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Abstract: Single-cell transcriptomic studies of diverse and complex systems are becoming 

ubiquitous. Algorithms now attempt to integrate patterns across these studies by removing all 

study-specific information, without distinguishing unwanted technical bias from relevant 

biological variation. Integration remains difficult when capturing biological variation that is 

distributed across studies, as when combining disparate temporal snapshots into a panoramic, 

multi-study trajectory of cellular development. Here, we show that a fundamental analytic shift 

to gene coexpression within clusters of cells, rather than gene expression within individual cells, 

balances robustness to bias with preservation of meaningful inter-study differences. We leverage 

this insight in Trajectorama, an algorithm which we use to unify trajectories of neuronal 

development and hematopoiesis across studies that each profile separate developmental stages, a 

highly challenging task for existing methods. Trajectorama also reveals systems-level processes 

relevant to disease pathogenesis within the microglial response to myelin injury. Trajectorama 

benefits from efficiency and scalability, processing nearly one million cells in around an hour.  
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Introduction 1 

 Single-cell RNA-sequencing (scRNA-seq) studies now profile millions of transcriptomes 2 

across diverse tissues, conditions, species, and ages1–9. To enable integration of biological 3 

patterns into multi-study insight, several algorithms have been developed to align common cell 4 

types across studies and then transform the underlying data to remove any study-specific 5 

differences10–17; cells deemed to be of the same cell type will thus have similar transcriptomic 6 

signatures in downstream analysis. 7 

 Unfortunately, because current integrative algorithms do not distinguish technical bias 8 

from real biological variation, they remove any meaningful change in a cell type across 9 

experimental conditions. A major task within single-cell analysis, however, is to infer trajectories 10 

and “pseudo-temporal” relationships among cells, thereby algorithmically reconstructing 11 

important continuous processes like differentiation or disease progression18–21. Reconstructing 12 

such trajectories across disparate studies, separated by both experimental bias and real cellular 13 

change, remains difficult even with state-of-the-art integration. Single-cell trajectories, therefore, 14 

remain practically limited to patterns observed within a single study. 15 

 Here, we unite both integration and trajectory inference, two major single-cell analytic 16 

efforts that have largely remained separate because current algorithms fail to achieve a delicate 17 

balance between robustness to unwanted bias and preservation of relevant multi-study variation 18 

(Figure 1a). To reveal dynamic biological processes at an unprecedented scope, we aim to 19 

construct multi-study trajectories of cellular change. 20 

Our novel, key insight is that differences in coexpression could preserve enough 21 

biological variation while still enabling integration. Coexpression is a conceptually favorable 22 

paradigm for integration since it favors redundant signal consistent across many genes10,25–27 and 23 
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since common coexpression measures (e.g., Spearman correlation) are robust to many 24 

transformations of the data resulting from technical bias. In previous studies, coexpression has 25 

been used extensively to assess global gene expression changes in different biological conditions 26 

using both single-cell and bulk transcriptomics22–24; here, we show that analysis that respects 27 

variation in coexpression, combined with coexpression’s integrative properties, achieves a 28 

balance crucial to enabling multi-study trajectory inference. 29 

 We therefore introduce Trajectorama, a coexpression-based algorithm for integration that 30 

preserves and highlights cellular change across studies. Using Trajectorama, we efficiently 31 

integrate trajectories of neuronal development (across embryonic, neonatal, adolescent, and adult 32 

neurons) and hematopoiesis (across bone marrow, cord blood, fetal thymus, and peripheral 33 

blood) that no other integrative method is able to recover. Trajectorama’s coexpression feature 34 

space is highly interpretable, allowing us to probe the poorly understood microglial response to 35 

myelin injury, revealing a disease-associated gene network across demyelination models in mice 36 

and multiple sclerosis in human patients that implicates contributors to neurodegeneration. 37 

