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ABSTRACT  12 

In natural environments, cells live in complex communities and experience a high degree of 13 

heterogeneity internally and in the environment. Unfortunately, most of the metabolic modeling 14 

approaches that are currently used assume ideal conditions and that each cell is identical, limiting 15 

their application to pure cultures in well-mixed vessels. Here we describe our development of 16 

MultIscale MultiObjective Systems Analysis (MIMOSA), a metabolic modeling approach that can 17 

track individual cells in both space and time, track the diffusion of nutrients and light and the 18 

interaction of cells with each other and the environment. As a proof-of concept study, we used 19 

MIMOSA to model the growth of Trichodesmium erythraeum, a filamentous diazotrophic 20 

cyanobacterium which has cells with two distinct metabolic modes. The use of MIMOSA 21 

significantly improves our ability to predictively model metabolic changes and phenotype in more 22 

complex cell cultures.  23 
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BACKGROUND 27 

Microbes live in complex communities where they must interact with other organisms and compete 28 

for resources to thrive. By leveraging the capabilities of each individual in the community, 29 

consortia can achieve outcomes that are not possible by any one individual species. Metabolic 30 

engineers are learning from nature and are engineering synthetic consortia to take advantage of 31 

endogenous capabilities of specialists to achieve higher yields than pure cultures. One tool that has 32 

been used extensively to aide in the rational design of strains are metabolic models (11). The most 33 

widely used stoichiometric metabolic models are constraint-based linear programming models 34 

which vary in complexity from the relatively simple flux balance analysis (FBA) to more complex 35 

FBA models which integrate regulatory and/or thermodynamic constraints (12, 13) or time-36 

dependent responses (14). The wide use of these models is due to the ease of constructing them; 37 

access to the genome sequence is enough to build a draft metabolic network. The simplicity of this 38 

technique does come at a cost: typical model formulations are limited to modeling steady-state 39 

growth of axenic cultures assuming homogenous environmental conditions; while this works for 40 

traditional metabolic engineering efforts on single species, it cannot accurately predict the behavior 41 

of consortia. There have been a few attempts to expand the applicability of these models to 42 

communities (3, 14, 15), but these models require assumptions that oversimplify the system, such 43 

as no diffusional limitations and identical or static growth rates for the different organisms. The 44 

current benchmarks for constraints-based metabolic modeling of microbial consortia are OptCom 45 

(16) and d-OptCom (17) (OptCom’s dynamic version). These approaches use inner and outer 46 
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linear optimization problems to satisfy species and community level objectives, leveraging the 47 

inner solution as a constraint for the outer problem. However, this approach still relies on a priori 48 

determination of relative objective preference as well as predetermination of both species-level 49 

and community-level objectives. Additionally, cells are treated as homogenous spatial groups (13) 50 

or homogenous species groups (14), which limits the accurate simulation of cells acting 51 

individually, interacting with their environment, and ultimately forming communities. These 52 

approaches thus discount the complexity of individual cells forming communities and, instead of 53 

acting uniformly with neighbors or species, create dynamic intercellular and inter-environmental 54 

reactions (13, 18-20).  55 

 56 

To more accurately model the complexity of community growth, a new modeling approach must 57 

be developed. We have developed MultIscale MultiObjective Systems Analysis (MIMOSA), an 58 

advanced metabolic modeling framework for complex systems. This approach uses a multi-scale 59 

multi-paradigm metabolic modeling approach can leverage simple, powerful stoichiometric 60 

metabolic models and integrate spatio-temporal tracking of cells, nutrient diffusion, cell-cell 61 

interactions and cell-environmental interactions. This approach requires the use of both continuous 62 

and discrete variables as well as several different mathematical formalisms to reflect the multilevel 63 

behavior in populations. Therefore, we use an agent-based modeling (ABM) framework to allow 64 

direct interaction of different levels through the encapsulation of physiological, environmental, 65 

and metabolic models. ABM is a bottom-up modeling approach; the model is made up of a set of 66 

agents, which are allowed to act independently as long as they follow distinct rules of behavior 67 

defined by the user, this allows us to simulate emergent behavior of complex communities that 68 

arise from individual agent behaviors (21-24). The system behavior emerges as a result of the 69 
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many (tens, hundreds, thousands, millions) individuals, each following their own behavior rules, 70 

living in a defined environment, interacting with each other and the environment (22). The 71 

integration of multiple modeling formalisms to represent disparate sub-systems is a trend common 72 

in engineering and science domains (25-29) and has recently seen some developments in the 73 

systems biology area (5, 30). Agent-based modeling has been previously applied to both 74 

intercellular (12, 31) and multi-cellular processes (32, 33) but has not previously been used to 75 

model metabolic fluxes. This multi-scale multi-paradigm approach represents a novel method of 76 

integrating individuals (through agents) with previously leveraged dFBA formulations (34, 35), 77 

thereby discretizing and separating variables for computational efficient solutions with low a 78 

priori knowledge. 79 

 80 

As a proof-of-concept study, we chose to model Trichodesmium erythraeum, a filamentous 81 

diazotrophic cyanobacterium. T. erythraeum is a major contributor to the global nitrogen cycle; it 82 

is responsible for fixing an estimated 42% of all marine biological nitrogen (36) and it leaks  20-83 

50% of the nitrogen it fixes (37), providing surrounding organisms with a biologically available 84 

nitrogen source. Unlike other diazotrophs, which either spatially or temporally separate the oxygen 85 

sensitive nitrogenase enzyme from the water splitting reaction of photosynthesis (oxygen 86 

production), T. erythraeum is unique because it simultaneously carries out nitrogen and carbon 87 

fixation during the day in different cells along the same filament (trichome). Therefore, it is the 88 

ideal model system for the development of MIMOSA: it has structurally identical cells that operate 89 

in two distinct metabolic modes (photoautotrophic and diazotrophic), a published genome scale 90 

model (3), transcriptome data, and a plethora of in situ and laboratory data to both train the model 91 

and validate predictions. We use this organism as a test-case for the modeling framework and 92 
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illustrate how it can be used to develop a predictive model that can also be used to investigate 93 

cellular physiology by elucidating rules of behavior.  94 

 95 

 
Figure 1. Multi-Scale Multi-Paradigm Model Generation. Before this process, the model generates an average 
scalar equation by fitting the organism’s Pareto Front to experimental data using the ATP hydrolysis maintenance 
reaction as further elucidated in Methods. Then, starting from the top and progressing with the arrows (clockwise): 
The multi-objective Pareto Front is corrected for environmental variables and cellular preferences using a 
weighting algorithm and assuming a normally distributed cell biomass (more detail in Methods). The corrected 
biomass equation is solved, individually, for each cell subject to existing constraints, a steady state over each time 
step, an appropriate maintenance ATP flux, and a scalar objective function for which all coefficients add to one. 
This is interpreted using the agent-based model to make individual cell and physiological decisions including 1) 
whether the cell should die, 2) whether the cell should reproduce (and if it does, what type of cell does it 
differentiate into), and 3) how it should interact with the environment and other cells. These interactions inform 
the status of the other cells (using an intrafilamental diffusion mechanism) and the environment (modeled with the 
same diffusion mechanism for CO2, N2, organic, and fixed nitrogen products, and assuming excesses of other 
media components). The iteration restarts with the objective equation updating each living cell (whether newly 
reproduced or previously established) based on the cell’s current metabolic state. 
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RESULTS 96 

Model Formulation. We developed MIMOSA by integrating an updated version of the genome-97 

scale metabolic model (3) (Table S1 for updated reactions) with nutrient diffusion, light diffusion, 98 

cell/cell interaction and cell/environment interactions (see Figure 1) using an agent based modeling 99 

framework.  We have also implemented the use of multiobjective optimization to account for the 100 

dual cellular objective of producing biomass and the metabolite which is transacted between cells 101 

