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Abstract 

The liver and gallbladder are among the most important internal organs derived from 

the endoderm. Several inductive signals regulate liver development, yet the pure 

nascent hepatic and gallbladder cells are unable to be isolated due to limited cell 

markers and cell numbers. The transcriptome networks of the hepatic lineage in the 

endoderm, and how the gallbladder differentiates from the adjacent endoderm 

population, are not fully understood. Using a transgenic Foxa2eGFP reporter mouse 

line, we performed deep single-cell RNA sequencing on 1,966 individual cells, 

including nascent hepatic and gallbladder cells, isolated from the endoderm and 

hepatic regions from ten embryonic stages, ranging from day E7.5 to E15.5. We 

identified the embryonic liver developmental trajectory from primitive streak to 

hepatoblasts and characterized the transcriptome of the hepatic lineage. During pre-

hepatogenesis (5-6 somite stage), we have identified two groups of foregut 

endoderm cells, one derived from visceral endoderm and the second derived from 

primitive streak via a mesenchymal-epithelial transition (MET). During the liver 

specification stages, liver primordium was identified to share both foregut and liver 

features. We also documented dynamic gene expression during the epithelial-hepatic 

transition (EHT). Six gene groups were found to switch on or off at different stages 

during liver specification. Importantly, we found that RXR complex signaling and 

newly identified transcription factors associated with liver specification. Moreover, we 

revealed the gallbladder primordium cells at E9.5 and found genes that 

transcriptionally distinguish them from the liver primordium. The present data 
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provides a high-resolution resource and critical insights for understanding the 

emergence of the endoderm, liver and gallbladder development. 

Keywords:  

Liver development; Foxa2eGFP; Single-cell RNA-Seq; gallbladder; epithelial-hepatic 

transition (EHT); 
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Introduction: 

The liver is the largest internal organ and provides many essential metabolic, 

exocrine and endocrine functions including the production of bile, the metabolism of 

dietary compounds, detoxification, regulation of glucose levels and control of blood 

homeostasis through secretion of clotting factors and serum proteins such as 

Albumin (Alb) 1. After gastrulation, the foregut endoderm is derived from the primitive 

streak (PS) at mouse embryonic day 7.5 of gestation (E7.5) 2. The liver is derived 

from the foregut endoderm, and the hepatic marker Alb is first detected in the 

nascent hepatic endoderm within the 7-8 somite stage at E8.5 3, 4. Foxa2 has been 

considered as an endoderm marker at E6.5 and is expressed in all the differentiated 

endoderm-derived organs including the liver 5. FOXA2 acts as a “pioneer” factor in 

liver development and serves to de-compact chromatin at its target sites 6. Disruption 

of FOX factors (Foxa2, Foxh1), GATA factors, Sox17, Mixl1 or SMAD signaling all 

lead to defects in gut tube and liver morphogenesis 7-12. During liver specification, a 

portion of the gut tube cells receives fibroblast growth factor (FGF) signals from the 

developing heart 3 and bone morphogenetic protein (BMP) from the septum 

transversum mesenchyme (STM)13. This leads to differentiation of the hepatoblast, 

which constitutes the liver primordium or liver bud at E10.5 14, 15. Several transcription 

factors (TFs) have shown to be essential for liver specification including TBX3, 

HNF4A, and PROX1 16-18. Primarily, the program of hepatogenesis has been studied 

by conventional immunohistochemistry and analysis of tissue explants, however, a 
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complete pattern of transcriptional dynamics of the process remains to be unveiled, 

due to the difficulties of isolation of pure nascent hepatic progenitors. 

The liver primordium, primitive gallbladder, and primitive pancreas arise from the 

foregut endoderm at almost the same time at E9.5 19-21. The PDX1+ and SOX17+ 

pancreatobiliary progenitor cells segregate into a PDX1+/SOX17- ventral pancreas 

and a SOX17+/PDX1- biliary primordium 22. In another study, Lgr4 has been shown 

to be significant for gallbladder development, since Lgr4 depletion affects the 

elongation of the gallbladder but has no effect on the liver bud and ventral pancreas 

23. Apart from such studies, the molecular features and drivers of gallbladder 

development are unexplored. 

Recently, single-cell RNA sequencing has been used to study hepatic tissue 

differentiated from the induced pluripotent stem cells (iPSC) 24. In that study, iPSCs 

were made into endoderm and liver bud, but gallbladder development was absent, 

leaving unclear the patterning discrimination between the tissues. Two other studies 

focused on liver differentiation from E10.5 or 11.5 onwards, and discerned the split 

between the hepatocyte and cholangiocyte lineages 25, 26. However, early 

developmental stages of liver differentiation from the foregut endoderm has not been 

described. In this study, we constructed a transgenic Foxa2eGFP reporter mouse line 

to trace the endodermal and hepatic cells in the early stages of development. By 

applying single-cell RNA-sequencing of 1,966 single-cells from endodermal and 

hepatic regions from E7.5 to E15.5, we have identified the endoderm and liver 

developmental lineages and characterized the key networks and transcription factors 
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responsible for endoderm morphogenesis and liver development. We also identified 

the gallbladder primordium at E9.5 and found it could be distinguished 

transcriptionally from liver primordium. Our data provides a resource for further 

research into endodermal differentiation and liver development, which could 

potentially lead to therapeutically useful tissue for liver transplantation. 

