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Highlights

• Generalizes hierarchical population model to various distribution assumptions

• Provides framework for efficient calibration of the hierarchical population model

• Simulation study and application to experimental data reveal improved robustness and op-
timization performance

Abstract

Cellular heterogeneity is known to have important effects on signal processing and cellular decision
making. To understand these processes, multiple classes of mathematical models have been intro-
duced. The hierarchical population model builds a novel class which allows for the mechanistic
description of heterogeneity and explicitly takes into account subpopulation structures. However,
this model requires a parametric distribution assumption for the cell population and, so far, only
the normal distribution has been employed. Here, we incorporate alternative distribution assump-
tions into the model, assess their robustness against outliers and evaluate their influence on the
performance of model calibration in a simulation study and a real-world application example. We
found that alternative distributions provide reliable parameter estimates even in the presence of
outliers, and can in fact increase the convergence of model calibration.
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1 Introduction

An important goal of systems biology is to obtain insights into the mechanisms and sources of
cellular heterogeneity. This heterogeneity is critical for cellular decision making (Balázsi et al.,
2011) and studied for various diseases and biological systems. To study heterogeneity, data at the
single-cell level, e.g., time-lapse or snapshot data, are collected with experimental techniques such
as fluorescent microscopy or flow cytometry.

To mechanistically study single-cell snapshot data, a variety of modeling approaches have been
introduced. Ensemble models describe individual cells and model the overall population as a col-
lection of many cells (Henson, 2003; Kuepfer et al., 2007). These models are often computationally
expensive. To circumvent this, the cell population can be approximated by its statistical moments.
Approximation approaches depend on assumptions about the contribution of intrinsic and extrinsic
noise sources. While intrinsic noise is often defined as the stochasticity of gene expression, extrinsic
noise is assumed to influence the reaction rates (Swain et al., 2002). Therefore, the statistical mo-
ments are obtained using the moment-closure approximation (Engblom, 2006), when intrinsic noise
is assumed to be important, or Dirac-mixture approximations (Wang et al., 2019), when hetero-
geneity occurs mainly due to extrinsic noise. For the case of extrinsic noise, modeling approaches
have been developed which infer the distribution of cellular properties using maximum entropy
principles (Waldherr et al., 2009; Dixit et al., 2019). However, the aforementioned methods do not
explicitly take into account subpopulation structures, which are omnipresent in heterogeneous cell
populations (Altschuler and Wu, 2010). We recently introduced the hierarchical population model
(Loos et al., 2018). This model describes subpopulation structures using mixture modeling, and
ensures computational efficiency by employing approximations for statistical moments of the bio-
logical species of individual subpopulations. However, the model relies on a parametric assumption
for the distribution of the subpopulations and only the multivariate normal distribution has been
employed. This is a substantial limitation as the distribution of properties within subpopulations
is often not normal (Pyne et al., 2009; Mar, 2019).

As the measured distribution reflects not only cellular heterogeneity, but also the variability of
the measurement process, measurement noise and outliers might result in additional deviations
from a normal distribution. In the analysis of ordinary differential equation (ODE) models, it has
been shown that distributions with heavier tails than the normal distribution yield more robust
parameter estimates in the presence of outliers (Maier et al., 2017). For single-cell snapshot data,
the probability of observing outliers in the data is even higher due to the high number of data points
(Pyne et al., 2009; Ilicic et al., 2016). Thus, heavy-tailed and skewed distributions are employed
when studying flow cytometry (Pyne et al., 2009) or scRNA-seq data (Ding et al., 2019). However,
the incorporation and assessment of distribution assumptions for the hierarchical population model
is missing. Ideally, the employed distribution should not only provide reliable parameter estimates,
but also yield a reasonable performance of model calibration.

In this manuscript, we describe the hierarchical population model and generalize it to different
distribution assumptions. We derive the equations for the mathematical formulation of the model
with alternative distribution assumptions. These equations, including the likelihood function and
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its gradient, are required to perform efficient model calibration using gradient-based maximum
likelihood estimation. We analyze the influence of the distribution assumptions for simulated data
of three biological motifs and three outlier scenarios. These outlier scenarios are motivated by
experimental errors that can occur during data generation, e.g., due to a dropout event. Finally,
we apply the hierarchical population model with the different distribution assumptions to analyze
experimental data of NGF-induced Erk1/2 signaling.

2 Methods

2.1 Hierarchical population model

We consider single-cell snapshot data,

D = {(ȳck, tk,u)}c,k , (1)

with indices c for the cell and k for the time point, stimulus vector u ∈ Rnu and a vector of
measurements ȳck ∈ Rny of the cell. The measured quantities might be, e.g., (relative) protein
abundances. The measurement follows a distribution, which is a convolution of the measurement
noise distribution and an additional distribution for a potential outlier-generating process. For a
better readability, we neglected the index for varying stimuli.

