagonistic way to 586 
indicate where the head should reform after it is excised (Figure 7D) [Stückemann et al., 2017]. 587 

Thus, our results on two-molecule cellular dialogues may guide in testing this hypothesis. 588 
 589 
 590 

Summary and future outlook   591 
Here we developed an open-source simulation software and a mathematical analysis-592 

framework for studying the self-organization of dynamic spatial patterns in a population of cells 593 

that communicate through diffusing molecules. The software contains ingredients that anyone 594 

can alter, exclude, or replace with other elements for both research and educational purposes. 595 

With this software, we performed simulations that revealed an intricate, three-step process by 596 

which mesoscopic numbers (hundreds to thousands) of cells can form dynamic spatial 597 
patterns. Through a comprehensive computational screening, we identified all the ways in 598 

which cells can communicate with two molecules (cellular dialogues) to generate dynamic 599 

spatial patterns – patterns of gene-expression levels that continuously move without ever 600 
stopping. We then formulated an analytical framework that recapitulates the results of the 601 

simulations by deriving six mathematical equations that can be solved without simulations. By 602 

applying this analytical approach to cellular dialogues with more than two molecules, one 603 
would obtain similar set of equations (but more than six equations). We have shown that the 604 
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  605 

 
 
Figure 7. Self-organized dynamic-pattern-forming systems with poorly understood interactions that our software and 
analytical framework may help in elucidating. (A-D) Biological systems with two or more interacting pathways that generate 

spatiotemporal patterns but whose exact mechanisms and cellular dialogues remain poorly understood. (A) During 
somitogenesis, a wave of gene-expression states propagates along the anterior-posterior axis of an elongating, pre-somite 

mesoderm. The conventional view is that this wave is mediated by a coupling between individual oscillators - oscillations in 

expression levels of Wnt, Notch, and Fgf - and/or by large-scale gradients in the gene-expression levels for those molecules. 
But how Notch regulates Wnt and vice versa remain questionable while Hes7 is known to mediate the Fgf-Notch interaction 

(Sonnen et al., 2017). Figure partially adapted from (Oates et al., 2012). (B) Waves of b-catenin (green ring) and Smad2 (red 

ring) expression-levels propagate in a field of stem cells. Although we know that these waves form due to BMP inducing β-

catenin (part of the Wnt pathway) and SMAD2 (part of the NODAL pathway), how exactly these two inductions occur remains 
poorly understood (Chhabra et al., 2019). (C) The circadian clocks of each cell within the leaf of Arabidoposis Thaliana are 
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analytical framework reproduces the correct cellular dialogues, as well as the parameter sets, 606 

for which dynamic spatial patterns can be self-organized. We discovered that self-organization 607 
of dynamic spatial patterns, by hundreds of cells, typically occurs after a long and seemingly 608 

chaotic transient phase in which the overall spatial configuration unpredictably evolves over 609 
time with no identifiable regularity, despite the underlying cell-cell interaction rules being 610 

deterministic. This highlights the high level of complexity that just a hundred or so cells can 611 

exhibit through autocrine and paracrine signaling. By including more complex elements such 612 
as stochastic sensing of the molecules and smooth responses to the sensed cytokines (i.e., 613 

finite Hill coefficient), we found that dynamic spatial patterns could still form and persist, though 614 
possibly in altered forms. By combining reaction-diffusion equations with a cellular automaton, 615 

our work takes an underexplored approach of connecting short and long timescales as well 616 

as short and long length-scales within one framework. A short time-scale characterizes the 617 

diffusing molecules while a long time-scale describes the cells' response to the molecules. A 618 
short length-scale describes the diffusion lengths of the molecules whereas a longer length-619 
scale characterizes the emergent patterns. 620 
 621 

 Our simulations and analytical approach revealed that the cells modelled here can 622 
have arbitrarily high parameter values and still form dynamic spatial patterns such as travelling 623 

waves, with a high success rate, as long as their various parameters maintain certain ratios 624 
(Section S5.4 and Figures S3B, S7C-D, and S8). Recent results have established that 625 

reaction-diffusion systems, without cells, that use three or more molecules can more robustly 626 

form patterns than their two-molecule counterparts [Marcon et al., 2016, Zheng et al., 2016]. 627 
Likewise, as our software and analytical framework are easily extendable to any number of 628 

molecules, it would be interesting to investigate whether increasing the number of signaling 629 

molecules would allow cells to more robustly form dynamic spatial patterns and how the 630 
"order-fluctuate-settle" mechanism may then change. 631 

 632 
 Another promising future direction is extending our software and analytical 633 

framework to include mechanical interactions such as cells interacting with the extracellular 634 

matrix or with other cells. While cellular automata that model such mechanical interactions 635 

exist [Graner & Glazier, 1992, Merks & Glazier, 2005], those that combine mechanical and 636 
chemical interactions, including intracellular signaling as in our work, remain rare yet 637 

thought to be coupled to each other through an as-yet-unknown mechanism, which is suspected to involve a variety of 
hormones, sugars, mRNAs and other molecules (Greenwood et al., 2019). (D) Planarian regenerates itself after being cut 

into two or more pieces. This is thought to rely on mutual antagonism between gradients of Wnt expression (purple) and of 

an as-yet-unidentified molecule (yellow) (Stückemann et al., 2017). Figure partially adapted from (Stückemann et al., 2017). 
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promising [Recho et al., 2019]. Outside the context of biology, it would be interesting to 638 

interpret and analyze our work in the context of complex systems theory [Bar-Yam, 2003]. In 639 
particular, one may investigate the self-organization of dynamic spatial patterns by using 640 

information-theoretic approaches [Rosas et al., 2019; Haken, 2004] or other quantitative 641 
measures [Kaneko, 1989]. Doing so may link our findings to those of non-living chemical 642 

systems that self-organize patterns [Nicolis & Prigogine, 1977].  643 
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SOFTWARE 644 

GitHub: https://github.com/YitengDang/MultiCellSim 645 
 646 

 647 

SUPPLEMENTAL INFORMATION 648 

• Supplementary text with mathematical details 649 

• Figures S1-S8 650 

• Movies S1-S7 651 
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 1 

 

SUPPLEMENTARY FIGURES 
 

Figure S1 (Related to Fig. 2). Dynamic patterns with oscillatory background. (A-C) 
Examples of information-propagating with oscillatory background, generated by the 
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corresponding networks in Fig. 3D (labelled in blue). (D) State diagrams showing the transitions 

at the single-cell level that each of these patterns undergoes (see Section S4). Each of the cells 

of the wave and the background cycle through three different states before the pattern moves to 

the next row of cells. These transitions between these states are depicted in the state diagrams 

as directed cycles of a graph. Different colors indicate different relative positions of the cells (see 

Fig. 4A). One of these transitions - indicated by the dashed lines - is concurrent with the 

displacement of the pattern. There are two possible state diagrams for the three cellular 

dialogues that generate oscillatory dynamic spatial patterns, as indicated in the table. 
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 3 

 

Figure S2 (Related to Fig. 3). Self-organization statistics for the three classes of cellular 
dialogues displayed in Fig. 3B-D. All results are based on the same simulation data set also 

used to generate Fig. 3E. (A) Mean simulation time across all simulations of a given network. 
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The simulation time is equivalent to the time it takes for the system to reach equilibrium or the 

maximum simulation time if a trajectory never reaches equilibrium. Same graphical 

representation as in Fig. 3E. (B) Fraction of trajectories with a periodic final state, i.e. a steady 

state where the final pattern repeats itself after a fixed number of time steps greater than one. 

Same graphical representation as in Fig. 3E. (C) Distribution of the periods of the periodic final 

states among networks that generate dynamic temporal patterns (Fig. 3C) and networks that 

also generate dynamic spatial patterns (Fig. 3D). (D) Trajectory periods found in simulations of 

the networks generating dynamic spatial patterns (Fig. 3D). Each diamond represents a period 

that was observed in at least one simulation. (E) Average final spatial index for each of the two 

genes, sorted by cellular dialogue. The trajectories are divided into different classes depending 

on the final period of the trajectory (represented by differently colored lines). The average is 

taken over all trajectories within each class. For example, the purple data points show the 

average values for the subset of trajectories that have a period which is a multiple of the grid 

size. Error bars represent SEM. 
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 5 

 

Figure S3 (Related to Fig. 4). Comparison between analytical theory and exact 
simulations. (A) Performance of the predictor quantified using concepts from machine learning. 

When viewed as a binary classifier, the analytical theory makes binary (yes or no) predictions 

about whether a parameter set is capable of propagating traveling waves. We compare these 

predictions with actual simulations to determine whether they are correct or false. The 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 28, 2019. ; https://doi.org/10.1101/717595doi: bioRxiv preprint 

https://doi.org/10.1101/717595
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

performance of the theory can then be quantified in terms of concepts such as accuracy, 

precision and recall (see Section S5.6). (B) Two-dimensional projections of the parameter sets 

capable of propagating traveling waves according to the analytical theory and exact simulations 

(see Figs. 4F and S7C for alternative representations in terms of radar charts). Since there are 

six varying parameters for each parameter set, we projected the parameter sets onto two-

dimensional spaces spanned by the two parameters describing the strength of each interaction – 

the threshold 𝐾(#$) and the maximum secretion rate 𝐶'(
($). We plot the data points classified as 

true positives, false positives and false negatives (see Section S5.6), but leave out the true 

negatives, which are the parameter sets which are correctly predicted to be incapable of 

sustaining traveling waves. (C) Contribution of nearest-neighbors (𝑓** ) and next-to-nearest 

neighbors (𝑓***) to the total interaction strength (Equation S6 in Section S1), as a function of the 

lattice spacing, the grid size and the ratio between the diffusion lengths (Section S1). We plot the 

contribution from nearest neighbors and next-to-nearest neighbors as a fraction of the total 

interaction strength. 
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 7 

 
 

Figure S4 (Related to Figs. 5 and 2). Additional examples of the dynamics of the two 
macroscopic variables in trajectories displaying the self-organization process. We plot the 
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fraction of cells that have a certain gene ON and the “spatial index” over time (Section S1.3). 

The plotted trajectories correspond to the trajectories shown in Fig. 2, as indicated by the panel 

titles. Time is in units of discrete time steps of the cellular automaton. Blue corresponds to gene 

1, red to gene 2. For each trajectory, we show four graphs corresponding to the graphs shown in 

Fig. 5B and 5C. Upper left: mean fraction of cells p(t) that have the indicated gene ON. Lower 

left: Moving coefficient of variation for p(t) (see Section S1.3). Upper right: Spatial index I(t) for 

the indicated gene. Lower right: Moving coefficient of variation for I(t) (see Section S1.3). 
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 9 

 

 

Figure S5 (Related to Fig. 5). Traveling wave (TW) formation time statistics. (A) TW 

formation time distributions from simulations (shown together in Fig. 5G) are fitted by 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 28, 2019. ; https://doi.org/10.1101/717595doi: bioRxiv preprint 

https://doi.org/10.1101/717595
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

exponential functions, with τ as the expectation value of the fitted exponential distribution. (B-D) 
Analytical calculation (Section S5.1-5.2) reveals that TW formation times do not follow an 

entirely random process, i.e. one where each next system state is randomly drawn from the set 

of all states, as one might suspect based on the chaotic appearance of the dynamics and the 

exponentially distributed formation times. (B) Constructions used in the calculation of the 

abundance of traveling waves in the system (Section S5.2).  (Left) Directions on the lattice. 

(Right) Sketch of the construction used to characterize a single wave. By counting all ways of 

traversing the lattice, subject to certain constraints, we obtain an estimate of the number of 

forms of traveling waves of a given type. (C) Average TW formation time estimated from the 

wave density calculation (left) at different grid sizes, compared with the empirical findings from 

exact simulations (right). Averages are taken over all self-organized TWs among 300 simulations 

for each grid size. Error bars represent SEM. The highlighted data point is the grid size used in 

(D). (D) The cumulative distribution of TW formation times according to the wave density 

estimation (top) and from simulations (bottom; from simulation set for grid size 16 also used in 

C). The red dotted line represents the average formation time. 
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Figure S6 (Related to Fig. 6). Detailed effects of including complex elements into the 
model on the propagation and formation of dynamic patterns. (A-B) Detailed breakdown of 
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simulations with two of the complex elements – stochastic response and continuous response – 

into four classes of patterns. Dynamic spatial pattern here refers to traveling waves specifically, 

dynamic temporal patterns to all other simulations that yielded periodic steady states, static 

patterns to simulations where the final state was non-periodic and max. simulation time reached 

to simulations that never settled down to a steady state within the total simulation time (10,000 

timesteps). (A) Effect of complex elements on the formation of dynamic patterns, corresponding 

to the data also used in Fig. 6E (upper panels). We performed 200 simulations for each value of 

the noise and 150 simulations for each value of Hill coefficient. (B) Effect of complex elements 

on traveling wave propagation, corresponding to the data also used in Fig. 6D (upper panels). 

The parameters are chosen such that without noise and with infinite Hill coefficient a straight 

traveling wave, such as depicted in the lower panel of Fig. 6B, can propagate. We performed 

1,000 simulations for each value of the noise and 2,534 simulations for each value of Hill 

coefficient. (C) Effect of a parameter gradient on the orientation of formed traveling waves. 

Specifically, we considered a step-function gradient for the threshold parameter 𝐾(+,) (Section 

S1) oriented along either the vertical direction (upper panels) or horizontal direction (lower 

panels). We classified the orientation of the formed traveling waves as the relative gradient 

strength (Section S6.5) is increased. The unclassified simulations in the bar graphs did not form 

traveling waves. We performed 200 simulations for each value of the gradient strength. 
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Figure S7 (Related to Fig. 4). Robustness of traveling waves (TWs). (A) Robustness of TW 

propagation, for each cellular dialogue capable of generating TWs in exact simulations and 
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according to our analytical framework. We quantified robustness as the fraction of parameter 

sets that were capable of propagating a TW (Q-value; see Section S7). Networks 33(a) and 

33(b) refer to the two types of TWs this network can generate (see Fig. 4D). Normalized 

robustness that considers the number of parameters for each parameter set and can be 

interpreted as the probability that a single random draw of each of the parameter gives a value 

compatible with TW formation (Section S7). Results are based on testing 106 parameter sets for 

both theory and simulations. (B) Robustness of TW self-organization from random initial states. 

Results are based on testing 106 parameter sets, with 10 simulations for each parameter set. (C) 
Radar charts or spider charts for the parameter sets for which TWs propagate as found in 

simulations (compare with theoretical results in Fig. 4F). (D) Case studies of the influence of 

initial state on TW formation. We varied the initial fraction of cells with each of the two genes on 

(for dialogue 15 at fixed parameter values; left plot) and the initial spatial index for each of the 

two genes (for dialogue 19 at fixed parameter values; right plot). For each combination of initial 

values, we performed 100 simulations.  
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Figure S8 (Related to Fig. 4). Reliability of traveling wave (TW) formation, defined as the 
fraction of simulations with arbitrary initial conditions that self-organize into TWs at fixed 
parameters. (A) Reliability values for all parameter sets found to be capable of self-organizing 
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TWs, for each of the five TW generating networks. The parameter sets are ordered from high to 

low with regard to the fraction of simulations that yielded a traveling wave (blue bars). The other 

simulations are classified into other periodic patterns (red), static patterns (yellow) and 

simulations that did not reach steady state at the maximum simulation time (purple). We 

performed 500 simulations with random initial conditions for each parameter set. (B-E) Reliability 

of TW formation for a large set of parameters (n=2534) capable of propagating TWs (i.e., for 

which a TW initial state continued to propagate indefinitely). For each parameter set, we 

performed 100 simulations to test whether random initial conditions led to self-organization of 

TWs. (B) Fraction of parameter sets that yielded at least one self-organized TW. (C) Distribution 

of reliability values among the set of parameters with reliability>0. (D-E) Reliability shows no 

clear dependence on the five parameters we varied. (D) Projection of the five-dimensional 

parameter sets on the space spanned by the two parameter specifying the strength of each 

interaction (see Fig. S3B for details). Each dot represents one parameter set and the color 

represents the reliability (color bar shared with Fig. S8E). (E) Spider chart projection. Each 

connected thread represents one parameter set, with the color of the thread representing the 

reliability for that parameter set. 
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SUPPLEMENTARY MOVIES 
Video S1. Self-organization of a traveling wave, corresponding to the trajectory depicted in Fig. 