 

Results 

Foxa2eGFP tracing of endoderm and hepatic cells and scRNA-sequencing 

To access purified endodermal and hepatic-related cells, we generated a transgenic 

Foxa2eGFP reporter mouse line (Figure S1). In this mouse model, enhanced green 

fluorescent protein (eGFP) is linked to the third exon of Foxa2 (Figure 1A). 

Homozygous transgenic mice develop normally and do not show an abnormal 

phenotype. As expected for the endogenous Foxa2 gene27-29, we found eGFP to be 

expressed in the mouse embryo labeling the endoderm, neural system and 

endoderm-derived organs including the liver (Figure 1B, 1C). The fluorescence in the 

liver was impaired because of the perfusion of hematopoietic cells from E11.5, but 

fluorescence was evident upon liver dissection. Immunofluorescence assay showed 

that hepatoblasts expressed FOXA2 and DLK1 at E14.5 (Figure 1D). We dissected 

the distal half part of the whole embryo at E7.5 and the foregut endoderm at E8.5, 

the hepatic region from E9.5, E10.0 and E10.5, and the whole liver from E11.5, 

E12.5, E13.5, E14.5 and E15.5, including two replicates at E12.5, E13.5 and E14.5. 
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(Figure 1B). At E11.5, the liver was precisely dissected excluding the pancreas, lung, 

and stomach (Figure 1C). 

To characterize endoderm and liver development, we performed single-cell RNA-Seq 

experiments on the Foxa2eGFP+ cells isolated from E7.5-E15.5 (Figure 1E). The 

tissues were dissociated into a single-cell suspension and Foxa2eGFP+ cells were 

sorted into 96 well plates with one cell in each well using a FACSAria III. Doublets 

and multiplets were excluded by analysis of side scatter (SSC) and forward scatter 

(FSC) (Figure S2). The amplified cDNA was assessed by agarose gel and qPCR of 

Afp, a hepatic marker, before library generation (Figure S3). In total, 1,246 individual 

cells were collected and the mRNA amplified following the SMART-seq2 protocol. In 

addition, we generated libraries from 720 cells from E11.5, E12.5 and E13.5 by 

MIRALCS (microwell full-length mRNA amplification and library construction system) 

30. Altogether, the transcriptomes of 1,966 individual cells as well as bulk control 

samples from 10 embryo stages were sequenced. 

The 1,246 SMART-seq2 cells were used to identify cell populations during liver 

development. After filtering unqualified reads, gene expression levels were 

characterized by RPKM (Reads Per Kilobase per Million mapped reads) with 

RPKM>1 as the threshold (Figure S4). To obtain high-quality cells for subsequent 

analysis, we removed cells with fewer than 6,000 expressed genes (RPKM>1), since 

most of those cells express low levels of Gapdh (Figure S5B). We obtained 922 cells 

with an average of 9,378 genes with RPKM>1 and an average of 9.5 million mapped 

sequencing reads (Figure S5A, S5C). Then we excluded 321 (35.9%) cells that did 
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not express Foxa2 or eGFP mRNA, to minimize the issues of protein perdurance 

from a prior cell state. Finally, 601 cells that were both Foxa2 and eGFP positive 

(RPKM>1) with high quality data were used in the cell clustering (Table S1). 

Technical noise was assessed by bulk sample sequencing, experimental replicates, 

and sequencing batch effect analysis (Figure S6A-D), confirming that the final 

dataset was of high quality and reliable. As eGFP and Foxa2 were co-expressed in 

our mouse model, a high correlation was detected (Pearson r=0.95) between these 

two genes (Figure S6E). 

