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ABSTRACT 
Chimeric antigen receptors (CARs) are engineered receptors that 
mediate T cell activation. CARs are comprised of activating and co-
stimulatory intracellular signaling domains derived from endogenous 
T cells that initiate signaling required for T cell activation, including 
ERK activation through the MAPK pathway. Understanding the 
mechanisms by which co-stimulatory domains influence signaling 
can help guide the design of next-generation CARs. Therefore, we 
constructed an experimentally-validated computational model of 
anti-CD19 CARs in T cells bearing the CD3ζ domain alone or in 
combination with CD28. We used ensemble modeling to explore 
different mechanisms of CD28 co-stimulation on the ERK response 
time. Model simulations show that CD28 primarily influences ERK 
activation by enhancing the phosphorylation kinetics of CD3ζ, pre-
dictions that are validated by experimental measurements. Overall, 
we present a mechanistic mathematical modeling framework that 
can be used to gain insights into the mechanism of CAR T cell acti-
vation and produce new testable hypotheses. 
 

1 INTRODUCTION  
Chimeric antigen receptor (CAR) engineered T cells have 
recently been approved for the treatment of CD19+ cell ma-
lignancies (Mullard, 2017). These therapies have been ex-
tremely successful for CD19+ hematological cancers, but it 
has been difficult to extend CAR T cell therapies to other 
types of cancer, specifically solid tumors (Morgan et al., 
2010). To better engineer CAR T cells to fight cancer, we 
need to improve our understanding of how these modified 
receptors activate T cells.  

CARs typically include an extracellular antibody-derived 
binding domain linked to a transmembrane domain and a 
number of different intracellular signaling domains (Sadelain, 
Brentjens, & Rivière, 2013). These signaling domains are 
derived from endogenous T cells and typically include CD3ζ, 
a part of the endogenous T cell receptor (TCR), and a co-
stimulatory domain, such as CD28. It is clear that T cells 
require this secondary signaling through a co-stimulatory 
receptor, but the mechanisms through which co-stimulatory 
domains influence T cell activation are not clear (Bretscher, 
1999). Additionally, it is not clear how CAR signaling differs 
from endogenous T cell receptor signaling (Harris et al., 
2018).   

Computational mechanistic models can be used to test 
hypotheses about molecular signaling mechanisms. These 
models have been used in the past to study endogenous T 
cell activation, providing insights into important activation 
and feedback mechanisms that help control the sensitivity 
and specificity of TCR activation, reviewed previously 
(Rohrs, Wang, & Finley, 2019). These models generally as-
sume that T cell activation is derived directly from the TCR 
CD3ζ signaling domain, while neglecting the effects of the 
co-stimulatory domains. Therefore, the immunology field has 
developed a fairly clear picture of the signaling events down-
stream of CD3ζ, but there is a lack of understanding of the 
effects of co-stimulation. 

Recently, we have used phospho-proteomic mass spec-
trometry combined with mechanistic computational modeling 
to gain more insight into the effects of CAR co-stimulation. 
We quantified the site-specific phosphorylation kinetics of 
CARs containing CD3ζ with or without CD28 (referred to as 
28z and Z, respectively) (Rohrs et al., 2018). Our experi-
mental data showed that CD3ζ immunoreceptor tyrosine-
based activation motifs (ITAMs) are phosphorylated inde-
pendently, in a random order, and with distinct kinetics. Add-
ing the CD28 co-stimulatory domain increased the rate of 
CD3ζ phosphorylation by over 3-fold. In addition, by applying 
the model, we identified that LCK phosphorylates CD3ζ 
through a mechanism of competitive inhibition. However, our 
integrative experimental and modeling approach does not 
explain how the increase in CD3ζ phosphorylation affects 
downstream signaling. More generally, it is not clear how any 
of the effects of CD28 influence downstream T cell activa-
tion. We are particularly interested in activation of the MAPK 
signaling pathway, leading to ERK phosphorylation, as this 
pathway exhibits clear switch-like response in T cells and 
helps mediate T cell activation and proliferation (Altan-
Bonnet & Germain, 2005). 

To explain how the CAR intracellular domains influence 
ERK response time, we constructed a mechanistic computa-
tional model of T cell activation by CARs containing the 
CD3ζ domain alone or in combination with CD28. We first 
calibrate the model using published experimental data and 
show that the model is able to reproduce known effects of 
various intracellular protein perturbations on ERK response 
time following T cell activation. We then use an ensemble 
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modeling approach to predict the effects of various mecha-
nisms of CD28 co-stimulation (Brännmark, Palmér, Glad, 
Cedersund, & Strålfors, 2010). Experimental measurements 
of ERK response in CAR-engineered T cells validate the 
model hypothesis that CD28 activates ERK primarily through 
modifications of CD3ζ phosphorylation kinetics. The model 
also generates additional hypotheses that can be used to 
guide new experiments. Overall, this modeling study enrich-
es our understanding of CAR T cell co-stimulatory activation.  

2 METHODS 
Construction of a mechanistic computational model of CAR T 
cell activation.  
We constructed a model of CAR T cell activation based on our pre-
vious modeling work, as well as other models and experimentally 
measured kinetic data and parameters in the literature. Overall, the 
model presented in this work includes signaling initiated by antigen 
binding to the CAR and culminates in phosphorylation of ERK. The 
full model (Figure 1) includes models of kinetic proofreading (Altan-
Bonnet & Germain, 2005; Coombs & Goldstein, 2005; McKeithan, 
1995) and kinetic segregation (Barua, Faeder, & Haugh, 2007; Da-
vis & van der Merwe, 2006), CD45 phosphatase activity (Arulraj & 
Barik, 2018), LCK autoregulation (Rohrs, Wang, & Finley, 2016), 
CAR phosphorylation (Rohrs et al., 2018), LAT signalosome for-
mation, Ras activation (Das et al., 2009), MAPK pathway activation 
(Birtwistle et al., 2012), and SHP1 negative feedback (Altan-Bonnet 
& Germain, 2005). The steps used to unite these elements into a 
single model are described below.  

LCK autoregulation – We have previously developed a mass 
action based model of LCK autoregulation (Rohrs, Wang, et al., 
2016). However, due to the size of the complete CAR signaling 
model, we simplified the model of LCK autoregulation to reduce the 
computational complexity. To do this, we altered the interactions 
between various phosphorylated forms of LCK from mass action 
kinetics to Michaelis-Menten kinetics and added in the significant 
protein-protein binding reactions identified by the original LCK auto-
regulation model.  This greatly reduced the number of ordinary dif-
ferential equations, as all pairs of different phosphorylated LCK spe-
cies no longer need to form dimers before the autophosphorylation 
reactions can be catalyzed. The parameters from this newly reduced 
minimal LCK model were refit to the same data used to parameter-
ize the original model (Hui & Vale, 2014). In the fitting process, it 
was determined that pairs of Michaelis-Menten constants and cata-
lytic rates as well as pairs of association and dissociation rates were 
not independently identifiable. Therefore, Michaelis-Menten con-
stants were held at a value of 1000 molecules/µm2, which is in line 
with previously fit values from similar systems (Rohrs, Zheng, Gra-
ham, Wang, & Finley, 2018) and within the range of protein concen-
trations in the model. Association rates were held constant at a val-
ue of 0.1 µm2molecule-1min-1 (Northrup & Erickson, 1992; Schloss-
hauer & Baker, 2004). These assumptions for the values of Michalis-
Menten constants and association rates were used throughout the 
model when explicit literature values were unavailable. Fitting was 
done using particle swarm optimization (PSO), described below.  

CAR phosphorylation and kinetic proofreading – Before stimu-
lation, LCK autophosphorylation is allowed to reach steady state in 
the presence of the phosphatase CD45. Antigen is then added to 
the model and allowed to bind to the CAR. The dissociation constant 
for binding of the antigen to the CAR was hand-tuned to agree with 
the in vitro 28ζ CAR T cell ERK activation experimental data meas-
ured in this work, described below.  