(glycogen or β-aspartyl arginine, depending on cell type). Constraints were imposed on the model 102 

as reported previously (3) with two notable exceptions. First, the ultimate product of nitrogen 103 

fixation was changed from ammonium to β-aspartyl arginine, which is the monomer used to create 104 

cyanophycin, a nitrogen storage polymer in T. erythraeum and other diazotrophic cyanobacteria 105 

(38-40). Second, the two major storage polymers, glycogen (modeled as maltose, or two linked 106 

glucoses) and cyanophycin (modeled as β-aspartyl arginine), were decoupled from the biomass 107 

formation equation so that they could freely accumulate or be metabolized. More detail about the 108 

formulation of the model is provided in Methods and Supplemental Text. 109 

 110 

Tracking Changing Cellular Objectives. MIMOSA evaluates the cellular objective for each cell 111 

for each time step based on the changing environmental conditions. As an example of this, we 112 

have tracked how the Pareto front changes for both photoautotrophic and diazotrophic cells over 113 

time (Figure 2). With increasing time, diazotrophs shift their objective away from biomass toward 114 

the production of cyanophycin as carbon becomes more available (Figure 2A). In contrast, 115 

photoautotrophic cells see a maximum production of glycogen at 9 hours after the onset of light 116 

and then their productivity decreases (Figure 2B). It is notable that every cell in the population is 117 

performing these decisions in parallel and Figure 2 is for a single representative cell of each cell 118 
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type. Cell optimization changed based on environmental conditions and agent rules and the Pareto 119 

Fronts representing this behavior in these contexts is visualized in Fig. S1. 120 

 121 

 122 

Model Validation. In order to test the predictive accuracy of the model, we predicted growth rate 123 

for a variety of different light intensities (Figure 3A) and compared to other published models for 124 

T. erythraeum (1, 2) as well as other experimentally measured growth rates (1, 3, 6, 9, 10, 41) 125 

exhibiting light saturation at higher light intensities. Ultimately, our model is a metabolic model, 126 

so it is important that it can also capture the metabolic changes that occur in response to changes 127 

in the environment. Therefore, we compared predictions of biomass changes to data collected in 128 

our laboratory for growth in different light intensities (see Figure 3B). The model was trained on 129 

 
Figure 2. Pareto Front Progression and Selected Scalar Equation Points over the Light Period in Different 
Conditions for (A) a diazotrophic cell and (B) a photoautotrophic cell. Each line corresponds to a Pareto Front 
generated every 3 hours over the course of the light period at the start (blue, solid) through the end (purple, solid-
dot) with the point selected by the simulation to best suit cell needs in the scalar objective function indicated. 
Simulations were run with atmospheric conditions, 100 𝜇𝜇E light, and YBC-II media with 150 cells over 10 
filaments with a ratio of 4:11 diazotrophs to photoautotrophs. 
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data collected in 100 µE light and was validated with data collect in 50 µE light over a twelve-130 

hour light period. 131 

 132 

Cells Alter Their Microenvironment. An advantage of the modeling approach we have 133 

developed is that we can track nutrients in the environment. Carbon dioxide (CO2) is typically the 134 

limiting substrate in aquatic photosynthetic growth due to low ambient concentrations and low 135 

solubility; for ambient CO2, Henry’s law defines an equilibrium concentration of 2.3 µM in the 136 

ocean. It is well known that photosynthetic microorganisms use carbon concentrating mechanisms 137 

(CCM) to concentrate CO2 near the carbon fixing enzyme, ribulose-1,5- bisphosphate 138 

carboxlyase/oxygenase (RuBisCO) to overcome low selectivity (42); our simulations imply that 139 

cells also increase the local concentration of CO2 immediately surrounding the cell (Figure 4A) 140 

  
Figure 3. Simulation versus experimental data for model validation. (A) Growth rate as a function of light 
intensity in T. erythraeum; here we compare the predictions of growth rate from our model to two published 
models (1, 2) and experimental data reported from a variety of literature values (3-10). Error bars represent the 
error propagated when finding the mean of all separately recorded growth rates in similar conditions (YBC-II 
media, atmospheric CO2, no added nitrogen, and equivalent light intensity) using standard Euclidean error 
propagation. (B) Experimentally measured changes (black circles) in biomass accumulation for cells grown in 100 
μE (B for cyanophycin and D for glycogen) and 50 μE (C for cyanophycin and E for glycogen) compared to 
simulated values (blue lines). Error bars on the glycogen and cyanophycin measurements represent one standard 
deviation for three biological replicates.     
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and the release of nitrogen to the media including at more frequent time steps (Figure 4B). The 141 

simulation covers 150 cells and 10 filaments in a model 0.625 mm3 environment, corresponding 142 

to a filament density of 16 × 106 trichomes m-3, well within the in situ ranges of free trichome 143 

density (43). This illustrates that the simulation corresponds well quantitatively to realistic local 144 

environments. At the end of our simulation, the cells on average can create a microenvironment 145 

that is roughly 2 fold higher in CO2 than the surrounding ocean. By looking at flux through major 146 

pathways, it appears that the CO2 is derived from high fluxes through the oxidative PPP and TCA 147 

Cycle in diazotrophic cells (Figure 5).   148 

 149 

Modeling a Heterogeneous Cell Population. One of the main advantages of this new modeling 150 

approach is that individual cells can be tracked in space and time so the heterogeneity of the 151 

population can be quantified (in terms of metabolic flux distributions). As an example, we tracked 152 

 
Figure 4. Cellular Interactions with the Local Environment. A) Local concentrations of CO2 in media 
surrounding cells. Blue line is mean ± 1 standard deviation, green line is maximum concentration in any ocean 
gridspace, orange is minimum concentration in any ocean gridspace, and the black line is the recorded mean 
oceanic concentration. 150 cells are present in the simulation in 625 square, 100𝜇𝜇m ocean gridcells with a 
maximum count of 25 cells gridcell-1 and a mean count of 0.302 ± 1.5 cells gridcell-1. B) Nitrogen release in a 
rough time step (0.5 hour) and a finer time step (0.1 hour) context allowing for investigation into more specific 
time periods while reducing computational load through state recapture. 
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150 cells over a 12-hour time period with time steps of 6 seconds which results in a total of 18,000 153 

metabolic flux maps. Since this is an overwhelming amount of data to visualize, we have chosen 154 

to focus on a few representative flux maps (see Figure 5). In the left column, we track how the 155 

ammonium composition of the environment surrounding the cells changes with time from the 156 

initial seeding of cells at 0 hours to the middle of the daytime period (6 hours) to right before the 157 

onset of night (12 hours). These panels depict the release of ammonium into the environment as 158 

time progresses, and it is higher in areas where the cell density is highest. This agrees well with in 159 

situ data which reports that T. erythraeum leaks 30-50% of the nitrogen it fixes (37); our 160 

simulations predict that approximately 20% of the nitrogen fixed by the community is excreted 161 

into the medium. It is also important to note that the majority of ammonium is released by the cells 162 

in the second half of the day; during the first 6 hours, the cells release a total of 1.28 μmoles 163 

compared to 4.61 μmoles in the last six hours of the day. Again, this agrees with previous literature 164 

reports that the rate of nitrogen fixation peaks at midday (44), therefore we would expect more 165 

secretion of ammonium after peak nitrogenase activity. Select flux maps of cells growing in areas 166 

of low ammonium (top), medium ammonium (middle) and high ammonium (bottom) are depicted 167 

in the middle column of Figure 5. At the beginning of the simulations, cells are seeded in an 168 

environment that is identical to the defined marine medium YBC-II and because of this, they have 169 

identical flux maps as shown by the distribution graph in the right column. At time 0, we have a 170 

bimodal distribution because there are two cell types: photoautotrophic and diazotrophic. 171 

Photoautotrophic cells have high flux through the Calvin Cycle and the diazotrophic cells are 172 

operating in a more respiratory mode, with high flux through both the oxidative PPP and TCA 173 