 

Identification of primitive streak and heterogeneity of foregut endoderm 

To identify the primitive streak in E7.5 and the foregut endoderm in E8.5, we clustered 

Foxa2eGFP+ (RPKM>1) cells from E7.5 and E8.5 and visualized them by t-SNE (T-

distributed Stochastic Neighbor Embedding) (Figure 2A). A total of five groups of cells 

were identified as primitive streak (PS), foregut endoderm (FG), visceral endoderm 

(VE), neural tube (NT) and notochord (NC) based on marker expression (Figure 2B, 

2C). The primitive streak cells were identified at E7.5 based on the expression of genes 

related to gastrulation, including Pou5f1, Mixl1, Lefty2, Cer1, Cyp26a1, Lhx1, Fgf5, 

Hesx1 and Snail1 (Figure 2B). We validated the primitive streak cells using the 

iTranscriptome database 31, and all of these cells were predicted to be located at the 

posterior side of the embryo endoderm, which corresponded to the PS region, hence 

supporting our cell taxonomy (Figure 2D). 
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A unique group of cells from E8.5 (5-6 somite stage) expressing Pyy, Apela and 

Cldn4 was defined as foregut endoderm (Figure 2A, 2B). We noted that this stage 

preceded the 7-8 somite stage at which hepatic specification occurs 4. To study cell 

heterogeneity, we then re-clustered the 14 foregut endoderm cells and found they 

could be divided into two cell groups, the foregut-1(FG-1) and foregut-2(FG-2) 

(Figure 2A, 2B). Foregut-1 cells expressed high levels of Tbx3 and Hhex, which are 

essential transcription factors for liver development, as Hhex-/- mice fail to develop 

the liver bud 15. Therefore, we conclude that foregut-1 cells differentiate into liver bud 

at later stages. By differential expression analysis, we found a group of genes related 

to embryonic development including Hey2, Isl1, Cited2, Nkx2-3 and Nkx2-5 to be 

enriched in the foregut-1 cells (Figure 2E). The foregut-2 cells expressed high levels 

of Afp, Ttr and apolipoprotein genes which together are characteristic of visceral 

endoderm. Approximately half of the foregut-2 cells expressed Amn, which is known 

to be expressed in the extraembryonic visceral endoderm layer during gastrulation. 

These results indicate that foregut-2 cells are derived from visceral endoderm. Thus, 

as previously reported, some of the descendants of visceral endoderm could be 

incorporated into the gut tube 32. Other genes including Fgb, Car4, Spp2, Sfrp5 and 

Rbp4 were enriched in the foregut-2 cells (Figure 2E, Table S4). However, further 

studies are needed to determine the cell fate of the foregut-2 cells and the roles they 

play during foregut development. 

In addition to the primitive streak and foregut endoderm, we identified visceral 

endoderm, neural tube and notochord in E7.5 and E8.5 (Figure 2A, S7B) as they 
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also express Foxa2 27, 28. Visceral endoderm was defined based on the expression of 

Amn, Afp, Ttr, Tdh and apolipoprotein genes (Apob, Apoe, Apom and Apoa1). 

Interestingly, 28 genes of the solute carrier family (Slc family) were highly expressed 

in visceral endoderm (Figure S7B). Neural tube was defined based on the expression 

of Nkx2-9 and Olig2. As expected, notochord cells expressed Nog, T, Shh and Sox9 

(Figure 2B, 2B). In addition to these known cell marker genes, we have identified 

differentially expressed genes of these cell groups and characterized their respective 

functions (Figure S7A, S8, Table S3). To our knowledge, this is the first time that the 

single-cell transcriptome profile of these early embryonic cell types has been 

elucidated. 

 

Extracellular matrix molecules and MET progression in foregut morphogenesis 

To characterize gene regulation during foregut morphogenesis, we compared the 

expression pattern of primitive streak and foregut-1 cells (Figure 2F, Table S5). 

Differentially expressed genes were analyzed by Ingenuity pathway analysis (IPA), 

indicating that the Wnt/β-catenin signaling pathway was repressed by Sox11, Rxrb 

and Tgfb2 in the foregut, while BMP signaling was activated by down-regulation of 

the BMP suppressor Fst and Chrd (Figure 2I, 2J). These results are consistent with 

previous studies, which found that Wnt signaling initially suppresses mammalian liver 

induction 33, while BMP signaling helps induce it 13, 34. Moreover, we found that 6 

transcription factor genes (Pou5f1, T, Gata4, Eomes, Hesx1, and Zic3) related with 

pluripotency had decreased expression in foregut endoderm, compared to primitive 
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streak (Figure 2F), indicating that cell pluripotency decreases during gut 

morphogenesis. Interestingly, we found many epithelial factors and extracellular 

matrix (ECM) molecules including collagens (Col18a1, Col2A1, Col4a5, Col4a6, 

Col5a2), fibronectin (Fn1, Mmp2), fibrinogen (Fgg), integrin (Itga3) and tight junction 

proteins (Cgn, Myh7, Ocln, Tgfb2, Tgfbr1) to be up-regulated in the foregut 

endoderm compared to the primitive streak (Figure 2F). This result indicates that the 

primitive streak cells with a mesenchymal morphology are fated to become foregut 

endoderm with epithelium features through a mesenchymal-epithelial transition 

(MET) process. To support this hypothesis, we analyzed the mesenchymal features 

(M score) and epithelial features (E score) of the PS cells and FG-1 cells (Table S2). 

