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 49 

Abstract 50 

 51 

We recently introduced the Gini coefficient (GC) for assessing the expression variation of a particular gene 52 

in a dataset, as a means of selecting improved reference genes over the cohort (‘housekeeping genes’) 53 

typically used for normalisation in expression profiling studies. Those genes (transcripts) that we 54 

determined to be useable as reference genes differed greatly from previous suggestions based on 55 

hypothesis-driven approaches. A limitation of this initial study is that a single (albeit large) dataset was 56 

employed for both tissues and cell lines.  57 

We here extend this analysis to encompass seven other large datasets. Although their absolute values differ 58 

a little, the Gini values and median expression levels of the various genes are well correlated with each 59 

other between the various cell line datasets, implying that our original choice of the more ubiquitously 60 

expressed low-Gini-coefficient genes was indeed sound. In tissues, the Gini values and median expression 61 

levels of genes showed a greater variation, with the GC of genes changing with the number and types of 62 

tissues in the data sets. In all data sets, regardless of whether this was derived from tissues or cell lines, we 63 

also show that the GC is a robust measure of gene expression stability. Using the GC as a measure of 64 

expression stability we illustrate its utility to find tissue- and cell line-optimised housekeeping genes 65 

without any prior bias, that again include only a small number of previously reported housekeeping genes. 66 

We also independently confirmed this experimentally using RT-qPCR with 40 candidate GC genes in a panel 67 

of 10 cell lines. These were termed the Gini Genes.  68 

In many cases, the variation in the expression levels of classical reference genes is really quite huge (e.g. 44  69 

fold for GAPDH in one data set), suggesting that the cure (of using them as normalising genes) may in some 70 

cases be worse than the disease (of not doing so).  We recommend the present data-driven approach for 71 

the selection of reference genes by using the easy-to-calculate and robust GC.  72 

 73 

Keywords: housekeeping genes – reference genes – Gini index – Gene Expression  74 

 75 
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Background 78 

 79 

In a recent paper [1], we introduced the Gini index (or Gini coefficient, GC) [2-5] as a very useful, 80 

nonparametric statistical measure for identifying those genes whose expression varied least across a large 81 

set of samples (when normalised appropriately [6] to the total expression level of transcripts). The GC is a 82 

measure that is widely used in economics (e.g. [4, 7-12]) to describe the (in)equality of the distribution of 83 

wealth or income between individuals in a population. However, although it could clearly be used to 84 

describe the variation in any other property between individual examples [13-16]), it has only occasionally 85 

been used in biochemistry [1, 5, 17-22]. Its visualisation and calculation are comparatively straightforward 86 

(Fig 1): individual examples are ranked on the abscissa in increasing order of the size of their contribution, 87 

and the cumulative contribution is plotted against this on the ordinate. The GC is given by the fractional 88 

area mapped out by the resulting ‘Lorenz’ curve (Fig 1). For a purely ‘socialist’ system in which all 89 

contributions are equal (GC = 0), the curve joins the normalised 0,0 and 1,1 axes, while for a complete 90 

‘autocracy’, in which the resource or expression is held or manifest by only a single individual (GC=1), the 91 

‘curve’ follows the two axes (0,0 � 1,0 � 1,1).  92 

Since the early origins of large-scale nucleic acid expression profiling, especially those using microarrays 93 

[23-25], it has been clear that expression profiling methods are susceptible to a variety of more or less 94 

systematic artefacts within an experiment, whose resolution would require or benefit from some kind of 95 

normalisation (e.g. [26-36]). By this (‘normalisation of the first kind’), and what is typically done, we mean 96 

the smoothing out of genuine artefacts within an arrray or a run, that occur simply due to differences in 97 

temperature or melting temperature or dye binding or hybridisation and cross-hybridisation efficiency (and 98 

so on) across the surface of the array. This process can in principle use reference genes, but usually exploits 99 

smoothing methods that normalise geographically local subsets of the genes to a presumed distribution. 100 

Even after this is done, there is a second level of normalisation, that between chips or experiments, that is 101 

usually done separately, not least because it is typically much larger and more systematic, especially 102 

because of variations in the total amount of material in the sample analysed or of the overall sensitivity of 103 

the detector (much as is true of the within-run versus between-run variations observed in mass 104 

spectrometry experiments [37, 38]). This kind of normalising always requires ‘reference’ genes whose 105 

expression varies as little as possible in response to any changes in experimental conditions. The same is 106 

true for expression profiling as performed by qPCR [39-44], where the situation is more acute regarding the 107 

choice of reference genes since primers must be selected for these a priori. Commonly, the geometric 108 

mean of the expression levels of that or those that vary the least is selected as the ‘reference’. The 109 

question then arises as to which are the premium ‘reference’ genes to choose. 110 

Perhaps surprisingly [45], rather than simply letting the data speak for themselves, choices of candidate 111 

reference genes were often made on the basis that reference genes should be ‘housekeeping’ genes that 112 

would simply be assumed (‘hypothesised’) to vary comparatively little between cells, be involved in 113 

nominal routine metabolism and also that they should have a reasonably high expression level (e.g. [46-114 

63]). This is not necessarily the best strategy, and there is in fact (and see below) quite a wide degree of 115 

variation of the expression of most standard housekeeping genes between cells or tissues (e.g. [50, 59, 62, 116 

64-76]).  Indeed, Lee et al [66] stated explicitly that housekeeping genes may be uniformly expressed in 117 

certain cell types but may vary in others, especially in clinical samples associated with disease.  118 