Cycle. As the cells grow and start to experience more heterogeneity in their environment, they 174 

respond by differentiating their metabolism within the filament (Figure S2). First, this is evident 175 
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in the frequency distribution plot, where they are both diverging in terms of total metabolic flux 176 

distributions and moving toward achieving optimal flux in terms of the objective function for both 177 

t = 6 hours and t = 12 hours. By comparing the changes that occurs in metabolic flux between areas 178 

of low, medium, and high ammonium, we can learn a few things about cellular physiology. In all 179 

cases, photoautotrophic cells have high flux through the Calvin cycle and an incomplete TCA 180 

Cycle, which has been widely reported in cyanobacteria grown phototrophically (45). In the case 181 

of T. erythraeum, succinic semialdehyde is derived from the nitrogen storage compound 182 

cyanophycin and is fed into the TCA Cycle to support the production of biomass precursors and 183 

glycogen (through gluconeogenesis). When external ammonium is high, photoautotrophic cells 184 

have less flux to glycogen, presumably because they do not need to provide as much to the 185 

diazotrophic cells to obtain fixed nitrogen in return. Investigations into imbalances in both 186 

metabolites and relative cell quantity display mechanisms of ammonium loss to the environment. 187 

Figure S3A illustrates how a lack of glycogen flux results in a higher loss of ammonium (with the 188 

exceptions of recently divided cells which metabolize glycogen with high ammonium loss) while 189 

Figure S3B visualizes a clear minimum ammonium release in the recorded range of percent 190 

diazotrophs per filament (between 15 and 30%). Diazotrophic cells have high flux through both 191 

the oxidative PPP and the TCA cycle which still utilizing carbon fixation reactions such as 192 

RuBisCO and PEP carboxylase and carbon conserving reactions like the glyoxylate shunt. Flux 193 

through the glyoxylate shunt increases as the availability of ammonium increases outside the cell, 194 

which is likely in response to the lower glycogen transfer from the photoautotrophs.  195 
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 196 

Elucidating Rules of Cell Physiology. A key feature of agent-based modeling is the ability to 197 

model emergent behaviors in populations. We do not know all the rules of behaviors that define 198 

T. erythraeum a priori but by comparing simulations to observed in situ data and iterative 199 

 

Figure 5. Examples of the type of data the multi-scale multi-paradigm metabolic model can track in time 
and space. Heat map legend and flux map legends are at the bottom of the figure. x  indicates horizontal space 
in 2-D simulations. Time progresses from top to bottom with the top row indicating the beginning of the 12 hour 
light cycle cycle, the middle row the midpoint at 6 hours, and the bottom row the end of the light cycle. The left 
column contains the distribution of ammonium in the local media over these time points. The asterisk indicates the 
cells selected for the flux maps. The simulation can also be depicted as a 2-D grid with an arbitrary third dimension 
of one grid-cell deep. The whole space is a square grid with dimensions of 2500 𝜇𝜇m (2.5 mm) and each grid-cell 
with dimensions of 100 𝜇𝜇m (10 T. erythraeum cells). The middle column visualizes flux maps of photoautotrophs 
(left, green) and diazotrophs (right, blue) from the cells selected from the locations indicated by the asterisk. Flux 
maps were identical at 0 hours, selected from cells with the lowest extracellular ammonium in their gridspace at 6 
hours, and selected from the highest extracellular ammonium in their gridspace at 12 hours. The right column is 
the frequency of unique metabolic profiles ranked by objective flux (a measure of cell productivity accounting for 
both biomass and metabolite production). Blue line is the kernel density estimate (kde) which estimates the 
probability of a given metabolic profile. Compound abbreviations for flux maps are provided in the “Abbreviations” 
section. 
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improvement of the model, some rules can be elucidated. One trait that is widely variable in nature 200 

is filament length. It has been widely accepted that the average filament length is 100 cells (46) 201 

but more recent studies have suggested that they are typically much shorter, with a geometric mean 202 

of 13.2 ± 2.3 cells per filament, but with a mean range of 1.2 to 685 cells per filament in situ (47). 203 

Conditions for in situ sampling are widely variable so we hypothesized that filament length plays 204 

a role in maintaining growth in different environments: low light, low CO2 and low N2. We used 205 

the model to investigate which conditions might favor shorter or longer filaments (Figure 6). For 206 

each simulation, 150 total cells were seeded but in different trichome lengths (10, 30, 75, and 150 207 

cells/filament) with and a ratio of diazotrophs to photoautotrophs of 3:7. In terms of growth rate, 208 

across all conditions we tested the shorter filaments had faster growth. This implies that diffusional 209 

limitations of nutrients into the cell and metabolites within the filament between different cell types 210 

start to hamper growth rate at longer filament lengths. The relative decline in growth rate is less 211 

dramatic for 25 μE when comparing across filament length, but when compared to other light 212 

conditions, there is a dramatic drop in growth rate for shorter filaments at low light. This indicates 213 

that longer filaments are capable of compensating for less light better than shorter filaments, 214 

perhaps due to increased surface area. Next, we examined the effect of filament length on 215 

cyanophycin composition for the same growth conditions as above. In every condition except low 216 

nitrogen, filaments with 75 cells appear to have more cells with above average cyanophycin 217 

content than other filaments lengths. Smaller nitrogen compounds (NH4
+, amino acids, urea, etc.) 218 

can theoretically be used to support growth, permitting cyanophycin to be a longer-term storage 219 

compound. This is a possible explanation for the increase of cyanophycin in longer filaments. As 220 

filaments are longer, diffusive limitations become more pronounced, meaning that nitrogen 221 

gradients will remain in nitrogen replete cells longer and will be remade into cyanophycin as 222 
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opposed to being metabolized for growth. This makes intuitive sense: not only is there a final drop-223 

off at 150 cells, the distribution of cyanophycin content within the cells becomes larger, suggesting 224 

that some cells are starved for nitrogen and some are nitrogen replete. It is probable that filaments 225 

have adapted to leverage diffusion to both sequester nitrogen and to mitigate futile cycling of 226 

carbon and nitrogen compounds when diatomic nitrogen is available. The pattern of cyanophycin 227 

content diverges for cells in nitrogen limited environments due to overall shortages of nitrogen 228 

within the filament.  229 

 230 

 
Figure 6. Trichome length affects the performance of the community. Trichomes were varied in initial length 
from short (10 cells filament-1) to long (150 cells filament-1) but with identical diazotroph: photoautotroph ratios 
of 3:7 (excepting 75 cells filament-1 which was 3.1:7) and initial cell counts (150 total) in the total population. 
Black asterisks are Student’s T-tests P-Values < 0.05 when comparing that cellular population to the 100 𝜇𝜇E case 
in every group. Dashed black lines are experimentally measured values and the gray dashed lines are their standard 
errors measured in the Boyle Laboratory (0.271 ± 0.0129 d-1 for growth rate, 0.0939 ± 0.0131 g cyanophycin/g 
DW, 0.455 ± 0.0440 g glycogen/g DW). Growth conditions represent the columns progressing as follows: 100 
𝜇𝜇E light in YBC-II media and atmospheric conditions, 50 𝜇𝜇E light in YBC-II media and atmospheric conditions, 
25 𝜇𝜇E light in YBC-II media and atmospheric conditions, 1.25 mM (versus 2.5 mM) HCO3

- and 200 ppm (versus 
400 ppm) CO2 in otherwise atmospheric conditions and YBC-II media with 100 𝜇𝜇E light, and 0.395 atm (versus 
0.79 atm) N2 in otherwise atmospheric conditions and YBC-II media with 100 𝜇𝜇E. 
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Finally, we investigated how glycogen content of cells changes due to filament length. The first 231 

pattern to note is that as length increases, the heterogeneity of the filament in terms of glycogen 232 

content also increases. This illustrates the importance of tracking individual cells because they are 233 

experiencing different environments and responding in different ways. Longer filaments also 234 

appear to be able to maintain glycogen content more readily than shorter filaments in all stress 235 

conditions we tested. Finally, nitrogen limited growth results in increased glycogen content as seen 236 

in other cyanobacteria (48). It appears that longer filaments in N limited growth can accumulate 237 

more carbon, perhaps again due to higher surface area and hence more energy from light 238 

harvesting. Our simulations agree well with published studies; it has been reported that growth 239 

rate and light intensity are both inversely correlated to filament length (49). This data indicates 240 

that filament length is largely determined by external cues rather than genetically.   241 