Our conceptual advances beyond multi-study coexpression include panresolution 38 

clustering, in which we consider all clusters across a cellular hierarchy for downstream analysis, 39 

and interpretation through dictionary learning and functional analysis of condition-specific 40 

coexpression networks. Our algorithmic innovations and versatile applications—from 41 

understanding development across an entire lifespan to probing cell state change in response to 42 

disease—underscore the utility of coexpression-based trajectory integration.  43 
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Results 44 

Multi-study coexpression analysis: Key concepts 45 

 In conventional single-cell transcriptomic analysis, the fundamental analytic unit is an 46 

individual cell described by features that encode levels of gene expression. A crucial difference 47 

in Trajectorama’s coexpression-based analysis is that the fundamental analytic unit is a cluster of 48 

cells; this cluster is in turn described by features that encode the correlation in expression 49 

between pairs of genes. 50 

 First, therefore, we require cells to be assigned to clusters. Clusters can be determined 51 

based on experimentally-determined properties or conditions, or such clusters can be determined 52 

by algorithms that group cells based on relative similarity in an unsupervised fashion28. While 53 

many clustering algorithms partition the data such that each cell is assigned to a single cluster, 54 

this need not be the case. Indeed, cells often belong to a hierarchy of biologically-meaningful 55 

groups20; for example, in brain tissue, it may be useful to separate neurons and glia, but within 56 

each category are many neuronal or glial subtypes. Rather than cluster cells based on a single 57 

level of a cellular hierarchy, i.e., a single clustering “resolution,” it is also possible to consider all 58 

clusters at multiple resolutions. This approach is particularly useful when determining clusters 59 

for coexpression-based analysis, since coexpression may change with clustering resolution24,27. 60 

We refer to this strategy as panresolution clustering, or panclustering. 61 

After we determine clusters, each cluster is considered as a single datapoint in subsequent 62 

analysis. The features that describe a cluster are the correlations in expression (within that 63 

cluster) between all pairs of genes (Figure 1b). If there are 𝑀 genes, then there will be (
𝑀
2

) + 𝑀 64 

unique gene pairs, where we compute a correlation for each pair. In Trajectorama, we use the 65 

Spearman rank correlation due to its invariance under monotonic transformations of the 66 
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underlying data and robustness to small numbers of large-magnitude outliers. Equivalently, we 67 

can think of each cluster as being described by a single gene-by-gene correlation matrix. 68 

Equivalently, we can also think of each cluster as being described by a different gene association 69 

network, where the weights of edges connecting genes correspond to correlation strength. We 70 

can impose additional quality control cutoffs by setting low correlations to zero, or “sparsifying” 71 

the features, which helps reduce noise and improve computational efficiency, a property we take 72 

advantage of in our analysis. 73 

Once we have featurized our clusters by coexpression, we can perform downstream 74 

analyses, many of which are analogous to standard expression-based analyses. For example, we 75 

can form trajectories by constructing a k-nearest-neighbors (KNN) graph where each node is a 76 

cluster and edges between nodes are added based on proximity in coexpression feature space. 77 

We can also find similarities and differences in coexpression among clusters, which correspond 78 

to stable or changing gene-gene associations. Correlations unique to a condition can in turn be 79 

interpreted as edges in a condition-specific gene network. 80 

Trajectorama leverages and implements all of these concepts, encompassing cell 81 

clustering through coexpression featurization through downstream interpretation, within a single 82 

analytic framework, illustrated in Figure 1b. In particular, we design Trajectorama to integrate 83 

vast amounts of data while preserving relevant study-specific biological variation. 84 

Unified trajectory of neuronal development containing 932,301 cells 85 

 We first assessed whether coexpression could achieve the difficult balance of preserving 86 

continuously changing cellular phenotypes while overcoming study-specific bias. Given a wealth 87 

of scRNA-seq datasets that profile the mouse brain at different developmental timepoints, we 88 

reasoned that coexpression could construct a picture of neuronal development at an 89 
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unprecedented scale. Known developmental age would help us validate the structure found by 90 

our analysis. 91 

We therefore used Trajectorama to analyze five large-scale studies of mouse neurons 92 

from embryonic to adult. The first study1 used sci-RNA-seq3 to profile 562,272 cells 93 

representing the neural tube and notochord collected at day-length intervals from embryonic day 94 