Antigen-bound CAR can be phosphorylated by active LCK, as 
we have quantified and modeled previously. The parameters gov-

erning these interactions were adapted directly from our previous 
work (Rohrs et al., 2018). We assume that only LCK phosphorylated 
on the activating site, Y394, is catalytically active toward the CAR 
and other downstream proteins in the T cell activation pathway 
(Philipsen et al., 2017). As our previously published model of CAR 
tyrosine site phosphorylation only accounts for the catalytic activity 
of active LCK monophosphorylated at Y394, we assumed that dou-
bly phosphorylated LCK, phosphorylated at the activating site Y394 
and the inhibitory site Y505, has a catalytic activity 50x slower than 
active monophosphorylated LCK. Kinetic proofreading occurs when 
antigens with lower affinities unbind from the CAR. Free tyrosine 
sites on this antigen-unbound CAR can then be dephosphorylated 
by the phosphatase CD45.  

Kinetic segregation – Binding of an antigen to a TCR or CAR 
protein leads to a narrow region between the T cell and target cell 
that excludes the large extracellular domain of CD45 (Leupin, Zaru, 
Laroche, Müller, & Valitutti, 2000; Mukherjee, Mace, Carisey, Ah-
med, & Orange, 2017; Watanabe, Kuramitsu, Posey, & June, 2018). 
This is modeled by a transition of CD45 from an accessible form to 
an inaccessible form based on the relative amount of antigen-bound 
and -unbound CAR. It has been shown that CD45 is excluded from 
the immunological synapse and that this synapse formation occurs 
between 5-30 minutes after T cell engagement with a target cell 
(Huppa & Davis, 2003); therefore, we assume that the CD45 
transport has a half-life of 30 minutes, and its exclusion rate is pro-
portional to the amount of antigen-bound CD3ζ.  
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Figure 1. 	 Schematic of signaling model from CAR antigen 
binding through ERK activation, incorporating models from 
literature. Arrow and bars indicate activating and inhibitory interac-
tions, respectively. Dashed lines denote the same species in multi-
ple Modules. Module I: LCK regulation, autophosphorylation, and 
phosphorylation of the CAR intracellular signaling domains and 
ZAP-70. Module II: CD45 and SHP1 phosphatase activity. CD45 is 
constitutively active in resting T cells, but it is excluded from the 
signaling area upon CAR binding to its ligand. SHP1 is recruited to 
the area by singly phosphorylated CD3ζ ITAMs and is activated by 
LCK. Module III: The LAT signalosome forms when ZAP-70 binds 
to doubly phosphorylated ITAMs and becomes phosphorylated by 
LCK. It can then phosphorylate sites on LAT and SLP76. Phos-
phorylated sites on LAT can bind proteins Grb2, GADS, and PLCg. 
Grb2 can bind to SOS, while GADS binds to SLP76. SLP76 recruits 
Tec family kinases, like ITK, which can then phosphorylate and 
activate PLCg. Module IV: PLCg and SOS can activate Ras-GDP to 
Ras-GTP. Ras-GTP can be inactivated by RasGAP. Once activat-
ed, RAS-GTP can activate the MAPK pathway, which leads to ERK 
activation. Doubly phosphorylated ERK can phosphorylate LCK at a 
protection site, which prevents LCK from associating with SHP1, 
resulting in a positive feedback loop.  
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ZAP activation – ZAP-70 is a kinase that can bind to doubly 
phosphorylated ITAMs on CD3ζ. ZAP binding protects these ITAM 
sites from dephosphorylation. The parameters governing the binding 
of ZAP to the ITAMs were adapted from experimental measure-
ments in the literature (Bu, Shaw, & Chanti, 1995; Katz, Novotná, 
Blount, & Lillemeier, 2017). Additionally, the kinase activity of CAR-
bound ZAP can be activated through phosphorylation by LCK, and 
we assume that this occurs with a slightly slower catalytic rate than 
LCK phosphorylation of CD3ζ ITAMs. Active ZAP can then unbind 
from the CD3ζ ITAMs and subsequently phosphorylate downstream 
proteins in the LAT signalosome. As we do not explicitly model the 
spatial heterogeneity and movement of ZAP from the ITAM to the 
LAT signalosome, we assume that ZAP phosphorylates its sub-
strates 10-fold slower than the catalytic rate of LCK phosphorylation 
of ZAP.  

LAT signalosome – In the LAT signalosome, we include only 
proteins that directly relate to the activation of the ERK and the 
MAPK pathway (Braiman, Barda-Saad, Sommers, & Samelson, 
2006; Brownlie & Zamoyska, 2013; Nag, Monine, Faeder, & Gold-
stein, 2009). All of the dissociation constants governing these inter-
actions were taken from measurements in the literature (Houtman et 
al., 2004).  

CD28 activation – CD28 contains four tyrosine sites that are 
able to be phosphorylated by LCK (Rohrs et al., 2018). These sites 
bind a variety of downstream signaling proteins, similar to the LAT 
signalosome. Dissociation constants for these interactions were 
taken from the literature (Higo et al., 2014; Tian et al., 2015).  

Ras activation – The mechanism of Ras-GTP activation was 
adapted from a model by Das et al. (Das et al., 2009). The activators 
of Ras-GTP from Ras-GDP are SOS and RAS-GRP. In our model, 
SOS is able to bind directly to Grb2 in the LAT signalosome and on 
CD28. Ras-GRP, is activated by DAG, produced by cleavage of 
PIP2 by PLCg. PLCg can be activated by Tec family kinases, which 
are recruited by SLP76 binding in the LAT signalosome and on 
CD28. Little quantitative information is known about the parameters 
governing Tec family kinase activity; however, it has been shown 
that the activity of these kinases is directly related to SLP76 binding 
(Bogin, Ainey, Beach, & Yablonski, 2007). Therefore, we assumed 
that the rate of PLCg activation is proportional to the amount of 
SLP76 bound to the CAR signaling region on LAT or CD28.  

MAPK pathway – The MAPK pathway and its parameters were 
directly adapted from the Birtwistle et al. model, using the zero feed-
back case (F=1) (Birtwistle et al., 2012). This pathway includes the 
three-layer phosphorylation cascade involving RAF, MEK, and ERK. 

SHP1 negative feedback – The last mechanism we included in 
the model was negative feedback through the phosphatase SHP1, 
which can be turned off by positive feedback from activated ERK, 
first modeled by Altan-Bonnet and Germain (Altan-Bonnet & Ger-
main, 2005). The catalytic rate parameters governing SHP1 activa-
tion and its activity were assumed to be rapid, but slightly slower 
than LCK phosphorylation of CD3ζ. The association rate of SHP1 
was tuned to agree with the 28ζ in vitro CAR T cell ERK activation 
experimental data described below.  
 
Initial conditions  
Initial concentrations of proteins in the model were adapted from 
values calculated in the literature or previous models (Birtwistle et 
al., 2012; Das et al., 2009; Hui et al., 2017; Hui & Vale, 2014; Lipni-
acki, Hat, Faeder, & Hlavacek, 2008). In the model, all interactions 
are assumed to take place in the region on or near the T cell mem-
brane; therefore, for ease of comparison and calculation, all species 
concentrations were converted to units of molecules/µm2. To covert 
from parameter values and concentrations in units per volume to 
units per surface area, we assume an average T cell radius of 6 µm. 

Volume was calculated assuming a spherical shape, and surface 
area was calculated assuming a sphere with a roughness factor of 
1.8, as described previously (Hui & Vale, 2014).  

 
Parameter fitting using particle swarm optimization (PSO) 
The minimal model of LCK autoregulation was fit to data using a 
particle swarm optimization (PSO) algorithm (Iadevaia, Lu, Morales, 
Mills, & Ram, 2010). We allowed the catalytic rates to vary on a log 
scale from 10-1-104 min-1. The objective function was calculated to 
minimize the sum of the squared errors between the model outputs 
and the experimental data. The PSO algorithm was run 100 times, 
and the median value of each parameter was selected for use in the 
model.  