 242 

DISCUSSION 243 

MIMOSA enables the most detailed and accurate metabolic modeling of complex systems to date 244 

by allowing coupling of several different mathematical formalisms describing natural phenomena, 245 

behavioral rules, and metabolism into a multi-scale multi-paradigm model.  In constructing 246 

MIMOSA, we have added several features to enable us to more accurately predict phenotypes. A 247 

key feature of MIMOSA is the use of a multi-objective optimization approach. Unlike fast growing 248 

bacteria, which have successfully been modeled using a single objective function of maximum 249 

biomass (50), slow growing organisms have more complex objectives. In our simulations, T. 250 

erythraeum cells must achieve a delicate balance between biomass formation and the production 251 

of either glycogen or cyanophycin due to the symbiotic relationship between two cell types in the 252 

same filament. Photoautotrophs cannot function optimally without a biologically available form 253 
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of nitrogen from the diazotrophs and the diazotrophs cannot support their metabolism without 254 

reduced carbon from the photoautotrophic cells. The use of multi-objective optimization allows us 255 

to describe this trade-off more accurately and by calculating the Pareto Front a priori we can also 256 

reduce computational effort. We have also accounted for changes in biomass composition that 257 

occur in response to changes in the environment or as a result of building carbon and nitrogen 258 

reserves during the day by decoupling the biomass equation. This allows the model to respond 259 

more fluidly to changes in the environment, which more closely mimics what cells experience in 260 

nature; for example, macro- and micro-nutrient stresses have been well known to cause changes 261 

in metabolism such as lipid and carbon accumulation (51-56). As such, the inclusion of metabolite 262 

and nutrient diffusion to augment metabolic optimization is a critical aspect of the model.  263 

 264 

The influences of nutrient and energy availability in conjunction with population characteristics 265 

were studied to determine community and cellular adaptations to environmental perturbations. The 266 

model allows us to quantify the changes in the microenvironment around the cell compared to the 267 

bulk properties of the environment (Figure 4A) as well as to see how these changes affect the 268 

distribution of carbon and nitrogen inside the cell (Figure 5). These can be supplemented with 269 

“zooming in” on specific time steps to enhance investigation to rapidly occurring phenomena 270 

(Figure 4B). Not only did our predicted growth rates quantitatively match the experimental data, 271 

it was better able to capture effect of light saturation on growth rate; light intensities above 100 μE 272 

have little to no effect on growth rate (2, 49, 57-59). Our simulations agree well with the 273 

experimental data, however, there are differences that can be explained by the differences between 274 

our experimental conditions and our simulations. The main difference being the effect of diurnal 275 

light; T. erythraeum will not grow without diurnal day/night patterns, therefore the experimental 276 
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data was collected from cells that were grown in 12 h: 12 h day/night cycles but the model is for a 277 

single 12-hour day time period. The addition of diurnal light patterns in future iterations of this 278 

model will help to improve the light dependent growth phenotype. Even so, the model is able to 279 

visualize community coordination and development during the 12 hour light period, exhibiting the 280 

increased release of ammonium to the media in the afternoon, consistent with the observation that 281 

nitrogenase activity peaks midday (44). Moreover, the individualized resolution of metabolic 282 

optimization can probe the nuances of intercellular, intracellular, and cell-environment 283 

interactions. Analysis of metabolic flux reveals a spontaneous partial/linear TCA Cycle in 284 

photoautotrophic cells consistent with previous reports (45). Cells also naturally coordinate to 285 

provide glycogen and cyanophycin transfer between cells, yielding oxidative behavior in 286 

diazotrophic cells through glycolysis with the possible side effect of oxygen consumption as a 287 

mechanism to protect nitrogenase as suggested in experimentation (58). Meanwhile, 288 

photoautotrophs naturally perform reductive carbon fixation coupled with utilization of the lower 289 

TCA Cycle to degrade arginine. These metabolic functions are affected by extracellular forces 290 

which are integrated into this model. For example, high ammonium environments result in 291 

declining gluconeogenesis in photoautotrophs (12 hours in Figure 5), likely since these cells are 292 

energetically limited and use cyanophycin as an energy source instead of light. Diazotrophs are 293 

prone to these environmental cues as well as low ammonium environments enhance light TCA 294 

Cycle to enhance recycling of amino acid byproducts from a lack of nitrogen. These observations, 295 

coupled with the diversity of metabolic profiles available to a relatively small population, By 296 

integrating modeling of other phenomenon with constraints based metabolic models, we were able 297 

to simulate T. erythraeum cultures that more accurately represent both in situ and laboratory data.  298 

 299 
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One of the many advantages of using this multi-paradigm framework is that we can simulate 300 

emergent behavior of a population. In situ data reports a wide mean range of trichome length from 301 

1.2 to 685 cells (47); we used the model to investigate possible causes because this is a difficult 302 

phenotype to investigate experimentally. Our simulations suggest that even though longer 303 

filaments suffer from diffusional effects that limit growth, they are better able to handle stress 304 

(Figure 6) consistent with literature. Increased surface area in longer filaments minimizes the effect 305 

of lower light because the filament can harvest more light per volume. Also, the larger filaments 306 

are better able to maintain the average composition of storage compounds despite low carbon or 307 

low nitrogen conditions. Therefore, we would expect in areas of nutrient or light stress, the filament 308 

length would be longer.  309 

 310 

One of the other unusual phenotypes of Trichodesmium that we were able to investigate using 311 

MIMOSA was leaking 30-50% of the nitrogen it fixes. Nitrogen fixation is an incredibly energy 312 

intensive process, costing the cell 8 ATP per ammonium, so it is not clear why T. erythraeum 313 

would excrete 30 – 50%. Despite using optimization to solve for fluxes, which should minimize 314 

energy losses, our simulations predict approximately 20% of the fixed nitrogen is excreted into the 315 

medium (Figure S4) which implies that this is a metabolically driven phenomenon. Further 316 

investigation has led us to develop three hypotheses on why this occurs: carbon limitation in 317 

diazotrophs, energy limitation in photoautotrophs, and imbalances between photoautotroph: 318 

diazotroph ratios. In the first case, photoautotrophs are unable to create glycogen chains and 319 

instead must start from a higher energy substrate than carbon dioxide (like succinic-semialdehyde) 320 

or must perform glycolysis on arginine derivatives to achieve energetic viability (Figure S3A). 321 

Second, population imbalances cause nitrogen to be produced faster than it can be anabolized into 322 
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β-aspartyl-arginine chains and is released into the media, meaning there is an optimal ratio of cell 323 

types (Figure S3B).  It is also possible that carbon limited diazotrophs are unable to manufacture 324 

full β-aspartyl-arginine chains and proton imbalances require ammonium release to the medium 325 

instead of passage to surrounding photoautotrophs.  326 

 327 

MIMOSA enables the tracking of cellular-level environmental changes and the impact that they 328 

have on a metabolic model, opening the door to more accurate modeling of multi-cellular systems 329 

and the in silico investigation of the complex interactions between different cell types within an 330 

organism, and different species in a community. This is the first report of a metabolic model that 331 

integrates nutrient and light diffusion, cell/cell interactions and cell/environment interactions and 332 

we have used it to accurately predict growth, cellular composition and to investigate the unique 333 

physiology of T. erythraeum, which has filaments of both diazotrophs and photoautotrophs in close 334 

proximity. It establishes that this organism can effectively adapt to different conditions at three 335 

levels: the genetic level through division of labor in separate cell types, the metabolic level through 336 

relatively open-ended metabolic capabilities as well as further division within types, and at the 337 

population level to harness diffusional and physical interactions with the environment. MIMOSA 338 

is also a readily adaptable modeling framework – the addition of additional species to the model 339 

only requires the availability of a genome-scale metabolic and a few rules of behavior to be added. 340 