2A. 

 

Video S2. The formation of a traveling wave follows a three-stage process, corresponding to the 

trajectory depicted in Fig. 5A. 

 

Video S3. Dynamic spatial pattern with an oscillatory background, corresponding to the 

trajectory depicted in Fig. S3A. 

 

Video S4. Macroscopic dynamics (fraction of ON-cells) of the trajectory shown in Fig. 5B. 

  

Video S5. Explicit simulation corresponding to the trajectory shown in Fig. 5B and Video S4. 

 

Video S6. Persistence of a traveling wave under the effect of stochasticity, corresponding to the 

example shown in Fig. 6C – top left. 

 

Video S7. Formation of an oscillatory traveling wave with Hill coefficient 10, corresponding to the 

example shown in Fig. 6C – top right. 
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S1 Detailed description of the model
In this section, we give a detailed, mathematical description of the model under consideration. The aim here
is to give a technically precise, but concise reference for the model details. As such, we leave out many steps
in motivating the model assumptions - the reader can refer to the main text as well as our earlier work for
a detailed motivation of the model assumptions ([1, 2]).

We consider a general model consisting of N cells that communicate through l distinct signaling molecules.
The state of the system is specified by X(t) = {Xk(t)}Nk=1, where Xk = (X

(i)
k , . . . , X

(l)
k ) is the state of cell

k. In the discussion below, we will distinguish between the system state X and the cell state of a single cell
k, Xk. Suppose that the cells secrete signaling molecules at a rate C(i)

k , with bounds C(i)
OFF ≤ C

(i)
k ≤ C

(i)
ON .

In principle the bounds can be different for each signaling molecule. However, in much of the analysis we
will assume that C(i)

OFF = 1 for all i. The secretion rate is related to the cell state through the relation

C(i)(X
(i)
k ) ≡ (C

(i)
ON − C

(i)
OFF )X

(i)
k + C

(i)
OFF . (S1)

In the simplest scenario, the cells secrete signaling molecules at a rate which is either low or high. In this case
the each of theX(i)

k take binary values in {0, 1}, such that C(i)(X
(i)
k = 1) = C

(i)
ON and C(i)(X

(i)
k = 0) = C

(i)
OFF .

Alternatively, the secretion rate could take continuous values in [C
(i)
OFF , C

(i)
ON ]. In this case the cell states

are continuous and X(i)
k ∈ [0, 1]. For convenience, we set C(i)

OFF = 1 for all i and measure all concentrations
in units of the OFF secretion rate (which we take to be equal for all genes, unless otherwise specified).
In steady state, the concentration of signaling molecule decays with distance to the cell that is secreting it
according to [2]

c(i)(r) = C
(i)
k f (i)(r),

f (i)(r) =
λ(i)

r
exp

(
Rcell − r
λ(i)

)
sinh

(
Rcell

λ(i)

)
. (S2)

Here Rcell ≡ rcella0 is the radius of the cell, λ(i) is the signaling length and we introduced a function f(r) for
the distance-dependent decay. Note that C(i)

ON , C
(i)
OFF are effective secretion rates that lump together terms

of the underlying reaction-diffusion equation ([2]), including the diffusion lengths λ(i). However, we will not
take into account this dependence and assume that the secretion rates scale accordingly with the λ(i) such
that C(i)

ON , C
(i)
OFF remain constant as λ(i) is changed.

We can reduce the number of parameters by expressing all lengths in units of one length scale, for instance
a0. We define l(i) ≡ λ(i)

a0
and write for the interaction function

f (i)(ρ) =
1

ρ
exp

(
rcell − ρ
l(i)

)
sinh

(rcell
l(i)

)
, (S3)

where we introduced ρ ≡ r
a0
.

At any given time, the concentration that a cell senses is the sum of the concentrations due to each of the
cells in the system. We express the sensed concentration of a cell k as

Y
(i)
k =

N∑
m=1

f
(i)
kmC

(i)
m , (S4)

where f (i)km is a distance-dependent interaction strength between cells k and m. Explicitly,

f
(i)
km ≡

{
f (i)(rkm) (k 6= m)

1 (k = m)
, (S5)

with rkm as the distance between cells k and m and f (i)(r) as defined in Eq. S2.
For later reference, introduce an interaction strength f (i)N for each signaling molecule i as

f
(i)
N =

∑
m6=k

f
(i)
km. (S6)
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Note that if all cells secrete at the same rate C(i), then they would all sense a concentration

Y (i) = (1 + f
(i)
N )C(i). (S7)

Regulatory interactions Next, the effect of signaling molecule j on the production and secretion of
signaling molecule i can be (1) positive, corresponding to activation of the gene responsible for producing
i, (2) negative, corresponding to repression, (3) non-existent. To specify the interactions we introduce the
interaction matrix Mint, defined through

M
(ij)
int =


1 j activates i
−1 j represses i
0 no interaction between j and i

(S8)

Note that the interaction network can be represented as a directed (multi)graph, where each node is a gene
and each edge is a directed interaction between two genes.

The response of a cell can be a complicated function of the sensed concentrations of all signaling molecules,
which depends on the biochemical details of the system. Here we consider a relatively simple case where
the signaling molecules of both types need to simultaneously satisfy certain constraints to turn production
on or off. In terms of logic functions, this corresponds to a regulatory construct where the two signals are
put through an AND gate. For two activators, such a construct can easily be realized through employing
cis-regulatory construct with weakly binding, adjacent sites for the two transcription factors, so that they
can through some cooperative interaction, i.e. only bind when both factors are present ([3]). This scenario
gives rise to a multiplicative update rule for our system. Namely, the effect of the different species multiply
to determine a cell’s secretion rate at the next time step. Concretely, we have

X
(i)
k (t+ 1) =

l∏
j=1

g
(ij)
k (X(t)), (S9)

where

g
(ij)
k (X(t)) =


θ(Y

(j)
k −K(ij)) activation,M (ij)

int = 1

θ(K(ij) − Y (j)
k ) repression,M (ij)

int = −1

1 no interaction,M (ij)
int = 0

(S10)

The result of molecule j regulating gene i is hence specified by g(ij)(X) as defined in Eq. S10. If g(ij)(X) = 1
then the interaction is ON, while g(ij)(X) = 0 means the interaction is OFF. Multiplicative interaction implies
that whenever a single interaction is OFF, the gene will be turned OFF. However, if g(ij)(X) = 1 for some
j, then we are not sure that gene i will be ON the next time step, unless j is the only regulating factor
controlling gene i.

S1.1 Steady states of the system
In the discrete system with binary cell states, the number of states is finite (2N ), so the system is bound to
return reach a steady state after a finite number of time steps. In general, there are two possibilities:

1. Stationary steady state. The system reaches a stationary steady state, defined as a state for which
X(t+ 1) = X(t).

2. Periodic steady state. The system reaches a periodic steady state, with a period τ . There exists a time
t∗ after which we have X(t+ τ) = X(t) for all t ≥ t∗.

The equilibration time teq is the time it takes to reach the steady state. For stationary steady states, this is
simply the first time when the system reaches the steady state X(teq). For all t > teq, we have X(t) = X(teq).
For oscillatory steady states, we define the equilibration time as the onset time of the periodicity, e.g. teq = t∗,
with t∗ defined above.
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S1.2 Counting topologies
For a two gene network, there are four possible interactions between the genes. Each interaction can be
activating, repressing or absent. Hence there are 34 = 81 possible topologies for systems with two genes.
However, many of these topologies are equivalent through relabeling of genes 1 and 2. Under this operation,
the interaction matrix maps to (

A11 A12

A21 A22

)
7→
(
A22 A21

A12 A11

)
We see that the networks that are invariant under this operation satisfy A11 = A22 and A12 = A21. Since
each of the two remaining independent variables can take three different values, there are 9 such networks.
The remaining 72 networks can thus be reduced to a set of 36 unique networks. This gives a total of 45
distinct networks. After neglecting the trivial network with no interactions, we obtain the set of 44 networks
shown in Fig. 3).

S1.3 Population-level description
To characterize the large-scale behavior of the system, we introduce macroscopic variables that characterize
population-level features of the system. We characterize the macroscopic state of the system using two sets
of parameters, with one for each gene. We first consider the average gene expression of the cells for a given
gene i, which in the case of binary cells corresponds to the fraction of cells that have gene i turned ON:

p(i) =
1

N

N∑
k=1

X
(i)
k . (S11)

Next, we characterize how spatially correlated the gene expression levels using introduce an earlier defined
“spatial index”, extended to a system with multiple genes [1, 2]:

I(i) =
1∑

n 6=m
f
(i)
mn

∑
m

∑
n 6=m f

(i)
mn(X

(i)
m − 〈X(i)〉)(X(i)

n − 〈X(i)〉)

1
N

N∑
m=1

(X
(i)
m − 〈X(i)〉)2

(S12)

The quantity I(i) is a measure for the spatial organization of the gene expression levels of different cells
in the “channel” of gene i. It takes values between −1 and 1, with negative values indicating that neigh-
boring cells tend to have different gene expression levels (such as in the case of checkerboard patterns or
anti-ferromagnetism in spin models) and positive values corresponding to neighboring cells that tend to have
similar levels of gene expression (forming islands with the same gene expression level, similar to the case of
ferromagnetism). When I(i) = 0, the expression levels of gene i are on average uncorrelated in space. In the
case of spatially ordered patterns such as traveling waves, the values of I(i) are positive and relatively high,
with exact values depending on the parameters of the system and the shape of the wave.

Together, the set of macroscopic variables {p(i), I(i)}li=1 contain information about population-level features
of each of the genes. However, note that this description does not contain information about correlations
between different genes. For instance, we may specify for a two-gene system that p(1) = p(2) = 0.5, I(1) =
I(2) = 0.5. This tells us that half of the genes of each type are on, and that the cells which have a certain
gene on will tend to cluster with other cells that have the same gene on. However, it tells us nothing about
whether a cell that has gene 1 on is likely to have gene 2 on, or whether its neighbors tend to have gene 2 on.
The cells that have gene 1 on could be precisely those that also have gene 2 on, or they could be exactly its
complement. There are different ways to consider metrics that also take into account cross-correlations. For
instance, we can group together cells with each of the four cell states (i.e., (gene 1=ON, gene 2=ON), (ON,
OFF), (OFF, ON), (OFF, OFF)) and study the evolution of these populations. However, the disadvantage
of this approach is that it does not easily generalize to continuous descriptions of the gene expression states.
Alternatively, we use established statistical metrics for correlations between two sets of values (the gene
expression levels for the two different genes) such as the Hamming distance, the Jaccard index (JI) and the
Sørensen-Dice coefficient. As we are mainly interested in knowing whether a configuration is spatially ordered
or not (i.e. whether it may be an interesting pattern), we have not looked in detail at these cross-correlations.
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Moving averages The moving coefficient of variation shown in Figs. 5C and S4 is obtain by dividing the
moving variance by the moving mean, both with a window size of 10. Specifically, we calculated the moving
variance using the MATLAB function movvar and the moving mean using movmean. F

S2 Simulation and analysis of the model
In this section, we provide a basic overview of parts of the simulations and analyses which may not be evident
to the reader. This is by no means a comprehensive overview, for which we refer the reader to the source
code of the simulation software.

Fixing initial conditions We start the simulation by generating an random initial configuration subject
to certain constraints. If no initial conditions were specified, we let each gene of each cell be ON with a
probability 1/2. This tends to generate configurations where half of the cells of each type are ON, whereas
configurations where all the genes are OFF or ON are rare generated (since the statistics follows a geometric
distribution). Alternatively, we could fix the macroscopic variables of the system (Sec. S1.3). To fix p(i),
we randomly select this fraction of cells, for which we turn ON gene i. To fix I(i), we used a Monte Carlo
algorithm which we will outline below.

Algorithm for generating configurations with given spatial index We constructed an algorithm
that generated configurations with a given spatial index I(i) at fixed values of p(i). This is analogous to a
similar problem for spin systems in physics, where we try to fix the energy of the Ising model (analogous to
I(i)) without changing the average magnetization of the system (analogous to p). The algorithm is illustrated
in Fig. S1 and can be summarized as follows:

1. Given an configuration with a given value of p, start by computing the value of the I for this configu-
ration.

2. Check whether we should increase or decrease I by comparing it to the target value Itarget.

3. If I < Itarget

(a) Select the ON-cell with the minimum number of neighbors which are also ON. Turn this cell OFF.

(b) Select the OFF-cell with the maximum number of neighbors which are also OFF. Turn this cell
ON.

4. Else if I < Itarget

(a) Select the ON-cell with the maximum number of neighbors which are also ON. Turn this cell
OFF.

(b) Select the OFF-cell with the minimum number of neighbors which are also OFF. Turn this cell
ON.

5. Compute the the spatial index of the new configuration, Inew. Check whether it has increased or
decreased as required.

6. If it has changed as required, accept the change. Go to step 8.

7. Else, reject the new configuration. Go to step 1.

8. If Inew ∈ [Itarget − ε, Itarget + ε], terminate the simulation.

9. Else, go to step 1 with the new configuration with I = Inew.
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Because we switch the state of both an ON-cell and an OFF-cell, the average number of ON cells is kept
constant. To increase I, we choose cells that tend to have a different state from most of their neighbors and
change their state. To decrease I, we change cells that tend to have a similar state to their neighbors. In
practice, we typically set ε = 0.01. Note that this algorithm is not guaranteed to converge to Itarget because
at each iteration of the loop, we are not guaranteed to increase or decrease I as required. In particular, if
the specified I is outside the range of possible I [2], the algorithm cannot reach the specified value of I.
Therefore, we typically set a limit on the maximum number of iterations before we terminate the algorithm.

Con�guration
with (p, I)

Compare I with Itarget

Select ON-cell with
min. number of 
ON-neighbours

Select OFF-cell with
max. number of 
ON-neighbours

Select ON-cell with
max. number of 
ON-neighbours

Select OFF-cell with
min. number of 
OFF-neighbours

turn the cell ONturn the cell ON

turn the cell OFF turn the cell OFF

 
Check whether

 Itarget - ε ≤ Inew ≤ Itarget +ε

Terminate

In
cr

ea
se

 I
D

ecrease I

Set I = Inew Yes No

I < Itarget I > Itarget

Compute Inew; has it 
increased/decreased

as required?

Accept change Reject change;
Continue

Yes No

Continue;

Figure S1: Work flow of the algorithm used to generate configurations with specific I at a fixed value of p.