We also fit the catalytic rates of CD45 dephosphorylation to da-
ta from Hui et al. 2017 (Hui et al., 2017). A similar method using this 
data was used previously to explore the effects of PD1 on T cell 
signaling (Arulraj & Barik, 2018). To do this, we simulated our model 
using only the species included in the experiments performed by Hui 
and coworkers. The initial conditions for these species were set 
according to the equivalent molecules/µm2 value listed in the Hui et 
al. supplemental information. All other species’ initial concentrations 
in our model were set to 0.  We then recorded the model outputs of 
the normalized phosphorylation of various species at 30 minutes for 
a range of different CD45 concentrations, mimicking the experi-
ments performed by Hui et al. We fit the model 100 times using 
PSO, keeping all Michaelis-Menten constants (KM) equal to 1000 
molecules/µm2, a value on the same order of magnitude as the pro-
tein concentrations and the average KM values from the LCK mini-
mal model.  

This fitting procedure provided a set of parameter values that 
enabled the model to match the available experimental data (Figure 
2). All model parameters and their values are listed in Supplemental 
File S1. Initial concentrations are provided in Supplemental File S2, 
and the final fitted model is given in Supplemental File S3. 
 
Sensitivity analysis 
The extended Fourier amplitude sensitivity test (eFAST) has been 
described in detail previously (Marino, Hogue, Ray, & Kirschner, 
2008), and we have applied this approach in our previous work 
(Rohrs, Sulistio, & Finley, 2016; Rohrs, Wang, et al., 2016). Briefly, 
eFAST is a global variance-based sensitivity analysis that can identi-
fy which model parameters have the most significant effect on a 
given model output. In this method, a set of model parameters are 
varied at the same time, with different frequencies, and the model 
output is calculated. The Fourier transform of the model output is 
then compared to the various frequencies with which the parameters 
were varied. A model output’s sensitivity to a given parameter of 
interest is proportional to the normalized Fourier transform peak of 
the model output at the frequency with which that parameter was 
varied. This is referred to as the individual sensitivity index (Si).  The 
extent of higher order interactions between parameters can then be 
estimated by calculating the Fourier transform peaks of frequencies 
other than those of the individual frequency and harmonics of the 
parameter of interest, giving the total sensitivity index (STi). A greater 
total index compared to the first-order index indicates that a parame-
ter is more important in combination with other parameters than 
alone. The effect of a parameter is considered to be statistically 
significant if its sensitivity index is greater than that of a dummy 
variable. 

We implemented the eFAST method using MATLAB code de-
veloped by Kirschner and colleagues (Marino et al., 2008). We ana-
lyzed the parameters in seven groups, allowing each parameter to 
vary 10-fold up and down from its baseline value. 
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Cell lines and reagents  
Jurkat T cells (ATTC TIB-152) and K562 cells (ATCC CCL-243) 
were maintained in 5% CO2 environment in RPMI (GIBCO) media 
supplemented with 10% fetal bovine serum, 1% penicillin-
streptomycin, and 2 mM L-glutamine. Alexa-488 conjugated anti-
body against doubly phosphorylated ERK (clone E10) was pur-
chased from Cell Signaling Technology. Anti-HA antibody (AB9110) 
was purchased from Abcam. Alexa-647 conjugated goat anti-rabbit 
secondary antibody was purchased from Thermo Scientific. PE con-
jugated anti-CD19 (clone HIB19) was purchased from Biolegend.  
 
Stable transductions of CAR- and CD19-expressing cell lines 
The construction of a lentiviral plasmid containing an HA-tagged 
anti-CD19 CAR bearing the CD28 transmembrane domain and 
CD28 and CD3ζ intracellular domains (28z) was described previous-
ly (Siriwon et al., 2018). Briefly, the anti-CD19 sequence was based 
on a previously reported CD19 CAR (Milone et al., 2009). The codon 
optimized CD19 single-chain fragment variable (scFv) sequence and 
human CD8 hinge region (aa 138-184) was synthesized by Integrat-
ed DNA Technologies (Coralville, IA). The CD19/CD8 hinge gene 
block was amplified by PCR and added upstream of the transmem-
brane and intracellular domains of human CD28 (aa 153-220) fol-
lowed by the intracellular domain of human CD3ζ (aa 52-164). The 
CD8 leader sequence and HA-tag were inserted upstream of the 
CD19 scFv to allow for labeling and detection of CAR-expressing 
cells (Supplemental Figure S1a). To make the lentiviral vector, this 
sequence was inserted downstream of the human ubiquitin-C pro-
moter in the lentiviral plasmid pFUW using Gibson assembly, as 
previously described (Dai, Xiao, Bryson, Fang, & Wang, 2012).  

To make the CD3ζ-only CAR (Z), PCR was used to amplify the 
sequence from the N-terminal of the CAR construct through the 
scFv region, as well as the CD3ζ intracellular domain. The codon 
optimized CD8 transmembrane domain sequence was synthesized 
by IDT-DNA and inserted between the scFv and CD3ζ PCR prod-
ucts using PCR. The CAR gene fragment was then reinserted into 
the lentiviral plasmid using Gibson assembly.  

Lentiviral vectors were prepared by transient transfection of 
293T cells using a standard calcium phosphate precipitation proto-
col, as described previously (Dai et al., 2012). The viral superna-
tants were harvested 48 hours post-transfection and filtered through 
a 0.45 μm filter (Corning, Corning, NY). For transduction, Jurkat T 
cells were mixed with fresh viral supernatant and centrifuged for 90 
minutes at 1050xg at room temperature. A stable CD19-expressing 
K562 line was generated in a similar way by transducing parental 
K562 cells with a lentiviral vector encoding the cDNA of human 
CD19, as described previously (Siriwon et al., 2018).  

To get populations of cells that express the transduced protein 
at different levels, CAR-expressing Jurkat T cells and CD19-
expressing K562 cells were sorted into high, medium, and low popu-
lations (referred to as ZHi, ZMed, ZLow, 28ZHi, 28ZMed, 28ZLow, 19Hi, 
19Med, and 19Low, respectively). To do this, the cells were stained 
with fluorophore-conjugated antibodies. T cells were first stained 
with anti-HA antibody for 30 minutes at 4°C, followed by three 
washes with PBS. The cells were then stained with a secondary 
alexa-647 conjugated anti-rabbit antibody for 15 minutes at 4°C, 
followed by three more washed with PBS. CD19 cells were stained 
with PE conjugated anti-CD19 followed by three washed with PBS. 
All stained cells were then sorted into the three groups using the BD 
SORP FACS Aria I cell sorter at the USC stem cell flow cytometry 
core (Supplemental Figure S1b). 

 
T cell stimulation and ppERK analysis 
CAR-expressing Jurkat T cells were stimulated by either HA anti-
body or CD19-expressing cells. For antibody stimulation, 0.1x106 

CAR-expressing cells were incubated with various amounts of anti-
HA antibody in 200 µl in 96 well plates in a 37°C water bath. For 
cellular stimulation, 0.1x106 CAR-expressing Jurkat T cells were 
combined with various concentrations of CD19-expressing K562 
cells in 200 µl in 96 well plates. After the cells were mixed, they were 
centrifuged at 1000xg for 10 seconds before moving directly into a 
37°C water bath. Doubly phosphorylated ERK was measured as 
described previously (Altan-Bonnet & Germain, 2005). Briefly, to fix 
the intracellular stimulation reactions after a given amount of time, 
cells were moved to an ice bath, and ice cold 16% paraformalde-
hyde solution was added to a final concentration of 4% for 20 
minutes. The cells were then centrifuged and resuspended in 100% 
ice-cold methanol. The cells were incubated at -20°C for at least 30 
minutes, followed by 3 washes in 200 µl FACS staining buffer (5% 
FBS in PBS). Cells were then stained with fluorophore conjugated 
phospho-ERK antibody for 30 minutes at 4°C in the dark, followed 
by 3 washes with 200 µl PBS. Fluorescence signal was analyzed 
using the Miltenyi Biotec flow cytometer and all FACS data were 
analyzed using FlowJo software. Small Jurkat cells were distin-
guishable from the large K562 target cells based on their low auto-
fluorescence in the forward and side scatter channels. 