While we focused the proof-of-concept study of T. erythraeum, MIMOSA is a modeling 341 

framework that can be used to model a variety of more complex systems including applications in 342 

ecology, human health and metabolic engineering.  343 

 344 

MATERIALS/METHODS 345 
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Cell Culture Conditions 346 

Cells were grown as described previously (3). Trichodesmium erythraeum IMS101 cells were 347 

acquired from the Bigelow Laboratory for Ocean Sciences (East Boothbay, ME, USA). Cells were 348 

grown in a New Brunswick (Hamburg, Germany) with 100 and 50 μE in 12h light/12h dark cycles. 349 

Cells were grown in artificial seawater YBC-II medium (60) at pH 8.15-8.20. CO2 was maintained 350 

at atmospheric concentration. All chemicals were obtained from Sigma-Aldrich (St. Louis, MO). 351 

Growth rate was monitored by measuring chlorophyll absorbance (61) from 50 mL of culture every 352 

two days. Cyanophycin and glycogen were measured every four hours from the beginning of the 353 

light cycle (9 AM) to its end (9 PM). Total biomass mass was determined by dry weight analysis, 354 

cells were filtered with a Whatman 0.22 μm cellulose-nitrate filter and dried overnight at 100°C. 355 

Biomass Quantification 356 

Carbohydrates were measured colorimetrically using the anthrone method (62) against glycogen 357 

as a standard. Cyanophycin was extracted by disrupting 740 μL of 250 mL cells concentrated to 2 358 

mL via filtration and rinsing with TE buffer with 2.70 mg/mL lysozyme overnight at 37 ºC, 359 

centrifuging at 16,100 x G for 5 min, and resuspending the pellet in 1 mL of 0.1 M HCl (in which 360 

cyanophycin is soluble) for 2 h. The extraction was repeated on the pellet, the supernatant fractions 361 

were combined, and cyanophycin was quantified colorimetrically using the Sakaguchi reaction 362 

(63). 363 

Mass Balance Constraints. Constraints based metabolic models are based on mass balances, 364 

therefore it is imperative that we develop accurate accounting of each element. Therefore, we used 365 

training data (Table S2) to estimate normal cellular consumption (Table S3). Average objective 366 

fluxes were estimated using mass balances around biomass and metabolite production with the 367 

formulation: 368 
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 369 

𝑈𝑈 = 𝑀𝑀 + 𝐺𝐺 + 𝑃𝑃 + 𝐿𝐿          (1) 

Where U corresponds to uptake, M is the nitrogen or carbon required for maintenance metabolism, 370 

G is the accumulation of fixed carbon or nitrogen during growth into non-biomass metabolites, P 371 

is the accumulation of fixed carbon or nitrogen that is passed to the other cells, and L is the carbon 372 

or nitrogen leaked into the surrounding media. This can be further detailed into carbon and nitrogen 373 

energy balances (defined as above with the subscript “N” for nitrogen and “C” for carbon): 374 

𝑈𝑈𝑁𝑁 = 2𝜈𝜈𝑁𝑁2 + 𝜈𝜈𝑁𝑁𝑁𝑁3− + 𝜈𝜈𝑁𝑁𝑁𝑁2− + 2 𝜈𝜈𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢        (2) 

𝑀𝑀𝑁𝑁 = −5
∆𝑚𝑚𝐶𝐶𝑝𝑝ℎ,𝑁𝑁𝑁𝑁𝑁𝑁ℎ𝑡𝑡

𝑁𝑁𝐶𝐶𝑝𝑝ℎ𝑋𝑋�𝑡𝑡∆𝑡𝑡
        (3) 

𝐺𝐺𝑁𝑁 = 𝜇𝜇𝑌𝑌𝑁𝑁/𝑋𝑋                  (4) 

𝑃𝑃𝑁𝑁 = 5
∆𝑚𝑚𝐶𝐶𝑝𝑝ℎ,𝐷𝐷𝐷𝐷𝐷𝐷

𝑁𝑁𝐶𝐶𝑝𝑝ℎ𝑋𝑋�𝑡𝑡∆𝑡𝑡
     (5) 

𝐿𝐿𝑁𝑁 = −
∆𝐶𝐶𝑁𝑁𝑁𝑁4+

𝑋𝑋�𝑡𝑡∆𝑡𝑡
                  (6) 

Where 𝜈𝜈 corresponds to flux of the substrate (indicated in the subscript), m is mass, N is molar 375 

mass, the subscript cph is cyanophycin, 𝑋𝑋�𝑡𝑡 is average biomass over the measured time period (Δt), 376 

𝜇𝜇 is growth rate, 𝑌𝑌𝑁𝑁/𝑋𝑋 is the nitrogen stoichiometry in biomass estimated by the biomass 377 

composition. The stoichiometric coefficients represent the number of nitrogen atoms in each 378 

molecule; 2 per diatomic nitrogen and 5 per 𝛽𝛽-aspartyl arginine. The flux of nitrogen (𝜈𝜈𝑁𝑁2) is 379 

measured and recorded via the acetylene assay for nitrogenase activity as recorded in the literature 380 

for the same growth conditions. 𝐺𝐺𝑁𝑁 was approximated using the model’s prediction for cellular 381 

composition of nitrogen using the biomass equation and balanced equations. The faction of 382 
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cyanophycin in biomass was measured analytically at 6 timepoints throughout a single 12-hour 383 

daytime period (See Biomass Quantitation in methods). Ammonium release over a 12-hour period 384 

was below detectable limits (< 1 µg/L ) (64) in our laboratory experiments. If we re-arrange this 385 

equation to solve for the average flux of nitrogen into a single cell, �̅�𝑣𝑁𝑁, we obtain the following 386 

equation which can be used to solve for 𝑣𝑣𝑁𝑁���� or 𝜈𝜈𝑁𝑁2: 387 

�̅�𝑣𝑁𝑁 = 2𝜈𝜈𝑁𝑁2 +
∆𝐶𝐶𝑁𝑁𝑁𝑁4+

𝑋𝑋�𝑡𝑡∆𝑡𝑡
= 𝜇𝜇𝑌𝑌𝑁𝑁/𝑋𝑋 − 5 ∆𝑚𝑚𝑐𝑐𝑝𝑝ℎ,𝑁𝑁𝑁𝑁𝑁𝑁ℎ𝑡𝑡

𝑁𝑁𝑐𝑐𝑝𝑝ℎ𝑋𝑋�𝑡𝑡∆𝑡𝑡
+ 5 ∆𝑚𝑚𝑐𝑐𝑝𝑝ℎ,𝐷𝐷𝐷𝐷𝐷𝐷

𝑁𝑁𝑐𝑐𝑝𝑝ℎ𝑋𝑋�𝑡𝑡∆𝑡𝑡
   (7) 

Assuming each cell requires the same amount of nitrogen, that only diazotrophs reduce diatomic 388 

nitrogen, that the average ratio is 4:1 photoautotrophs to diazotrophs (44) for estimation of training 389 

data for consumption and production, and that cells do not release ammonium at optimal 390 

production, maximum nitrogen flux into a photoautotrophic cell can be approximated as: 391 

�̅�𝜈𝑐𝑐𝑐𝑐ℎ = 2
5
𝜈𝜈𝑁𝑁2      (8) 

The same approach is taken for the carbon mass balance.  392 

𝑈𝑈 = 𝑀𝑀 + 𝐺𝐺 + 𝑃𝑃         (9) 

Where: 393 

𝑈𝑈𝐶𝐶 = 𝜈𝜈𝐶𝐶𝑁𝑁2             (10) 