In the hierarchical population model as introduced by Loos et al. (2018) the measured property of
an individual cell is assumed to be distributed according to

ȳ ∼
∑
s

wsφ(ȳ|ϕs) , (2)

with relative subpopulation sizes ws of subpopulations s = 1, . . . , ns and parametric distribution
φ which depends on the vector of distribution parameters ϕs (Fig. 1A). The density φ captures
biological variability due to intrinsic or extrinsic noise as well as measurement noise and the outlier
distribution. The relative subpopulation sizes ws are positive and sum up to one. The distribution
parameters ϕs arise from the single-cell dynamics and models for cell-to-cell variability. Individual
single-cell trajectories can be obtained using Markov jump processes (Gillespie, 1977), ordinary
(Klipp et al., 2005) or stochastic differential equations (Gillespie, 2000). Instead of simulating the
cells individually, which can become time-consuming, we compute the temporal evolution of the
statistical moments, i.e., means mx

s and covariances Cx
s , of biochemical species x. The temporal

evolution is defined by a function gz, e.g., obtained by moment-closure (Engblom, 2006), sigma-
point (van der Merwe, 2004) or Dirac mixture approximations (Wang et al., 2019), depending on
the assumptions about intrinsic and extrinsic noise. This yields

żs = gz (zs, ξs,u) , zs(0) = z0 (ξs,u) , (3)

with zs = (mx
s ,C

x
s )T , initial conditions z0 and subpopulation parameters ξs = (βs,Ds), with
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Figure 1: Illustration of the hierarchical population model. (A) The cell population com-
prises two heterogenenous subpopulation which respond differently to stimulation. Means
and covariances of the species for each subpopulation are linked to a mixture distribu-
tion. The light and dark gray lines show the means of the subpopulations and the black
line shows the distribution of the whole cell population. (B) Heterogeneity is captured
by assuming each parameter/cellular property to be distributed according to one of the
indicated cases.

βs ∈ Rnβ and Ds ∈ Rnβ×nβ . These parameters are given by

βs,i =


βi

βi

βs,i

βs,i

and Ds,ii =


0 homogeneous ,
Dii cell-to-cell variable ,
0 subpopulation variable ,
Ds,ii inter- and intra-subpopulation variable .

,

in which βs,i denotes the ith element of βs, and Ds,ii denotes the ith diagonal element of Ds. The
parameter βs,i encodes the mean of the cellular property, while the parameter Ds,ii encodes its
spread within a subpopulation. Homogeneous parameters are assumed to be the same for all cells
of the whole cell population; cell-to-cell variable parameters differ between cells of the same sub-
population; subpopulation variable parameters differ between but not within a subpopulation; and
inter- and intra-subpopulation variable parameters differ both between and within subpopulations
(Fig. 1B).

The moments for a subpopulation are mapped to the distribution parameters,

ϕs = gϕ (zs, ξs,u) , (4)

of a distribution φ. Thus, gϕ encodes the mapping from the biochemical species to the observables,
i.e., the measurable output of the system, as well as the mapping of the observables to the distribu-
tion parameters (see Appendix D.1 for an example). So far, the multivariate normal distribution
has been employed,

φnorm(ȳ|ϕ) =
1

(2π)
ny
2 det(Σ)

1
2

e−
1
2 (ȳ−µ)TΣ−1(ȳ−µ) , (5)

with distribution parameters ϕ = (µ,Σ), comprising mean µ ∈ Rny and covariance matrix Σ ∈
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Rny×ny . This yields

ϕs = (µs,Σs) = gϕ((mx
s ,C

x
s ), ξs,u) = (my

s ,C
y
s + Γ) , (6)

including measurement noise Γ, which is generally assumed to be the same for all subpopulations.

2.1.1 Calibration of the hierarchical population model

The parameters of the model, including relative subpopulation sizes ws, subpopulation parameters
ξs and parameters for the measurement noise need to be estimated from data. For this, we denote
the overall parameter object by θ (see Appendix D.1 for an example). The model is calibrated by
maximizing the likelihood function,

L (θ) =
∏
k,c

∑
s

ws (tk,θ,u)φ (ȳck|ϕs(tk,θ,u)) (7)

with żs = gz (zs, ξs(θ),u) , zs(0) = z0 (ξs(θ),u) ,

ϕs = gϕ (zs, ξs(θ),u) .

This can efficiently be done by multi-start local optimization employing the gradient of the like-
lihood function (Raue et al., 2013; Loos et al., 2016). In the following, we provide the likelihood
functions for several distribution assumptions which can be incorporated into the hierarchical pop-
ulation model. For each distribution, we derive the function gϕ introduced in (4), which maps the
mean and covariances of the species to the distribution parameters ϕs.

2.2 Alternative distribution assumptions for the hierarchical population
model

We considered two alternatives to the normal distribution: the skew normal and the Student’s t
distribution (Fig. 2) (see Appendix B for a third distribution, the negative binomial distribution).
In the following, we discuss these distributions and provide the equations which are required to
incorporate the distributions in the hierarchical population model.