It became obvious that an analysis of the GC of the various genes was actually precisely what was required 119 

to assess those ‘housekeeping’ (or any other) genes that varied least across a set of expression profiles, and 120 
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we found 35 transcripts for which the GC was 0.15 or below when assessing 56 mammalian cell lines taken 121 

from a wide variety of tissues [1].  These we refer to as the ‘Gini genes’. Most of these were ‘novel’ as they 122 

had never previously been considered as reference genes, and we noted that their Gini indices were 123 

significantly smaller (they were more stably expressed) than were those of the more commonly used 124 

reference genes [63]. However, this analysis was done on only one (albeit large) dataset of gene expression 125 

profiles. While some of the compilations (e.g. [62, 77]) contain massive amounts of expression profiling 126 

data, many of these, especially the older ones, may well be of uncertain quality. Thus, especially since the 127 

GC is very prone to being raised by small numbers of large outliers, we decided for present purposes that 128 

we should compare our analyses of candidate Gini genes using a smaller but carefully chosen set of 129 

expression profiling experiments. The more modern RNA-seq (e.g. [78-82]), in which individual transcripts 130 

are simply counted digitally via direct sequencing, is seen as considerably more robust [78, 83, 84] and 131 

sensitive [85, 86], and so we selected additional large and recent datasets that used RNA-seq in cell lines 132 

and tissues (Table 1). We note too that the precision of these digital methods (as with other, digital, single-133 

molecule strategies [87-89]), means that the requirement for reasonably high-level expression levels is 134 

much less acute. 135 

In a similar vein (Table 2), we selected a small number of reasonably detailed studies in which particular 136 

housekeeping genes had been proposed as reference genes.  137 

To our knowledge, there are no large-scale studies to determine housekeeping genes in large, cell-line 138 

cohorts; the present paper serves to provide one. In addition, we include an experimental RT-qPCR analysis  139 

of a subset of the Gini genes. 140 

  141 
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Results 142 

 143 

The Gini Coefficient as a robust measure of gene expression stability in multiple cell-line data 144 

sets 145 

 146 

We previously identified a number of genes in the Human Protein Atlas (HPA) cell line data set [90] with 147 

very low expression variability and thus potential for use as reference genes [91]. However, we did not 148 

compare these Gini genes to other genes that have previously been proposed as housekeeping genes. We 149 

therefore performed a similar analysis using the potential housekeeping genes we proposed in [91] as well 150 

as other reference genes proposed in other studies (Table 2) with additional large RNA-Seq cell line data 151 

sets (Table 1).  152 

Fig 2A shows a plot of the GC of a variety of candidate Gini genes versus their median expression level in 153 

the HPA cell lines dataset set [90]. It is clear that genes we identified previously have much lower GC values 154 

in the HPA dataset than do any of the others (just two, VPS29 and CHMP2A, were also identified by 155 

Eisenberg and Levenson and another, RPL41, by Caracausi). This is not at the expense of an unusually low 156 

expression (Fig 2A), a finding broadly confirmed when we look at the median expression levels for the CCLE 157 

dataset (Fig 2B) and of the Klijn dataset (Fig 2C).  158 

Fig 3 shows the GC values for the various genes in two other datasets, viz CCLE and Klijn. Our previous Gini 159 

genes have a lower GC than that of any of the other housekeeping genes in 25 out of 38 cases in Klijn (all 160 

under 0.2) and in 26 out of 40 cases for CCLE (all under 0.22). In confirmation of this, and of the correlation 161 

found above between the median expression levels in CCLE and Klijn, the GC values are also well correlated 162 

with each other for the two datasets (Fig 3). Thus, although the absolute numbers are slightly larger than 163 

are those for the HPA dataset (unsurprisingly, given the much larger number of examples), the trend is still 164 

very clear: the GiniGenes remain the best among those variously proposed as reference genes in a variety 165 

of large and quite independent datasets. It also suggests that variations in the total amount of mRNA are 166 

not an issue either. 167 

Another common statistical measure, more resistant to individual outliers, is the interquartile ratio (the 168 

ratio between the 25th and 75th percentile when expression levels are ranked); by this measure too, the Gini 169 

genes that we uncovered previously stand out as being the least varying (Fig 4 A and B). This suggests that, 170 

as a measure of gene expression stability, the GC is robust: the GiniGenes have the lowest ratio between 171 

their maximum and minimum expression values in the HPA dataset (Fig 4C) and also the lowest 172 

interquartile ratio in their levels of expression in all three cell line data sets explored here (Fig. 4B and C) 173 

with good correlation between these two datasets.  174 

Use of the Gini Coefficient to find GiniGenes in an unbiased manner in cell-line data sets 175 

 176 

Up to now, our analyses of these data sets have used a set of predefined genes to look at expression 177 

stability. We next sought to investigate whether the GC would highlight genes with high expression stability 178 

that have been reported by others or by ourselves when performing this analysis in a data-driven manner. 179 

To that end, we found 115 genes shared between the three data sets with a GC ≤ 0.2 (Fig. 5, 6). This value 180 

for the GC was chosen since reducing this to ≤ 0.15 meant no or very few genes were found in some data 181 

sets (e.g. no genes in the CCLE data set had a GC ≤ 0.15) and going above this meant the number of genes 182 

were unmanageable (e.g. 1051 genes with a GC ≤ 0.21 in the Klijn data set). Of the 115 genes shared 183 
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between the datasets with GC <0.2, 13 were GiniGenes and two were housekeeping genes defined by 184 