We found the PS cells displayed a high M score and a low E score, while the FG-1 

cells displayed a low M score and a high E score (Figure 2G). By further analyzing 

the FG-1 cells, we found 35 up-regulated genes enriched in a network related to 

cellular motility and connective tissue development (Figure 2H). The ECM including 

MMP2, collagens and tight junction genes were present in this gene network, and 

ERK1/2 was found to be a central regulator of the network. ERK activation 

propagates in epithelial cell sheets and regulates migration 35. In summary, the 

results indicate that foregut morphogenesis is dependent on the MET signaling 

pathway by activation of ERK. 

 

An epithelial-hepatic transition (EHT) in nascent hepatoblasts  
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To characterize liver specification and budding processes, we re-clustered and 

visualized all the Foxa2eGFP+ cells from E9.5, E10.0 and E10.5 by t-SNE. The 

differentially expressed genes between each group were then identified (Figure S9, 

Table S6). Undifferentiated gut tube (GT) with epithelial features were identified to 

express high levels of Epcam, Gata4 and Shh (Fig 3A, 3B). Differentiated hepatic 

cells were identified based on the expression of well-known marker genes like Alb, 

Afp, Hnf4a, Hhex, Prox1 and Dlk1. Epcam decreased during the differentiation of 

hepatic cells, while Shh and Gata4 were almost completely silenced during liver 

specification (Figure 3B), consistent with previous reports 36, 37. We found that the 

hepatic cells could be clustered into two groups and we defined them as liver 

primordium (LP) and liver bud (LB) by two criteria (Figure 3A). Firstly, most of the LP 

cells were found in E9.5 and E10.0, while the LB cells were mainly found at a later 

stage E10.5. Secondly, LP cells have higher expression of the epithelial marker 

Epcam but lower expression of the hepatic marker Alb compared with LB (Figure 

3B). For confirmation, we quantified the hepatic features with a hepatic score using 

the expression of a set of genes related to hepatic functions (Table S2). By analyzing 

the hepatic and epithelial score of gut tube, liver primordium and liver bud, we found 

the epithelial score decreases while the hepatic score increases during liver 

specification. Liver primordium exhibited an intermediate state between the 

undifferentiated gut tube and differentiated liver bud (Figure 3D). The transitional 

process from endoderm with epithelial characteristics to the liver bud with hepatic 

characteristics was termed epithelial-hepatic transition (EHT), and is remarkably 
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consistent with cytological changes reported during this period 15. During the EHT, 

LP presented both epithelial features and hepatic features, indicating that LP cells 

were the nascent hepatic cells that differentiated from the gut tube. 

 

Gallbladder primordium at E9.5 expresses hepatic and non-hepatic genes 

In addition to the hepatic lineage, the Foxa2+ neural tube (NT) cells expressing 

Nkx6-1 were spatially close to the gut tube and were detected at E9.5 and E10.0 

(Figure 3A, 3B). Three pancreas-like cells that expressed Pdx1 but not Sox17 were 

identified and were excluded from further analysis, due to the limited cell number. 

Moreover, we identified a group of gallbladder primordium (GBP) cells mainly at E9.5 

that expressed Sox17 and Lgr4, but not Pdx1 (Figure 3A, 3B). Taken together with 

the gut tube and liver primordium cells, a two-direction developmental trajectory of 

the gut tube was identified (Figure 3A). Interestingly, the gallbladder primordium cells 

express many hepatic genes including Alb and Dlk1 but not as high as liver 

primordium (Figure 3C). Moreover, Foxa1 was expressed in the gut tube and liver 

primordium but not in the gallbladder primordium, while the expression of Foxa2 and 

Foxa3 was positive in both liver primordium and gallbladder primordium, indicating 

that Foxa1 is selectively suppressed during gallbladder development. By differentially 

expressed genes analysis, 411 genes were found to be up-regulated in the 

gallbladder primordium compared with the gut tube from E9.5-E10.5 (Figure S10B, 

Table S7). This 411 genes group included the Sox family genes Sox9, Sox11 and 

Sox17. Sox9 has been reported to be related to cholangiocyte differentiation 38. In 
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addition, Crabp1, Rab38, Flt1, Slco5a1, Ptpn5, Vstm2b, Ntrk2, Ets1 and Ypel4 were 

identified as potential new markers in the gallbladder primordium, while barely 

expressed in the gut tube and hepatic cells (Figure 3C, Figure S11). By contrast with 

gut tube and liver primordium, Junb, Hpx, Mt2, Lrrc3, Dkk3, Apob, Acss1 and Dhrs3 

were negative in the gallbladder (Figure S11).  