2.2.1 Multivariate skew normal distribution

A challenge in the analysis of single-cell data is that the observed cell population is often skewed
(Pyne et al., 2009). Therefore, distributions which account for skewness are often employed in
the analysis of, e.g., flow cytometry data (Johnsson et al., 2016). The multivariate skew normal
distribution has distribution parameters ϕ = (µ,Σ, δ), with location µ ∈ Rny , covariance matrix
Σ ∈ Rny×ny and skew parameter δ ∈ Rny . The probability density function is

φskewnorm(ȳ|ϕ) = 2φnorm(ȳ|µ,Ω)Φnorm(α(ȳ − µ)|0, 1) , (8)

with Ω = Σ + δδT , α = δTΩ−1/(1 − δTΩ−1δ)
1
2 ∈ R1×ny and Φnorm denoting the cumulative

distribution function of a univariate standard normal distribution. If δ = 0, the distribution equals
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a multivariate normal distribution. As provided by Pyne et al. (2009) and Sahu et al. (2003), the
mean and covariance matrix of the multivariate skew normal distribution are

m = µ+

√
2

π
δ ,

C = Σ +

(
1− 2

π

)
δδT .

(9)

This yields for ϕs(θ) = (µs(θ),Σs(θ), δ(θ)) the relation

µs(θ) = my
s(θ)−

√
2

π
δ(θ) ,

Σs(θ) = Cy
s(θ)−

(
1− 2

π

)
δ(θ)δ(θ)T + Γ(θ) ,

(10)

with measurement noise matrix Γ. The entries of the skew parameter vector δ are allowed to differ
in each dimension. However, they are restricted in a way that Σs needs to be positive definite.
The derivatives of the probability density (8) and the distribution parameters (10) are provided in
Appendix A.2.

2.2.2 Multivariate Student’s t distribution

The Student’s t distribution is often employed as a robust alternative to the normal distribution
in regression (Lange et al., 1989), modeling of population-average data (Maier et al., 2017), and
in the analysis of single-cell data (Lo et al., 2008; Pyne et al., 2009; Ding et al., 2019). The tails
of the Student’s t distribution are heavier than the tails of a normal distribution, and thus the
distribution can better cope with outliers in the data. The multivariate Student’s t distribution
has distribution parameters ϕ = (µ,Σ, ν) with location µ ∈ Rny , shape matrix Σ ∈ Rny×ny and
degree of freedom ν ∈ R+. The probability density function reads

φstud(ȳ|ϕ) =
Γ(

ν+ny
2 )|Σ|− 1

2

(πν)
ny
2 Γ(ν2 )

(
1 + 1

ν (ȳ − µ)TΣ−1(ȳ − µ)
) ν+ny

2

. (11)

For ν > 2, the mean and covariance matrix of the multivariate Student’s t distribution are given
by

m = µ ,

C =
ν

ν − 2
Σ .

(12)

This yields ϕs(θ) = (µs(θ),Σs(θ), ν(θ)) with

µs(θ) = my
s(θ) ,

Σs(θ) =
ν(θ)− 2

ν(θ)
Cy
s(θ) + Γ(θ) .

(13)

For ν → ∞, the Student’s t distribution equals a normal distribution. The derivatives of the
probability density (11) and the distribution parameters (13) are provided in Appendix A.3.
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Figure 2: Distributions assumptions for the hierarchical population model. The visual-
ized distributions (normal, skew normal and Student’s t) for ȳ ∈ R+ have mean m = 50
and variance C = 60. The skew normal and Student’s t distributions are visualized for
different skewness parameters δ and degree of freedom ν, respectively.

3 Results

3.1 Evaluation of influence of distribution assumptions for simulated data

To assess the performance of model calibration under the different distribution assumptions in the
hierarchical population model, we simulated data for three different motifs: a conversion process,
a two-stage gene expression and a birth-death process (Fig. 3 and Appendix D). The first motif
is frequently found in signal transduction networks, and the last two motifs models are commonly
used for the description of gene expression. In this study, we assumed that the cell population
comprises two subpopulations and that the true underlying difference between the subpopulations
is known in the hierarchical population models. However, the hierarchical population model is able
to describe more than two subpopulations and the number of subpopulations could be inferred by
performing model selection.

All systems were assumed to be in steady state before the stimulus u was added at time point 0.
However, this is not required by the hierarchical population model. For each motif, we chose three
parameter vectors, three numbers of time points and four numbers of cells per time point (50,
100, 500, 1000). This yielded 108 data sets which were simulated using the stochastic simulation
algorithm (Gillespie, 1977). The differences in the measurements for cells within a subpopulation
arose solely due to intrinsic noise and no additional measurement noise was added to the data.

We perturbed the data according to different outlier scenarios (Fig. 4):

• No outliers: no outliers were included in the data.

• Zeros: the measured concentration at a certain time point tk is zero, e.g., due to a missing
label or entry or a dropout event (Luecken and Theis, 2019). Consequently, we measured
ȳj = 0 for randomly chosen cells.

• Doublets: one measurement includes the summed information of two cells, e.g., due to
wrongly measuring two cells instead of one. As a simplified simulation approach, the mea-
sured value of randomly chosen cell was doubled.