Terminating the simulation As noted earlier, we terminate the simulation whenever it has reached a
steady state or when it reaches a maximum number of time steps tmax (in practice, we chose tmax = 105
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for systems of size N = 225). At each time step, we checked for stationary steady states by comparing the
current system state with the system state at the previous time step. To check for periodicity, one method
would be to brute-force check at every time step whether the current state has been visited earlier. This
becomes computationally intensive when running large sets of simulations, so we devised a more efficient
algorithm for checking periodicity. Instead of checking at every time step, we check every tcheck time steps
whether the last state has been visited earlier by brute force (in practice we set tcheck = 103). If we find
periodicity, we run a second algorithm to find the earliest time at which any state has repeated itself, which
gives us the onset time of the periodicity.

Identifying traveling waves We devised an algorithm to automatically identify TWs in large sets of
simulations. Since the waves keep their shape while translating across the lattice, their values of p(i) and I(i)
do not change over time. Because of periodic boundary conditions, they reach the same state again after n
time steps, where n =

√
N is the grid size (linear size of the system). Hence, we first filter the trajectories

on ones that have a period which is a multiple of n (since we may also have more complicated waves that are
slightly morphed as they travel across the boundaries). We then check whether p(i) and I(i) and (sufficiently)
constant over one period of the wave. Using these two features, we could identify traveling waves in batch
simulations without examining the simulations explicitly by eye. We then extended the algorithm such that
it also gives the orientation of the wave of a TW forms (relevant for Section S6.5 and Fig. S6C). This is done
in a two-step procedure: first we separate the background state from the wave states (assuming there are
three states that makes up a wave), then we trace the cells of an arbitrary wave state layer to see whether
they percolate the system from one horizontal (vertical) edge to the other. If so, then we assign a horizontal
(vertical) orientation to the wave. Else, we assign a diagonal orientation to the wave.

Batch simulations Many of the results presented in the figures and paper rely on batch simulations,
where we performed a large set of simulations with similar but not identical conditions (parameters and
initial states) to obtain overall statistics on various measures. In many cases, we fix all parameters of
the system and only vary the initial conditions. By performing a large set of simulations with the same
parameters but initial conditions, we can distinguish whether an observed feature is consistent for that set
of parameters or is an artefact of the specific initial conditions. However, in a number of cases we have
also considered the effect of varying parameter sets. In particular, we addressed the question of what a
system with a number of fixed parameters (e.g. fixed cellular dialogue) is capable of in general, as one varies
the parameters across some set range. Because the parameters vary continuously, we cannot simulate all
possible parameter values and have to find a way to sample over this space. One particular method we used
is Latin hypercube sampling [4], where we efficiently sample over a multi-dimensional parameter space by
taking parameter sets that are non-overlapping in any of the dimensions. We used this method to initially
generate a large set of simulations for each of the 44 networks to explore their range dynamic behavior - the
results in Figs. 3, S2 and rely on this approach. Specifically, for this data set we defined a region where
we varied the parameters K(ij) and C

(j)
ON over a range from 1 to 103 and kept all over other parameters

constant. We sampled over this region by generating a Latin hypercube sample with 10,000 points using the
MATLAB function lhsdesign. We did this for each of the 44 cellular dialogues.

S3 Overview of self-organized patterns
In this section, we provide a detailed but mostly qualitative overview of the different types of self-organized
patterns we observed in simulations of our model. The aim is give a general overview of the different possible
morphologies and dynamic features of these patterns, and to understand basic features of these patterns in
terms of the concepts we have introduced or will introduce. In Section S5, we will give analyze traveling
waves - a subset of dynamic spatial patterns - more closely.

S3.1 Static patterns
While the focus of this work is mainly on dynamic patterns, we also observed static patterns with a high
degree of spatial organization in all two-gene networks studied. They commonly arise after a relatively short
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transient phase (10s-100s of time steps) and can have different shapes and compositions of cell states (i.e.
the cells can have different combinations of gene expression). In terms of shape, most patterns consist of
one or more islands or stripes of cells with a different cell state from the surrounding cells. Since there is
no Turing mechanism in our system, we did not identify a natural length scale for the patterns, although
changing parameters did seem to affect the size of structures such as islands. Patterns were most commonly
observed to have two sets of cell states, where one group of cells has one cell state and the other group
has another cell state. Patterns with three cell states are rare, but not impossible to generate. We did not
observe any patterns where all four cell states existed concurrently. The most common static patterns are
ones that also arise in the model with one signaling molecule and consist of one group of cells with a given
gene ON and another group with that gene OFF. In the case of two molecules, it is common to find islands
with both genes ON (or OFF) with the rest of the system consisting of cells with both genes OFF (or ON).
We also observed patterns where the two genes were mutually exclusive, i.e. if a cell has gene 1 ON, it has
gene 2 OFF, and vice versa. Finally, we found that the boundary separating an island or stripe from the
rest of the cells can sometimes take a different state from the rest of the system.

S3.2 Dynamic temporal patterns
Dynamic temporal patterns are oscillatory steady states are steady states where the system returns to an
earlier state after a finite number of time steps τ > 1 (the period of the oscillation), but do not propagate
information across space.

Single-cell oscillations Oscillations can arise at the single-cell level in the case of a negative feedback
loop. If certain parameter constraints are satisfied, the gene expression level of a single cell would oscillate
between ON and OFF indefinitely. These oscillations are the result of our adiabatic description, where
we assume that cells respond slowly compared to the time for signaling molecule concentrations to reach a
steady state. Cells oscillate between the ON and OFF states due to its slow and binary response. An ON-cell
turns OFF because the concentration it senses is high enough to suddenly switch to the other state. The
OFF-cell then senses a low concentration and the cell switches to the other extreme immediately, without
ever reaching the intermediate steady state.
With two genes, oscillations at the single cell level remain relatively simple and can only have periods up to
four, since there are only four cell states with two genes. In practice, by examining all possible single-cell
state diagrams (Sec. S4; not described in detail), we found that the vast majority of single-cell oscillations
were of period 2 (see Fig. S2C). Single-cell period 2 oscillations arise in all networks that can generate
dynamic patterns (temporal or spatial), while period 4 oscillations arise only in networks with an incoherent
mutual feedback (i.e., for all networks generating dynamic spatial patterns in Fig. 3D as well as Network 14
in Fig. 3C).
We can interpret these results by looking at the three core network structure that give rise to most dynamic
patterns (Table 1). For each of the motifs, the interpretation of the oscillations is straightforward. For a
double repression, a cell is able to oscillate between (0, 0) and (1, 1), whereas (0, 1) and (1, 0) are stable
states. When both genes are off, both are unrepressed and will turn on the next time step, after which they
are both repressed and turn off again. However, if only one of the genes is on, it represses the other gene but
is not repressed itself. For a double activation, the oscillation is between the states (0, 1) and (1, 0). Each
gene can turn on the other, but turns off when the other gene is on. However, if both genes are ON, they
sustained each other, whereas if neither is ON, they also cannot turn ON. Finally, for a positive-negative
loop, the system undergoes a period 4 oscillation between the four states as one may see from going through
all states one by one. These results obviously depend on the parameters chosen, but it is evident that
they should be possible for some set of parameters. Again, these results rely on the separation of time
scales between the relaxation of the signaling molecule concentrations and the response of the cells. They
persist on a multicellular level, with cells synchronizing their oscillations depending on how strongly the
cells interact. Oscillatory cells can co-exist with stationary cells that are in one of the stationary states (for
negative-negative or positive-positive feedback).

Name Network topology Single-cell state diagram
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Coherent mutual feedback (-/-) 1 2

(0,0) (1,0)

(0,1) (1,1)

Coherent mutual feedback
(+/+)

1 2

(0,0) (1,0)

(0,1) (1,1)

Incoherent mutual feedback
(+/-)

1 2

(0,0) (1,0)

(0,1) (1,1)

Table 1: Two gene network motifs generating oscillations. The three core topologies for mutual interaction
between the two genes are shown together with typical single-cell state diagrams showing oscillations. The
state diagrams are for the case when the concentration of the regulator genes always surpass the threshold
when the gene is ON and is below the threshold when it is OFF, i.e. C(j)

ON > K(ij) > C
(j)
OFF for all genes i, j.

Synchronization of single-cell oscillations On the multicellular level, oscillations can persist in different
ways, depending on the degree of synchronization and whether the oscillations are “simple”, i.e. superpo-
sitions of single-cell oscillations. The oscillations in the multicellular system can vary between completely
autonomous (i.e., each cell independently oscillates) to completely synchronized (i.e., all cells oscillate syn-
chronously; see Fig. 2I). Full autonomy is reached if and only if each of the interactions is in the autonomous
(A01) phase (see Sec. S4). Full synchronization can be reached for a variety of other parameter conditions.
In between, the system can partially synchronize and exhibit domains of cells oscillating together that do
not extend over the entire lattice.

Complex dynamic temporal patterns Oscillations of a more complicated form arise in the networks
that are capable of generating dynamic spatial patterns. Each of these networks produces a wide range
of complicated periods with τ ≥ 5 (Fig. S2D), most of which correspond to dynamic temporal patterns.
Typically, they feature oscillating domains that coexist with a background of static cells (e.g., the oscillating
island in Fig. 2H), but where different cells in the domain undergo different cycles of gene expression states
over time. This can give rise to complicated temporal patterns because the oscillatory sequences of individual
cells may not line up, especially when they are incommensurable.
These complex periods are indeed associated with dynamic patterns, as we can verify by measuring their
degree of spatial order using the metric I(i) (Eq. S12). Overall, steady states with a period τ ≥ 5 tend to
have higher values of I(i) for both genes (yellow and purple lines in Fig. S2E), indicating that they tend to
be more spatially ordered than oscillations with simple periods (red lines in Fig. S2E) and static patterns
(blue lines in Fig. S2E).

S3.3 Dynamic spatial patterns
Dynamic spatial patterns are characterized by gene expression profiles that translate across space, thereby
allowing propagation of information across the multicellular system. These can be rigid profiles of gene
expression that move across the system without changing shape, but we also count patterns that move and

9

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 28, 2019. ; https://doi.org/10.1101/717595doi: bioRxiv preprint 

https://doi.org/10.1101/717595
http://creativecommons.org/licenses/by-nc-nd/4.0/


Y. Dang, D. Grundel, H. Youk Supplementary Information

morph (i.e. change shape) at the same time as dynamic spatial patterns. Note that these patterns require
periodic boundary conditions to be sustained indefinitely.

Traveling waves Traveling waves are characterized by stripes of cells that translate across the lattice in
a regular fashion (see Fig. 2A, 2C-E and 2G for examples). They typically consist of three types of cells
(with different states) and travels on a background consisting of cells of the fourth type. When two traveling
waves in opposite directions collide, they typically annihilate each other, leaving a void of cells with the
background state. Characteristics of traveling waves and their propagation conditions will be discussed in
Section S5.

Complex wavelets In a number of cases, we observed complex wavelets that propagate indefinitely with-
out repeating themselves, within the maximum simulation time (Fig. 2B). Since the total number of system
states is limited to 2N , these waves will eventually settle down to a steady state. The transient wave patterns
they generate look very similar to (less coordinated) traveling waves, and arise as transient states during the
generation of all types of dynamic spatial patterns described here.

Spiral and concentric waves Spiral and concentric waves are similar to traveling waves with the main
difference that their orientation is outward from a source or center rather than linear in a fixed direction
(Fig. 2F). Locally, they typically look like traveling waves, with the same set of cell states as in traveling
waves. Due to annihilation of colliding waves, spiral and concentric waves are less stable, since only particular
configurations where the outcome of the collision is an earlier spiral wave pattern will be observed as persistent
spiral waves. It is more common to observe spirals and concentric waves as transient patterns that are created
and annihilated repeatedly, until the system settles down to a more stable configuration such as a traveling
wave.

Traveling pulses We also observe small, localized patterns of a few cells that translate across the lattice
in a regular way. They are similar to traveling waves, but the traveling pulses are rather small, localized
patterns that do not span the entire size of the system.

Oscillatory traveling waves In networks 16, 20 and 43 - characterized by the incoherent mutual feedback
motif without positive self-regulations (Fig. 3D) - we found oscillatory traveling waves where both the wave
states and the background state oscillate over time (Examples in Fig. S1). At any given time, these waves
typically look similar to the non-oscillatory traveling wave, but due the oscillations the dynamics is different.
Perfectly aligned waves where each wave state occupies a single band of cells are relatively rare. Most waves
have bands that occupy the width of more than one cell (see for instance Fig. S1B). The waves undergo a
successive sequence of static oscillations followed by an translation (Fig. S1D). Details of their dynamics are
further discussed in Sec. S5.6.

S4 Parameter-derived general constraints on the dynamics
In this section, we derive a number of a methods to derive general constraints on the dynamics of the
system from the parameters of that system. First, we introduce the concept of dynamical phase for each
regulatory interaction between two (possibly identical) signaling molecules. Next, we introduce the concept
of state diagram - a graphical way to represent transitions between cell states - and discuss their usefulness
in deducing constraints on the system’s dynamics. We then derive general constraints on the dynamics of a
system with multiple signaling molecules, which arise as special combinations of these phases. Finally, we
present a formal algorithm to calculate the dynamical constraints and represent them in a state diagram for
any set of arbitrary parameters.

S4.1 Dynamical phases for each interaction
The idea behind dynamical phases is based on the observation that for extreme parameter values, the
behavior of the system becomes predictable. For instance, if the interaction between cells is very strong
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and the threshold values characterizing their response very low, then we expect the cells to always exceed
this threshold regardless of the precise states of the cells. These ideas were made precise in our previous
work for systems with one signaling molecule, which represented these dynamical constraints as “phenotype
functions” on a “phenotype diagram” [1]. In this work, we extend this formalism to a more general framework
applicable to multiple interactions.
Consider an interaction between two genes where a regulating gene j controls the expression of the regulated
gene i (possibly i = j). The interaction is specified by the threshold K(ij) for turning the gene ON/OFF
(depending on whether the interaction is activating or repressive), and the ON-secretion rate C(j)

ON . Suppose
the cells have an effective distance a0 to their nearest neighbors, and we associate an interaction strength
f
(j)
N (Eq. S6) to the interaction. Let Y (j) be the sensed concentration of molecule j. Recall that the outcome
of the interaction is specified by g(ij)(X). We then distinguish the following phases:

1. P1: sensed concentration permanently above threshold. The phase is defined by (1 + f
(j)
N )C

(j)
OFF >

K(ij). For an activating interaction, this implies that g(ij)(X) = 1 for any system state X. The
interaction is always ON. For a repressive interaction, we have g(ij)(X) = 0 and the interaction is
always OFF. For a single activating interaction, this corresponds to the always ON phase.

2. P0: sensed concentration permanently below threshold. The phase is defined by (1+f
(j)
N )C

(j)
ON < K(ij).

For an activating interaction this implies g(ij)(X) = 0 and for a repressive interaction g(ij)(X) = 1.
For a single activating interaction, this corresponds to the always OFF phase.

3. A1: autonomy whenever the regulating gene is ON. The phase is defined by C(j)
ON +f

(j)
N C

(j)
OFF > K(ij).

For an activating interaction, this implies that g(ij)k (X) = 1 whenever X(j)
k = 1. This means that

the interaction is always ON in a cell k whenever gene j is ON regardless of the rest of the cells.
However, when gene j is OFF, whether the interaction will be ON depends on the state of other cells.
For repression, g(ij)k (X) = 0 whenever X(j)

k = 1. In this case, the interaction is always OFF in cell
k whenever it has gene j ON. For a single activating interaction, this corresponds to the activation
phase.