 

Major gene expression dynamics during the epithelial-hepatic transition (EHT) 

To characterize the epithelial-hepatic transition process, we analyzed the 

differentially expressed genes between the gut tube (GT), liver primordium (LP), liver 

bud (LB) and hepatic cells from E11.5 (E11.5 Hep) by RaceID 39. The heatmap of 

differentially expressed genes demonstrated a programmed change of gene 

expression from the gut tube to the hepatoblast (Figure 4A). These genes could be 

clustered into 6 gene groups: L1, L2, L3, G1, G2 and G3 (representing the following 

gene groups: Liver 1, Liver 2, Liver 3, Gut tube 1, Gut tube 2, Gut tube 3, 

respectively), based on temporal order and biological functions (Figure 4A, Table 

S8). These gene groups were dynamically regulated by the developmental axis GT-

LP-LB-Liver (Figure 4B). During the liver development, L1 genes were firstly 

switched on in liver primordium, followed by L2 in the liver bud and L3 in E11.5 liver. 

Meanwhile, G1, G2 and G3 genes were down-regulated or switched off in the liver 

primordium, liver bud and liver in E11.5, respectively. The L1 genes were enriched in 

blood coagulation and hemostasis (F10, F12, Fga, Serpina6 and Serpind1) and lipid 

metabolic processes (Apoc2, C3) (Figure 4C). L2 genes were related to oxidation 
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reduction (such as Cyp2d10, Sord and Hsd17b2) and triglyceride catabolism (Aadac 

and Apoh). The L3 genes are involved in the glucose metabolic process and fatty 

acid oxidation (Pdk4, Cpt1a, Slc27a5). Meanwhile, in the G1, G2 and G3 gene 

groups that decreased during the liver development, we have identified many 

epithelial feature genes (including collagen, claudin, and laminin). The Grhl2 gene 

was firstly down-regulated in the liver primordium, the Kit, Krt19 and Col2a1 were 

then down-regulated in the liver bud, and finally, the Epcam and Cldn6 almost 

disappeared in the liver of E11.5. In summary, extensive change in gene expression 

patterns was a dominant feature during the EHT.  

 

Significant transcription factors and RXR complex signaling regulate liver 

specification 

To identify the genes that trigger the hepatic fate, we focused on the 548 genes 

encoding transcription factors, enzymes, cytokines, transporters and kinases that 

were differentially expressed between the gut tube and liver primordium (Table S9, 

Figure S10A). In total, 49 TF genes were found to be significantly activated in the 

liver primordium, including Cebpa, Prox1, Tbx3 and Hhex as expected. Moreover, we 

have identified several new up-regulated TF genes including Lzts1, Hlf, Trim25, Myc, 

Asb4, Ccnd1 and Cited1 (Figure 4D). Mutation of the mouse Lzts1 gene has been 

reported to result in hepatocellular carcinoma 40. We also identified TF genes down-

regulated in the liver primordium including Hoxa1, Hoxb2, Hoxc4, Grhl2, Isl1, Nkx2-6 
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and Fam129b. Target genes (Cdh1, Cldn4, Sema3c, Sema3b, Rfx2, Nrp2) of Grhl2 

were also found to be down-regulated (Figure S10C).  

The gene networks and signaling pathways of the 548 differentially expressed genes 

were enriched in ‘Cellular Development’, ‘Cell Growth and Proliferation’, ‘Connective 

Tissue Development and Function’, ‘Embryonic Development’ and ‘Organismal 

Development’ (Figure 4G). More importantly, we found the liver X receptors/retinoid 

X receptors (LXR/RXR) pathway was significantly up-regulated in the liver 

primordium compared with the gut tube, including Alb, Ambp, ApoA1, ApoA2, ApoE, 

ApoF, ApoM, C3, Ttr, SerpinA1, SerpinF1, SerpinF2 and others (Figure S12). 

To validate the role of the LXR/RXR pathway, we analyzed the promoters of the 

differentially expressed genes between the gut tube and hepatoblasts by motif 

analysis. The promoters of 49 genes (including Alb, C3, Apo and Serpin family 

members) highly expressed in the hepatoblasts had putative RXRA elements (Table 

S10). The expression of these target genes increased in the liver primordium and 

peaked within the liver bud (Figure 4E). Combined with IPA analysis, the Alb and 

Serpin family served as both the ligands and the targets in the LXR/RXR pathway, 

which implies a positive-feedback loop during liver specification (Figure 4D). Beside 

RXRA, genes up-regulated in hepatoblasts were found to be targets of HNF4A and 

PPARG, while the targets of SOX2 and TEAD1 was found in the down-regulated 

genes (Figure S13). In conclusion, activation of the RXR complex signaling pathway 

and several new TF genes including Lzts1 are concomitant with liver specification. 
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Transient transcription factor gene expression during hepatoblast maturation 

into hepatocytes 

To study the dynamics of hepatoblast maturation into hepatocytes, we retrieved the 

Alb+ hepatoblast/hepatocytes in E11.5-E15.5 after excluding the erythroblast cells 

expressing Gata1 and monocytes expressing Ptprc (CD45) (Figure S14A, S14B). 