• Uniform: the measurement does not carry any information. Randomly chosen cells have
uniformly distributed values in a defined regime (C.21) instead of the real measurement.
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Figure 3: Three motifs for the simulation study. We considered a conversion process, a
two-stage gene expression and a birth-death process. For each motif, we assumed two
subpopulations which differ in their response to stimulus u. All other reaction rate
constants were assumed to be homogeneous, i.e., the same for all cells.
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Figure 4: Outlier scenarios for single-cell snapshot data. (A) Example data sets of a con-
version process with (B) corresponding fits with different distribution assumptions. The
arrows in (A) illustrate the outlier-generating mechanisms.

In this simulation study, the deviation between the biological quantity and the mean of the quantity
for a subpopulation arises due to intrinsic noise. The discrepancy between the true biological
quantity and the measurement only arises due to the outlier-generating process. The amount of
outliers in the data has a different influence for the different scenarios. The introduction of zero
measurements is, for example, a bigger perturbation of the data as the uniform scenario. To obtain
a comparable perturbation, we used different percentages of outliers for the scenarios and assumed
2%, 5% and 10% of the cells to be outliers for scenarios zeros, doublets, and uniform, respectively.

We calibrated the hierarchical population models based on all data sets for the different distribution
assumptions with 30 optimization runs which were started at randomly chosen parameter values.
For this simulation study, the measurements were count data and the continuous distributions
were evaluated for the untransformed measured counts. The subpopulation sizes were fitted in
linear space and the parameters required for the simulation of the statistical moments in log10

space. We assumed the true underlying sources of heterogeneity to be known and allowed for
measurement noise. The moments of the subpopulations were obtained using the moment-closure
approximation.

The fits for the different distribution assumptions are shown for three example data sets in Fig. 4B.
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Figure 5: Results for the simulation study. Comparison of (A) ∆BIC values, (B) MSE, (C)
CPU time per optimization start and (D) number of converged starts for the distribution
assumptions for the motifs conversion process, two-stage gene expression and birth-death
process. We considered outlier-free and outlier-corrupted data. For no outliers, each
boxplot in (C) has 1080 points (36 data sets and 30 optimization runs) and the other
boxplots (A, B, D) comprise 36 points. The subplots for with outliers comprise the results
of all three outlier scenarios. For with outliers, each boxplot in (C) has 3240 points (3
outlier scenarios, 36 data sets, 30 optimization runs) and the other boxplots (A, B, D)
comprise 108 points.

All distributions accurately fitted the data for the uniform outlier scenario. However, for the
zeros and doublets scenarios, only the Student’s t distribution was not deviated by the outliers,
potentially because it has the heaviest tails of the considered distributions.

In the following comparison of the distributions, we only distinguished between the motifs and the
absence or presence of outliers. The data sets corresponding to different parameter values, time
points, number of cells and outlier scenarios were merged. The comparison of the individual outlier
scenarios is displayed in Appendix Fig. D1.

To compare the different models quantitatively, we used the Bayesian Information Criterion (BIC)
(Schwarz, 1978),

BIC = −2 logL(θ) + log(nD)nθ , (14)

with nD denoting the number of data points and nθ denoting the number of parameters. As
lower BIC values are preferable (Schwarz, 1978), the BIC rewards high likelihood values and
penalizes model complexity. As an alternative, the Akaike Information Criterion (AIC) could be
used (Akaike, 1973). We compared the differences in BIC values to the minimal BIC value found
for the given data set (=∆BIC) (Fig. 5A). In the case of outlier-free data, the best distribution
assumption differed between the studied motifs. For the conversion process the normal distribution
was most appropriate, while for the two-stage gene expression and the birth-death motif the normal
and the skew normal distribution achieved low BIC values. As soon as outliers were introduced to
the data, the Student’s t distribution provided in average the lowest BIC value for all considered
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motifs and was therefore selected as most suited model.

The mean squared error (MSE) provides a measure for the accuracy of the parameter estimates:

MSE
[
θ̂,θtrue

]
= E

[∑
i

(
θ̂i − θtrue

i

)2
]
. (15)

A small (norm of the) MSE indicates a good agreement of the true and estimated parameters. A
high MSE indicates a large difference to the true parameters, which in turn might distort model
predictions and the capability of the model to provide correct insights into the underlying system of
study. We considered the MSE in the logarithmic/linear space in which the parameters were fitted
and summed the errors of the parameter estimates to obtain a single value for each data set and
distribution. The true parameters which were used to generate the data for the simulation study
are known, and we compared the MSEs of the parameter estimates obtained with the different
models (Fig. 5B). For the cases of no-outliers, the MSE for all distributions were similar. In the
presence of outliers, the Student’s t distribution still provided low MSEs which were comparable
to the those obtained in the outlier-free scenario. The MSE obtained by the normal and skew
normal distribution increased in the presence of outliers. The skew normal distribution provided
slightly more robust results, i.e., lower MSEs, than the normal distribution. High MSEs do not
necessarily result in deviations of the output of the model, e.g., if the output is insensitive to these
parameters. Thus, we compared the model outputs for the parameters which were obtained for
the outlier-corrupted data to the original, no-outlier data (Appendix Fig. D1E). We found that
the Student’s t distribution consistently outperformed the other distributions.