4. A0: autonomy whenever the regulating gene is OFF. The phase is defined by C(j)
OFF +f

(j)
N C

(j)
ON < K(ij).

This is analogous to the previous case with some roles switches. For activation, we get g(ij)k (X) = 0

whenever X(j)
k = 0. For repression, g(ij)k (X) = 1 whenever X(j)

k = 0. For a single activating interaction,
this corresponds to the deactivation phase.

5. A01: autonomy regardless of whether the regulating gene is ON or OFF. This phase is defined by
parameter values for which both inequalities of A1 and A0 hold. These conditions can only be met
simultaneously if f (j)N < 1. For activation, it implies that g(ij)k (X) = X

(j)
k . More explicitly, it means

that g(ij)k (X) = 1 whenever X(j)
k = 1 and g(ij)k (X) = 0 whenever X(j)

k = 0. Hence X(j)
k fully determines

fate of the interaction. For repression, the roles are reversed and g
(ij)
k (X) = 1 − X(j)

k . For a single
activating interaction, this corresponds to the autonomy phase.

6. U: unconstrained. This phase is defined by parameter values for which the conditions of neither A0 nor
A1 are true. Hence, we have C(j)

ON +f
(j)
N C

(j)
OFF < K(ij) and C(j)

OFF +f
(j)
N C

(j)
ON > K(ij). These conditions

can only be met simultaneously if f (j)N > 1. For a single activating interaction, this corresponds to the
activation-deactivation phase. In this phase, we cannot deduce any general constraints on g(ij)k (X) and
have to look at the specific system state X to determine whether an interaction will be ON or OFF.

The interpretation of these phases are best understood for a system with only one signaling molecule [1]. For
now, note that the phases P0 and P1 make the interaction trivial - the outcome is always known regardless
of the state of the cell itself or its neighbors. The phases A0, A1 and A01 place constraints which are
dependent on the current state of the cell, and the phase U does not place any constraints on the system’s
dynamics. For a system with multiple signaling molecules, each interaction will be characterized by one
phase. The obvious next question is how to put together the constraints from these different interactions to
derive general constraints on the system’s dynamics.
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S4.2 State diagrams
The basic idea of the state diagram is that it displays all the possible transitions between different cell states
of a system. The concept of state diagram has been explored in earlier work on modeling genetic circuits
with binary expression states [5], but has been limited to models of gene circuits at the single-cell level.
In our case, the cell states are the binary states X = (X(1), . . . , X(l)) ∈ {0, 1}l specifying for a given cell
whether each gene is ON or OFF. For one signaling molecule, there are only two cell states, 0 and 1. For
two signaling molecules, we distinguish the four cell states (0, 0), (0, 1), (1, 0) and (1, 1). If a cell in a given
cell state X can adopt the state Y after one time step - either under its own influence or through sensing
molecules secreted by other cells - then we draw an arrow between the states X and Y .

For a single interaction, the procedure is straightforward and the diagrams are simple to interpret. For
instance, the P1 phase with activation means that cells always turn ON after one time step, hence giving the
diagram with all arrows going to the 1 state and no other arrows. For A01 with an activating interaction,
the cells are autonomous, so 0 remains 0 and 1 remains 1. However, A01 with repressive interaction gives
oscillations between 0 and 1. An ON-cell always turns OFF because it will always sense a concentration
above the threshold, repressing its gene expression, while an OFF-cell will always turn ON because its sensed
concentration will always be below the threshold, leaving the gene unrepressed. The collective set of possible
transitions is then displayed as a diagram with the cell states and possible transitions.

For two genes, the interpretation is analogous. We draw a directed graph with the four cell states (0, 0),
(0, 1), (1, 0) and (1, 1) as nodes and directed edges between these states to indicate (possible) transitions
between the states. In Fig. 4E, in the left diagram for dialogue 14, the transitions are heavily constrained.
Each of the four states leads only to one other possible state. This completely constrains the dynamics
of the system, so that it becomes completely predictable - any cell’s dynamics in the system is completely
determined by the transitions in one diagram. As such, this state diagram does not allow for multicellular
pattern formation, as all individual cells will oscillate individually. In contrast, if we take a diagram such as
the one depicted for dialogue 15 (Fig. 4E), the dynamics of the system is not entirely constrained. The state
(0, 0) has two arrows leaving from it, indicating that either transition is possible, depending on the exact
concentration a cell senses. As such, it allows for a pattern such as a traveling wave to propagate, because
cells of the same state do not always evolve in the same way, but this depends on the other cells in the
system. In practice, the state diagram of dialogue 14 (Fig. 4E) can be realized under a range of parameter
conditions, whereas the diagrams for dialogues 15 and 19 (Fig. 4E) typically involve more possible transitions
(which does impede TW propagation).

Two properties of the system are immediately evident from the graphical representation of the state dia-
gram. To begin with, a state diagram tells us which cell states could potentially be stationary. Such states
must have an arrow to themselves in the state diagram, which we call a self-transition. Should the system
reach a non-oscillatory steady state, then that final state can only be composed of cell states which have a
self-transition. If there are no self-transitions, then the system cannot generate stationary patterns - this
happens for instance in dialogue 14 with certain parameters, which can produce the state diagram shown in
Fig. 4E. If there is only self-transition, then the only possible stationary steady state is a uniform system
where all cells have the state with the self-transition. Conversely, not all cell states with a self-transition
need to appear in a stationary system state. In other words, having a self-transition does not imply that the
state appears in any stationary pattern. As an extreme example, the system could have a fully connected
state diagram, where each transition between two cell states is in principle possible. However, this system
could still generate a uniform lattice of cells as final state if the parameters are chosen appropriately.

Secondly, the state diagrams show whether periodic steady states (e.g. oscillations) are possible. For any
periodic steady state, all cells must revisit their earlier state after τ > 1 number of time steps, where τ is
the period of the oscillatory state. This implies that the state diagram should permit cells to return to their
initial states after a finite number of time steps, and after passing through other states (otherwise it would
be a stationary pattern). This is only possible if the state diagram contains cycles, i.e. closed loops obtained
by tracing the edges of the graph from some initial state. The presence of cycles is a necessary condition for
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oscillations. Conversely, the presence of a cycle is not a sufficient condition for generating dynamic temporal
patterns. This is because it is not guaranteed that a cell can traverse the edges of any cycle one by one
when there are possible “routes” on the graph. Each transition then corresponds to a specific condition
which depends on the state of all cells of the system. We cannot directly deduce whether a sequence of
such transitions is possible at the level of the entire system of N cells. However, in the special case that all
transitions of the cycle are deterministic, i.e. when each node is connected to a unique other node on the
graph, we obtain an oscillation. The length of the cycle then corresponds to the period of the oscillation.

In summary, the state diagram allows us to deduce two basic properties from first inspection: the set of
stationary cell states and the possibility of finding oscillatory steady system states. These are not purely
mathematical properties but have biological relevance. The former is an indicator of multistability and
tells us whether a population of identical cells could potentially diversify, generating stable configurations
with multiple gene expression profiles. This is known as phenotypic heterogeneity and has been observed in
many experimental systems [6]. The latter tells us whether a multicellular system could potentially sustain
oscillations (consult the main text for biological examples).

S4.3 Simplified dynamics
There are two limits in which the dynamics of the system simplifies dramatically.

1. All interactions are either extremely weak or extremely strong. To be precise, this is the case if each of
the interactions is in the P0 or the P1 phase (all ON/all OFF phase). The system homogenizes after
one time step, because each of the interactions is either ON or OFF for all cells in the system. For a
spatially uniform system, the dynamics is simple and predictable.

2. All interactions are moderately strong, and the interaction between cells is relatively weak. In more
precise terms, suppose all interactions are in the A01 phase. In this case the dynamics of each cell
becomes equivalent to that of a single cell. The system is fully autonomous and each cell evolves under
its own influence.

In these limits the state diagrams are identical to single-cell state diagrams with rescaled parameters. There-
fore, these phases contain only deterministic state diagrams. Thus we know the exact dynamics of the system
without running any simulations, for any initial conditions.

Formal derivation Let us show these two limits more explicitly. Let k be arbitrary, and (i, j) be an
arbitrary pair with M

(ij)
int 6= 0. Suppose this interaction is in the P0 phase. Then as a result of (1 +

f
(j)
N )C

(j)
OFF < K(ij), we have

g
(ij)
P0 ≡ g

(ij)
k (X) =

{
0 ifM (ij)

int = 1

1 ifM (ij)
int = −1

That is to say, g(ij)k (X) becomes independent of both X and k. Likewise, in the P1 phase we get g(ij)k (X) ≡
g
(ij)
P1 , with g

(ij)
P1 depending only on M

(ij)
int . Now suppose all interactions are either in the P0 or P1 phase.

Then, X(j)
k (t + 1) =

∏
j g

(ij)
k (X) =

∏
j g

(ij)
cj with cj ∈ {P0, P1}. Hence, X(j)

k (t + 1) is also independent of
both X and k. Therefore, all cells become identical after one time step. For an identical lattice with all cells
in a state X, we note that Y (j) = (1 +f

(j)
N )C(j)(X(j)). However, K(ij) and other parameters are unchanged.

Therefore, the evolution of a uniform lattice is equivalent to that of a single cell with a rescaled secretion
rate C(j)(X)→ (1 + f

(j)
N )C(j)(X).

Next, consider the case that all interactions are in the A01 phase. Again, let k and (i, j) be arbitrary with
M

(ij)
int 6= 0. Let X be an arbitrary state of the system, and write X = (Xk, Zk), with Zk = {Xl}l 6=k. Then

the A01 phase puts the following constraints on the system:

Y (j)(Xk = 1, Zk) ≥ C(j)
ON + f

(j)
N C

(j)
OFF > K(ij),

Y (j)(Xk = 0, Zk) ≤ C(j)
OFF + f

(j)
N C

(j)
ON < K(ij). (S13)
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We see that any cell with gene j ON will always satisfy the first constraint, regardless of the rest of the system.
Likewise, any cell with gene j OFF will always satisfy the second constraint. As a result, g(ij)(Xk;Zk) =

g(ij)(Xk) becomes independent of Zk, the states of all cells other than k in the system. Therefore,X(i)
k (t+1) =∏

j g
(ij)(Xk(t);Zk(t)) = g(ij)(Xk(t)) depends only on Xk(t). In other words, the evolution of any cell in the

system is independent of the state of the other cells.

S4.4 Algorithm for computing state diagrams
In this section, we present a general method for computing the state diagram for a system of one or two
genes, given an arbitrary set of system parameters. The construction for two genes can be readily generalized
to systems with more than two genes.

For a single gene, we state diagrams follow straightforwardly from the definition of the phases (Section S4.1).
The end result can be represented as a directed graph with two nodes and up to four edges, which we can
describe using its adjacency matrix

A =

(
A00 A01

A10 A11

)
. (S14)

The adjacency matrix gives information on whether edges are present for each potential link between two
nodes. The entries Aij ∈ 0, 1 are for connections between node i and node j. If Aij = 1, there is an edge
between the two nodes, if Aij = 0 there is no edge.
As an example, consider cells with a single signaling molecule with negative feedback to itself. The graphs
for positive feedback are deduced in a similar way. In the P1 phase, the system is permanently repressed,
so all states go to the 0 state. Hence A = ( 1 0

1 0 ). By contrast, in the P0 state, both ON and OFF cells
always turn ON at the next time step, so A = ( 0 1

0 1 ). In the A1 state, ON cells always turn OFF, but we do
not know anything about the OFF cells. Hence both transitions 0 → 0 and 0 → 1 are possible. Therefore,
A = ( 1 1

1 0 ). Conversely, in the A0 phase, only OFF cells are constrained to always turn on, so A = ( 0 1
1 1 ).

In the A01 phase, OFF cells turn ON and ON cells turn OFF, so A = ( 1 0
0 1 ). Finally, in the U phase, all

transitions are unconstrained, so A = ( 1 1
1 1 ).

For systems with two or more genes, the procedure is considerably more involved. We first outline the
intuitive idea behind this derivation and then provide a formal, mathematical derivation of the construction.
With two mutually interacting signaling molecules, the dynamics of a gene i depends in general on both
regulation by itself and regulation by the other gene, which we label j. If we know the phases of both
regulations i ← i and i ← j, then we can deduce the constraints they impose on the dynamics of i. To do
this, we have to combine the constraints from both regulatory interactions i ← i and i ← j, for which we
employ a three-valued logic operation. Intuitively, this three-valued logic system represents the fact that
there are three possible outcomes of each interaction: the regulated gene is activated, the regulated gene
is repressed or the outcome is unknown. Hence, we need to know what the final response of gene i is for
each combination of the three outcomes that each of the two regulatory interactions can have. For instance,
suppose that both i and j positively regulate i (i.e. M (ii)

int = M
(ij)
int = 1), but the interaction i← i is always

activating (i.e., the sensed concentration of i always exceeds the threshold K(ii)) while the interaction i← j
is unknown. Then the final outcome for gene i is unknown, because both positive interactions must be
activating for the gene to turn on. Next, recall that the phases in general place dynamical constraints that
depend on the state of the system. Concretely, this means that the constraint placed by i on itself depends
on whether it is ON or OFF, and the same holds for the constraint placed by gene j. Therefore, for each
combination of states for genes i and j - there are four of these, corresponding to the four cell states (0, 0),
(0, 1), (1, 0) and (1, 1) - we could have a different set of constraints on the dynamics for gene i. Thus, we have
to separately consider each of the four cell states and see which constraints they impose on the dynamics
of both gene i and gene j. In this way, for each cell state, we obtain all possible cell states to which it can
transition to and draw the corresponding edges on the graph. This eventually gives us our state diagram.
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Formal derivation of the algorithm for computing state diagrams First, we note that the four-node
graph with up to 16 edges is now represented by a 4× 4 adjacency matrix, which we will denote

A =


A(0,0)→(0,0) A(0,0)→(1,0) A(0,0)→(0,1) A(0,0)→(1,1)

A(1,0)→(0,0) A(1,0)→(1,0) A(1,0)→(0,1) A(1,0)→(1,1)

A(0,1)→(0,0) A(0,1)→(1,0) A(0,1)→(0,1) A(0,1)→(1,1)

A(1,1)→(0,0) A(1,1)→(1,0) A(1,1)→(0,1) A(1,1)→(1,1)

 . (S15)

The interpretation is the same: the state (i, j) can transition into the state (k, l) if and only if A(i,j)→(k,l) = 1,
and we represent this graphically by drawing a directed edge between (i, j) and (k, l). Our goal is then to
combine the constraints imposed by the different phases for each interaction to compute this adjacency
matrix.
Recall that the time evolution for a cell determined by X(i)(t+1) =

∏
gij(X(t)) (S9). This is a deterministic

equation for Xi(t) for when we know the precise input system state X(t). Now suppose we only know the
cell’s own state X = (X(1), X(2)) and the phase of each interaction i ← j. We want to calculate the set of
possible output cell states for X(t+1). To do this, we introduce a set of three-valued logic states S = {0, 1, 2}
and a logic AND function ∧ : S → S defined by the truth table


a ∧ b b = 0 b = 1 b = 2

a = 0 0 0 0
a = 1 0 1 2
a = 2 0 2 2

 (S16)

This 3-valued logic system is known as the Kleene logic. It has a third logic value UNKNOWN in addition
to TRUE and FALSE. In our notation, 0=FALSE, 1=TRUE and 2=UNKNOWN. The UNKNOWN value
can be interpreted a state that can be either TRUE or FALSE. When combined with a FALSE value, we
know for sure that FALSE ∧ UNKNOWN = FALSE, since both FALSE ∧ FALSE = FALSE and FALSE
∧ TRUE = FALSE. However, TRUE ∧ FALSE = FALSE while TRUE ∧ TRUE = TRUE, and therefore
TRUE ∧ UNKNOWN = UNKNOWN.