Caracausi and colleagues (Fig. 5 B). When we selected the top 20 expressing genes in each data set, only 13 185 

of these were common across these data sets; Table 3 shows some descriptive statistics of 13 of these, with 186 

descriptive statistics of all 115 genes found in Supplementary Table S1. Of these genes, two (HNRNPK and 187 

PCBP1) are GiniGenes and one (SLC25A3) is a gene previously reported by Caracausi et al. Seven out of the 188 

13 genes (HNRNPK, HNRNPC, PCBPB, SF3B1, SRSF3, EDF1 and EIF4H) here share important roles in RNA 189 

transcription, translation and stability [92-100], are implicated in a number of diseases, including cancer 190 

[92, 95, 101-111], and some, such as SRSF3 are essential for embryo development [112]. Given their pivotal 191 

functions, it may be unsurprising that the expression of these genes are tightly regulated across cell lines of 192 

different tissue origins, even where these are cancer cell lines. Overall, the distribution, expression stability 193 

and important functional roles of these genes suggest that these are excellent housekeeping genes across 194 

different cell types.  195 

Of particular interest to us was finding one gene encoding a mitochondrial phosphate transporter protein 196 

(SLC25A3 [113]) to be within this list of the top expressing stably expressed genes. This might seem logical 197 

since mitochondrial ATP synthesis is required by all cell types and tissues.  198 

Figure 7 shows the robustness of the GC for the subset of 115 genes common between the three data sets 199 

studied here with a low GC  (<0.2). Lower Gini coefficients correlate with lower IQR and Max:median ratios 200 

(Fig7: only results for the Klijn data set are shown). The range of IQR values of these genes was smaller in 201 

the larger two data sets (CCLE, 1.42-1.67; Klijn, 1.30- 1.64) than in the HPA data set (1.26-1.84) suggesting 202 

the measured expression values were more stable in the larger data sets (Supplementary Table S1). This 203 

may, however, be due to a larger number of cell lines in these two large datasets (934 and 622 in CCLE and 204 

Klijn) compared with the HPA data set (56 cell lines).   205 

 206 

Application of the Gini coefficient to human tissue RNA-Seq data sets 207 

 208 

The results presented thus far are representative of human cell lines. Most reports in the literature 209 

regarding housekeeping genes refer to tissue expression data. This may be due to the cell lines being 210 

“dedifferentiated” with respect to the tissues from which they are derived [114].  211 

In our previous report [1] we also analysed RNA-Seq data from tissues [90] and found 22 genes with a GC < 212 

0.15, of which 3 (CHMP2A, VPS29 and PCBP1) were also found in cell line data with a GC <0.15. The median 213 

expression level and GC of these and other candidate GiniGenes in this tissue data set are shown in Figure 214 

8. As with cell line data, the genes we previously identified (GGs, green dots in Fig 8) have much lower GCs 215 

in this tissue data set than do any of the other candidate GiniGenes, with only two of these genes (VPS29 216 

and CHMP2A) identified previously by Eisenberg & Levenson [115]. The low GC value of these GiniGenes is 217 

not at the expense of low expression: of the 22 GiniGenes, 13 are expressed at a median level of between 218 

40 and 200 TPM (see Supplementary Table S2). Moreover, the GC was also representative of the variation 219 

in expression of these genes (albeit influenced to a lesser extent by outliers), as shown in Fig. 9 A and B, 220 

with all GiniGenes having a GC <  0.15 and the lowest RSD (relative standard deviation), ranging from 221 

24.096 % to 28.66 % and IQR (1.26 to 1.44) of this list of housekeeping genes. The expression of other 222 

housekeeping genes such as GAPDH, ACTB, RPL13A, SDHA, B2M was quite varied according to these 223 

measures. For example, the GC of GAPDH (a commonly used HKG) was 0.33, with a RSD of 72.4 % and IQR 224 

of 2.24, and for ACTB (another commonly used HKG) these values were 0.29, 55.24 %, and 2.11.  225 
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The median expression levels of the proposed reference genes show a similar level of correlation between 226 

the data sets as was found with the cell line data (Figure S1 A-C), and GiniGenes displayed a mid-range level 227 

of expression. The GC of the tissue GiniGenes we proposed however, tended to be higher and more 228 

variable in their GC values than in the HPA dataset (Figure S2 A-C) suggesting that those genes may be 229 

representative of the HPA data set only. As an example, in the GTEx dataset only 28 genes had a GC < 0.2, 230 

of which the majority (17) were those reported by Caracausi and colleagues, and 7 were GiniGenes. The 231 

results here are likely influenced by the number and status (disease or normal) of the tissues analysed in 232 

the various data sets compared; for example, the GTEx data come from 53 different, normal human tissues, 233 

whereas the HPA tissue data include a mixture of disease and normal tissue samples. In addition, compared 234 

to the cell line data where hundreds (in the case of the Cancer Cell Line Encyclopedia) of cell lines were 235 

analysed, the number of tissues in these data sets was fewer than 100.  236 

In the case of the data set used by Eisenberg and Levanon [115], viz. the Illumina Human Body Map (E-237 

MTAB-513),  10 of the 11 housekeeping genes proposed here (which included 2 Gini Genes, CHMP2A and 238 

VPS29) had a GC ≤  0.2 and were reasonably well expressed (with median expression levels between 50-270 239 