A further important aspect to consider is the robustness and efficiency of model calibration. Of-
ten many models which represent different biological hypotheses need to be calibrated. These
hypotheses could include different sources of heterogeneity or different numbers of subpopulations.
Therefore, the optimization of each individual model should be fast and robust. To assess the
performance of model calibration using the distribution assumptions, we considered the compu-
tation time and number of converged starts (Fig. 5C-D). We considered an optimizer start to be
converged, if the difference between the obtained log-likelihood value and the best log-likelihood
function for this distribution assumption and the considered motif is below 10−3. For most of the
here considered motifs and data sets the computation time and convergence were not substantially
influenced by the presence of outliers. On average, the normal distribution required the lowest
computation time. An explanation for this could be that the optimization problem using this dis-
tribution is lower than the problem using the skew normal and the Student’s t distribution, since
no additional parameters were estimated from the data. In terms of converged starts, we observed
some differences between the considered motifs. For all motifs and scenarios the skew normal
distribution provided the lowest number of converged starts, while the normal and Student’s t
distribution did not suffer from convergence problems.

The simulation study showed that the consideration of alternative distribution assumptions was
beneficial and the normal distribution was often outperformed by the other distributions. The
heavier tails of the distributions allowed for a compensation of the outliers in the data, but did
not generate substantial computational overhead in the outlier-free case. Overall, the Student’s t
distribution provided reliable parameter estimates, the overall closest predictions to the original
no-outlier data and, at the same time, enabled an efficient calibration of the corresponding model.
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3.2 NGF-induced Erk1/2 signaling

To test the distributions in a real application setting, we reanalyzed the data and hierarchical
population model studied in (Loos et al., 2018). The model describes binding of NGF to its
receptor TrkA, which then induces the phosphorylation of Erk1/2 (Fig. 6A), an important process
involved in pain sensitization. The measurements were obtained from primary sensory neurons
using fluorescent microscopy. For more details on the model and data, we refer to Loos et al.
(2018).

For this analysis, we log-transformed the simulation and data. For the Student’s t distribution we
assumed that one parameter for the degree of freedom was shared across the dimensions, yielding
one additional parameter. For the skew normal distribution, each dimension is allowed to have
different skewness parameters, yielding two parameters more than the normal distribution. Cali-
brating the hierarchical population models, we found that for the univariate data of the pErk1/2
kinetics, the model fits cannot visually be distinguished (Fig. 6B and Fig. D2). The skew normal
distribution fitted the bivariate data the best (Fig. 6C,D and Fig. D2). We could not assess the
MSE since the true parameters are not known. Visualizing the likelihood waterfall plots (Fig. 6D)
and analyzing the performance of the optimization (Fig. 6E), we found that the Student’s t distri-
bution substantially outperformed the other distributions in terms of converged optimizer starts
(per minute). Interestingly, the skew normal which showed bad convergence for the simulation
study even had a higher convergence than the normal distribution for this application problem.
The skew normal provided the best likelihood and BIC value. An explanation for why the skew
normal distribution was chosen over the other distributions could be a skewed distribution of Erk
levels arising from biological variability rather than noise or outliers. However, the hierarchical
population model uses a single distribution assumption for the combined influence of cell-to-cell
variability, measurement noise and outliers. Accordingly, if the distribution assumptions allow for
skewness, the skewness can arise from any of the properties. To summarize, the incorporation of
the alternative distribution assumptions into the hierarchical population model demonstrated their
robustness and efficiency not only for the simulation study, but also for the considered experimental
data set. Thus, the distribution assumptions seem also promising for real experimental data and
future work should include the evaluation of the distributions for more experimental data.

4 Discussion

The hierarchical population model is a suitable tool for studying cellular heterogeneity, but it re-
quires appropriate distribution assumptions for the cellular subpopulations. Here, we incorporated
various distributions for the subpopulations and provided the equations to perform gradient-based
model calibration. Gradient-based calibration has previously has been shown to be highly efficient
for the considered model class (e.g., Loos et al. (2016)) and, thus, also enhances optimization-
based uncertainty analysis using profile likelihoods (Raue et al., 2009). This efficiency of model
calibration is especially important when a large number of hierarchical population models, which
represent different hypothesis such as differences between or number of subpopulations, needs to
be compared. Furthermore, we studied the influence of the choice of distribution on the estimation
results and the performance of model calibration for artificial and real experimental data.
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Figure 6: Robust distributions for NGF-induced Erk1/2 signaling. (A) Model for NGF-
induced Erk1/2 signaling. (B,C) Data and model fits for (A) univariate measurements of
pErk1/2 levels and (C) bivariate measurements for pErk/TrkA and pErk/Erk levels. (D)
Likelihood waterfall plot for the three different distribution assumptions. The best 80
values are shown and in total 500 optimization runs started at randomly drawn parameter
values were performed. (E) The performance of the optimization measured as number
of converged starts per minute.