The liver primordium and liver bud cells from E9.5-E10.5 and 

hepatoblast/hepatocytes cells from E11.5-E15.5 were reordered by Monocle 41, and 

a trajectory of hepatic development was determined (Figure 5A). Notably, there were 

no branches on the trajectory and the predicted pseudotime of the trajectory agreed 

with the gestation day. During this timeline, we examined specific genes and gene 

sets defining the ‘hepatic score’ (liver metabolic function genes including Alb), 

‘stemness score’ (stem markers including Nanog), and ‘proliferation score’ (cell cycle 

genes including Mki67). The metabolic function of hepatoblasts/hepatocytes 

increased while the cell pluripotency and the proliferation rate decreased during liver 

maturation (Figure 5B, 5C). These results were also validated by the 720 cells 

generated by the MIRALCS method from the E11.5, E12.5 and E13.5 stages (Figure 

S14C). 

With the Monocle analysis, we found 5,869 genes dynamically regulated during 

hepatoblast maturation (q value< 0.01) (Table S11). Interestingly, 85% (4,974 genes) 

of these genes were down-regulated while only 15% (895 genes) were up-regulated 

(Figure 5D). The down-regulated genes consisted of 12% TFs (582 genes), while the 

up-regulated genes consisted of only 3% TFs (26 genes) (Figure 5E). These results 
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indicate that a large number of TFs play transient roles in liver specification and are 

decreased afterward. The up-regulated genes were mostly related to the metabolic 

function of the liver (such as Alb and Apoh), while the down-regulated genes were 

enriched in the cell cycle, RNA splicing, cell division and translation (such as Mdk 

and Set) (Figure 5D, 5F). Moreover, we found Ubb that regulate the protein 

ubiquitination process was down-regulated during hepatoblasts maturation, perhaps 

to protect the metabolic enzymes and other proteins produced by the hepatocytes 

(Figure 5G). The heat shock response (HSR) pathway (genes including Hsf1, Hsf2, 

Hsp70, Hsph1, Hspe1, Hspa8, Hsp90ab1 and Hsp90aa1) that control the protein 

folding process was also found to be down-regulated (Figure 5G). 

 

Discussion 

Single-Cell RNA-Seq is a powerful tool in developmental biology. Although the 

throughput of the method has been increased dramatically in the recent few years, 

careful quality control of the data is essential. Due to the rare cell number of organ 

progenitors, it is not feasible to directly perform high-throughput scRNA-Seq to study 

the early liver development from bulk tissue, due to the requirement for a large 

number of loading cells and the low cell capture rate of current methods. To 

circumvent these limitations in the study of specific organ development, we therefore 

constructed a Foxa2eGFP mouse model and used FACS to isolate hepatic-related 

single-cells to obtain high-quality data. This allowed high-coverage transcriptome 

profiling (10,000 detected genes/cell) to identify low-expression genes, such as 
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transcription factors. Besides, the Foxa2eGFP mouse model also had the advantages 

of co-expression of Foxa2 and eGFP. The high correlation of Foxa2 and eGFP 

(>0.95) gave high confidence in the transcriptome profiling. Another advantage of the 

Foxa2eGFP mouse model is that Foxa2 is an endoderm marker, which can track liver 

development from the endoderm stage to hepatoblasts. By using this model, we 

performed precise embryonic dissection and excluded irrelevant cells by FACS. 

By combining scRNA-seq, the Foxa2eGFP mouse model, precise microdissection and 

annotation, we acquired high quality and full-length transcriptome data of primitive 

streak, foregut endoderm, liver primordium, liver bud and early fetal liver at the 

single-cell level. We found that the transcriptional dynamics of embryonic liver 

development passed through a “three-step” process. Firstly, the E8.5 foregut 

endoderm develops from the primitive streak; secondly, hepatoblasts are specified 

from the foregut tube at E9.5; and finally, the hepatoblasts mature into hepatocytes 

(Figure 6). These processes nicely agree with previous morphological studies 15 and 

reveal that the cells at each stage have markedly distinct transcriptional programs. 

During the endoderm morphogenesis, we found a subgroup of the foregut 

endoderm cells (Foregut-1) at E8.5 that were the descendants of visceral endoderm 

in E7.5 32. The second group of foregut endoderm epithelium (Foregut-2) at E8.5 

differentiated from the E7.5 primitive streak cells with mesenchymal morphology 

throughout a MET progress. Our data are consistent with BMP signaling being 

activated by inhibiting Fst and Chrd, while Wnt/β-catenin signaling was repressed by 

Sox11, Rarb and Tgfb2 in the foregut. We also found expression of ECM genes, 
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including collagens fibrinogen, integrin, and tight junction protein genes, to be up-

regulated in the foregut, perhaps through activation of ERK1/2.  