TPM, see  Supplementary Table S2 and Supplementary Fig S4). This may be compared to the 5 other GGs 240 

with GC < 0.2 in this data set whose expression value was lower, with median expression between 19-35 241 

TPM. This suggests that finding suitable HKGs may be dependent on the data set itself, and the type of 242 

tissue under investigation. 243 

We next sought to perform a more comprehensive and integrative analysis by filtering the tissue data sets 244 

to only include genes with a GC ≤ 0.2 to find common genes across these data sets with reasonable 245 

expression stability (Supplementary Table S3). As shown in Fig 10 only 15 genes were shared between the 246 

four data sets with a GC ≤ 0.2, none of which has been reported previously as a housekeeping genes. Table 247 

4 shows some descriptive statistics of these genes. In any case, the names of the proteins encoded by these 248 

15 genes suggest these play important and essential roles. The median expression values of these genes 249 

varied from around 10-450 TPM, with SNX3 (Sorting nexin-3 (Protein SDP3)) and COX4I1 (Cytochrome c 250 

oxidase subunit 4 isoform 1) being consistently the two highest-expressing genes.  251 

Sorting nexins are a group of cytoplasmic and membrane-associated proteins involved in the regulation of 252 

intracellular trafficking [116]. SNX3 has been reported to play a role in receptor recycling and formation of 253 

multivesicular bodies [117], and its dysregulation has been implicated in disorders of iron metabolism and 254 

the pathogenesis of some neurodegenerative diseases [118, 119].  255 

The COX4I gene encodes the nuclear-encoded cytochrome c oxidase subunit 4 isoform 1, the terminal 256 

enzyme in the mitochondrial respiratory chain. Given the key role of the mitochondrial respiratory chain in 257 

all human cells (except red blood cells), stable expression of such a gene in all tissues may not be a 258 

surprising result. Increased RNA COX4I1 levels have been reported in sperm of an obese male rat model  259 

[120] and thus may play a role in obesity-related fertility problems, and reduced expression of this subunit 260 

leads to a reduction in mitochondrial respiration as well as sensitising cells to apoptosis [121]. 261 

The small number of genes shared between these data sets with a GC < 0.2 indicates that the data in these 262 

studies are more variable compared to cell lines alone. The cause of this variation may be due to the tissue 263 

data having been obtained from different subjects [122]. Moreover, tissues are themselves a mixture of cell 264 

types with varying levels of gene expression in each cell type [123], while cell lines are nominally clonal.  265 

Our results suggest that in the case of RNA-seq tissue data sets, where gene expression tends to be more 266 

variable, an unbiased approach, using the Gini coefficient, may be more fruitful in the search for stably 267 
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expressed genes with which to perform normalisation, than the other commonly used methods used until 268 

now [122, 124].  269 

RT-qPCR analysis of gene expression stability of some housekeeping genes in 10 cell lines 270 

 271 

In order to illustrate the utility of the GC to find suitable housekeeping genes, we next chose to assess this 272 

experimentally by RT-qPCR using a small subset of candidate reference genes (40; top 32 genes from genes 273 

ordered by GC and expression value from [91], plus 8 of the most commonly used from the literature, 274 

including seven from [63] and one (RPL32) from [125][126], and 10 cell lines from a range of tissues (see 275 

Table 5 and 6). We first set a Cq value (which is inversely proportional to expression level) cut-off of 32, 276 

above which no expression is observed, and subsequently used the Cq values of genes in cell lines as a 277 

relative expression level (Cq cut off/Cq value of gene). Descriptive statistics of the expression of each gene 278 

in individual cell lines were then calculated. As a final step, the median expression value of each gene in 279 

individual cell lines was used to calculate descriptive statistics, including the GC, of gene expression across 280 

these cell lines. Figure 11 illustrates a KNIME workflow [127-129] that we wrote for this purpose. The raw 281 

data and descriptive statistics extracted are provided in Supplementary Tables S5 and S6 respectively, and 282 

the KMNIME analysis workflow in Supplementary File 1. 283 

Fig 12 uses RT-qPCR data to plot the GC of the candidate reference genes analysed here versus their 284 

relative median expression level. Three GiniGenes [91] (RBM45, TRNT1 and CNOT2) had very low and 285 

variable expression. Most of the other genes analysed showed low GC values with a range of (relative) 286 

expression values; the inset in Figure 12 shows genes with a GC < 0.2 including a mix of 35 genes: 26 287 

GiniGenes and 6 housekeeping genes referenced by Vandesompele and colleagues [63], one referenced by 288 

Caracausi [130] and one by Lee et al [131]. Two of these GiniGenes, HNRNPK and PCBP1, which we also 289 

found to be stably expressed in the cell line data suggesting these may be potential stable housekeeping 290 

genes.  As shown in Figure 13 and inset, the GC is well correlated with the % RSD.  291 

More importantly, the GC of our GiniGenes was particularly low (Fig 12). The low absolute magnitude 292 

reflected the fact that Cq value is based on a logarithmic scale. Various commonly used housekeeping 293 

genes (HPRT1, GAPDH, ACTB, SDHA, HMBS and B2M) displayed higher % RSDs and GC than other genes 294 

studied here in spite of their higher relative expression levels. This was also the case when inspecting the 295 

interquartile ratio against the GC of these (Figure S3). 296 

The above results suggest that the GC is also applicable to RT-qPCR data, with GiniGenes having good 297 

potential (as novel “housekeeping” genes) for the normalisation of such data.  298 