Upon T cell activation, ERK exhibits a digital (on/off) response. 
Typically, when ERK is measured as a readout of T cell activation, 
the percent of ERK positive cells in a population is measured. The 
response time of the population can then be calculated based on the 
fit of the phosphorylation time course to a standard sigmoidal curve.  
In this work, we assume the ERK response time is equal to the time 
it takes to reach half of the maximal level of phosphorylation (EC50). 
This depends on both the amount of antigen and the amount of CAR 
expression (Supplemental Figure S1c).  In our model, we assume 
that the deterministic differential equations are representative of the 
average response of the T cell population. Therefore, we directly 
compare the ERK response time in the model, which represents the 
response time of an average cell in the population, to the half maxi-
mal cellular population response time. This comparison has previ-
ously been shown to relate well (Altan-Bonnet & Germain, 2005).  
 
Experimental data curve fitting 
Graphpad Prism was used to fit the phosphorylated ERK response 
time from our experimental data to a standard sigmoidal curve, us-
ing the non-linear regression curve fit function. 

3 RESULTS 
3.1 Model of CAR ERK activation 
We constructed a computational mechanistic model that 
describes the early CAR signaling events leading to T cell 
activation. We specifically predict how the CAR mediates 
ERK activation through the MAPK pathway. Studies have 
indicated that, while the activation of CARs and TCRs have 
different signal initiating components, the signaling events 
initiated downstream are not significantly different (Harris et 
al., 2018). Therefore, to construct our model, we combined 
four mechanistic signaling modules: (I) CAR-specific phos-
phorylation based on our previously published models, (II) 
phosphatase activity, (III) a LAT signalosome, and (IV) a 
MAPK pathway that leads to ERK activation (Figure 1). To 
characterize the model, we first explored signaling primarily 
through the CD3ζ CAR stimulatory domain. This allowed us 
to compare our model to previously developed models in the 
literature, which largely simplify the TCR to account only for 
the CD3ζ domain. 
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Module I focuses on LCK autoregulation and its phos-
phorylation of the CAR intracellular signaling domains and 
ZAP-70. We first adapted our model of LCK autoregulation 
and inhibitory phosphorylation by the kinase CSK to reduce 
the computational complexity (Rohrs, Wang, et al., 2016). 
The second model in this module was adapted from our pre-
vious work to quantify the kinetics of CAR intracellular do-
main phosphorylation by LCK (Rohrs et al., 2018). Our pub-
lished computational investigation, paired with novel in vitro 
phospho-proteomic mass spectrometry, specifically identified 
the phosphorylation rates of individual tyrosine sites. This 
work also revealed that the addition of CD28 increases the 
rate of CD3ζ ITAM phosphorylation, which will be used later 
in the present study to explore how CD28 affects down-
stream signaling in the T cell activation system. Once CD3ζ 
ITAMs are doubly phosphorylated, ZAP-70 is able to bind. 
ZAP-70 can then be phosphorylated by LCK at several sites. 
This phosphorylation has a variety of effects: holding ZAP-70 
in an open conformation, increasing ZAP-70 catalytic activity, 
and allowing ZAP-70 to dissociate from CD3ζ (Katz et al., 
2017; Sjölin-goodfellow et al., 2015). 

In module II, we modeled the activity of phosphatases 
known to play a role in T cell activation. This module influ-
ences both modules I and III. We included two main phos-
phatases that act throughout the whole model of T cell acti-
vation: CD45 and SHP1. CD45 is constitutively active in T 
cells and prevents unstimulated T cell activation. SHP1 activ-
ity is induced upon phosphorylation of the TCR. To explore 
its effects on CAR activation, we included a mechanism of 
negative feedback through phosphatase SHP1 recruitment, 
first modeled by Altan-Bonnet and Germain (Altan-Bonnet & 
Germain, 2005). SHP1 is recruited to singly phosphorylated 
CD3ζ ITAMs (from module I), where it can be activated by 
LCK. SHP1 can then dephosphorylate various proteins in the 
signaling cascades in modules I and III.  

Module III, the LAT signalosome, links the output of 
module I (activated ZAP-70) to the input of module IV (active 
SOS and PLCg). Module III begins with free and activated 
ZAP-70 from module I, which is able to phosphorylate LAT. 
Phosphorylated LAT can bind to adaptor molecules, GADS 
and Grb2, which in turn bind to other downstream signaling 
proteins, such as SLP76, and the inputs to module IV, SOS 
and PLCg. Phosphorylated CD28 can also bind and recruit 
several of the proteins in the LAT signalosome.  

Module IV focuses on MAPK pathway activation. To ini-
tiate this pathway, we adapted a model of Ras-GDP to Ras-
GTP conversion by SOS and RasGRP from Das et al. (Das 
et al., 2009). Their model details the allosteric regulation of 
SOS by active Ras, which results in a positive feedback loop 
that can transform the analog phosphorylation events de-
rived from TCR or CAR activation to a digital ERK response. 
The RAS-GTP output of this model was used as the input to 
a MAPK cascade parameterized by Birtwistle et al. (Birtwistle 
et al., 2012), resulting in doubly phosphorylated ERK. Active 
ERK also feeds back to modules I and II as it can phos-
phorylate LCK at a protection site, which prevents interac-
tions with the phosphatase SHP1, as first modeled by Altan-
Bonnet and Germain (Altan-Bonnet & Germain, 2005).  

Together, these modules constitute a mechanistic de-
scription of what are thought to be the most important inter-
actions in the binary decision of T cells to activate ERK. Be-
low, we explore the model in detail and make predictions 
about the mechanisms through which the individual signaling 
domains on CARs influence the ERK response.  
 

3.2 Model parameterization to literature data 
We first fit the model parameters to experimental data to 
obtain a robust mathematical framework to predict T cell 
activation leading to ERK phosphorylation (Figure 2). We 
started by refitting our previous model of LCK regulation to 
reduce the computational complexity and better constrain the 
parameters, as described in the Methods section. We fit this 
minimal model of LCK autoregulation and phosphorylation by 
CSK to five different experimental conditions in the literature 
(Hui & Vale, 2014). In total, the values of 11 parameters 
were estimated using 132 experimental data points. Figure 
2a shows the model fit to experimental data. The median 
parameter values as well as the standard deviation for 100 
best fit parameter sets are shown in Figure 2b and are listed 
in Supplemental Table S1. 