(E)9.5 through E13.5. The second3 used Drop-seq and 10x Chromium v2 to profile 50,363 95 

cortical neurons from late embryonic (E13.5 - E14.5) and postnatal day (P)10. The third2 used 96 

Microwell Seq to profile 10,796 cells across three developmental timepoints for E14.5, P1, and 97 

P56. The fourth4 used 10x Chromium v1 to profile 101,213 neurons from multiple adolescent 98 

timepoints from P12 through P27 and from a P60 adult. The fifth5 used Drop-seq to profile 99 

207,657 neurons from P60 through P70 adults. This data was generated by laboratories spanning 100 

both United States coasts and three continents using single-cell or single-nucleus transcriptomic 101 

platforms and in total profiled more than 150 individual mice. 102 

 We obtained a panclustering of cells based on the Louvain community detection 103 

algorithm29, a common clustering method for scRNA-seq data. Louvain clustering iteratively 104 

merges cells into cluster “communities” until convergence, which is controlled by a resolution 105 

parameter30 (higher resolutions tend to increase the number of communities). We also obtain 106 

many possible realizations of a Louvain clustering by repeating the algorithm with multiple 107 

resolution parameters and use cluster assignments across all agglomerative iterations (Methods). 108 

To see if coexpression could directly overcome study-specific bias, we panclustered each study 109 

separately before combining clusters across all studies during downstream analysis in 110 

coexpression space. 111 
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 When we visualize the coexpression landscape with a force-directed embedding31 of the 112 

KNN graph in which each node is a panresolution cluster, the graphical topology naturally 113 

arranges according to biological age (Figure 2a) rather than study-specific structure (Figure 2b). 114 

Analogous to assigning pseudotimes to cells in gene expression space, we can likewise run a 115 

diffusion-based pseudotime (DPT) algorithm19 within the coexpression landscape using the 116 

cluster with the lowest average age as the root of the diffusion process. Pseudotimes assigned to 117 

panresolution clusters in coexpression space were significantly correlated with biological age 118 

(Spearman r = 0.87, P < 10-308, n = 2,442 panresolution clusters) (Figure 2c). 119 

If instead we use gene expression to learn two-dimensional visualizations of these 120 

datasets by plotting panresolution clusters using average gene expression, the datapoints arrange 121 

according to study-of-origin, without conveying any continuous developmental structure (Figure 122 

2d,e). Uniform Manifold Approximation and Projection (UMAP) visualization of cells, the key 123 

algorithm underlying the Monocle 3 trajectory inference algorithm1, also does not convey the 124 

developmental relationships among the studies (Supplementary Fig. 1). Study-specific structure 125 

is still present after applying existing integrative algorithms based on mutual nearest neighbors 126 

matching32 (Scanorama) or on a latent space parameterized by a variational autoencoder (scVI)16 127 

(Fig. 2d,e); these methods are representative of many others also based on nearest neighbors 128 

matching11–13 or on learning a joint latent space10,15,17. Another integrative method, Harmony14, 129 

removes nearly all study-specific signal, as designed (Figure 2d,e), which includes the valuable 130 

development-related information that only the coexpression landscape captures.  131 

Interpretation of coexpression landscape yields insight into neuronal development 132 

 Given this panoramic view into neuronal development, we facilitate further interpretation 133 

by highlighting similar coexpression patterns across many panresolution clusters with dictionary 134 
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learning. In dictionary learning, we represent the coexpression matrix of each panresolution 135 

cluster as a sparse weighted sum of a few basis coexpression matrices, or “dictionary entries.” 136 

Each basis matrix can also be interpreted as a network, with edges between genes weighted by 137 

coexpression. Dictionary learning for correlation matrices has been successfully applied to 138 

diverse problems, including information retrieval33 and functional brain profiling34. 139 