Differences in measurements of single-cell arise due to various factors: biological variability, mea-
surement noise and the outlier-generating mechanisms. The distribution incorporated in the hier-
archical population model ideally should capture all these factors. Here, we found that the normal
distribution assumption is often appropriate when the biological variability yields a normal dis-
tribution of the subpopulations and additionally a limited number of outliers is to be expected.
However, the biological variability might not always yield a normal distribution of the subpopu-
lations. This was observed in the experimental data of the primary sensory neurons and suggests
that the best choice of distribution highly depends on the particular application problem. This
motivates the use and comparison of alternative distributions also when no outliers are present
in the data. If the data is outlier-corrupted, alternatives such as the skew normal or Student’s t
distribution are more reasonable. The Student’s t distribution provided reliable results when the
data is outlier-free and could be considered as default distribution assumption. If more information
is available about the precise type of outliers, e.g., if they arise due to dropout events in scRNA-seq
data, computational methods can be adapted accordingly (Pierson and Yau, 2015; Eraslan et al.,
2019). While the Student’s t distribution suffered from problems of over-fitting in the case of
population-average data (Maier et al., 2017), the number of measurements in single-cell data sets
is usually much higher and we do not expect to face the same problems as for population-average
data.

Other distributions could be incorporated into the hierarchical population model, given that their
mean and covariance are finite and an analytical gradient can be provided. To allow for differ-
ent degrees of freedom in multivariate measurements, a t copula could be employed (Luo and
Shevchenko, 2010). Also, a skewed version of the Student’s t distribution as, e.g., used by Pyne
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et al. (2009) could be incorporated. The log-normal distribution could easily be incorporated by
transforming the observable. In this case, a constant factor needs to be added to the BIC value
when performing model selection.

In summary, we introduced the use of different distribution assumptions for the hierarchical popu-
lation model and evaluated their performance. Our results on simulation and application examples
suggested that these distribution assumptions substantially improve the hierarchical population
model and the reliability of its results, and, thus, enhance the study of cellular heterogeneity.

Implementation and code availability

The alternative distribution assumptions are implemented in the MATLAB toolbox ODEMM (Loos
et al., 2018) available under https://github.com/ICB-DCM/ODEMM. The model calibration was
performed using the toolbox PESTO (Stapor et al., 2018). The ODE models were simulated using
the toolbox AMICI (Fröhlich et al., 2017). The sigma-point approximation was obtained by the
SPToolbox. These toolboxes can be found under https://github.com/ICB-DCM. For the moment-
closure approximation, we employed the toolbox CERENA (Kazeroonian et al., 2016) available
under https://cerenadevelopers.github.io/CERENA/. The whole analysis was performed using
MATLAB 2017b. The code to reproduce the results of this study is available under http://doi.
org/10.5281/zenodo.3354136.
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A Gradient of the likelihood functions

A.1 Multivariate normal distribution

The probability density function for the multivariate normal distribution is defined in (5). The
log-density function is given by

log φnorm(ȳ|µ,Σ) = −1

2

(
ny log (2π) + log(det Σ) + (ȳ − µ)

T
Σ−1 (ȳ − µ)

)
. (A.16)

Assuming that the distribution parameters depend on parameter vector θ, the derivative of the
multivariate normal density is given by

∂ log φnorm (ȳ|ϕ(θ))

∂θi
=− 1

2

(
Tr
(

(Σ(θ))
−1 ∂Σ(θ)

∂θi

)
+ (µ(θ)− ȳ)

T
Σ(θ)−1

(
∂µ(θ)

∂θi

)T
+

(
∂µ(θ)

∂θi

)T
Σ(θ)−1 (µ(θ)− ȳ) + (µ(θ)− ȳ)

T ∂Σ(θ)−1

∂θi
(µ(θ)− ȳ)

)
,

(A.17)

with derivatives for the distribution parameters for subpopulation s

∂µs(θ)

∂θi
=
∂my

s(θ)

∂θi
,

∂Σs(θ)

∂θi
=
∂Cy

s(θ)

∂θi
+
∂Γ(θ)

∂θi
.

A.2 Multivariate skew normal distribution

The probability density function for the multivariate skew normal distribution is defined in (8).
The log-density function is given by

log φskewnorm(ȳ|ϕ) = log(2) + log φnorm(ȳ|µ,Ω) + log(Φnorm(α(ȳ − µ)|0, 1)) .

Assuming that the distribution parameters depend on parameter vector θ, the gradient is given
by

∂ log φskewnorm(ȳ|ϕ(θ))

∂θi
=
∂ log φnorm(ȳ|µ(θ),Ω(θ))

∂θi
+

1

Φ(α(θ)(ȳµ(θ)))
φnorm(α(θ)(ȳ − µ(θ))|0, 1) ·(

α(θ)
∂(ȳ − µ(θ))

∂θi
+ (ȳ − µ(θ))

∂α(θ)

∂θi

)
,
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with

∂α(θ)

∂θi
=

∂

∂θi

δ(θ)TΩ(θ)−1
(
1− δ(θ)TΩ(θ)−1δ(θ)

)− 1
2︸ ︷︷ ︸

a(θ)


=

(
∂δ(θ)T

∂θi
Ω(θ)−1 + δ(θ)T

∂Ω(θ)−1

∂θi

)
a(θ) + δ(θ)TΩ(θ)−1 ∂a(θ)