  299 
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Discussion 300 

 301 

Reference genes are commonly used to normalise gene expression data, so as to account for bias resulting 302 

from both biological and technical variability, and to enable quantification of gene expression changes or 303 

differences in the system under study. It is generally considered that such reference genes should come 304 

from pathways that are required for general metabolism, using only one gene per ‘pathway’ to avoid co-305 

regulation which might make the gene expressions look very stable.  306 

Such reference genes are commonly referred to as ‘housekeeping’ genes (HKGs) because they are 307 

considered to participate in essential cellular functions, are ubiquitously expressed in all cells and tissue 308 

types, and their expression is considered to be stable [46-63]). A number of such genes have been 309 

proposed over the years, and genes such as GAPDH, ACTB, RPL13A, SDHA, B2M are frequently used in such 310 

studies [63]. However, the expression levels of these and other proposed HKGs have in fact been shown to 311 

vary widely between cells and tissues (e.g. [50, 59, 62, 64-76]) and their expression has also been reported 312 

to be affected by a number of factors relating to the experiment such as cell confluence [132], pathological, 313 

experimental and tissue specific conditions [133]. As highlighted by Huggett et al. [134], despite the reports 314 

of the potential variability of expression of ‘classic’ references genes  such as GAPDH and ACTB, these are 315 

still used without mention of any validation processes. Our GiniGenes are selected as reference genes 316 

through different, data-driven, criteria. 317 

Various tools have been developed to evaluate and screen reference genes from experimental datasets;  318 

these include geNorm [63], NormFinder [135], Best Keeper [136] and the comparative ΔCT finder [49].  319 

RefFinder (http://leonxie.esy.es/RefFinder/#) and RefGenes can integrate these to enable a comparison 320 

and ranking of any tested candidate reference genes [137].  321 

These tools assess expression stability of genes in different ways:  322 

• geNorm determines gene stability through a stepwise exclusion or ranking process followed by 323 

averaging the geometric mean of the most stable genes from a chosen set. Python implementation: 324 

https://eleven.readthedocs.io/en/latest/  325 

• BestKeeper also uses the geometric mean but using raw data rather than copy numbers. 326 

BestKeeper [136] can be used as an Excel-based tool. It can accommodate up to 10 housekeeping 327 

genes in up to 100 biological samples. Optimal HKGs are determined by pairwise correlation 328 

analysis of all pairs of candidate genes, and the geometric mean of the top ranking ones. 329 

http://www.gene-quantification.info  330 

• NormFinder measures variation, and ranks potential reference genes between study groups.  331 
NormFinder [135] has an add-in for Microsoft Excel and is available as an R programme. It 332 
recommends analysis of 5-10 candidate genes and at least 8 samples per group. 333 
https://moma.dk/normfinder-software  334 

• The comparative ΔCT finder requires no specialist programmes since this involves comparison of 335 

comparisons of ΔCTs between pairs of genes to find a set of genes that show least variability.  336 

• RefGenes allows one to find genes that are stably expressed across tissue types and experimental 337 

conditions based on microarray data, and a comparison of results from geNorm, NormFinder and 338 

Best Keeper to find a set of reference genes. However, this is not a free service unless one searches 339 

for one gene at a time. Furthermore, the site for this tool is no longer available. Moreover, all these 340 

tools require the user to make a prior selection of such HKGs (introducing bias and potential errors) 341 

and most are cumbersome to understand and calculate.  342 
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We have here shown how via a simple calculation, the GC, we can find potential reference genes, and 343 
illustrated its utility in large-scale cell-line, tissue RNA-Seq data sets and RT-qPCR data. The expression of a 344 
number of classical HKGs from a number of carefully selected publications do in fact vary much more 345 
substantially between large RNA-Seq data sets, both for tissues and cell lines.  346 

Whilst not all studies will involve large data sets such as those we have analysed here, the GC should also 347 

be of use for smaller-scale studies to select a subset of genes in a panel of cell lines or tissues relevant to 348 

the study in question.  349 

Overall we find that (i) two of these genes, HNRNPK and PCBP1, seemed to be particularly robustly and 350 

stably expressed at reasonable levels in all cell lines studied, and (ii) a data-driven strategy based on the GC 351 

represents a useful and convenient method for normalisation in gene expression profiling and related 352 

studies.  353 

 354 

  355 
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Methods 356 

 357 

The datasets used are described and referenced below. The data, in transcripts per million (TPM) units 358 

were downloaded from the EBI expression atlas as a .tsv file. As previously [1], the Gini Index was 359 

calculated using the ineq package (Achim Zeileis (2014). ineq: Measuring Inequality, Concentration, and 360 

Poverty. R package version 0.2-13.  https://CRAN.R-project.org/package=ineq) in R (https://www.R-361 

project.org/). These calculations were incorporated into KNIME via KNIME’s R integration R Snippet node. A 362 

spreadsheet giving the extracted analyses is provided as supplementary tables (Tables S7 and S8). 363 

Table 1. Studies used for assessing proposed stable reference genes. 364 

Study short name Comments Reference 

GiniGene Study presenting novel potential 
housekeeping genes in cells and tissues 
from the HPA project cell and tissue 
RNASeq data. 

[1] 

geNorm or Vandesompele Classic set of reference genes in tissues 
and a means of analysing them  

[63] 

Eisenberg Very detailed analysis of housekeeping/ 
reference genes in tissues using the 

Illumina Body Map study of RNA-seq of 
16 Human Tissues. E-MTAB-513. 