The majority of the downstream model parameters 
come directly from measurements in the literature or from 
previously published models. However, some of the parame-
ters were not well defined, because they had not been 
measured experimentally, they had conflicting values after 
being fit to the specific assumptions of previous models, or 
they did not account for the two-dimensional nature of the 
interactions specifically modeled here. This was particularly 
true of the parameters governing phosphatase activity, which 
were shown to significantly influence ERK response time in 
our sensitivity analysis (Figure 3). To better constrain these 
parameters, we fit the model to published measurements 
obtained using an in vitro system of recombinant proteins 
interacting on a two-dimensional liposomal membrane (Hui 
et al., 2017). Hui et al. used this system, combining twelve 
proteins involved in T cell activation, to measure nine differ-
ent protein phosphorylation states in the presence of varying 
amounts of CD45. We extracted this data (64 data points) 
and fit seven model parameters, as described in the Meth-
ods section. Figure 2c, top row shows the model fit to the 
experimental data collected in the absence of CSK, best fit 
parameter values and standard deviations are listed in the 
Supplemental Table S1. To validate this parameterized 
model, we extracted an additional data set from Hui et al. 
which includes 145 molecules/µm2 CSK (64 data points). As 
the activity of CSK was fit in our minimal LCK phosphoryla-
tion model and was not accounted for in the fitting of the Hui 
et al. CD45 dephosphorylation data, this validation provides 
confidence that combining our minimal LCK phosphorylation 
model with the larger CD45 dephosphorylation model can 
accurately reproduce the signaling network (Figure 2c, bot-
tom row). The median parameter values as well as the 
standard deviation for 100 best fit parameter sets are shown 
in Figure 2d, and are listed in Supplemental Table S1. 
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Figure 2. 	Model parameters were fit to experimental data.  
a) A reduced version of our model of LCK regulation  (Rohrs, Wang, et al., 2016) was refit to data (dots)  from Hui and Vale (Hui & Vale, 

2014) for five different experimental conditions using Michaelis-Menten kinetics for all LCK-LCK catalytic interactions and mass action ki-
netics for all CSK-LCK interactions and LCK-LCK binding interactions. The median value from 100 fitted parameter sets (solid lines) is 
shown, with the shaded region indicating the standard deviation of the fits.  

b) The median value and standard deviation of the fitted LCK and CSK parameter values from 100 optimized sets (on log scale). LCK catalyt-
ic parameters are denoted as cat_XX_#, where XX indicates the phosphorylation state of Y394 and Y505 on the substrate LCK and # indi-
cates the tyrosine site substrate being phosphorylated. Catalytic parameters for CSK phosphorylation of LCK Y505 are denoted as 
cat_CSK_XX, where XX indicates the phosphorylation state of the LCK substrate. Dissociation rates are denoted as off_XX_YY, where XX 
and YY indicate the phosphorylation state of the LCK binding partners at Y394 and Y505, respectively, or CSKoff_XX where the binding 
partners are CSK and LCK phosphorylated at Y394 or Y505 as indicated by XX, respectively. All fitted parameters are in units of min-1.  

c) Top row, CD45 catalytic rate parameters were fit to data from Hui et al. in the absence of CSK (Hui et al., 2017) (dots). The median value 
of 100 optimized parameter sets (solid lines) is shown, with the shaded region indicating the standard deviation. Bottom row, as validation, 
the model was simulated with 145 molecules/µm2 CSK and compared to data from Hui et al. not used in parameter fitting (open circles). 
The median (lines) and standard deviation (shaded region) of the 100 optimized parameter sets is shown. 

d) The median value and standard deviation of the CD45 catalytic parameter values from 100 optimized sets (shown on a log scale). CD45 
catalytic rates are denoted as Kcat_CD45_x, where x indicates the substrate tyrosine sites. A1 indicates CD3ζ ITAM tyrosine sites. Dephos 
is a generic dephosphorylation rate applied to all substrates not specifically fit to their own value. Catalytic rates are in units of min-1. 

Overall, the fitted models of LCK autoregulation and 
phosphatase interactions qualitatively and quantitatively 
match the experimental data. Additionally, nearly all of the 
estimated parameter values lie in a tight range. Altogether, 
we demonstrate that these models recapitulate experiments 
and can be combined with the other model components to 
create a predictive framework of CAR-mediated ERK activa-
tion. The median values of the estimated parameters were 
used in model simulations presented below. 
 

3.3 Sensitivity analysis reveals network features 
that control ERK activation 

We aimed to first better understand how the model parame-
ters interact with one another and influence the output of 

doubly phosphorylated ERK response time. To do so, we 
conducted a sensitivity analysis using the extended Fourier 
amplitude sensitivity analysis (eFAST) method (Marino et al., 
2008). This global sensitivity analysis allows us to identify 
the parameters that the model output is sensitive to both 
individually, with the first order sensitivity index (Si), and in 
combination, with the total sensitivity index (STi).  This analy-
sis is particularly important for large models, like the one 
presented here, which incorporate many different mecha-
nisms of feedback and other complex interactions. Parame-
ters with high sensitivity indices strongly influence the model 
output. 

We analyzed the model parameters in seven groups: ini-
tial concentrations, CAR parameters, LCK parameters, LAT 
parameters, RAS parameters, MAPK parameters, and phos-
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Figure 3: First order (Si) and Total (STi) sensitivity indexes of model parameters.  
a) An eFAST sensitivity analysis was performed on all model initial concentrations for two different nominal ranges of antigen (Ant_T), as 

indicated on the left. Only the initial conditions whose sensitivity indices are statistically significantly different from that of a dummy varia-
ble are shown. The relative sensitivities of species in the model change depending on the amount of antigen in the system.  

b) Model parameters were separated into nine groups, listed on the left. An eFAST sensitivity analysis was performed on each group with 
the initial antigen concentration of 100 molecules/µm2. Only the parameters whose sensitivity indices are statistically significantly different 
than that of a dummy variable are shown. For binding interactions with literature defined KD values, only the kon parameter was chosen to 
vary in the sensitivity analysis. 

phatase parameters. We only list the parameters for which 
sensitivity indices are statistically significant. Overall, we find 
that there is at least one parameter in each group that signif-
icantly influences ERK response time. Additionally, almost all 
of the influential parameters have a higher total sensitivity 
index than first order index. This indicates that, even if all the 
parameters in a group are not significantly influential on their 
own, they do all still interact together to affect the output. We 
next examine the results of the sensitivity analysis in greater 
detail. 

We calculated the sensitivity indices when varying the 
species’ initial concentrations (Figure 3a) for two different 
conditions, one with a high range of antigen (100-10,000 
molecules/µm2, top) and one with a moderate range of anti-
gen (1-1,000 molecules/µm2, bottom). The relative sensitivity 
indices of the initial species’ concentrations change between 
these two experimental conditions. This is particularly inter-
esting when considering the impact of the antigen concentra-
tion itself and the concentration of the negative feedback 
molecule, SHP1. At low antigen concentrations, ERK activa-
tion is proportional to the amount of antigen in the system. In 
this regime LCK, ZAP-70 and CSK emerge as highly influen-
tial. This is not entirely surprising, as activation of ZAP-70 is 
an early bottleneck that must occur before the downstream 
signaling pathways diverge into more complex branched 
structures through the many elements of the LAT signal-
osome. The branches of the LAT signalosome activation 

converge back onto the MAPK pathway; thus, they are able 
to help compensate for each other and are less influential 
overall than the upstream decision makers.  

At high antigen concentrations, the sensitivity indices of 
the antigen concentration are greatly reduced, and the 
strong influence of SHP1 emerges. We sought to further 
understand the role of SHP1 and antigen concentration in 
the model, as the eFAST sensitivity analysis indicated that 
the interaction between these two species was important. In 
our model, we assume that the intracellular signaling events 
downstream of CD3ζ activation are the same for the TCR 
and CARs. As such, our CAR signaling model incorporates a 
similar form of SHP1 negative feedback that has been 
shown to play an important role in TCR signaling. This re-
sponse has been modeled in TCR signaling previously (Al-
tan-Bonnet & Germain, 2005). We explored this feedback in 
the model by recording ERK response time for various levels 
of antigen and SHP1 expression (Supplemental Figure S2). 
As antigen concentration increases for high SHP1 concen-
trations, as well as in intermediate SHP1 levels (above the 
red line), the ERK response time first decreases and then 
increases. When SHP1 concentration is low, this longer ERK 
response for high CD3ζ is not seen, indicating that it is the 
feedback of SHP1 that is responsible for this shift in the ERK 
response time trend. These results reveal that, past a certain 
threshold antigen concentration, the amount of antigen is not 
significantly important for controlling the rate of T cell activa-
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tion. Instead, T cell activation is controlled by the intracellular 
signaling and negative feedback through SHP1. 