We employ the three-valued logic system as follows: whenever a cell state has uncertain transitions (i.e.
can transition to multiple output states), we assign a value of 2 (UNKNOWN) to it. This also allows us
to combine unknown outcomes from different interactions. Any remaining undetermined transitions imply
that there are cell states for which multiple transitions are possible.
Concretely, define g(ij)(X) ∈ S as the outcome of the interaction i → j for a given input cell states X.
Note that it takes value in S, indicating that the interaction is either on, off or the outcome is unknown.
Let Zout(X) = (Z

(1)
out(X), Z

(2)
out(X)) be the three-valued output state given input state X. We construct the

output state as follows:

Z
(1)
out(X) = g(11)(X) ∧ g(12)(X)

Z
(2)
out(X) = g(21)(X) ∧ g(22)(X). (S17)

We have replaced the ordinary multiplication of Eq. S9 by the ∧ operation that takes into account unknown
outcomes. This three-valued output state needs to be translated to the actual possible output (binary) cell
states of the system. Intuitively, if there is an unknown outcome, i.e. Z(i)

out = 2 for some i, then we should
take into account all possible outcomes of that state. Hence we should consider states with both Z(i)

out = 0

and Z(i)
out = 1.

Formally, let us denote the set of possible output cell states as Σout(X), with elements in {0, 1}2. We
construct the set Σout(X) through the construction of two maps. Let P({0, 1}) = {∅, 0, 1, {0, 1}} denote the
power set of {0, 1}. First we define a map

σ1 : S → P({0, 1})

x 7→

{
x x ∈ {0, 1}
{0, 1} x = 2

(S18)
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This map constructs the set of possible output gene states, by deconstructing the element 2 ∈ S into
the set {0, 1} of possible outcomes. Extend the map to S2 by defining σ : S2 → P({0, 1})2 as σ(Z) =
(σ1(Z(1)), σ1(Z(2))).
Next, we have to put together the deconstructions to arrive at a set of output cell states. Recall that
X (2)

1 = {(0, 0), (0, 1), (1, 0), (1, 1)} is the phase space of a single cell with two genes. We define a map

τ : P({0, 1})× P({0, 1})→ P(X (2)
1 )

(x1, x2) 7→ x1 × x2, (S19)

where the × denotes an ordinary Cartesian product between sets. For instance, if x1 = {0, 1} and x2 = 1,
then x1×x2 = {(0, 1), (1, 1)}. Hence, the second map constructs all the possible cell states from the possible
states for each gene. Putting it together, we construct the set of output cell states as

Σout(X) = (τ ◦ σ ◦ Zout)(X). (S20)

Finally, once we have the output cell states for our input state X, we set

AX→Y = 1, ∀Y ∈ Σout(X). (S21)

In other words, we draw edges from X to all cell states in the set of possible output states Σout(X). Doing
this for all input states X gives us the full adjacency matrix for the state diagram.

S5 Analytic framework for traveling wave propagation
In this section, we provide a detailed analysis of traveling waves moving on a constant background of cells,
which are found in Dialogues 15, 19, 33, 34 and 36. We first discuss features of traveling waves that
characterize and distinguish different instances of traveling waves (Section S5.1). These features are used in
an analytic estimate of the density of traveling wave states in the overall system in Section S5.2. The core of
this section is composed of a derivation of a set of conditions for TW propagation (Section S5.3). We then
discuss our method for evaluating the performance of the analytic theory in Section S5.5. Finally, we sketch
how to extend our method to dynamic patterns on an oscillatory background in Section S5.6.

S5.1 Features of traveling waves
The traveling waves that we observe can be distinguished from each other through a number of features:

1. Orientation and direction of the wave. The waves can be oriented in different ways and for a typical
topology we observe waves of all different orientations. We distinguish between horizontally, vertically
and diagonally oriented waves (see e.g. Figs. 2C, 2D, 2E and 2G). Horizontal waves wrap around the
horizontal axis once, without wrapping around the vertical axis, and travel in the vertical direction.
Vertical wave wrap around the vertical axis once, without wrapping around the horizontal axis, and
travel in the horizontal direction. Diagonal waves wrap around each of the two axes at least once and
can travel in either direction. A more precise way of accounting for the geometry of the way is through
winding numbers, which will be introduced in section S5.2.

2. Presence of bends in the wave. We distinguish between straight and bent waves according to whether
all cells in a band of the wave are aligned in the same direction. For a triangular lattice, there are three
directions along which the cells can align themselves. In one case, we get straight horizontal waves (e.g.
Fig. 2C), whereas in the other cases we get diagonally oriented waves (e.g. Fig. 2G). However, we can
also get waves with one or more bends (e.g. Fig. 2E), points at which the alignment of the cells changes
direction. Note that the cells located at the bends have a different set of nearest neighbors from the
aligned cells. Furthermore, we can distinguish between bends that are in the direction of propagation
(outward bends) and bends that are opposite to the direction of propagation (inward bends).
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3. Number of waves. In the simplest case, the system self-organizes into a single wave on a uniform
background (e.g. Figs. 2C and 2E). However, we also observe multiple coexisting waves, separated by
each other by regions of cells with the background state (see e.g. Figs. 2A and 2D). Such waves have
the same orientation and direction of travel, but are not necessarily aligned parallel with each other.

4. Number of different cell states in the wave. For almost all the waves we observed, we found wave made
up of three different cell states. The background was made up of the fourth cell states. The exact
states which make up the wave and their order varies from topology to topology, and sometimes also
between different parameter sets of the same topology. In rare cases, we also found waves consisting
of two types of cell states on a background of a third cell state.

5. Number of bands in the wave. In most cases, we find waves consisting of single bands of cells of the
same state. Waves with bands with two or more layers of cells and waves where different cell states
have different band widths have also been observed (see e.g. Fig. 2C).

6. Defects. In rare cases we may see waves which contain single-cell defects such as an additional cell of
the same cell state attached to an otherwise normal wave.

S5.2 Abundance of traveling waves
In this section, we provide an estimate of the relative abundance of traveling waves of the forms we observe
in the system. Due to the variety of morphologies these waves can take, we could expect them to take up a
considerable portion of the total phase space. In this scenario, finding system conditions under which most
of the simulations go to traveling waves would not be entirely surprising. On the other hand, if the relative
abundance of traveling waves in the system is low, we could interpret this as a sign of a self-organizing
mechanism that drives the system towards traveling wave formation.

First, we identify the key aspects of traveling waves and divide them into a limited number of categories.
For each category, we then calculate the number of distinct shapes the waves can take, as well as the total
number of distinct “snapshots” each wave form is made up of. This then gives us an estimate of the total
number of states in the system that can be considered traveling waves.

We have previously provided a list of features that distinguish traveling waves from each other. While we
have observed waves that differ in all these categories, we note that the vast majority of waves have the same
features for a number of categories. In particular, most waves are composed of three cell states (with a fourth
background state), are composed of a single band and have no defects. We also rarely observe more than
two waves propagating simultaneously in moderately large systems (e.g. N = 256). Hence we only need to
consider the orientation and direction, the presence of bends and the number of waves to account for the vast
majority of observed wave forms. In the following we consider a generic single-banded wave withN = n2 cells.

The orientation of a wave can be made more precise by considering the number of times the wave wraps
around each axis. Since the system is periodic, effectively we are dealing with wave that winds around each
axis of a torus different numbers of times. Let Wx, Wy be the winding numbers around the horizontal and
vertical axis. For a plane horizontal plane wave such as shown in Fig. 2A, Wx = 1, Wy = 0. For a vertical
wave such as in Fig. 2E, Wx = 0, Wy = 1. The diagonal wave in Fig. 2G has Wx = 1, Wy = 2, but we
can also imagine diagonal waves that wrap around the system in different ways. The most common winding
numbers are listed in Table 2. As is apparent from the table, we mostly observe simple waves that are either
horizontal, vertical or diagonal, but wrap around the axes only a few times. Note that traveling waves are
characterized by Wx + Wy ≥ 1, i.e. a traveling wave always wraps at least once around one of the axes.
(Smaller structures that do not wrap around either axis but do translate in space are referred to as traveling
pulses).

Once we fixed the winding numbers, the precise form of the wave is often still unspecified. For instance, a
vertical wave can have different number of bends in both directions. Nevertheless, we can derive a general
formula for the number of wave forms given (Wx, Wy). Let us consider a single wave that travels in a
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Wx Wy nC(Wx,Wy) Nwf (Wx,Wy) T (Wx,Wy)
1 0 1 1 n

0 1 1
(

n
1
2n

)
n

1 1 3/2
(

3
2n
1
2n

)
2n

1 2 2 1 2n

2 1 5/2
(

5
2n
n

)
2n

Table 2: Main properties of most common types of waves. n is the linear grid size, with N = n2. We assume
that n is an even number, so that the system is a perfect hexagonal lattice on a torus. The data is based on
empirical observations of self-generated traveling waves. Wx,Wy are the winding numbers, nC is the number
of cells of the wave for a given cell state divided by the linear grid size n, Nwf is the number of wave forms
and T is the period of the wave.

fixed direction. Suppose we pick a random cell of the wave. Empirically, we find that each cell of the wave
that has the same state has precisely two neighbors with the same state. This is even the case when there
are complicated bends in the wave. Now pick one of the neighbors of our selected cell that has the same
cell state. The nearest-neighbor vector that connects the two cells lies along one of the six directions one
can travel in on a hexagonal lattice. These can expressed in terms of the basis vectors of the lattice as
~e1,− ~e1, ~e2, −~e2, ~e3 ≡= ~e2 − ~e1, −~e3 = ~e1 − ~e2 (Fig. S5B). The second cell has a unique neighbor of
the same state that we have not selected yet. The vector between the second and third cell defines a new
direction that we record. We can therefore continue this procedure and pick subsequent cells in our wave,
until we get back to our original cell. This is because the wave wraps around an axis at least once as noted
before. For each step we take, we keep track of the direction we need to move in to get to the next cell. At
the end, we count the number of steps in each of the six directions. Let us denote these by {ni,α}, where
1 ≤ i ≤ 3 and α ∈ {−,+}. For example, n2,− gives the number of steps we took in the −~e2 direction.

Wave forms differ by their set of nearest-neighbor vectors that we obtain with this procedure. Nevertheless,
once we fix the winding numbers, this constraints the possible sets of direction vectors in a way we can make
precise. First, we note that empirically we find that waves with fixed winding numbers always have the same
number of cells of a given state, which we will denote NC (Wx,Wy) = nC (Wx,Wy)n. Empirical results for
commonly found waves are listed in Table 2. For instance, for a horizontal wave, we find that it always has
Nc (1, 0) = n cells of a given state, which make up exactly one row of the lattice. This constrains the total
number of nearest-neighbor vectors to NC (Wx,Wy), such that our first constraint is∑

i,α

ni,α = n1,− + n1,+ + n2,− + n2,+ + n3,− + n3,+ = NC (Wx,Wy) (S22)

Next, the winding numbers constrain the number of occurrences of each nearest-neighbor vector. For in-
stance, for a horizontal wave the nearest neighbor vectors when added up must be align in the horizontal
direction, with a magnitude equal to the grid size. However, a priori this does not imply that all nearest
neighbor vectors are in the ~e1 direction, since ~e2 and ~e3 also have horizontal components. In general, the
constraints are that the number of steps taken in the horizontal and vertical directions must be equal to
the ±Wxn and ±Wyn in order to return to the original cell. The sign degeneracy comes from the fact that
starting from the initial cell we pick, we can traverse the wave in two different directions, which yield winding
numbers that differ by a minus sign. Working out these conditions, we derive the following constraints:

n1,− − n1,+ −
n2,−

2
+
n2,+

2
+
n3,−

2
− n3,+

2
= ±Wx n, (S23)

−n2,− + n2,+ − n2,+ + n3,+ = ±Wy n (S24)

We can now try to solve these constraints together with the general constraints 0 ≤ ni,α ≤ n for all i, α
for given winding numbers Wx, Wy. For all the winding numbers listed in Table 2, we obtained solutions
of the form ni1,α1

= ni1,α1
(n) > 0, ni2,α2

= ni2,α2
(n) > 0 for some i1, α1 and i2, α2, ni,α = 0 for all other
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i, α. The interpretation of this result is that in practice all waves are formed by traveling continuously in
two directions, i.e. they never “bend back”. Secondly, we found that the number of steps in each direction is
a linear function n, so we get an explicit scaling of our results with system size.

We can now readily obtain the number of wave forms that satisfy these constraints. This reduces to a simple
combinatorics problem where the wave forms differ by the order in which the directions i1, α1 and i2, α2 ap-
pear. In total, there are Nwf (Wx,Wy) ≡

(
NC(Wx,Wy)
ni1, α1

)
=
(
NC(Wx,Wy)
ni2, α2

)
possible wave forms with the given

winding numbers. Finally, the sign degeneracy ofWx,Wy introduces an additional factor of 2 whenever both
Wx, Wy > 0. This is because for the four possibilities {(Wx,Wy) , (Wx,−Wy) , (−Wx,Wy) , (−Wx,−Wy)}
only (Wx,Wy) and (−W x,−Wy) give equivalent waves, but (−Wx,Wy) ≡ (Wx,−W y) yields a different wave.

The direction of a wave can in principle be in any of the six directions the hexagonal lattice allows. However,
once the orientation of a wave is fixed, there are only two possible directions remaining. This is because a
wave always moves perpendicular to the direction in which the cell states of the wave do not change. For
instance, for a horizontal wave, the only directions are up and down.

The number of waves that can simultaneously propagate depends on the system size. For N = 256, we
rarely observe more than two simultaneously propagating waves. Note that the waves need to have the
same orientation and direction of motion, or else they would collide and annihilate or form new waves.
Once the shapes of both waves are fixed, an additional variable is the spacing between the waves. Assume
that both waves are horizontal, then the variable is the number of rows between the waves. For a double
wave, the distance between the waves lies in the range [1, n−62 ], giving a degeneracy of roughly n−6

2 . This is
because both waves take up 3 rows, and from the distribution of remaining rows we take the shortest distance.

Putting everything together, we now obtain our general estimate for the density of traveling waves in phase
space. We estimate this to be in the order of

N ndir
∑
nwaves

ndist(nwaves)
∑

Wx, Wy

D (Wx,Wy) Nwf (Wx,Wy)
nwaves . (S25)

Here ndir = 2 signifies the two directions of propagation, the first sum is over the total number of waves in
the system nwaves, the number of unique distances between the waves is denoted ndist, the degeneracy after
accounting for negative winding numbers is denoted D (Wx,Wy), and the second sum is over the winding
numbers Wx, Wy ∈ N0. From the previous part we estimate ndist (1) = 1, ndist (2) = n−6

2 . The final term
signifies the fact that in case of multiple waves, they can in principle have independent wave forms (with
the same direction and winding numbers). The term N in front accounts for the possible positions of the
wave on the lattice, obtained simply by counting the number of ways to place a given cell of the wave on the
lattice. This is an upper bound since in case waves with symmetry different placements of this selected cell
could still give the same configuration.