𝑀𝑀𝐶𝐶 = −12 ∆𝑚𝑚𝑁𝑁𝑔𝑔𝐷𝐷,𝑁𝑁𝑁𝑁𝑁𝑁ℎ𝑡𝑡

𝑁𝑁𝑁𝑁𝑔𝑔𝐷𝐷𝑋𝑋�𝑡𝑡∆𝑡𝑡
          (11) 

𝐺𝐺𝐶𝐶 = 𝜇𝜇𝑌𝑌𝐶𝐶/𝑋𝑋              (12) 

𝑃𝑃𝐶𝐶 = 12 ∆𝑚𝑚𝑁𝑁𝑔𝑔𝐷𝐷,𝐷𝐷𝐷𝐷𝐷𝐷

𝑁𝑁𝑁𝑁𝑔𝑔𝐷𝐷𝑋𝑋�𝑡𝑡∆𝑡𝑡
       (13) 

And: 394 
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𝜈𝜈𝐶𝐶𝑁𝑁2 =  𝜇𝜇𝑌𝑌𝐶𝐶/𝑋𝑋 − 12 ∆𝑚𝑚𝑁𝑁𝑔𝑔𝐷𝐷,𝑁𝑁𝑁𝑁𝑁𝑁ℎ𝑡𝑡

𝑁𝑁𝑁𝑁𝑔𝑔𝐷𝐷𝑋𝑋�𝑡𝑡∆𝑡𝑡
+ 12 ∆𝑚𝑚𝑁𝑁𝑔𝑔𝐷𝐷,𝐷𝐷𝐷𝐷𝐷𝐷

𝑁𝑁𝑁𝑁𝑔𝑔𝐷𝐷𝑋𝑋�𝑡𝑡∆𝑡𝑡
           (14) 

In this case, the variables are the same except for subscripts C (carbon), gly (glycogen). And CO2. 395 

GC represents the stoichiometric predictions of elemental composition and 𝜈𝜈𝐶𝐶𝑁𝑁2 is approximated 396 

using equation 10. This allows prediction of maximal glycogen flux (assuming 12 carbon 397 

molecules per glycogen, since it is modeled as disaccharide glucose or maltose) using: 398 

�̅�𝑣𝑔𝑔𝑔𝑔𝑔𝑔 = 𝜈𝜈𝐶𝐶𝐶𝐶2
12

      (15) 

Development of Agent Based Model. Repast Simphony (65) in Java was used as the agent-based 399 

modeling framework in which differentiated multi-objective metabolic models of Trichodesmium 400 

erythraeum are contained. It contains three agent types – Ocean, Cells, and Filaments. The Cells 401 

agent contains two sub-agents representing each cell type: photoautotrophs and diazotrophs and is 402 

responsible for intracellular processes and decisions. The Ocean agent defines and calculates the 403 

extracellular environment and the Filaments agent organizes the Cells and modulates their 404 

transactions.  405 

Cells 406 

Cell agents (cells) are generated for each individual cell in the model. These contain two subtypes, 407 

photoautotrophs and diazotrophs, but contain several consistent elements between the two. 408 

Simulation variables are summarized in Table S4. All cells reproduce according to the same rules: 409 

cells divide according to sampling from the weighting distribution described above if that sample 410 

is bigger than the cell mean cell, cells only extend from the ends, and cells can only divide into 411 

diazotrophs if there is a diazocyte under development (decided at the filament level if the filament 412 

is nitrogen limited). When a cell is large enough, it converts to fully stationary growth, producing 413 

only metabolites and creating a larger and larger metabolic gradient between cells without de novo 414 
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biomass synthesis. This prevents a cell from becoming excessively large in the center of the 415 

filament. Cells will die if they cannot produce the requisite maintenance ATP through metabolism 416 

or catabolism.  417 

 418 

Cells allow metabolites to diffuse through the lipid bilayer using permeabilities reported in the 419 

literature (Table S5). This mechanism represents a non-zero leakage scenario that was nevertheless 420 

much slower than intrafilamental diffusion (Table S6). Scavenging from the environment for 421 

compounds which carried no evidence of active transport followed these same rules and was 422 

therefore prone to concentration gradients. Active transporters, on the other hand, allowed the cell 423 

to uptake whatever concentration of compound was necessary subject to its presence in the local 424 

ocean grid. Allowable exchange of metabolites between cells is illustrated in Figure 7. If several 425 

cells compete in that grid space, access to the available molecule was divided equally among those 426 

cells. 427 
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 428 

Subclasses: Photoautotrophs and Diazotrophs 429 

Both subclasses define the uptake constraints and send to a Python file that decides whether the 430 

cell metabolizes or catabolizes based on those constraints using the multi-objective metabolic 431 

model previously described (see Supplemental Information: Routine Metabolic Optimizations). 432 

The cell then updates its internal metabolites based on the optimization results, diffuses 433 

metabolites, divides if possible, and uptakes from its local environment. Model bounds are 434 

calculated using local concentrations to calculate maximum flux bounds excepting β-aspartyl 435 

arginine which is further limited to 8% of available nutrients (See Figure S5). These methods are 436 

handled by three ScheduledMethods that Repast Simphony schedules in specific progression. 437 

Together with the Ocean Agent’s updates, the individual cell actions (as dictated by the metabolic 438 

model) form the core of the simulation. A more detailed flow chart for cell decision making can 439 

 
Figure 7. Allowed Metabolite Diffusion and Exchange between and into Cells. Green cells 
represent photoautotrophic cells and blue represent diazotrophic cells. Solid black lines indicate 
free diffusion between cells, dotted black lines indicate lipid bilayer diffusion, and red dashed 
lines indicate coupled ion transport into the cell. Not pictured is ATP synthase. Maltose is 
modeled as the 12-carbon molecule that forms the foundation for glycogen while 𝛽𝛽-aspartyl 
arginine is the foundation for cyanophycin. 
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be found in Figure S6. Progression through these steps is identical for cell types, but the metabolic 440 

static variables (objectives, gas uptake, etc.) are different between the two subclasses, necessitating 441 

separate methods.  442 

 443 

Ocean 444 

The ocean agent is responsible for tracking cells and modeling external nutrients. Its main task is 445 

facilitating diffusion between cells and locations as well as approximating an uptake radius for 446 

cells. Each ocean represents a uniform, static, abstract area of the overall grid space with a uniform 447 

dimension space of 𝛿𝛿 × 𝛿𝛿 where 𝛿𝛿 is a user defined parameter. This set of simulations was 448 

conducted with time steps of 0.1 hours as a moderate value between diffusion phenomena (on the 449 

order of seconds along the length of a filament) and doubling time (on the order of 50 hours). 450 

Metabolites are assumed to freely diffuse in a dilute seawater environment between cell filaments 451 

(Table S6) and assumed to be uniform within the grid, given the relatively long time step compared 452 

to the rate of diffusion over such small dimensions. If the impacts of metabolic diffusion limitations 453 

were of interest, the time step within the framework could be made appropriately small to more 454 

accurately track metabolites, at cost of increased computational burden. Each ocean gridcell 455 

diffuses molecules into its adjacent ocean gridcells assuming discretized slab diffusion in two 456 

dimensions. This is done using a previously developed discrete algorithm for diffusion in a grid 457 

(66): 458 

 459 

∆𝑓𝑓(̅𝑥𝑥𝑖𝑖) = 𝐴𝐴∑ (𝑓𝑓�𝑥𝑥𝑖𝑖
𝑗𝑗� − 𝑓𝑓(𝑥𝑥𝑖𝑖))𝑒𝑒−𝑑𝑑𝑗𝑗

2/𝜂𝜂𝑛𝑛
𝑗𝑗=1     (16) 

 460 
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𝑑𝑑𝑗𝑗 = |𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖
𝑗𝑗|         (17) 

 461 

𝐴𝐴∑ 𝑒𝑒−𝑑𝑑𝑗𝑗
2/𝜂𝜂𝑛𝑛

𝑘𝑘=1 = 1                                                            (18) 