The sensitivity indices of these parameters follow similar 
trends as with the impact of the initial concentrations. Figure 
3b shows the sensitivity analysis of the other six groups of 
parameters starting with a moderate concentration of antigen 
(100 molecules/µm2). Some of the most influential parame-
ters in the model are the catalytic rates of LCK, ZAP-70, 
PLCg, RasGRP, and CD45. Additionally, the value of the 
Michaelis constant (km) is a highly influential parameter 
since this single parameter plays a role in every Michaelis-
Menten reaction in the system. However, there are not 
enough data to be able to identify both a catalytic rate and 
Michaelis-Menten constant for all of these reactions, thus 
leading to our choice to focus our fitting around the highly 
sensitive catalytic parameters. The calculated sensitivity 
indices for the network stimulated with a high concentration 
of antigen (1,000 molecules/µm2) shows similar changes as 
the initial condition sensitivity indices, with SHP1 parameters 
being more sensitive than the low antigen case and ZAP70 
and CSK parameters being slightly less sensitive. 

Taken together, the high sensitivity indices of multiple 
parameters spread throughout the different groups highlights 
the interconnected nature of the signaling network modeled 
here, where the final output depends on each step of the 
pathway to produce a response. Thus, there is not a single 
category of parameters that solely affects ERK activation. 
Rather, control of ERK response is distributed across the 
network. 
 

3.4 Model is validated by independent experi-
mental data sets  

We next sought to validate the model predictions using ex-
perimental data of ERK activation in CAR T cells. In our 
modeling approach, we assume that the same signaling 
events that occur downstream of the TCR also occur down-
stream of the CARs. This assumption has been shown to be 
true on a macroscale of general phosphorylation events 
(Harris et al., 2018), and we wanted to further validate it spe-
cifically for the negative feedback of SHP1. To do so, we 
compared model simulations to experimental measurements. 
First, CAR T cells were made as described in the methods 
section. We used lentiviral vectors to create stable Jurkat T 
cell lines expressing HA-tagged anti-CD19 CD28-CD3ζ 
CARs and sorted them into CAR positive populations (Sup-
plemental Figure S1). Using 28zMed Jurkat T cells, we veri-
fied that anti-HA antibody is able to bind to the HA-tagged 
CAR and stimulate ERK phosphorylation. Using this system, 
we stimulated the cells with various amounts of anti-HA anti-
body, up to very high concentrations, and measured the per-
cent of doubly phosphorylated ERK over time (Figure 4a). 
We then fit these responses to a 4-parameter sigmoidal 
curve and estimated the 95% confidence interval of the half 
maximal ERK response time at each antibody concentration, 
referred to as the ERK response time (Figure 4b, black 
dots and error bars). For very low concentrations of anti-
body, the maximal percent of ERK positive cells is also very 

low, making it difficult to fit a sigmoidal curve. Thus, the con-
fidence intervals for the fitted ERK response times are wide 
for these low concentrations. However, as we increase the 
antibody concentration and higher maximal ERK phosphory-
lation is achieved, the confidence intervals around the fitted 
ERK response times narrow and we can see a clear trend. 
As the antibody concentration increases, the ERK response 
time of the population becomes faster. This trend appears to 
change at very high antibody concentrations, where the re-
sponse time begins to slow, presumably, due to the negative 
feedback from SHP-1, as is seen in endogenous T cell sig-
naling (Altan-Bonnet & Germain, 2005).. 

We applied the model to predict the ERK response time 
for the same antigen concentration levels used in our exper-
iments. Given the mechanistic detail of the model, we could 
use it to investigate whether SHP1 influences CAR signaling 
in a similar way as in TCR signaling. Using the baseline 
model parameters, the model simulations qualitatively agree 
with the experimental observations, showing faster ERK re-
sponse time with increasing antigen at low concentrations 
and slowing ERK response time to a plateau at higher con-
centrations (Figure 4b, blue line). However, the response 
times given by the model simulations with the baseline pa-
rameters are much slower than the experimental data. To 
address this, we examined to the assumption that all param-
eters bind with the same association rate (0.1 µm2molecule-

1min-1) made during model construction. Based on experi-
mental evidence, we know that SHP1 must be recruited to 
the T cell signaling area (Lorenz, 2008). As our model does 
not account for the spatial orientation of molecular diffusion 
in the cell, we accounted for this step by decreasing the as-
sociation rate of SHP1 to the singly phosphorylated ITAMs. 
We tried a range of values for this association rate and found 
that reducing this rate to 0.0015 µm2molecule-1min-1 allowed 
the model to match the experimental data. These simulations 
indicate that SHP1 does indeed play a significant role in 
CAR signaling. Additionally, we confirm that the model quali-
tatively and quantitatively matches experimental measure-
ments. We use this reduced association rate in all subse-
quent model simulations.  

We next aimed to further validate the model by deter-
mining whether it could qualitatively reproduce known exper-
imental observations obtained following modifications of ERK 
activation, as published in the literature. To do this, we ap-
plied the model to test how different mutations to upstream 
signaling molecules influence downstream ERK response 
time (Figure 4c). Schoenborn et al. modified CSK experi-
mentally to produce a form of the protein that can specifically 
bind to a small molecule inhibitor (Schoenborn, Tan, Zhang, 
Shokat, & Weiss, 2011). They showed that inhibiting CSK 
resulted in faster ERK activation in a population of T cells. 
When we remove CSK, the model predicts that ERK re-
sponse time increases by almost one minute, in agreement 
with the findings from Schoenborn and coworkers. Con-
versely, when we double the amount of CSK, the model 
shows that ERK response time slows.  

In the same study, Schoenborn et al. also showed that 
CD45 deficient cells have reduced ERK activation upon TCR 
stimulation. Using the model, we show that removing CD45 
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Figure 4: The model can reproduce effects of T cell signaling.   
a) The percent of ppERK positive 28zMed CAR T cells over time following stimulation with varying amounts of anti-HA antibody. Experimental 

data (dots) were fit to a sigmoidal curve (lines) to estimate ERK response time (EC50).  
b) The model simulations (lines) compared the ERK response time of 28zMed CAR T cell activation (dots), calculated from the ppERK re-

sponse curves in (a). Experimental data is the sigmoidal fit EC50 value from (a) +/- 95% confidence interval. Model simulations using the 
baseline assumption that SHP1 association rate with singly phosphorylated CD3ζ ITAMs is 0.1 µm2molecule-1min-1 (blue line) do not 
match the data, but changing the SHP1-ITAM association rate to 0.0015 µm2molecule-1min-1 (red line) allows the model to capture the 
ERK response data well.  

c) The model can qualitatively match the expected changes in ERK response time due to changes to various intracellular signaling mole-
cules. The change in the ERK response compared to the baseline ERK response model is shown for simulations with varying amounts of 
CSK as well as alterations to the indicated LCK tyrosine sites to mimic a tyrosine to phenylalanine mutation. 

greatly slows the ERK response time by roughly 2.75 
minutes. These model simulations qualitatively agree with 
the experimental data.  

Similar experiments were done by Philipsen et al. to test 
the ERK response given various LCK tyrosine to phenylala-
nine mutants expressed in LCK negative Jurkat T cells 
(Philipsen et al., 2017). They found that LCK-Y394F or LCK-
Y394F-Y505F essentially eliminated the ERK positive cell 
population at three minutes, while LCK-Y505F increased the 
amount of ERK positive cells. Implementing these two muta-
tions in our model shows that removing LCK-Y394 phos-
phorylation completely prevents LCK phosphorylation while 
removing LCK-Y505 phosphorylation speeds up the ERK 
response time. Since our model does not incorporate sto-
chasticity, we cannot directly measure the percentage of 
positive cells. However, these trends agree with the experi-
mental findings. Thus, the model is able to capture known 
effects of signaling modifications in both TCR- and CAR-
specific T cell activation. 
 