During the liver specification progress, we identified the liver primordium as 

nascent hepatoblasts that derived from the gut tube at E9.5. Liver primordium 

exhibited an intermediate state between the undifferentiated gut tube and 

differentiated liver bud, and had increased hepatic features and reduced epithelial 

features through the EHT process. We found that during the EHT process, the 

dynamically expressed genes could be clustered into 6 groups (L1, L2, L3, G1, G2, 

G3), which were fated to be switched on or off following the developmental axis GT-

LP-LB-Liver. Different functions of each gene group may provide clues about the 

sequence of significant events during liver development. Moreover, we found the 

EHT process to be associated with the activation of the LXR/RXR signaling pathway 

and TFs such as Lzts1, Hlf, Trim25, Myc, Asb4, Ccnd1 and Cited1. In contrast, 

Hoxa1, Hoxb2, Hoxc4, Grhl2, Isl1, Nkx2-6 and Fam129b were inhibited in the liver 

primordium. A positive-feedback loop of the LXR/RXR signaling pathway could 

explain why the expression levels of Alb and Serpin family genes were increased 

over 1,000-fold in a short time compared with the gut tube. RAR deficient mice are 

not lethal, but display abnormal liver development 42. Among 49 TFs that were 

differentially expressed between the liver primordium and gut tube, only 11 TFs were 

up-regulated while 38 TFs were down-regulated, which implies that suppression of 

specific TFs in the gut tube is critical for liver specification. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 30, 2019. ; https://doi.org/10.1101/718775doi: bioRxiv preprint 

https://doi.org/10.1101/718775


Page 25 
 

 25 

Together with the liver primordium, we identified a group of gallbladder 

primordium cells. Interestingly, we found the gallbladder primordium expressed many 

hepatic marker genes including Hnf4a, Prox1, Foxa2/3, Dlk1 and Alb, but did not 

express Foxa1. Furthermore, we also identified some potential new markers and 

effectors for the gallbladder, such as Crabp1, Rab38, Flt1, Slco5a1, Ptpn5, Vstm2b, 

Ntrk2, Ets1 and Ypel4. 

During the maturation of hepatoblasts into hepatocytes between E11.5-E15.5, 

the transcriptome was relatively stable and changed gradually during this process, 

implying that the majority of liver specification occurs during E9.5-E10.5. In addition, 

the hepatic features increased, while stemness features and cell proliferation 

decreased. Interestingly, 85% of the dynamically expressed genes were down-

regulated including many TFs. This suggests that many genes including TFs are 

necessary for organ specification and are turned off after the specification is 

completed. 

Our study is the first to reveal the transcriptome profile of the embryonic liver 

from the emergence of nascent hepatoblasts to the stable formation of liver cellular 

structures by tracing the Foxa2 lineage with single-cell resolution. We have identified 

numerous key networks critical for liver development, features that distinguish the 

gallbladder, and potential clues leading to therapeutically useful tissues for 

transplantation. Moreover, this Foxa2eGFP mouse model could be used to study the 

development of other endodermal organs, such as the lung, pancreas and stomach, 

which would provide insight into the mechanisms of endodermal organ development. 
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Figures and Legends 

Figure.1 Single-cell RNA-seq to analyze liver development during E7.5-E15.5 by 

using a Foxa2eGFP mouse model. 

A, Vector design for Foxa2eGFP mouse. eGFP is linked to the third exon of Foxa2. 

B, eGFP labeled mouse embryos from E7.5-E14.5. The endoderm, neural system and 

endoderm-derived organs including liver expressed eGFP. The general dissection 

strategies are shown (white lines or circles). 

C, Precise dissection for the endodermal organs at E11.5. Lung, liver, stomach and 

pancreas are shown. 

D, Immunofluorescence analysis of paraffin-sectioned mouse embryo at E14.5, 

showing co-expression of Foxa2 (red), DLK1 (green) and DAPI (blue) in hepatoblasts. 

E, Workflow of single-cell RNA sequencing of Foxa2eGFP+ cells. 
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Figure 2. Extracellular matrix molecules and MET process during foregut 

morphogenesis at E7.5-E8.5 

A, Single-cells from E7.5 and E8.5 were clustered by t-SNE into 5 groups, Primitive 

Streak (PS), Visceral endoderm (VE), Foregut1/2 (FG), Neural tube (NT) and 

Notochord (NC). 

B, Specific markers for each cell group in Figure 2a.  

C, Violin plots of the gene expression levels of specific markers, Foxa2, Afp, Tbx3, 

Shh, Nkx2-9 and Cer1 for each cell group are shown. 