[46] 

Lee Two novel reference genes from a 
detailed analysis of 281 normal tissue 

samples from 17 different organs then 

compares between disease states m 

and cell lines. 

[131] 

Caracausi 646 expression profile data sets from 54 
different human tissues. 

[62] 

 365 

Table 2. Studies used for expression profiling data. 366 

Dataset short name Comments Reference 

HPA RNA-seq-based dataset from the 
Human Protein Atlas group. Two data 
sets available: one  of 19,628 protein 
coding genes in 56 cell lines (HPA_C) 
and another of 19,613 protein coding 
genes in 59 tissues (HPA_T). 

[90, 91, 138] 

CCLE RNA-seq-based dataset (Cancer Cell 
Line Encyclopedia) of 58,035 genes in 
934 human cancer cell lines 
(downloaded from EBI Expression Atlas 
E-MTAB2770). 

[139] 

Klijn / Genentech RNA-seq-based analysis of 57,711 genes 
in  622 human cancer cell lines 
(downloaded from EBI Expression Atlas 
E-MTAB-2706). 

[140]  

GTEx RNA-Seq data of 46,711 genes in 53 
human tissue samples from the 

[141]  
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Genotype-Tissue Expression (GTEx) 
project (downloaded from EBI 
Expression Atlas E-MTAB-5214). 

PCAWG RNA-Seq of 46,816 genes in 76 tissues, 
cancer and normal, from The 
International Cancer Genome Project: 
Pan Cancer Analysis of Whole Genomes 
((downloaded from EBI Expression Atlas 
E-MTAB-5200). 

Unpublished, may be subject 
to publication embargo until 
July 25th, 2019 
https://dcc.icgc.org/pcawg 

HBM Illumina Body Map: RNA-seq of 16 
Human Tissues. E-MTAB-513. Used by 
Eisenberg and colleagues in their 
analysis of housekeeping/ reference 
genes in tissues. 

[46] 

 367 

Cell lines and culture conditions 368 

A panel of 10 cell lines were grown in appropriate growth media: K562, PNT2 and T24 in RPMI-1640 (Sigma, 369 

Cat No. R7509), Panc1 and HEK293 in DMEM (Sigma, Cat No. D1145), SH-SY5Y in 1:1 mixture of DMEM/F12 370 

(Gibco, Cat No. 21041025), J82 and RT-112 in EMEM (Gibco, Cat No. 51200-038), 5637 in Hyclone McCoy’s 371 

(GE Healthcare, Cat No. SH30270.01) and PC3 in Ham’s F12 (Biowest, Cat No. L0135-500).  All growth media 372 

were supplemented with 10 % fetal bovine serum (Sigma, Cat No. f4135) and 2 mM glutamine (Sigma, Cat 373 

No. G7513) without antibiotics. Cell cultures were maintained in T225 culture flasks (Star lab, CytoOne Cat 374 

No. CC7682-4225) kept in a 5% CO2 incubator at 37oC until 70-80 % confluent.  375 

Harvesting Cells for RNA Extraction 376 

Cells from adherent cell lines were harvested by removing growth media and washing twice with 5 mL of 377 

pre-warmed phosphate buffered saline (PBS) (Sigma, Cat No. D8537), then incubated in 3 mL of 0.025% 378 

trypsin-EDTA solution (Sigma Cat No. T4049) for 2-5 min at 37 oC. At the end of incubation cells were 379 

resuspended in 5-7 mL of respective media when cells appeared detached to dilute trypsin treatment. The 380 

cell suspension was transferred to 15 mL centrifuge tubes and immediately centrifuged at 300 x g for 5 min. 381 

Suspended cell lines were centrifuged directly from cultures in 50 mL centrifuge tubes and washed with PBS 382 

as above. The cell pellets were resuspended in 10-15 mL media and cell count and viability was determined 383 

using a Nexcellom Cellometer Auto 1000 Cell Viability Counter (Nexcellom Bioscience) set for Trypan Blue 384 

membrane exclusion method. Cells with >95 % viability were used for downstream total RNA extraction. 385 

RNA Extraction  386 

Total RNA was extracted from 2-5 X 106 cells using the Qiagen RNeasy Mini Kit (Cat No. 74104) and DNAse 387 

treated using Turbo DNA-free kit (Invitrogen, Cat No. AM1907) according to the manufacturer’s 388 

instructions. Briefly, 1 X DNA buffer was added to the extracted RNA prior to adding 2U (1 µL) of DNAse 389 

enzyme. The reaction mixture was incubated at 37oC for 30 min and inactivated for 2 min at room 390 

temperature using DNAse inactivating reagent. The mixture was centrifuged at 10,000 x g for 1.5 min and 391 

the RNA from the supernatant was transferred to a clean tube. The RNA concentration was determined 392 

using a NanoDrop® ND-1000 spectrophotometer and further validated using an Agilent 2100 bio-analyser 393 

coupled with 2100 Expert software system. Only RNA samples with an RIN (RNA Integrity Number) between 394 

9-10 were selected for cDNA synthesis. 395 

 396 

 397 
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Reverse Transcription and cDNA Synthesis 398 

1 µg of RNA was reverse transcribed into cDNA. Briefly, a 20 µL reaction was setup by adding 1 µL each of 399 

oligodT (50 µM, Invitrogen, cat No. 18418020) and dNTP mix (10 mM, Invitrogen, Cat No. 18427-013) 400 

followed by adding an appropriate volume for 1 µg of RNA. Nuclease free water (Ambion, Cat No. AM9937) 401 

was then added to make the volume up to 13 µL and incubated at 65oC for 5 min then cooled on ice for 402 