∂θi
,

∂Ω(θ)−1

∂θi
= −Ω(θ)−1 ∂Ω(θ)

∂θi
Ω(θ)−1

= −
(

Σ(θ) +
√
δ(θ)δ(θ)T

)−1
(
∂Σ(θ)

∂θi
+

1

2
(δ(θ)δ(θ)T )−

1
2 ·

(
∂δ(θ)

∂θi
δT + δ(θ)

∂δ(θ)T

∂θi
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·
(

Σ(θ) +
√
δ(θ)δ(θ)T

)−1

,

∂a(θ)

∂θi
=

1

2

(
1− δ(θ)TΩ(θ)−1δ(θ)

)− 3
2
∂δ(θ)TΩ(θ)−1δ(θ)

∂θi

=
1

2

(
1− δ(θ)TΩ(θ)−1δ(θ)

)− 3
2

(
∂δ(θ)T
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Ω(θ)−1δ(θ) +

δ(θ)T
(
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∂θi
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.

The derivatives for the distribution parameters (10) for subpopulation s are given by

∂µs(θ)

∂θi
=
∂my

s(θ)

∂θi
−
√

2

π

∂δ(θ)

∂θi
,

∂Σs(θ)

∂θi
=
∂Cy

s(θ)

∂θi
−
(

1− 2

π

)(
∂δ(θ)

∂θi
δ(θ)T + δ(θ)

∂δ(θ)T

∂θi

)
+
∂Γ(θ)

∂θi
.

A.3 Multivariate Student’s t distribution

The probability density function for the multivariate Student’s t distribution is defined in (11).

The log-density function is

log φstud(ȳ|ϕ) = log Γ

(
ν + ny

2

)
− log Γ

(ν
2

)
+ log(|Σ|− 1

2 )− ny
2

log(πν)− ν + ny
2

log

(
1 +

1

ν
Z

)
,

with Z = (ȳ − µ)TΣ−1(ȳ − µ). The gradient is given by

∂ log φstud(ȳ|ϕ(θ))

∂θi
=

1

2
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Ψ

(
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2

)
−Ψ

(
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2

)
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+
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− Tr
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with

∂Z(θ)

∂θi
=(y − µ(θ))TΣ(θ)−1

(
∂µ(θ)

∂θi

)T
+

(
∂µ(θ)

∂θi

)T
Σ(θ)−1(y − µ(θ)) +

(y − µ(θ))T
∂Σ(θ)−1

∂θi
(y − µ(θ)) ,

and digamma function denoted by Ψ.

The derivatives for the distribution parameters (13) for subpopulation s are

∂µs(θ)

∂θi
=
∂my

s(θ)

∂θi
,

∂Σs(θ)

∂θi
=
ν(θ)− 2

ν(θ)

∂Cy
s(θ)

∂θi
+ Cy

s(θ)
2

ν(θ)2

∂ν(θ)

∂θi
+
∂Γ(θ)

∂θi
.

B Negative binomial distribution

A further distribution assumption which is often employed in the analysis of single-cell data is
the negative binomial distribution (Grün et al., 2014; Amrhein et al., 2019), which is a count
distribution in contrast to the other distributions. For a two-stage model of gene expression,
the protein number in steady state follows a negative binomial distribution if the ratio of mRNA
degradation to protein degradation is high (Shahrezaei and Swain, 2008), or if the mRNA molecules
are produced in bursts (Amrhein et al., 2019). This distribution has the parameters ϕ = (τ, ρ) with
τ > 0 and ρ ∈ [0, 1]. We considered the univariate case and multivariate data could be modeled
by the product distribution which neglects correlations. The probability mass function reads

φnbin(ȳ|ϕ) =

(
ȳ + τ − 1

ȳ

)
(1− ρ)ȳρτ . (B.18)

The mean and variance of the negative binomial distribution are

m =
(1− ρ)τ

ρ
,

C =
(1− ρ)τ

ρ2
.

(B.19)

Thus, the distribution parameters ϕs(θ) = (ρs(θ), τs(θ)) are mapped to the moments via

ρs(θ) =
my
s(θ)

Cys (θ) + Γ(θ)
,

τs(θ) =
my
s(θ)2

Cys (θ) + Γ(θ)−my
s(θ)

.

(B.20)

The derivatives of the probability density (B.18) and the distribution parameters (B.20) are pro-
vided in Appendix B. For large τ , the negative binomial distribution approaches a normal distri-
bution.
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The log-density function reads

log φnbin(ȳ|ϕ) = log

((
ȳ + τ − 1

ȳ

)
(1− ρ)ȳρτ

)
= log(Γ(ȳ + τ))− log(Γ(ȳ + 1))− log(Γ(τ)) + ȳ log(1− ρ) + τ log(ρ) .

The derivative of the log-density function is

∂ log φnbin(ȳ|ϕ(θ))

∂θi
= Ψ(ȳ + τ(θ))

∂τ(θ)

∂θi
−Ψ(τ(θ))

∂τ(θ)

∂θi
−

y

1− ρ(θ)

∂ρ(θ)

∂θi
+
∂τ(θ)

∂θi
log(ρ(θ)) +

τ(θ)

ρ

∂ρ(θ)

∂θi
.