S5.3 Traveling wave propagation conditions: nearest neighbor approximation
S5.3.1 General conditions for pattern propagation

Before working out the case of traveling waves in detail, let us discuss what pattern propagation means in
general. Suppose we have a pattern that periodically repeats itself in time. All information about the pattern
is encoded in the states of the pattern over one period. Let us denote these by {X(0), X(1), . . . X(τ)}, where
X (t) = {X(i)

k (t) }i=1:2
k=1:N is the state of the system at time t as specified by the states of each of the genes of

each cell. These can be considered a series of snapshots of the system that make up a movie of the dynamic
pattern when played. In general, take an arbitrary state ξ(t) and suppose that the system is updated
according to a rule

ξ (t+ 1) = f (ξ(t);P ) , (S26)

for some unspecified function f of the current state of the system that depends on the parameters of the
system denoted by P . The explicit form of f for our model is specified in (Eq. S9-S10). The condition that
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the pattern can propagate under the set of parameters P is precisely that f updates each snapshot of the
pattern to the next snapshot of the system. In other words, X (t+ 1) = f(X(t);P ) for all 0 ≤ t ≤ τ − 1.

In general, this would put constraints on each of the cells of the system, leading to a convoluted set of
conditions. However, in cases where the pattern exhibits a symmetry, these conditions can be drastically
simplified. In one extreme case, if the pattern is a homogeneous collection of identical cells, at any time
we would only need to check one set of conditions for an arbitrary cell of the system. Conversely, suppose
the system is completely anisotropic for the whole duration of the pattern trajectory. Each cell then sees a
different environment at any time. We then need to check all N × l × τ conditions for each of the genes of
each of the cells of the system, at each time step of the system.

The case of traveling waves allows us to exploit the symmetry of the system to drastically reduce the number
of conditions for pattern propagation. First note that traveling waves are characterized by the fact that the
state upon updating is related to the previous state by a simple translation in space. This means that rather
than checking conditions for each time step, we only need to check that the wave propagates at one arbitrary
time step. Furthermore, the spatial symmetry of the system allows us to check only a small number of cells
of the system, as will be explained in the next section.

S5.3.2 Straight and bent waves

To derive conditions for the propagation of these waves, we look at straight (plane) waves (Fig. 4A, “straight
wave”), waves with a single outward bend (Fig. 4A, “bent wave”) and waves with a single inward bend (Fig.
4A, “bent wave” with reverse direction of propagation). In this way, we obtain results applicable to the vast
majority of waves observed in the system. More complicated waves such are typically composed of local
motifs which are identical to the ones for these three basic types of waves. For instance, the configurations
in Fig. 1F contains two waves with multiple bends. However, the nearest neighbors of any cell is identical
to the neighbor structure of a cell in one of the three prototype waves. Namely, the cells at the tip of the
wavefront have a nearest neighbors that is identical to the cell at the tip of the outward bent single wave.
The cells that are bent towards the back of the wavefront have a neighbor that is identical to those at the
bend of the inward bent wave.

Therefore, we argue that it suffices to study the conditions for propagation of each of these three simple
types of waves. This gives a first approximation to the propagation conditions for more complicated waves.
The types of waves which are not covered by this analysis are waves with multiple bands (because the cells of
such waves have different nearest neighbors), and waves with defects (which are too rare to motivate analysis
of each special case).

S5.3.3 Conditions for propagation of traveling waves

Wave structure All waves consisting of three consecutive single bands of cells have a similar spatial
structure. For any instance of such a wave, we can identify six types of cells that each have a unique set of
nearest neighbors. Let us denote these six types of cells as follows (see Fig. 4B):

1. EF – front exterior

2. F – front

3. M – middle

4. B – back

5. EB – back exterior

6. E – exterior
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Plane wave
Wave state Number of neighbor states

X(F ) X(M) X(B) X(E)
EF 2 0 0 4
F 2 2 0 2
M 2 2 2 0
B 0 2 2 2
EB 0 0 2 4
E 0 0 0 6

Wave with outward bend
Wave state Number of neighbor states

X(F ) X(M) X(B) X(E)
EF 1 0 0 5
F 2 1 0 3
M 3 2 1 0
B 0 3 2 1
EB 0 0 3 3
E 0 0 0 6

Wave with inward bend
Wave state Number of neighbor states

X(F ) X(M) X(B) X(E)
EF 3 0 0 3
F 2 3 0 1
M 1 2 3 0
B 0 1 2 3
EB 0 0 1 5
E 0 0 0 6

Table 3: Cell states of nearest neighbors of the six types of cells (EF , F,M,B,EB , E) for straight waves and
for the cells at the tip of waves with bends (Fig. 4B). Results are for a hexagonal lattice with coordination
number z = 6.

Note that the types E, EF and EB all have the same cell state (the state of the white color in Fig. 2A).
However, we divide the exterior cells up into three classes because they have different sets of nearest neigh-
bors. A cell of type EF in front of the wave neighbors F cells, whereas a cell EF at the back of the wave
neighbors B cells. Finally, the rest of the E cells that border only other E cells.

Hence, the six types of cells have four different cell states, which we denote as X(F ), X(M), X(B) and
X(E) = X(EF ) = X(EB). For binary cells, the possible cell states form the set S = {(0, 0) , (0, 1) , (1, 0) , (1, 1)}.

At any straight segment of a wave, the cells of the wave and those bordering the wave have exactly the same
local structure (nearest neighbors). Concretely, this means that any cell of the straight segment borders the
same number of cells of each state (Table 1). For instance, an F cell will always border two cells with state
X(F ), two cells with state X(M) and two cells with state X(E).

The neighbor of the cells of the wave differs from that of plane waves only when there is a bend in the wave.
In particular, only the cells located precisely at the bend have a different nearest neighbors from the rest of
the cells, which have nearest neighbors identical to plane wave cells (Fig. 4B). We must therefore take these
into account separately (Table 3).

Propagation conditions For the wave to propagate forward, we need a number of conditions to be
satisfied. Since traveling waves have the property that the entire structure translates forward by one step,
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we can easily find these conditions. Basically, all types of cells shift up by one and the background type
remains constant. For example, an EF cell right in front of the wave should become an F cell at the next
time step. Hence we require that the cell obtains the state X(F ) upon updating. Let α→ X(α′) denote the
condition that a cell of type α acquires state X(α′) according to the update rule. Then we can succinctly
write our set of conditions as:

EF → X(F )

F → X(M)

M → X(B)

B → X(E)

EB → X(E)

E → X(E) (S27)

For a straight wave without bends, these conditions need to be checked only once, for cells that have the
nearest neighbors as detailed in the first table in Table 3. For waves with at least one bend, both the
condition at the location of the bend (either outward or inward) as well as the condition for plane waves
(for the straight segments of the wave) need to be checked. For waves with a zig-zag pattern that have no
straight segments (e.g. Fig. 2D), only the conditions for inward and outward bends need to be checked.

Nearest-neighbor approximation Given an exact form of the wave and a specific interaction network of
the two genes, we can work out the six conditions for traveling wave propagation, to obtain exact conditions
in terms of system parameters. However, since the waves can have different features, we look for a more
general approach that predicts propagation independent of the precise shape of the wave. To do this, we
will apply a nearest-neighbor approximation (NNA). The idea is to only consider the immediate neighbors
of a cell when calculating the concentration it senses, and take into account the rest of the cells through
averaging and assuming they are randomly distributed.
Write Y (i)

α for the concentration of molecule i a cell of type α senses. Then we can split the sensed concen-
tration into terms of the cell itself, its neighbors and an approximation of the rest of the lattice:

Y (i)
α = Y

(i)
self (α) + Y

(i)
nei (α) + Y

(i)
MF . (S28)

For any cell in the system with state X, we have a secretion rate

C(i)(X) =

{
C

(i)
ON if X(i) = 1

C
(i)
OFF if X(i) = 0

. (S29)

Denote f (i)nn = f (i)(a0) as nearest neighbor interaction strength, and n(X;α) as the number of cells of state
X that neighbor a cell of type α. The sensed concentration due to neighbors can then be written as

Y
(i)
nei(α) =

∑
X∈S

f (i)nn n(X;α)C(i)(X). (S30)

The contribution of rest of the lattice is estimated through a mean-field approximation. For a wave with Nw
waves, each consisting of bands of width W , with winding numbers Wx, Wy (Section S5.2), we can calculate
the proportion of cells that have either of the genes on. This proportion depends on the cell states of the
wave and background cells. Then the fraction of cells with a given gene on is

p(i) =
NW W

NC(Wx,Wy)

(
X(F )

(i)
+X(M)

(i)
+X(B)

(i)
)

+ (1− 3
NW W

NC(Wx,Wy)
)X(E)

(i) (S31)

Here X(S)
(i) denotes the state of gene i of a cell state X(S). The mean-field contribution is then estimated

to be the interaction strength of all cells excluding the nearest neighbors times the average secretion rate of
the cells:

Y
(i)
MF =

(
f
(i)
N − 6f (i)nn

) [
(C

(i)
ONp

(i) + C
(i)
OFF

(
1− p(i)

)]
. (S32)
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S5.4 Explicit example
In this section, we work out an explicit example of the NNA and show that it successfully predicts the

propagation of traveling waves. We consider network 15 with interaction matrix Mint =

(
1 −1
1 0

)
, for

which we observed traveling waves with the composition (see Section S5.3.3):

• X(F ) = (1, 0),

• X(M) = (1, 1),

• X(B) = (0, 1),

• X(E) = (0, 0).

Conditions for propagation Let us denote EF = (0, 0)F and EB = (0, 0)B . Explicitly, the conditions
for propagation can be expressed in terms of inequalities (Table 4).

Condition for propagation Condition on gene 1 Condition on gene 2
(0, 0)F → (1, 0) Y

(2)
(0,0)F

< K(12) ∧ Y
(1)
(0,0)F

> K(11) Y
(1)
(0,0)F

< K(21)

(1, 0)→ (1, 1) Y
(2)
(1,0) < K(12) ∧ Y

(1)
(1,0) > K(11) Y

(1)
(1,0) > K(21)

(1, 1)→ (0, 1) Y
(2)
(1,1) > K(12) ∨ Y

(1)
(1,1) < K(11) Y

(1)
(1,1) > K(21)

(0, 1)→ (0, 0) Y
(2)
(0,1) > K(12) ∨ Y

(1)
(0,1) < K(11) Y

(1)
(0,1) < K(21)

(0, 0)B → (0, 0) Y
(2)
(0,0)B

> K(12) ∨ Y
(1)
(0,0)B

< K(11) Y
(1)
(0,0)B

< K(21)

(0, 0)R → (0, 0) Y
(2)
(0,0)R

> K(12) ∨ Y
(1)
(0,0)R

< K(11) Y
(1)
(0,0)R

< K(21)

Table 4: Explicit propagation conditions in terms of the sensed concentrations and parameters for the
example under study. The gene network has interaction matrix Mint =

(
0 −1
−1 1

)
. Here, ∧ denotes a logical

AND and ∨ denotes a logical OR.

From this, we see that the last condition for (0, 0)R is redundant. Namely, we have Y (i)
(0,0)R

≤ Y
(i)
(0,0)F

and Y
(i)
(0,0)R

≤ Y
(i)
(0,0)B

. This implies that for gene 2, if the condition for Y (i)
(0,0)B

is fulfilled, then that for

Y
(i)
(0,0)R

is automatically fulfilled. Likewise, for gene 1, the conditions Y (2)
(0,0)F

< K(12) and Y (2)
(0,0)R

> K(12)

give a contradiction. Since the first condition has to be true, the second is necessarily false. This leaves
Y

(1)
(0,0)R

< K(11). But then this is always true if Y (1)
(0,0)B

< K(11) is fulfilled. A side consequence is that

Y
(1)
(0,0)B

< K(11) becomes the only condition for gene 1 for (0, 0)B . Note that this is specific to the network
under consideration; leaving out the last constraint is not valid in general.

Plane waves We work out the equations explicitly for plane waves. From Eq. S28-S32, we get the sensed
concentrations
Y

(1)
(0,0)F

= 1 + 2C
(1)
ONf

(1)
nn + 4f

(1)
nn , Y

(2)
(0,0)F

= 1 + 6f
(2)
nn ,

Y
(1)
(1,0) = C

(1)
ON + 4C

(1)
ONf

(1)

nn + 2f
(1)
nn , Y

(2)
(1,0) = 1 + 2C

(2)
ONf

(2)
nn + 4f

(2)
nn ,

Y
(1)
(1,1) = C

(1)
ON + 4C

(1)
ONf

(1)

nn + 2f
(1)
nn , Y

(2)
(1,1) = C

(2)
ON + 4C

(2)
ONf

(2)
nn + 2f

(2)
nn ,

Y
(1)
(0,1) = 1 + 2C

(1)
ONf

(1)

nn + 4f
(1)
nn , Y

(2)
(0,1) = C

(2)
ON + 4C

(2)
ONf

(2)
nn + 2f

(2)
nn ,

Y
(1)
(0,0)B

= 1 + 6f
(1)
nn , Y

(2)
(0,0)B

= 1 + 2C
(2)
ONf

(2)

nn + 4f
(2)
nn ,
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We can then write out the conditions from Table 4 explicitly. For gene 1 this gives:
(0, 0)F → (1, 0): 1 + 6f

(2)
nn + Y

(2)
MF < K(12) ∧ 1 + 2C

(1)
ONf

(1)
nn + 4f

(1)
nn + Y

(1)
MF > K(11)

(1, 0)→ (1, 1): 1 + 2C
(2)
ONf

(2)
nn + 4f

(2)
nn + Y

(2)
MF < K(12) ∧ C(1)

ON + 4C
(1)
ONf

(1)

nn + 2f
(1)
nn + Y

(1)
MF > K(11)

(1, 1)→ (0, 1): C
(2)
ON + 4C

(2)
ONf

(2)
nn + 2f

(2)
nn + Y

(2)
MF > K(12) ∨ C(1)

ON + 4C
(1)
ONf

(1)

nn + 2f
(1)
nn + Y

(1)
MF < K(11)

(0, 1)→ (0, 0): C
(2)
ON + 4C

(2)
ONf

(2)
nn + 2f

(2)
nn + Y

(2)
MF > K(12) ∨ 1 + 2C

(1)
ONf

(1)

nn + 4f
(1)
nn + Y

(1)
MF < K(11)

(0, 0)B → (0, 0): 1 + 6f
(1)
nn + Y

(1)
MF < K(11)

For gene 2, the conditions are

(0, 0)F → (1, 0): 1 + 2C
(1)
ONf

(1)
nn + 4f

(1)
nn + Y

(1)
MF < K(21)

(1, 0)→ (1, 1): C
(1)
ON + 4C

(1)
ONf

(1)

nn + 2f
(1)
nn + Y

(1)
MF > K(21)

(1, 1)→ (0, 1): C
(1)
ON + 4C

(1)
ONf

(1)

nn + 2f
(1)
nn + Y

(1)
MF > K(21)

(0, 1)→ (0, 0): 1 + 2C
(1)
ONf

(1)

nn + 4f
(1)
nn + Y

(1)
MF < K(21)

(0, 0)B → (0, 0): 1 + 6f
(1)
nn + Y

(1)
MF < K(21)

Since f (1)nn < 1 (i.e. the interaction of a cell with itself should be larger than that with its nearest neighbor),
we can simplify the equations to account for redundancy. After some algebraic manipulations, this reduces
the conditions to the following set of inequalities:

1 + 2C
(1)
ONf

(1)

nn + 4f (1)nn + Y
(1)
MF < K(21)

C
(1)
ON + 4C

(1)
ONf

(1)

nn + 2f (1)nn + Y
(1)
MF > K(21)

1 + 2C
(2)
ONf

(2)
nn + 4f (2)nn + Y

(2)
MF < K(12)

C
(2)
ON + 4C

(2)
ONf

(2)
nn + 2f (2)nn + Y

(2)
MF > K(12)

1 + 6f (1)nn + Y
(1)
MF < K(11)

1 + 2C
(1)
ONf

(1)
nn + 4f (1)nn + Y

(1)
MF > K(11) (S33)

Note that for this particular example, the constraints reduce to a simple set of constraints for each of the
three interactions in the system. Namely, the first two inequalities involve only parameters that affect the
interaction 2← 1, e.g. C(1)

ON and K(21), whereas the second and third pair involve only the interactions 1← 2
and 1← 1 respectively. This does not need to be the case in general, since genes which are regulated by both
genes will produce coupled constraints in terms of both interactions. Hence, we can recast the conditions
into a concise set of equations:

K
(1,1)
min (C

(1)
ON ) ≤ K(1,1) ≤ K(1,1)

max (C
(1)
ON ),

K
(1,2)
min (C

(2)
ON ) ≤ K(1,2) ≤ K(1,2)

max (C
(2)
ON ),

K
(2,1)
min (C

(1)
ON ) ≤ K(2,1) ≤ K(2,1)

max (C
(1)
ON ) (S34)

where the K(i,j)
min and K(i,j)

max are functions of C(j)
ON defining the minimal and maximal possible values of K(i,j).