D, Genes in Primitive streak group were validated by iTranscriptome database. A, 

anterior; P, posterior; L, left; R, right; 

E, Differentially expressed genes between foregut-1 and foregut-2 group. FG-1, 

foregut-1; FG-2, foregut-2. 

F, Differentially expressed genes between Primitive streak and foregut-1group. PS, 

Primitive Streak; FG-1, foregut-1. 

G, The mesenchymal features (M score) and epithelial features (E score) of primitive 

streak and foregut-1 in mesenchymal-epithelial transition (MET) progress during 

E7.5-E8.5. 

H, Up-regulated genes enriched in the network related with cellular motility and 

connective tissue development in Foregut-1 group, with ERK1/2 located in the center 

of the network. 

I, The Wnt/β-catenin signaling pathway was identified to be repressed by Sox11, 

Rarb and Tgfb2 in the foregut. 
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J, BMP signaling was activated by repressing Fst and Chrd. 
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Figure.3 Liver primordium cells at E9.5 identified as nascent hepatoblasts 

A, Single-cells from E9.5 and E10.5 were clustered by t-SNE into 4 groups, gut tube 

(GT), liver primordium (LP), liver bud (LB) and gallbladder primordium (GBP). 

B, Violin plots of the gene expression levels of specific markers, Foxa2, Hnf4a, Shh, 

Gata4, Epcam, Sox17, Hhex, Alb, Foxa1 and Nkx6-1 in each cell group. 

C, Differentially expressed genes of GT, GBP, LP, LB groups identified during E9.5-

E10.5. 

D, Liver primordium exhibited an intermediate state between the undifferentiated gut 

tube and differentiated liver bud by analyzing hepatic score and epithelial score. 
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Figure 4. The gene expression dynamics during the epithelial-hepatic transition 

(EHT). 

A, Differentially expressed genes demonstrated a dynamic change of the gene 

expression from the gut tube to the hepatoblast. Six groups of differentially 

expressed genes were identified to be switched on or off, including three live gene 

groups: L1, L2 and L3, and three gut tube gene groups: G1, G2, and G3. 

B, The gene expression levels of 6 gene groups (L1, L2, L3, G1, G2, G3) were 

identified followed by the development axis GT-LP-LB-Liver. 

C, Gene ontology of the gene groups L1, L2, L3 were identified. 

D, Transcription factors that differentially expressed between the gut tube and liver 

primordium were identified including some new TFs such as Lzts1, Hlf, Trim25, Myc, 

Asb4, Ccnd1 and Cited1. 

E, RXR motif was identified in the genes highly expressed in liver primordium. The 

49 targets of RXR motif were shown.  

F, LXR/RXR signaling pathway was significantly up-regulated in the liver primordium 

compared with the gut tube and formed a positive-feedback loop. 

G, The networks ‘Cellular Development’, ‘Cell Growth and Proliferation’, ‘Connective 

Tissue Development and Function’, ‘Embryonic Development’ and ‘Organismal 

Development’ identified in liver primordium. 
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Figure 5. Dynamic gene expression during hepatoblast maturation into hepatocytes. 

A, A trajectory of hepatic development was determined during E9.5-E15.5 by Monocle 

analysis. No branches on the trajectory were found and the predicted pseudotime of 

the trajectory agreed with the gestation day. 

B, The expressions of Alb, Nanog, Mki67 were shown in the hepatic trajectory. 

C, The metabolic function of hepatoblasts/hepatocytes increased while the cell 

pluripotency and the proliferation rate decreased during liver development based on 

‘hepatic score’, ’stemness score’ and ‘proliferation score’ during E9.5-E15.5. 

D, Genes dynamically regulated during hepatoblast maturation and the respective 

function of up/down-regulated genes were identified. 

E, The composition of up-regulated or down-regulated genes during E9.5-E15.5 were 

shown. 

F, Genes metabolism function of the liver (such as Alb and Apoh) were up-regulated, 

while the down-regulated genes were enriched in cell cycles, RNA splicing, cell division 

and translation (such as Mdk and Set). 

G, Genes network that were down-regulated during the hepatoblasts maturation. 

Genes labeled by green were down-regulated, while by white were not detected. 

 

 

  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 30, 2019. ; https://doi.org/10.1101/718775doi: bioRxiv preprint 

https://doi.org/10.1101/718775


Page 33 
 

 33 

Figure 6. Dynamic transcriptome of liver and gallbladder development from the 

embryonic endoderm during E7.5-E15.5 by scRNA-Seq 
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Figure 5. Dynamic gene expression during hepatoblast development
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Figure 6. Dynamic transcriptome of liver and gall bladder development from 
the embryonic endoderm during E7.5-E15.5 by scRNA-Seq
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