The derivatives of the distribution parameters (B.20) for subpopulation s are

∂ρs(θ)

∂θi
=

1

Cys (θ)

∂my
s(θ)

∂θi
− my

s(θ)

Cys (θ)

∂Cys (θ)

∂θi
,

∂τs(θ)

∂θi
=
my
s(θ)(2Cys (θ)−my

s(θ))

(Cys (θ)−my
s(θ))2

∂my
s(θ)

∂θi
− my

s(θ)2

(Cys (θ)−my
s(θ))2

∂Cys (θ)

∂θi
.

In contrast to the other distributions, the negative binomial distribution can not take into account
correlation structures between the dimensions of multivariate data. A multivariate extensions
which account for correlations was proposed by Shi and Valdez (2014).

C Uniform outlier scenario

In the uniform outlier scenario, the measured values of the outlier cells were assigned to the rounded
value of uniformly distributed values on the interval

[max(0,min
c

(ȳck)− 0.25 · I),max
c

(ȳck) + 0.25 · I] (C.21)

with I denoting the length of the interval without outliers.

D Models

D.1 Conversion process

The conversion process is described by the following reactions:

R1 : A→ B , rate = k1[A] ,

R2 : A→ B , rate = k2,su[A] ,

R3 : B→ A , rate = k3[B] .

Reaction R1 describes the basal conversion from A to B and reaction R2 the stimulus-dependent
conversion. The conversion from B to A, reaction R3, does not depend on stimulus u. We assumed
mass conservation with [A] + [B] = 1000.
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The moment-closure approximation provides the temporal evolution of the moments,

zs =


mx

1

mx
2

Cx11

Cx12

Cx11

 ,

with mx
1 denoting the mean of species A, mx

2 denoting the mean of species B and Cxij denoting the
corresponding entries of the covariance matrix. The measurement noise is defined as Γ = σnoise.
The subpopulation parameter vector for subpopulation s = 1, 2 is given by ξs = (βs,Ds) with

βs =


k1

k2,s

k3

σnoise


homogeneous ,
subpopulation variable ,
homogeneous ,
homogeneous ,

and Ds = 0.

The mapping gϕ introduced in (4) then encodes the mapping from the biochemical species A and
B to its observable B, as well as the mapping to the distribution parameters as in (6, 10, 13, B.20).
The overall parameter object which is estimated from the data is given by

θ = (k1, k2,1, k2,2, k3, σnoise) ,

for the normal distribution,

θ = (k1, k2,1, k2,2, k3, σnoise, δ) ,

for the skew normal distribution, and

θ = (k1, k2,1, k2,2, k3, σnoise, ν) ,

for the Student’s t distribution,

D.2 Two-stage gene expression

The two-stage gene expression is described by the following reactions:

R1 : ∅ → mA , rate = k1 ,

R2 : ∅ → mA , rate = k2,su ,

R3 : mA→ ∅ , rate = k3[mA] ,

R4 : mA→ mA + A , rate = k4[mA] ,

R5 : A→ ∅ , rate = k5[A] .

Reactions R1 and R2 describe the stimulus-independent and stimulus-dependent mRNA expres-
sion, respectively. Reaction R3 describes mRNA degradation, reaction R4 protein expression and
reaction R5 protein degradation.
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Figure D1: Results for the simulation study for the individual outlier scenarios. Com-
parison of (A) ∆BIC values, (B) MSE, (C) CPU time per optimization start and (D)
number of converged starts for the distribution assumptions for the motifs conversion
process, two-stage gene expression and birth-death process. Each boxplot in (C) has
1080 points (36 data sets and 30 optimization runs) and the other boxplots (A, B, D)
comprise 36 points. (E) The likelihood values were calculated for the no-outlier data
set using the parameters obtained for the outlier-corrupted data sets. The bars show
how often the corresponding distribution provided the best likelihood value. A higher
percentage indicates robustness against outliers.

D.3 Birth-death process

The birth-death process is described by the following reactions:

R1 : ∅ → A , rate = k1 ,

R2 : ∅ → A , rate = k2,su ,

R3 : A→ ∅ , rate = k3[A] .

Reactions R1 and R2 describe the stimulus-independent and stimulus-dependent production of A
and reaction R3 its degradation.

D.4 NGF-induced Erk1/2 signaling

We used the model proposed in Loos et al. (2018), assuming cell-to-cell variability in total Erk1/2
levels and inter- and intra-subpopulation variability in cellular TrkA activity. The moments of the
system were obtained using the sigma-point approximation. The whole data set with the model
fits is shown in Fig. D2.
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Figure D2: Data and model fits for NGF-induced Erk1/2 signaling. pErk1/2 kinetics and
dose responses, and multivariate measurements of pErk/TrkA levels and pErk/Erk
levels. The upper rows illustrate the data together with a kernel density estimate.
The bottom rows visualize the data together with the contour lines of the hierarchical
models.
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