Explicitly, we have

K
(1,1)
min (C

(1)
ON ) = 1 + 6f (1)nn + Y

(1)
MF ,

K(1,1)
max (C

(1)
ON ) = 1 + 2C

(1)
ONf

(1)
nn + 4f (1)nn + Y

(1)
MF ,

K
(1,2)
min (C

(2)
ON ) = 1 + 2C

(2)
ONf

(2)
nn + 4f (2)nn + Y

(2)
MF ,

K(1,2)
max (C

(2)
ON ) = C

(2)
ON + 4C

(2)
ONf

(2)
nn + 2f (2)nn + Y

(2)
MF ,

K
(2,1)
min (C

(1)
ON ) = 1 + 2C

(1)
ONf

(1)

nn + 4f (1)nn + Y
(1)
MF ,

K(2,1)
max (C

(1)
ON ) = C

(1)
ON + 4C

(1)
ONf

(1)

nn + 2f (1)nn + Y
(1)
MF . (S35)

Note also that Y (i)
MF is a linear function of C(i)

ON (Eq. S32), so that these constraints reduce to linear relations
between C(i)

ON and K(ij) for each interaction i← j. The values (C
(i)
ON ,K

(ij)) together determine the relative
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strength of this interaction, and we find that its strength is constrained by two inequalities that determine a
reduced but unbounded region of phase space. The boundaries of these regions together with the predicted
TW conditions (both true positives and false positives) are plotted in Fig. S3B. This gives an alternative view
of the parameter sets that can support TWs from the spider charts, which only show that most parameters
can span several orders of magnitude but do not directly reveal the structure of the set of TW parameters.
However, this representation reveals that each of the circuit parameters (C(i)

ON ,K
(ij)) is unbounded and

confined to a region which indicates that each interaction can be neither too strong (C(i)
ON � K(ij)) nor too

weak (C(i)
ON � K(ij)), except in the case of the self-activation loop where we tend to have C(i)

ON � K(ij).
Similar results to Fig. S3B are obtained for the other networks that can support TWs. We also obtain
robustness measures from this set of inequalities, as will be discussed in Section S7.

S5.5 Performance of the analytic framework
To assess the validity of the analytic framework derived in the previous sections, we directly compared
the predictions from the theory to actual simulations of the waves. We quantified the degree to which
these results match and considered the accuracy of the main approximation in the analytic framework, the
nearest-neighbor approximation (Eqs. S28 and S32).

Computational search for traveling waves We verified with our analytic approach that the above wave
forms are indeed the only possible wave forms for two-gene networks. To this end, we screened a large number
of parameter sets for all distinct two-gene networks. Specifically, we checked the six conditions Eq. S27 for
wave propagation for a total of 106 parameter sets for each network. The parameter sets were generated
by Latin hypercube sampling over all non-zero C(i)

ON and K(ij) parameters. We considered a network to be
capable of generating a wave if for at least one of the 106 parameter sets all the conditions for traveling wave
propagation were fulfilled. The results were consistent among the three types of waves (plane, with inward
bends, with outward bends) that we examined: in all three cases exactly the same results were found.

Statistical measures for performance The performance of the analytic method we derived is deter-
mined by how well it predicts the conditions under which traveling waves can propagate. We can view NNA
approach as a binary classifier that predicts for a given gene network and given set of parameters whether
TWs can propagate. The theory takes as input a set of parameters and gives as output a binary prediction
about whether the TW can propagate or not. As such, we quantify its performance using well-established
concepts for evaluating classifiers from machine learning. In particular, we look at the accuracy, precision
and recall of the predictor for all the six cellular dialogues and corresponding waveforms we found. These
are defined as

accuracy =
TP + TN

TP + TN + FP + FN

precision =
TP

TP + FP

recall =
TP

TP + FN

Here TP = true positives, FP = false positives, FN = false negatives. True positives are parameter sets
for which the TW propagates according to both theory and simulation. False positives are predicted to be
capable of sustaining TWs by the theory, but turn out not to do so in an actual simulation. False negatives
are parameter sets that are capable of propagating TWs, but are missed by the theory.

Interpretation of the performance metrics (Fig. S3) For all of the networks that yielded waves,
we find that the theory correctly predicts plane TWs to an extremely high degree of accuracy, close to
100% (Fig. S3A). This means that the theory correctly predicts whether a wave can or cannot propagate in
almost all cases. In contrast, the precision and recall take slightly lower scores, with a precision is between
roughly 0.6-0.8 and a recall in the range of roughly 0.5-0.7. The interpretation is that roughly 60-80%
of conditions predicted to allow TW propagation are indeed ones that can propagate a TW in an exact
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simulation, and that 50-70% of the all the conditions for TW propagation are correctly identified by the
classifier. These lower values are caused by the low number of actual positives (conditions under which a
TW can propagate) is low compared to the total number of parameters we examined, as we discussed before
in the context of robustness of TW propagation. This means that the few incorrect predictions that arise
from the approximation have a relatively large impact on these performance metrics. Nevertheless, we find
that the theory is still extremely accurate in most cases and qualitative predictions about which networks
can yield TWs and orders of magnitude for the corresponding parameters should be highly accurate. The
successes and failures of the analytic theory also become apparent when we plot the interaction parameters
of the predicted and actual waves together with the theoretical bounds (Fig. S3B). This shows that the false
predictions (false positives and false negatives) are mainly due to slight misestimations of the boundaries
of the regions allowing for TW propagation. In particular, both the upper bound and lower bound for
K(ij) are slightly underestimated, meaning that the estimations for the mean-field contribution Y

(i)
MF are

underestimated. This is evident from the fact that most false positives are near the lower bound for K(ij)

and most false negatives are near the upper bound for K(ij).

Validity of the nearest neighbor approximation The accuracy of the nearest neighbor approximation
depends on how much of the total interaction the nearest neighbors capture. The more the nearest neigh-
bors contribute to the total interaction strength, the more accurate the approximation is. This is because
all deviations from the exact model come from the mean-field approximation, which has only a marginal
contribution if the sensed concentration is mostly due to the cell itself and its nearest neighbors. We can
quantify this by comparing f

(i)
NN ≡ 6f

(i)
nn (since there are six nearest neighbors) to the total interaction

strength f
(i)
N for signaling molecule i. If f (i)NN ≈ fN , then the cells beyond the direct neighbors have only

marginal influence on the concentration a cell senses. However, if f (i)NN � fN , then the nearest neighbor
approximation will be comparatively inaccurate, because we take into account the rest of the cells in an
averaged manner only and neglect their spatial positions.
Note that f (i)NN/fN depends on the parameters N, a0 and λ(i). By examining how this quantity depends
on these parameters, we get a picture of when the NNA is most accurate. For weak interaction (high a0),
the nearest neighbor approximation matches closely with the actual system. For stronger interaction, the
nearest neighbor approximation becomes worse (Fig. S3C). In this case, one possible solution would be
to extend the analysis to next-to-nearest neighbors. When their influence is taken into account, the f (i)nn
becomes considerably closer to fN . In contrast, the ratio is hardly dependent on system size N and diffu-
sion length λ(i) (Fig. S3C). Finally, longer diffusion length implies comparatively more influence from cells
further away, leading to less accuracy for the nearest-neighbor approximation. However, this effect is also
weak, accounting for less than 30% variation in interaction strength.

We also considered how taking next-to-nearest neighbors into account improved the accuracy of the NNA.
As such, we defined an interaction parameter f (i)NNN ≡ 4f (i)(

√
3a0)+8f (i)(2a0), which takes into account the

interaction with the twelve cells in the second layer surrounding a cell on a hexagonal lattice. There are four
cells at a distance of

√
3a0 and eight cells at a distance of 2a0 in this layer. We find that total contribution

to the interaction strength from the two layers of cells closest to a given cell, (f
(i)
NN + f

(i)
NN ) indeed captures

a significantly larger portion of the interaction strength. Thus, by extending the analytic theory to take
into account next-to-nearest neighbors, we could improve on the approximation. However, based on the
performance metrics of the NNA we found, we would argue that such an extension is unnecessary since a
NNA theory already gives accurate predictions.

S5.6 Oscillatory traveling waves
So far, we focused on traveling waves that are characterized by a propagating pattern on a fixed background.
However, we also observed a variety of dynamic spatial patterns with oscillatory background cells in Networks
16, 20 and 43(Fig. S1). In particular, oscillatory traveling waves (Sec. S3.3) form a subset that we can
analyze using our framework. Here, we outline how to adapt our framework to the analysis of these dynamic
patterns. From simulations, we observe that the oscillations have period 3 and always follows a fixed pattern.
Using the definition of the Exterior (E), Front (F), Middle (M) and Back (B) states of a wave (S5.3.3 and
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Fig. 4), we can trace out how these states transition on a state diagram (Section S4). We found that the cells
of oscillatory waves follow a fixed pattern of cell state transitions (Fig. S1D). Networks 16 and 20 each have
one distinct state diagram, and network 43 can generate waves that follow either of the two state diagrams.
Each of the states undergoes a separate period 3 oscillation, but together they follow an regular pattern on
the state diagram. At the transition with the dotted lines, the wave moves one step further (i.e., the entire
pattern not only oscillates but also moves one cell layer ahead). This always occur for transitions where both
genes are switches: either between (0, 0) and (1, 1) or between (0, 1) and (1, 0). Waves in network 43 can
follow either the transitions of network 16 or those of network 20, or show more complicated patterns which
we will not go into here. Hence, by imposing each of the transitions on either the same group of cells (when
the wave oscillates but not moves) or a neighboring group of cells (when the wave translates), we could in
principle derive a more complicated set of constraints for the propagation of such waves.

S6 Extensions of the model
In this section, we discuss how we extended our model to include more complex elements of communicating
multicellular systems. The effect of the five extensions on the formation and propagation of dynamic spatial
patterns is discussed in the main text and Figs. 6 and S6.

S6.1 Stochastic sensing and response
There are various sources of stochasticity and variability in the system that could play a role in multicel-
lular patterning. These include cell-to-cell variability, stochastic gene expression and fundamental limits in
sensing accuracy. We did not try to derive exact expressions for each source of noise, but rather work with
phenomenological terms that lump together various stochastic effects. In particular, we extend the noise
description of [2] to two genes by allowing for fluctuations in the threshold of each interaction. We consider
a stochastically fluctuating threshold concentration obtained through the addition of a noise term:

K(ij) = K
(ij)
0 + δK(ij). (S36)

Here K(ij)
0 is the threshold concentration for the interaction i ← j in the absence of noise and δK(ij) ∼

N (0, α(ij)) is a normally distributed random variable. At each time step, we apply Eq. S36 to update the
threshold independently for each interaction i← j and independently for each cell. In order to define a global
noise strength without introducing many variables, we take α(ij) = αK

(ij)
0 . In other words, α = α(ij)/K

(ij)
0

is fixed for all interactions, meaning the variation in the threshold is scaled by the same factor α for each
interaction.

S6.2 Continuous cell response function

In the model we assumed that cells are binary and secrete signaling molecule i at either a low rate C(i)
OFF or

a low rate C(i)
ON . This is a valid assumption whenever the response function is sufficiently ultrasensitive, as

discussed in the main text. However, to take into account more gradual response functions, we replace the
step-function response S10 by a Hill function. The steepness of the Hill function is characterized by the Hill
coefficient. For simplicity, assume that all molecules have the same Hill coefficient n. The update rule for
the cells’ states is still given by Eq. S9, but now with

g
(ij)
k (X(t)) =



(
Y

(j)
k

)n
(K(ij))

n
+
(
Y

(j)
k

)n activation

(K(ij))
n

(K(ij))
n
+
(
Y

(j)
k

)n repression

1 no interaction

(S37)

Note that the Hill coefficient in our model does not have a direct physical interpretation, but is a phe-
nomenological parameter describing the steepness of the response. This is because in real systems, the
sensed molecule induces an effect on the regulated gene typically through a complex signal transduction
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pathway rather than a single regulatory step. As such, the Hill coefficient does not relate to the cooperative
binding of any specific biochemical process. Therefore, whereas in cooperative binding models values of
n < 1 or n > 2 are rare, in our model the Hill coefficient can in principle be arbitrarily high or low.

S6.3 Disordered cell positions
We have so far considered cells that are positioned on a perfect hexagonal lattice. This is reasonably accurate
for certain multicellular systems (see Table S1 in [2] for a list of examples), but in general communicating
cells do not need to be arranged on a regular lattice. For instance, cell culture experiments are often done
by streaking a liquid colony of for instance yeast cells onto a plate. The cells that appear in these colonies
are usually not regularly arranged on a grid. Collective behavior in unicellular quorum sensing organisms
tend to have different spatial configurations. To extend our model to take into account alternative spatial
arrangements, we adapted our model to allow for randomization of the cell positions through an algorithm
adapted from Markov Chain Monte Carlo (MCMC) simulations of hard spheres [7]. The algorithm allows
us to tune the degree of randomness of the cell positions, varying from a perfect lattice to a fully disordered
placement of cells. However, we still assume that the cells are immobile or move at a much slower time scale
than their gene expression dynamics.

Randomization algorithm We model the cells as 2D hard spheres with a radius of Rcell (identical for
all cells). The cells should be placed in such a way that no two cells overlap. Initially, the cells are placed
on a regular hexagonal lattice, with distance a0 between the cells. We select a random cell j with position
xj = (x

(1)
j , x

(2)
j ). We then perform a Monte Carlo step, where we attempt to move the cell by a displacement

xj → xj + δx. Here δx = (δx(1), δx(2)), with random numbers δx(1), δx(2) independently drawn from a
uniform distribution on [−ε, ε]. If the cell does not overlap with any other cell at the new position, the move
is accepted. Otherwise, the move is rejected and a new move is a proposed. To avoid repeated rejections,
the cell radius and ε are chosen to be sufficiently small. In all our simulations we took Rcell = 0.2a0 and
ε = (a0 − 2Rcell)/4 = 0.15a0.