3.5 Model predicts mechanism of CD28-
enhanced signaling  

The results presented above demonstrate how we have de-
veloped a mathematical model to predict ERK activation 
downstream of CAR signaling. By comparing the model to 
multiple independent data sets, we present a validated mod-
el that can generate reliable, experimentally-based results. 
This provides confidence that the model can be used to 
generate new predictions and testable hypotheses. 

 Therefore, we applied the model to better understand 
the mechanism of CD28 signaling. In particular, we investi-
gated how the presence of CD28 influences ERK response 
time, a long-standing question in the field of immunology 

(Adams, Grierson, Mowat, Harnett, & Garside, 2004; Bey-
ersdorf, Kerkau, & Hünig, 2015). We first quantified how the 
presence of CD28 affects downstream signaling leading to 
ERK activation by measuring the ERK response time for Z or 
28z CAR T cells. To do this, we expressed the Z CAR in 
Jurkat T cells, following the same protocol and sorting pro-
cess used for the 28z Jurkat CAR T cells described earlier. 
We also expressed CD19 on K562 target cells and sorted 
them into different expression levels as described in the 
methods (Supplemental Figure S1b). We then stimulated 
28zMed and ZMed T cells with different ratios of 19Med target 
cells and measured the ERK response time (Figure 5a,b). 
Here, we see that the 28z CAR has consistently faster ERK 
activation for all target cell ratios. To validate that this is a 
consistent mechanism across a range of CAR and CD19 
expression levels, we stimulated 1:1 ratios of high, medium, 
and low expression CAR and target cells and measured the 
ERK response time (Supplemental Figure S1c). The ERK 
response time depends on both CAR expression level and 
CD19 expression level, with high expressing cells displaying 
faster response times than lower expressing cells. Addition-
ally, 28z CARs had consistently faster ERK response times 
compared to Z CARs.  

To understand the mechanisms that lead to faster ERK 
response time in the presence of CD28, we explored the 
literature to identify the important mechanisms of CD28 sig-
naling. CD28 has been shown to bind to several different 
proteins that are also involved in the LAT signalosome. Spe-
cifically, phosphorylated tyrosine sites and proline-rich re-
gions on CD28 can bind to the adaptor proteins Grb2 and 
GADS (Higo et al., 2014). These proteins can recruit and 
bind to other proteins that lead to ERK activation. Additional-
ly, our previous work to quantify CAR phosphorylation kinet-
ics showed that the presence of CD28, without any down-
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Figure 5: Experimental validation of CAR activated ERK re-
sponse time. 
a) ZMed CAR cells and 28zMed CAR cells were mixed with various 

amounts of 19Med K562 cells, and the ERK response was 
measured over time. The data (dots) were then fit to a sigmoid-
al curve (lines), and the ERK response time (EC50) was calcu-
lated. 

b) Experimental ERK response time of ZMed and 28zMed CAR T cell 
activation (dots). Experimental data are the EC50 value from 
the sigmoidal curves fit in (A) +/- 95% confidence interval.  

stream binding proteins, increases the rate of CD3ζ phos-
phorylation (Rohrs et al., 2018). It is possible that enhancing 
CD3ζ phosphorylation is another mechanism by which CD28 
could influence ERK activation.  

To understand the relative importance of each of these 
three mechanisms (Grb2 binding to CD28, GADS binding to 
CD28, and CD28-mediated enhancement of LCK activity) on 
ERK activation in CAR T cells, we used an ensemble model-
ing approach (Mesecke, Urlaub, Busch, Eils, & Watzl, 2014). 
The three individual mechanisms implemented in the model 
are shown in Figure 6. (1) Grb2 is able to recruit SOS to the 
signaling area, which can activate Ras and the MAPK path-
way directly (Figure 6a) (Schneider, Cai, Prasad, Shoelson, 
& Rudd, 1995). (2) GADS is able to recruit SLP76, thus in-
creasing the amount of this adaptor protein in the signaling 
region (Figure 6b) (Sela et al., 2011; Wonerow & Watson, 
2001). For Grb2 and GADS binding, we assume that these 
adaptor proteins will bind and signal in the same way that 
they do on the LAT signalosome. (3) The third mechanism 
uses the kinetic rates calculated in our previous model of 
phosphorylation of the individual CD3ζ ITAM sites in the 
presence of CD28. In this mechanism, the increased phos-
phorylation rate of CD3ζ allows for faster recruitment of ZAP-
70 and therefore faster activation of the LAT signalosome 
and the MAPK pathway (Figure 6c) (Rohrs et al., 2018). 

We simulated the model with each CD28 mechanism 
individually and in various combinations. The bottom panels 
of Figure 6 show the predicted ERK response time as a 
function of antigen concentration for each mechanism indi-
vidually with CD28 present, compared to the simulated case 
where the CAR only expresses the CD3ζ domain. Both Grb2 
and GADS binding showed similar effects: slightly slowing 

ERK response time at low antigen concentrations, with only 
minor effects at high antigen concentrations. In contrast, the 
effect of the increased rate of CD3ζ phosphorylation was 
significantly different, showing a nearly constant decrease in 
response time in the presence of CD28 over all antigen con-
centrations. Simulating Grb2 and GADS binding together did 
not appear qualitatively different than simulations with each 
one individually (Supplemental Figure S3a). Adding either 
or both binding mechanisms to the mechanism of increased 
LCK kinetics was not significantly different from the in-
creased kinetics mechanism alone (Supplemental Figure 
S3b-d).  

Comparing these results to the experimental data in 
Figure 5b, we can see that the model in which CD28 influ-
ences the kinetics of LCK phosphorylation of CD3ζ qualita-
tively matches the experimental data. The difference in the 
absolute quantification of ERK response times between the 
target cell stimulated data and the model is likely due to the 
fact that the model was fit to experimental data of CAR stim-
ulation through anti-HA antibodies, which are expected to be 
less efficient at inducing the strong crosslinking that aids in 
immunological synapse formation and more efficient T cell 
activation induced by cell-cell interactions. However, the 
model qualitatively predicts the qualitative effects of CAR 
stimulation, without any additional parameter fitting or tuning.   

Therefore, based on these detailed model simulations, 
we hypothesize that CD28 primarily influences ERK activa-
tion through recruitment of LCK, which increases the kinetics 
of CD3ζ activation, and not through specific binding events 
of the CD28 protein itself. This hypothesis is validated by the 
fact that our modeling results closely match the experimental 
measurements. 

4 DISCUSSION 
In this study, we developed a computational mechanistic 
model of the signaling events that lead to activation of CAR-
engineered T cells via MAPK signaling. To our knowledge, 
this is the first model to combine this level of detail of the T 
cell activation signaling and co-stimulatory pathways. The 
model incorporates 23 different proteins in the signaling 
pathway that leads from CAR-antigen binding to ERK activa-
tion. Experiments quantifying ERK activation in CAR-bearing 
Jurkat T cells were used for model parameterization and 
validation. The validated model was used to explore CAR 
signaling and how the CD28 co-stimulatory domain influ-
ences ERK activation. We used an ensemble modeling ap-
proach to generate novel hypotheses for the way in which 
three different CD28 signaling mechanisms influence ERK 
activation kinetics (Mesecke, Urlaub, Busch, Eils, & Watzl, 
2011). Specifically, we confirmed the importance of SHP1 
negative feedback in CAR signaling and generated new hy-
potheses regarding the role of CD28. We show that CD28 
primarily affects downstream signaling through recruiting 
LCK to modify the phosphorylation rate of CD3ζ and that the 
binding properties of CD28 alone may actually retard T cell 
activation at low antigen concentrations. These hypotheses 
can be used in the future to design new experiments to im-
prove our understanding of these engineered proteins. 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 30, 2019. ; https://doi.org/10.1101/718767doi: bioRxiv preprint 

https://doi.org/10.1101/718767
http://creativecommons.org/licenses/by-nc/4.0/


Model of ERK activation in CAR T cells  

11 

0.01 0.03 0.1 0.3 1 3
Antigen Concentration (uM)