1min. To initiate transcription 4 µL of 5 X first strand buffer (Invitrogen, Cat No. 1889832) and 1 µL each of 403 

0.1 M DTT (Invitrogen, Cat No. 1907572), RNaseOUT™ (Invitrogen, Recombinant RNase Inhibitor, Cat No. 404 

1905432) and SuperScript™ III RT (200 units/µL, Invitrogen, Cat No. 1685475) reverse transcriptase enzyme 405 

were added, mixed gently then incubated at 50oC for 60 min followed by inactivation at 70oC for 15 min. 406 

The cDNA was diluted 1:100 to be used in RT-qPCR experiment.  407 

 408 

Validation of gene expression by geNorm   409 

A set of candidate reference genes (40; top 32 genes from genes ordered by GC and expression value from 410 

[91], plus 8 of the most commonly used from the literature including seven from [63]). RNAseq data were 411 

selected for validation of stable gene expression using geNorm [63]. First, a typical qPCR protocol was 412 

prepared from a master mix for each gene to be tested per cell line in triplicate. This consisted of 10 413 

µL/well made by adding 0.8 µL of nuclease free water (Ambion), 5 µL of LC480 SYBR Green I Master (2 X 414 

conc. Roche, Product No. 04887352001), 0.1 µL each of forward and reverse primers (20 µM) (for primer 415 

and amplicon sequences see Supplementary Table S9) and 4 µL of 1:100 diluted cDNA in a 384 well qPCR 416 

plate (Starlab Cat. No. E1042-9909-C). The no template controls (NTC) for each gene were produced by 417 

replacing cDNA with 4 µL of nuclease free water. Thermal cycling conditions used were: one cycle of 95oC 418 

for 10 min followed by 40 cycles of 95oC for 10 sec and 60oC for 30 sec. qPCR was performed using Roche 419 

LightCycler LC480 qPCR platform. The fluorescence signals were measured in real time during amplification 420 

cycle (Cq) and also during temperature transition for melt curve analysis. 421 

The mean Cq values were converted into relative values for a gene across all cell lines using ΔCq method 422 

[142]. Briefly, the lowest Cq value in a panel of cell lines for a gene was subtracted from all the values in 423 

that panel using the equation: � � 2
���������

 ����	
��	�  �
, where ��������

 is the mean Cq value obtained for 424 

a gene in each of the cell lines and ���	
��	�
 is the lowest Cq value in that panel. The relative values for each 425 

gene in a panel were then obtained by applying � �  2
���� .  These relative values were applied in geNorm 426 

Visual Basic applet for Microsoft Excel® [63] that determines the most stable reference genes from a set of 427 

genes in a given panel of cell lines. 428 

 429 

Validation of gene expression using the Gini coefficient.   430 

 431 

To the raw RT-qPCR data a Cq value (which is inversely proportional to expression level) cut-off of 32 was 432 

set, above which no expression is observed. The Cq values of genes in cell lines were subsequently 433 

converted to a relative expression level (Cq cut off/Cq value of gene). Descriptive statistics of the 434 

expression of each gene in individual cell lines were then calculated. As a final step, the median expression 435 

value of each gene in individual cell lines was used to calculate descriptive statistics, including the GC, of 436 

gene expression across these cell lines. Figure 11 illustrates a KNIME workflow [127-129] for this purpose. 437 

The raw data and descriptive statistics extracted are provided in Supplementary Tables S5 and S6 438 

respectively, and the KMNIME analysis workflow in Supplementary File 1. 439 
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Legends to figures 466 

 467 

Fig 1. Graphical indication of the means by which we calculate the Gini coefficient. 468 

Fig 2. Gini coefficient and median expression levels of proposed reference genes in the HPA cell-line 469 

dataset. A. GC versus median expression level of HPA dataset. B. Median expression levels of CCLE vs HPA 470 

datasets. Line of best linear fit (in log space) shown is y = 0.991 + 0.827 X (r2=0.606). C. Median expression 471 

levels of CCLE vs Klijn datasets. Line of best linear fit (in log space) shown is y = 0.998 + 0.804 X (r2=0.593). 472 

Colour coding: red, GeneGini reference genes; blue Eisenberg & Levenson; yellow Vandesompele; green 473 

Lee; lilac both GeneGini and Eisenberg and Levenson. 474 

Fig 3. Gini coefficient of candidate reference genes in CCLE and Klijn/Genentech cell-line datasets. Left 475 

panel shows all proposed housekeeping genes considered in this study, with the right panel showing labels 476 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 31, 2019. ; https://doi.org/10.1101/718007doi: bioRxiv preprint 

https://doi.org/10.1101/718007
http://creativecommons.org/licenses/by/4.0/


16 
 

of those genes with a GC < 0.25. The line of best fit is y = -0.171 + 0.829x (r2 = 0.909). Colour code as in Fig 477 

2.  478 

Fig 4. Robustness of the Gini coefficient. A. IQR of different genes in Klijn/Genentech vs HPA cell-line 479 

dataset. Left panel shows all genes considered in this study, with right panel showing genes with IQR < 2 in 480 

both datasets. Line of best linear fit (in log space) shown is y = 0.01 + 1.11 X (r2=0.937) B. IQR of different 481 

genes in CCLE vs HPA cell-line dataset. Left panel shows all genes considered in this study, with right panel 482 

showing genes with IQR < 2 in both datasets. Line of best linear fit (in log space) shown is y = 0.04 + 0.99 X 483 