 462 

Where ∆𝑓𝑓(̅𝑥𝑥𝑖𝑖) is the change in concentration of metabolite in grid space xi over a time step, A is 463 

the normalization constant to be calculated by solving the third equation within the entire 464 

neighborhood to ensure conservation of mass within the neighborhood, dj is the distance between 465 

grid space xi and its grid neighbor xi
j and 𝜂𝜂 is the diffusivity control of the system over the time 466 

step. As 𝜂𝜂 → 0 diffusion halts and as 𝜂𝜂 → ∞ diffusion becomes instantaneous. In this study, 𝜂𝜂 =467 

4𝒟𝒟∆𝑡𝑡 as in the original Fick’s Law. 468 

 469 

Diffusion is calculated using two steps, one forward and one reversing the order of gridspace 470 

calculation, to mitigate the effect of order on estimating the concentration gradient (Figure S7). 471 

Excess ammonium is secreted into the environment using a membrane diffusion coefficient. Cells 472 

are allowed to uptake any metabolite/nutrient in YBC-II medium; the only extracellular products 473 

allowed in simulations are small molecules, such as CO2 and NH4
+ which diffuse through the 474 

membrane, as well as compounds that have experimental evidence of transporters from proteomic 475 

analysis or transcriptomic analysis (estimated using membrane diffusion outwardly and free 476 

diffusion for gases or active transporters for ions/molecules inwardly) in Table S7 (67, 68). 477 

 478 

The Ocean Agents also manage diffusion of metabolites from marine sinks and through the gas-479 

liquid surface interface with the atmosphere. This is done assuming equilibrium concentrations of 480 
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dissolved gases defined by Henry’s Law and mono-directional slab diffusion for CO2, O2, and N2. 481 

Table S6 lists the free diffusivities of compounds and Table S8 lists the Henry’s Constants for 482 

atmospheric compounds, and Figure S7 demonstrates the movement of diffusive molecules 483 

through the simulation. 484 

 485 

Furthermore, light diffusion to cells is defined as a function of their y coordinate according to the 486 

equation: 487 

𝐼𝐼 = 𝐼𝐼0𝑒𝑒−𝑘𝑘𝑔𝑔              (19) 

Where I is light intensity, k is the extinction coefficient of light in seawater, and y is the depth 488 

below the surface of the individual cell. 489 

 490 

Filaments 491 

Filament Agents are responsible for organizing cells, managing movement, splitting to promote 492 

diazotroph development, and defining cell type after division. Random walk movement (to 493 

simulate the lack of control cells have over lateral motion) is simulated by generating a random 494 

direction that has an empty grid space for every cell in the filament. Cells move within a user 495 

defined interval of time or if their growth is impeded by another filament, in which case growth is 496 

halted until the cells move away from each other. The filament forces splitting into two separate 497 

filaments when nitrogen is limiting growth and neither filament end is undergoing diazotroph 498 

development (meaning that another diazocyte is required). Filament Agents decide the next cell 499 

type using this inequality: 500 

 501 
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∑ ɛ𝑁𝑁
𝐷𝐷𝐷𝐷

𝑁𝑁
𝑛𝑛𝐷𝐷𝐷𝐷

> ∑ 𝜀𝜀𝑁𝑁
𝑃𝑃𝑃𝑃

𝑁𝑁
𝑛𝑛𝑃𝑃𝑃𝑃

      (20) 

 502 

Where ɛ is the Pareto Efficiency of the given cell type and n is the quantity of that cell type in the 503 

filament. The Pareto Efficiency is quantified as the sum of the objective fluxes divided by their 504 

Pareto Optimum (from experimental results) divided by the number of objectives. 505 

𝜀𝜀𝑖𝑖𝑐𝑐 = ∑ 𝜈𝜈𝑗𝑗
𝜈𝜈𝑗𝑗
𝑒𝑒𝑒𝑒𝑝𝑝𝑗𝑗       (21) 

If inequality (20) is satisfied, the cell prioritizes diazotroph development, otherwise it prioritizes 506 

photoautotroph development. If a diazotroph region is currently under development, the filament 507 

adds another cell to that region. If there is no diazotroph under development, or if the C:N ratio 508 

becomes higher than physiological bounds, the filament splits to expose a region where diazotroph 509 

development may begin. A photoautotroph can be placed at any open site. Since there are two ends 510 

on every filament, up to two of these decisions are being made during each simulation time step. 511 

After filament splitting, if the split results in a homogenous region of either diazotrophs or 512 

photoautotrophs, the missing cell type is preferred. Filaments split in the middle of the longest 513 

region of homogenous cells and are prevented from splitting to result in a single cell, meaning that 514 

the shortest possible resulting splits are two cells in length. Cell division completes within one 515 

time step when metabolites and biomass are equally divided between parent and daughter cell and 516 

the filament updates to contain the cell at its end. This decision is a memoryless process conducted 517 

each time step. This means that cell division is completely metabolically motivated (which is 518 

affected, in turn, by diffusion and physiological processes). 519 

 520 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 30, 2019. ; https://doi.org/10.1101/718742doi: bioRxiv preprint 

https://doi.org/10.1101/718742


30 
 

Parameter Estimation. As described previously, to improve the accuracy of simulations, the 521 

model was fit to experimental data for cells grown in 100 μE light in YBC-II medium. Maintenance 522 

energy, in the form of the ATP hydrolysis reaction, is the main parameter that is adjusted in FBA 523 

formulations (3, 69-72) to match simulations with growth rate. Since maintenance energy at 100 524 

μE was higher than the energetic capacity of the model for growth at 50 μE, a linear correlation 525 

was interpolated from experiments at 100 µE and 80 µE with ATP maintenance flux fit to both 526 

cases for each cell type: 527 

𝜈𝜈𝐴𝐴𝐴𝐴𝐴𝐴(𝐼𝐼) = 𝑚𝑚𝐼𝐼 + 𝜈𝜈0      (22) 

Where m and 𝜈𝜈0 are calculated using the point-slope equation for a linear equation: 528 

𝑚𝑚 =
𝜈𝜈𝑃𝑃𝐴𝐴𝑃𝑃,𝐼𝐼1−𝜈𝜈𝑃𝑃𝐴𝐴𝑃𝑃,𝐼𝐼2

𝐼𝐼1−𝐼𝐼2
      (23) 

𝜈𝜈0 = −𝐼𝐼1𝑚𝑚 + 𝜈𝜈𝐴𝐴𝐴𝐴𝐴𝐴,𝐼𝐼1      (24) 

Where I1 is 100 µE and I2 is 80 µE. The estimated values of the linear equation are recorded below 529 

in Table 1. If the model is unable to satisfy its maintenance demand (through any metabolic 530 

process, including catabolizing its own biomass), the cell dies. L0 is the energy required in zero 531 

light to maintain the cell without active metabolism. 532 

 533 

Table 1: ATP maintenance flux requirements estimated as a function of light intensity for 

Pareto Fitting. 