The number of Monte Carlo steps we perform using this algorithm is a measure for the degree of randomness
in our cells’ positions. As a rough indication, for a system of N = 12 × 12 cells, after 100 MC steps the
arrangement still looks very similar to a lattice with slight perturbations. After 104 Monte Carlo steps the
cells are clearly not on a lattice anymore, but distinct rows and columns of cells are still recognizable. After
105 Monte Carlo steps the arrangement looks identical to that obtained by randomly seeding the cells in
the 2D space. We can make these statements more precise by looking at the spatial distribution of cells
surrounding each cell. Quantitatively, we now have a different interaction strength (Eq. S6) for each cell
in the system. As the cells become more randomly arranged, the distribution of the interaction strengths
becomes broader and the mean also increases. From these calculations, it can be shown that after roughly
105 Monte Carlo steps our system of N = 144 cells obtains spatial structure that is indistinguishable from
that of a system of randomly placed cells (detailed results not shown).

S6.4 Cell motility
We also extend our model to account for (undirected) movement of the cells. Cell motility has been proposed
to be a stochastic process that can be modeled by a Langevin equation. This approach has been used for a
variety of systems, including human chick heart fibroblasts [8], endothelial cells [9] and human granulocytes
[10]. More precisely, these papers propose that the underlying process is that of an Ornstein-Uhlenbeck
process, whereby the cells drift randomly but experience a restorative force (corresponding to friction in a
Brownian motion process), that tends to bring cells back to their original position. The discrete time process
corresponding to this is obtained through a non-trivial derivation and is shown to be of the following kind
[8]:

dx(t) = φdx(t− 1) + η(t) + θ η(t− 1), (S38)

where dx(t) = x(t) − x(t − 1) is the displacement of a cell at time t, η(t) is a discrete random noise term
with mean zero and φ, θ are real numbers that depend on the strength of the restorative force.
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For our system, we take a simpler approach to modeling cell motility that neglects the time correlations
arising from the frictional term. Instead, we assume the cells drift around in an uncorrelated manner,
corresponding to a classic random walk or Wiener process. To model this process, we use the same Monte
Carlo algorithm we used for randomizing lattice cell positions (Section S6.3), but now move the cells at each
time step instead of for the initial state. We define the cell motility σD to be the width of the Gaussian
term, in units of a0, describing the Brownian motion process through which we update the cell positions.
Explicitly, at each time step we update the cells one by one through

xj(t)→ xj(t) + δx, δx ∼ N (0, σD a0). (S39)

Here σD is a parameter characterizing the extent of the motion in units of the lattice constant a0 (the
distance between two neighboring cells when placed on a lattice).

S6.5 Parameter gradient
It has been shown that gradients in production rates, model parameters and anisotropy can influence the
orientation of stripe patterns in Turing systems [11]. Analogously, we wondered whether parameter gradients
could influence traveling waves in our system, in particular whether they could exert an influence on the
orientation of the waves formed. To this end, we experimented with applying parameter gradients in various
directions and for various parameters. Starting from a parameter set which is able to generate waves, we
modify one of the parameters P of a cell k to be space-dependent,

P (xk) = (1 + f(xk))P0, (S40)

where xk = (x
(1)
k , x

(2)
k ) is the position of cell k and f(xk) is a modulation term and P0 is a constant.

The simplest type of gradient we can take is a step function defined in the horizontal or vertical direction
(Fig. S8C). For instance, we could take a vertical gradient by choosing f(xj) = Ay θ(x

(2)
j ), with θ(x) ={

1 ifx ≥ 0

−1 ifx < 0
(assume that half of the cells are at x(2) > 0). The sharpness of the gradient is then quantified

through a gradient strength parameter Ay, which represents the fractional change in the parameter value at
either side of the step. Note that with this gradient, the average value of the parameter remains constant
over the lattice, i.e.

∑
f(xj) = 0.

S7 Robustness and reliability of traveling waves

S7.1 Robustness (Fig. S7A-C)
Biological robustness is typically referred to as the ability of a biological system to adapt to environmental
perturbations by maintaining its function [12]. Control mechanisms such as feedback loops may play a role
in maintaining robustness. In our system, different time scales allow us to study the concept of robustness at
different levels. The dynamics of the parameters of the system occurs at an evolutionary time scale (unless
the experimentalist intervenes), while the dynamics of the gene expression happens on a much shorter time
scale (minutes to hours) and the dynamics of the signaling factors occurs on an even faster time scale. As
such, we may consider perturbations at each of these levels of description to see how they affect the system’s
ability to perform a certain function - which in this case means it’s ability to generate patterns. In this paper,
we considered the system’s response to changes in parameter values. Since we assume the parameters to
stay constant during the entire simulation, we will use robustness as a static quantity obtained by comparing
simulations at different sets of fixed parameters.
Specifically, we considered the robustness of traveling waves for two different situations. We considered the
robustness of TW formation - how changing parameters impacts the system’s ability to self-organize into a
TW, as well as the robustness of TW propagation - how parameters influence the ability of an already formed
TW to continue propagating. We quantified the robustness in both cases by the fraction of parameter sets,
or Q-value, that can generate or propagate a TW [13, 14]. In the absence of further information about the
parameters, this tells us how likely it is to find parameters which are compatible with a certain property or
behavior of the system - formation or propagation of TWs in our case.
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Normalized Q-value The Q-values we obtain as a fraction of parameter set compatible with TWs depend
on the number of parameters m we sample over for each network. These values will tend to be higher for
networks with fewer parameters than for networks with higher number of parameters. One method used
to correct for this is to take the m-th root of the Q-value [13]. We will call this the “normalized Q-value”.
This value represents the chance for each of the m parameters to be compatible with TW formation over a
specified range of values.

Calculation of Q-values In the absence of any predictive theory, the phase space volume compatible with
TWs can only be estimated through drawing random samples from the parameter space and determining
whether TWs can form or propagate for each of these samples. Note that in principle our parameters are
unbound, i.e. K(ij) ≥ 1 and C

(j)
ON ≥ 1 with no upper bound. To calculate the robustness, we therefore

specified a finite region defined by 1 ≤ K(ij) ≤ L and 1 ≤ C
(j)
ON ≤ L for each signaling molecule j and

each interaction i← j (neglect the parameters for non-existent interactions). In practice, we took L = 1000
everywhere. We then used Latin hypercube sampling to generate a large number of parameter sets and
tested whether TWs could form or propagate for each of the parameter sets.

For TW formation, we tested how likely it is to find self-organization of TWs in the five networks for which
we found self-organized TWs (Fig. 3D). We used the same 10,000 sampled parameter sets as were used
to generate the initial network classification (Figs. 3 and S2). For each parameter set, we considered it
to be capable of self-organizing TWs if at least one simulation (out of 10 runs per parameter set) led to
a self-organized TW. The Q-value we obtained for TW formation in this way is of the order of 10−3 (Fig.
S10A). Alternatively, after correcting for the number of parameters, the normalized Q-value corresponds to a
randomly generated parameter having around 30% chance of taking a value compatible with TW formation
across a 1,000-fold range for each parameter (Fig. S10A). The Q-values obtained in this way are in fact
lower estimates as we perform only a finite number of simulations and would be higher if we could screen
over all possible initial states (in which case the Q-values for TW formation and TW propagation would
coincide, since we would also include the final pattern as initial state). Nevertheless, this approach mirrors
the situation in wet lab experiments, where can only test a finite number of replicates before concluding that
a particular result is highly unlikely to be reached.

For TW propagation, we tested the two types of TWs we found (Fig. 4D) for each of the networks in which
we found them. We used the same data as obtained from Latin hypercube sampling which we used to
quantify the performance of our analytic predictor (Fig. S3), as this contains precise information on whether
each parameter set should be able to propagate TWs according to both the theoretical prediction as well
as explicit simulations. This gave higher Q-values, in the order of 10−2 for TW propagation (Fig. S7B),
corresponding to normalized Q-values of about 40 − 50% for each parameter to be compatible (Fig. S7A).
In comparison, the robustness of the Drosophila segment polarity gene network was quantified for a network
with a far larger set of parameters, for which the authors found Q-values corresponding to normalized values
of about 80− 90% for each parameter [13].

S7.2 Reliability (Figs. 5F and S8)
While robustness deals with the probability of finding parameter sets compatible with TWs, we can also
ask what the chance of finding a TW is once the parameter set has been fixed. We define the reliability
of TW formation as the percentage of simulations with varying initial conditions that generate TWs given
a set fixed parameters. For each of the sets of parameters that yielded self-organized TWs, we determined
the reliability by running a large set of simulations and counting in how many of those TWs spontaneously
formed. Overall, we found an average reliability of 0.2-0.4 across all networks, indicating that we expect TWs
to form in roughly 20-40% of the time for these parameters sets (Fig. 5F). However, upon closer inspection
we find that this average results from a considerable variability between different parameter sets, indicating
that the precise choice of parameters has a large influence on the reliability of TW formation (Fig. S8A).
While for many parameter sets the reliability is exceedingly low (5-10%), there is a continuum of reliability
values all the way up to about 80% (Fig. S8A).

30

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 28, 2019. ; https://doi.org/10.1101/717595doi: bioRxiv preprint 

https://doi.org/10.1101/717595
http://creativecommons.org/licenses/by-nc-nd/4.0/


Y. Dang, D. Grundel, H. Youk Supplementary Information

This finding raises the question of whether we could identify any source of this variability in reliability values
between different parameter sets. To address this question, we took a large set of parameter sets (n = 2534)
capable of sustaining a TW once it has formed, as tested explicitly in simulations starting with a TW. For
each of these parameter set, we then ran a large number of simulations (100) to see whether it could also
self-organize into traveling waves if we set up the initial configuration to be random. Surprisingly, we found
that a large set of these parameter sets did not yield self-organized waves at all (Fig. S8B). This indicates the
system may be able to propagate a pattern, but have only few ways of generating such a pattern in the first
place. Between the parameter sets that were found to self-organized TWs, the reliability varies dramatically
along a continuum between 0 - virtually no simulations become TWs - to close to 1 - almost all simulations
become TWs. When we plot the distribution of the 578 parameter sets found to generate TWs, we find that
the probability to find a given reliability decays nearly monotonically (Fig. S8C), indicating that parameter
sets with higher reliability increasingly rare. However, when we examined the reliability of these different
parameter sets as a function of the parameters, we observed no clear trend or correlation in two different
projections of the parameter sets (Fig. S8D-E). The parameters sets with extremely high reliability values
are scattered around the entire region in which TWs are possible (Fig. S8D). Furthermore, for any of the
parameters, there are parameter sets with high reliability for both very high and very low values of that
parameters, and the same applies to low reliability (Fig. S8E).

S7.3 Influence of initial conditions (Fig. S7D)
In our deterministic model, the initial state of the system fully determines whether a TW forms or not, even
though the link between initial and final state is typically unclear unless one runs an actual simulation. It is
clear that not all initial states lead to TWs even when suitable parameters are chosen. As a counterexample,
consider initiating the system as a uniform lattice of cells that each have the same state. Since all cells sense
the same concentration, each cell will evolve to the same state. More generally, in a deterministic cellular
automaton there is no symmetry breaking mechanism that can produce a pattern with a set of symmetries
from an initial state with a different set of symmetries.
We therefore studied whether certain features of the initial states had a significant impact on whether TW
formed or not. In particular, we looked at the contribution of a few statistical variables characterizing the
initial states - the initial mean expression level of the genes (p(1), p(2)) (Eq. S11) and the initial spatial
order of both genes (I(1), I(2)) (Eq. S12). This is because even for moderately large systems, the number of
states exceeds the computational limits of ordinary computers (e.g. for a lattice with N = 100 cells, there
are 4N ≈ 1060 states), making it impossible to exhaustively simulate all initial states. We found that the
fractions of cells with either of the genes ON had a significant impact on whether TWs formed or not, while
the initial spatial order had a notable but much smaller impact.

Initial fractions of active genes (Fig. S7D - left plot) We studied the influence of the initial fractions
of ON-cells for both genes by generating states with fixed values of (p(1), p(2)) - this can be easily done by
randomly drawing a fixed number of cells to be ON for both genes. Our first observation is that no TWs form
for extreme values of p(1), p(2). For instance, if we start with very low initial p values we cannot produce
a TW. Both fractions of ON-genes will go to zero and the system will go to the homogeneous state. In
contrast, the highest probabilities to produce a TW was found for intermediate values of p(1), p(2), and can
reach a maximum of more than 80%. This is remarkable, since it implies that for the given circuit is capable
of generating TWs almost certainly if one initiates the system with the given parameters and fractions of
genes that are ON, regardless of how the cells that have these genes ON are placed in space. In particular, it
suggests that one may improve the maximal reliability of the system (previous part and Fig. S8) by placing
constraints on the initial states.
These findings were confirmed in simulations using other parameters sets capable of generating TWs (not
shown). While the exact numbers differ between parameter sets, we consistently observed that more moderate
levels of p(1), p(2) close to (0.5, 0.5) had higher probabilities to generate TWs.

Initial spatial order (Fig. S7D - right plot) In a similar vein, we studied the effect of the initial
amount of spatial clustering on TW formation by running simulations where the initial I(1) and I(2) were
varied (using the approach described in Section S2). We observed highly similar results across the range of

31

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 28, 2019. ; https://doi.org/10.1101/717595doi: bioRxiv preprint 

https://doi.org/10.1101/717595
http://creativecommons.org/licenses/by-nc-nd/4.0/


Y. Dang, D. Grundel, H. Youk Supplementary Information

Metric Accuracy Precision Recall
Value 0.562 0.565 0.835

Table 5: Performance metrics of the logistic model fitted to the data shown in the right plot of Figure S7D.
The logistic model is used as classifier on the same data as it was fitted on.

initial I values, but found that fraction of TWs formed tended to be lower at lower values of I.
In order to draw more statistically rigorous conclusion about the results displayed in Fig. S7D (right plot),
we fitted a logistic regression model to the simulation data using the statistical programming language R.
A logistic regression model uses one or multiple predictor variables to calculate a probability that a sample
belongs to one out of two possible classes. In this case we can use the initial values of I(1) and I(2) to predict
if a TW forms (classes: TW, no TW).
First, we determined that the logistic regression model using the information of both I values (the proposed
model) was significantly better than the null model, which takes uses only information about the values of
(p(1), p(2)). This indicates that there is information in the I values, and knowing the initial I has a non-
negligible influence on whether TWs form or not. However, the residual deviance (indication of goodness of
fit of the model based on the log-likelihood of the data given the model) is hardly reduced when going from
the simple null model to the more complicated proposed model. This means that including the initial I only
marginally improves the quality of the predictor.
Next, the proposed model is used as a classifier. For each of the simulations the logistic model uses the
initial I-values to predict whether the simulation will result in a TW or not. More specifically, the logistic
model gives a probability that initial I values (I(1) and I(2)) will result in a TW. If this probability exceeds
0.5 a TW is predicted.
The classifier always predicted a wave, except for the relatively low I values that correspond to the lower
wave fractions observed in simulations. The overall performance of the classifier was further assessed and
the results are in Table 5, using the same metrics as used in S5.5. The performance metrics indicate that the
logistic classifier performed slightly better than random (accuracy > 0.5). Most TW were correctly predicted
(high recall), but this is only because the classifier mostly predicts waves. Many simulations that did not
yield a TW were incorrectly labeled as TW (low specificity). It should be noted that the classifier was
used to predict the data it was trained on, leading in general to overestimation of the performance metrics.
Altogether, this implies that the influence of initial spatial order on the formation of TWs is only marginal.
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