(r2=0.930). C. Max:Mean vs Min expression levels in HPA data set. Colour code as in Fig 2. 484 

Fig 5. Shared and unique genes in HPA, CCLE and Klijn/Genentech cell-line data sets. A. Genes with a GC < 485 

0.2 B. Housekeeping genes in Table 2 with GC < 0.2. 486 

Fig. 6. GC vs Median for 115 genes in A. HPA, B. CCLE and C. Klijn/Genentech cell-linedata sets. Colour 487 

coding: Blue, Caracausi; Green,  GeneGini reference genes; Grey, neither. Shape coding: Circle, other; 488 

Triangle, SLC coding gene.  489 

Fig. 7. Robustness of GC for finding stably expressed genes using shared genes between HPA, CCLE and 490 

Klijn/Genentech cell-line data sets with GC < 0.2. Shown are the results for the Klijn/Genentech dataset A. 491 

IQR vs GC, B. Max:Mean vs Min. Colour coding: Blue, Caracausi; Green,  GeneGini reference genes; Grey, 492 

neither. Shape coding: Circle, other; Triangle, SLC coding gene.  493 

Fig 8. Gini coefficient and median expression levels of proposed reference genes in the HPA tissue dataset. 494 

Colour coding: blue, Caracausi; purple, Eisenberg and Levenson; green, GeneGini reference genes; yellow, 495 

both GeneGini and Eisenberg and Levenson; orange, Lee; black, Vandesompele. 496 

Fig 9. Robustness of the Gini coefficient in the HPA tissue data set. A. RSD versus Gini coefficient of 497 

candidate reference genes. Line of best linear fit (in log space) shown is y = 2.45 + 1.24 X (r2=0.938) B. IQR 498 

versus Gini coefficient of candidate reference genes.  Line of best linear fit (in log space) shown is y = 0.87 + 499 

0.96 X (r2=0.566). Colour code as in Fig 8. 500 

Fig 10. UpSetR [143] plot showing genes with a GC <0.2 that are variously shared and unique across the 501 

PCAWG, HBM, GTEX and HPA tissue data sets. The data underpinning this plot can be found it 502 

Supplementary Table S4 503 

Fig 11. The KNIME workflow described here to calculate descriptive statistics and the gini coefficient from 504 

RT-qPCR data. This workflow can be adapted for use with large RNA-Seq Data sets. 505 

Fig 12. Gini coefficient and median expression levels of candidate reference genes assessed by RTqPCR. Left 506 

panel shows all genes considered in this study, with right panel showing genes with GC < 0.2. Colour coding: 507 

green, GeneGini reference genes; red, both GeneGini and Caracausi reference genes; yellow, GeneGini and 508 

Eisenberg and Levenson; orange, Lee, yellow; black, Vandesompele; purple, Zhang and Kriegova.  509 

Fig 13. Robustness of the Gini coefficient in assessed experimentally by RT-qPCR using a small subset of 510 

proposed reference genes. Left panel shows Gini coefficient vs % RSD for all genes considered in this study, 511 

with right panel showing the same with genes with a GC < 0.2 and % RSD < 10. Line of best linear fit shown 512 

is y = 0.002 + 0.004x (r2=0.988). Shape coding as in Fig 12. 513 

Supplementary Fig S1. Comparison of median expression levels of proposed reference genes between 514 

tissue datasets. A. HBM vs HPA tissue datasets. Line of best linear fit (in log space) shown is log10y = 0.35 + 515 
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(0.74 log10 (x)) (r2=0.472). B. PCAWG vs HPA tissue dataset. Line of best linear fit (in log space) shown is 516 

log10y = 0.46 + (0.73 log10 (x)) (r2=0.500). C. GTEx vs HPA Tissue. Line of best linear fit (in log space) shown is  517 

log10y = 0.45 + (0.68 log10(x)) (r2=0.429). Colour coding: blue, Caracausi reference genes; purple, Eisenberg 518 

& Levenson; green, GeneGini; yellow, both GeneGini and Eisenberg and Levenson; orange, Lee; black, 519 

Vandesompele. 520 

Supplementary Fig S2. Comparison of Gini coefficient of proposed reference genes between tissue 521 

datasets. A. HBM vs HPA tissue datasets. Line of best linear fit (in log space) shown is log10y = -0.20 + (0.62 522 

log10(x)) (r2=0.392). B. PCAWG vs HPA tissue dataset. Line of best linear fit (in log space) shown is log10y = -523 

0.15 + (0.59 log10(x)) (r2=0.560). C. GTEx vs HPA Tissue. Line of best linear fit (in log space) shown is log10y = 524 

0.22 + (0.59 log10(x)) (r2=0.388). Colour coding as in Fig S1. 525 

Fig S3. Robustness of the Gini coefficient assessed experimentally by RT-qPCR using a small subset of 526 

proposed reference genes illustrated with Gini coefficient vs IQR.  Left panel shows all 40 genes in Table 6, 527 

with right panel showing genes with a GC < 0.2. Colour coding: green, GeneGini reference genes; red, both 528 

GeneGini and Caracausi reference genes; yellow, GeneGini and Eisenberg and Levenson; orange, Lee, 529 

yellow; black, Vandesompele; purple, Zhang and Kriegova. 530 
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