Cell Type 

Maintenance Energy, 𝝂𝝂𝑨𝑨𝑨𝑨𝑨𝑨 
m 

�
𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦

𝐠𝐠 𝐃𝐃𝐃𝐃 𝐡𝐡 𝛍𝛍𝛍𝛍
� 

𝝂𝝂𝟎𝟎 

�
𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦
𝐠𝐠 𝐃𝐃𝐃𝐃 𝐡𝐡 

� L0 (𝛍𝛍E) 
80 µE 

�
𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦
𝐠𝐠 𝐃𝐃𝐃𝐃 𝐡𝐡 

� 

100 µE 

�
𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦
𝐠𝐠 𝐃𝐃𝐃𝐃 𝐡𝐡 

� 

Photoautotroph 34.3 53.3 0.952 -16.7 16.9 
Diazotroph 62.3 82.0 0.987 -41.9 44.0 
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 534 

Multi-Objective Optimization. Unlike typical formulations of flux balance analysis (14, 71-76), 535 

which use a single objective function to predict fluxes, our model uses multi-objective 536 

optimization to more accurately approximate the true objectives of the cell: to optimize biomass 537 

while also producing the metabolite they exchange between cell types. Implementation of multi-538 

objective optimization is more complex and computationally intense than single objective 539 

optimization therefore, to minimize computational effort, Pareto Fronts were generated a priori by 540 

iteratively increasing ATP maintenance flux and using every permutation of objective weights to 541 

fit to a dominant front (see SI Methods and Figure S8 for more complete details). For each point 542 

along the Pareto Front, Euclidean distance was used to determine the relative weight of each 543 

objective function, which was then used to generate a single, scalarized reaction. Each cell in the 544 

simulation calculates its scalar objective function separately during each time step based on its 545 

internal constitution and requirements.  546 

 547 

Implementation of Mutable Objective Functions. Previous studies have used static objective 548 

functions, where production is consistent during every phase of growth. However, organisms 549 

accumulate and digest metabolites during growth and development. To reflect this, we inserted a 550 

“mutable” objective function where relative preferences of storage compounds and biomass 551 

production can be tailored by the agent based on cell biomass. The scalarized objective equation 552 

was thus broken into two main components: storage compounds (cyanophycin modeled as β-553 

aspartyl arginine and glycogen modeled as maltose) and biomass (lipids, proteins, DNA, RNA, 554 

chlorophyll, phycoerythrin, etc.). We assumed that biomass remained relatively stable throughout 555 

the day while the amount of storage compound was allowed to vary. The scalar weights, or 556 
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production priorities, were manipulated assuming cells do not grow beyond twice their average 557 

cell without dividing: lower biomass prioritizes growth and higher biomass prioritizes vegetative 558 

storage compound production. Mathematically, this is modeled such that the scalar objective 559 

equation’s biomass coefficient was inversely adjusted by cumulative probability of a cell’s 560 

biomass in the distribution. The normal distribution was formulated assuming cubic 10 µm cells 561 

with density of water (77) as the average mass and a narrow distribution with a standard deviation 562 

of 0.433 times the mean size. This value was chosen to promote switch-like bistable behavior 563 

between cell phenotypes: either cells are biomass driven (exponential) or they are metabolite 564 

driven with combinations of probabilities in between. This is because a single sample of a cell 565 

from a distribution of cells would have a probability of 99% to fall between 0 and twice the mean 566 

size. The final distribution is: 567 

𝑓𝑓(𝑋𝑋)~𝑁𝑁(1.029 𝑛𝑛𝑛𝑛, 0.433 ∙ 1.029 𝑛𝑛𝑛𝑛)        (25) 

Calculation of new objective coefficients was done by first finding the cumulative probability (z) 568 

of another randomly selected cell’s non-metabolite biomass being less than or equal to the 569 

objective cell’s biomass at each time point for each cell: 570 

𝑧𝑧 = 𝐹𝐹(𝑋𝑋 ≤ 𝑥𝑥𝑖𝑖)       (26) 

This is used to adjust the average, experimentally matched objective coefficient (𝑤𝑤�𝑏𝑏) for biomass 571 

by multiplying that coefficient by the probability of the cell being larger than that size, a value that 572 

represents the probabilistic expansion space (𝜖𝜖) of the cell: 573 

𝜖𝜖 = 1 − 𝑧𝑧      (27) 

𝑤𝑤�𝑏𝑏 = 𝜖𝜖 ∙ 𝑤𝑤�𝑏𝑏      (28) 
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Major metabolite coefficients for the scalarized objective equation were also adjusted using this 574 

probability, increasing as the cell’s size increased: 575 

𝑤𝑤�𝑚𝑚 = 𝑧𝑧 ∙ 𝑤𝑤�𝑚𝑚      (29) 

Finally, the coefficients are normalized such that: 576 

𝑎𝑎 ∑ 𝑤𝑤�𝑖𝑖𝑖𝑖 = 1      (30) 

Or: 577 

𝑎𝑎 = 1
∑ 𝑤𝑤�𝑁𝑁𝑁𝑁

              (31) 

Which yields final objective coefficients of: 578 

𝑤𝑤𝑘𝑘 = 𝑤𝑤�𝑘𝑘
∑ 𝑤𝑤�𝑁𝑁𝑁𝑁

 ∀ 𝑘𝑘 ∈ 𝓞𝓞        (32) 

Where 𝒪𝒪 is the set of all objective metabolites in the original scalar equation. 579 

Performance evaluation of the mutable objective function, validation of the mutable objective 580 

function versus the static version, and justification of non-metabolite biomass as the independent 581 

objective are provided in SI Methods and Figure S9. 582 

 583 

ABBREVIATIONS. 6PG: 6-phospho-D-gluconate, 6PGDL: 6-phosph-D-glucono-1,5-lactone, 584 

ABM: Agent-Based Modeling, AcCoA: Acetyl-CoA, AKG/αKG: α-ketoglutarate/2-oxoglutarate, 585 

ALA: L-alanine, βASP-ARG, β-aspartyl arginine, βG6P: β-glucose-6-phosphate, CBB: Calvin-586 

Benson-Bassham Cycle, CDeg: Cyanophycin Degradation to Amino Acids, cEFMA: community 587 

Elementary Flux Mode Analysis, CIT: Citrate, COBRA:  Constraint-Based Reconstruction and 588 

Analysis Toolbox, CobraPy: Constraint-Based Reconstruction and Analysis Toolbox for Python, 589 

COMETS: Computation of Microbial Ecosystems in Time and Space, CSV, Comma Separated 590 
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Value, cph: Cyanophycin, CSyn: Cyanophycin Synthesis from Amino Acids, dFBA: dynamic Flux 591 

Balance Analysis,  DHAP: Dihydroxyacetone phosphate, DON: Dissolved Organic Nitrogen, 592 

E4P: Erythrose-4-phosphate, EF: Efflux, EX: Export, F6P: Fructose-6-phosphate, FBA: Flux 593 

Balance Analysis, FDP: Fructose 1,6-diphosphate, FOR: Formate, FUM: Fumarate, FVA: Flux 594 

Variability Analysis, G6P: Glucose-6-phosphate, GAP: Glyceraldehyde 3-phosphate, GDeg: 595 

Glycogen degradation, GLX: Glyoxylate (flux maps) or Glyoxylate and dicarboxylate metabolism 596 

(Figure 4), GLY: Glycine (flux maps) or Glycogen/Gluconeogenesis (Figure 4), gly: Glycogen, 597 

GLYR: Glycerate, GOL: Glycerol, GP: 3-phosphoglycerate, GSyn: Glycogen synthesis, 598 

ICIT: Isocitrate, IN: Influx, JSON: JavaScript Object Notation, jyCOBRA: java-python integrated 599 

COBRA, KEGG: Kyoto Encyclopedia of Genes and Genomes, LIP: Lipid metabolism, 600 

MAL: Malate, MSM: Multiscale Modeling, OAA: Oxaloacetate, PEP: Phosphoenolpyruvate, 601 

PGOL: Phosphoglycolate, Pi: Inorganic phosphate,  PPP: Oxidative Pentose Phosphate Pathway, 602 

PRO: Protein synthesis, PYR: Pyruvate, R5P: Ribose-5-phosphate, REF: Reflux, Ru5P: Ribulose-603 

5-phosphate, RuBP: Ribulose 1,5-bisphosphate, S17P: Sedoheptulose 1,7-bisphosphate, 604 

S7P: Sedoheptulose 7-phosphate, SBML: Systems Biology Markup Language, SUCC: Succinate, 605 
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SUCSAL: Succinic semialdehyde, SDA: Subsystem Distribution Analysis, TCA: Tricarboxylic 606 

acid cycle, TCP/IP: Transmission Control Protocol/Internet Protocol, X5P: Xylulose 5-phosphate 607 
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