2

4

6

8

10

12

ER
K 

R
es

po
ns

e 
Ti

m
e

(m
in

)

CARz
CAR28z: GADS

0.01 0.03 0.1 0.3 1 3
Antigen Concentration (uM)

2

4

6

8

10

12

ER
K 

R
es

po
ns

e 
Ti

m
e

(m
in

)

CARz
CAR28z: Grb2

0.01 0.03 0.1 0.3 1 3
Antigen Concentration (uM)

2

4

6

8

10

12

ER
K 

R
es

po
ns

e 
Ti

m
e

(m
in

)

CARz
CAR28z: kinetics

C
D
2
8

C
D
3
ζ

P

CD19

P

P

P

Erk
PP

G
A
D
S ITK
SLP76

P

L
A
T

PLCγ
P

P

C
D
2
8

C
D
3
ζ

P

CD19

P

P

LCKP

P
P

P
P

P
P LAT

Sos

PLCγ

Erk
PP

P

C
D
2
8

C
D
3
ζ

CD19

P

P

P

GRB2

Sos

P

Erk
PP

C
D
2
8

C
D
3
ζ

P

CD19

P

P

P

Erk
PP

G
A
D
S ITK
SLP76

P

L
A
T

PLCγ
P

P

C
D
2
8

C
D
3
ζ

P

CD19

P

P

LCKP

P
P

P
P

P
P LAT

Sos

PLCγ

Erk
PP

P

C
D
2
8

C
D
3
ζ

CD19

P

P

P

GRB2

Sos

P

Erk
PP

C
D
2
8

C
D
3
ζ

P

CD19

P

P

P

Erk
PP

G
A
D
S ITK
SLP76

P

L
A
T

PLCγ
P

P

C
D
2
8

C
D
3
ζ

P

CD19

P

P

LCKP

P
P

P
P

P
P LAT

Sos

PLCγ

Erk
PP

P

C
D
2
8

C
D
3
ζ

CD19

P

P

P

GRB2

Sos

P

Erk
PP

a. b. c.

Figure 6: Ensemble models of CD28 ERK activation mechanisms.  
a) Top, CD28 can bind to Grb2, which can bind to SOS and activate the MAPK pathway and ERK. Bottom, ERK response time as a function 

of CD3ζ concentration for the Z (blue) or 28z (red) CAR in which the only effect of CD28 activation is its binding to Grb2. 
b) Top, CD28 can bind to GADS, which can potentially bind to SLP76. Tec family kinases recruited by SLP76 can then activate PLCg on the 

LAT signalosome, which activates MAPK pathway and ERK. Bottom, ERK response time as a function of CD3ζ concentration for the Z 
(blue) or 28z (red) CAR in which the only effect of CD28 activation is its binding to GADS. 

The model was first parameterized based on estimated 
values from experimental measurements and previous mod-
els in the literature (Altan-Bonnet & Germain, 2005; Birtwistle 
et al., 2012; Das et al., 2009; Higo et al., 2014; Houtman et 
al., 2004; Rohrs, Wang, et al., 2016). We then performed a 
global sensitivity analysis to determine which parameters 
most strongly influence the ERK response time. From this 
analysis, we found that the upstream parameters controlling 
catalytic rates of LCK, ZAP-70, and the phosphatase CD45 
were particularly important in influencing the ERK response 
time. These parameters were not well defined in the litera-
ture; however, we highlight their importance in this signaling 
pathway. Our results provide motivation to better determine 
the values of those parameters experimentally in the future.  

Once the model was fully parameterized, we ensured 
that it could reproduce experimental CAR-specific T cell acti-
vation data, as well as observations for TCR-stimulated ERK 
activation in the literature. Tuning the SHP1 association rate 
with singly phosphorylated ITAMs allowed for our model to fit 
ERK activation data for anti-HA antibody stimulated 28z CAR 
T cells. The model was also able to capture the effects of 
various signaling modifications on T cell ERK activation, in-
dicating that the model is robust. Finally, model predictions 
qualitatively comparing Z and 28z CAR T cell activation were 
validated by additional experiments.  

Given the mechanistic detail of the model, we can dis-
tinguish the possible ways that the CD28 co-stimulatory do-
main affects ERK response time in engineered T cells. CD28 
is known to bind to several different adaptor proteins that can 
recruit activators of Ras and the MAPK pathway (Higo et al., 
2014; Tian et al., 2015). Therefore, we investigated how 
each of these mechanisms may influence the ERK response 

time. We also tested a finding from our work that CD28 in-
creases the phosphorylation rate of CD3ζ (Rohrs et al., 
2018), which in turn could lead to more rapid LAT signal-
osome formation and ERK activation (Holdorf, Lee, Burack, 
Allen, & Shaw, 2002). We explored each of these mecha-
nisms alone and in various combinations to develop model-
driven hypotheses about how each one would affect the 
ERK response time. We compared these predictions to ex-
perimental data of ERK response time differences between Z 
and28z CAR T cells stimulated with a 1:1 ratio of CD19-
expressing target cells. These experiments qualitatively 
match the model predictions that the main role of CD28 is to 
increase CD3ζ phosphorylation kinetics.  

The insights from the model increase our understanding 
of how CD28 is functioning in T cells. The model also gener-
ates new hypotheses that can be tested experimentally. 
Specifically, in the model, the mechanism through which 
CD28 is able to increase CD3ζ phosphorylation kinetics is 
not clear. One possibility is that the CD28 domain alters the 
structure of the CAR on the inner membrane of the T cell to 
make it more accessible to rapid phosphorylation. Alterna-
tively, CD28 has binding sites for LCK that could be increas-
ing the local concentration of this CD3ζ activating kinase, 
thus allowing for more rapid phosphorylation. It would be 
interesting to further test these hypotheses experimentally to 
more specifically isolate the structural features of CD28 that 
improve CAR activation. The model also predicts that CD28 
binding to GADS and Grb2 may retard T cell ERK activation 
at low antigen levels. More experimental work is needed to 
understand the extent of this retardation and how it can be 
harnessed or modified to improve CAR T cell activation. This 
iterative approach between hypothesis generation and ex-
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perimental testing can be used to make more optimal next 
generation CARs.  

We do acknowledge some limitations in the current 
model. First, the model does not indicate how CD28 influ-
ences other downstream T cell activation pathways. In the 
literature, CD28 has been shown to bind to PI3K, which acti-
vates the Akt pathway (Acuto & Michel, 2003; Rudd, Taylor, 
& Schneider, 2009). Additionally, CD28 co-stimulation with 
the TCR can increase the amount of active Vav in the T cell 
(Helou, Petrashen, & Salomon, 2015; Muscolini et al., 2015). 
These mechanisms are not specifically included in the mod-
el, but it is possible that these pathways may cross talk with 
the MAPK pathway and further influence ERK activation 
(Costello et al., 1999; Dent, 2014). Additionally, this work 
does not explore the differences between CD28 signaling 
when incorporated on the CAR compared to signaling 
through the traditional separate CD28 molecule, which could 
have additional implications for dual target CAR therapies 
(Morello, Sadelain, & Adusumilli, 2016). As new data emerg-
es, the model can be updated to include these alternative 
mechanisms to help improve our understanding of how 
CD28 co-stimulatory signaling can be optimized in CAR T 
cells.  

5 CONLCUSION 
Altogether, the mechanistic model of CAR-mediated T cell 
signaling we have constructed is able to reproduce known 
effects of CAR activation of the ERK/MAPK pathway and 
shed new light on the mechanisms of CAR co-stimulatory 
signaling through CD28. The model has provided a specific 
mechanism for the modification of ERK response time by 
CD28, which matches experimental data. Additionally, the 
model provides new hypotheses that can be tested experi-
mentally to better understand how to modulate the effects of 
CD28 signaling in CAR therapies. Thus, the model provides 
a framework that can be used to better understand and op-
timize CAR-engineered T cell development. 
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