We looked for significant gene ontology (GO) process enrichments35 within the set of 140 

genes involved in “marker edges” unique to a particular dictionary entry, using a background set 141 

of all genes considered in our coexpression analysis (around two thousand highly variable genes; 142 

Methods). Within the embryonic portion of the coexpression landscape, we observe 143 

differentiation and developmental processes (GO:0051094, false discovery rate [FDR] q = 3.3 × 144 

10-3) and neuron fate commitment (GO:0048663, FDR q = 8.4 × 10-3). Late-fetal and early-145 

postnatal development includes neurogenesis (GO:0050767, FDR q = 3.9 × 10-4) and neuron 146 

projection organization (GO:0030030, FDR q = 0.018). Adolescent and adult stages are enriched 147 

for a more diverse set of processes from neurotransmission (GO:0001505, FDR q = 1.5 × 10-4) to 148 

amyloid-β response (GO:1904646, FDR q = 0.042). The enriched processes for all of these 149 

dictionary entries are consistent with their respective developmental stages, offering evidence 150 

that Trajectorama integration preserves inter-study patterns due to biological development. 151 

We can also look at individual genes that are strongly associated with diffusion 152 

pseudotime in the coexpression landscape and validate them with the Allen Developing Mouse 153 

Brain Atlas (ADMBA), which spatially locates the expression of around 2000 preselected genes 154 

using in situ hybridization (ISH) experiments36. Genes with the strongest associations with 155 

developmental pseudotime also showed strong developmental changes in ISH intensity in the 156 

expected direction, i.e., increasing or decreasing with development. The top such positively 157 
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correlated gene is Fos (Spearman r = 0.67; n = 2,442 panresolution clusters), which encodes a 158 

well-known marker of neuronal activity37; the top such negatively correlated gene is Eomes 159 

(Spearman r = -0.45; n = 2,442 panresolution clusters), which encodes an important transcription 160 

factor in early neurogenesis38 (Figure 3b,c). 161 

Our analysis also reveals genes strongly associated with development, such as Gm9945 162 

and Pon3 (Spearman r = 0.78 and r = -0.54, respectively; n = 2,442 panresolution clusters), that 163 

the ADMBA did not include in their list of assayed genes but may be important to include in 164 

future developmental studies. We make these correlations and GO enrichments available as 165 

Supplementary Data, which may be of further interest to developmental biologists. 166 

Neuronal developmental landscape is robust to parameter choice 167 

Two important parameters control the amount of information considered in our analysis 168 

and can be thought of as “smoothing” parameters. The first is the correlation cutoff parameter 169 

that controls the sparsity of underlying correlation matrices; lower values include more 170 

information but may increase noise and computational burden. The second is the number of 171 

nearest neighbors in the KNN graph representing the coexpression landscape, which impacts 172 

both visualization and diffusion pseudotime; considering more nearest neighbors results in a 173 

smoother trajectory. While we do introduce some smoothing into our analysis, the studies are 174 

consistently arranged according to their developmental order even as these parameters vary. 175 

With less smoothing, we also observe age-related branching of the developmental trajectory, 176 

suggestive of neuronal subtype-related structure (Supplementary Fig. 2). 177 

Coexpression integrates neuronal subtypes across studies 178 

While the most pronounced signal captured within the neuronal trajectory is 179 

developmental age, there is still substantial heterogeneity among neurons. We therefore sought to 180 
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determine if Trajectorama could provide multi-study insight into neuronal subtypes as well. To 181 

do so, we relied on extensive expert labelling of neuronal subtypes from Zeisel et al.4 (adolescent 182 

mice) and Saunders et al.5 (adult mice) to define neuronal clusters of interest. When comparing 183 

these subtypes in gene expression space, subtypes group primarily according to study (Figure 184 

3d). When we instead featurize by coexpression, the clusters group primarily according to 185 

common subtypes, and only secondarily (since we do expect some differences due to real 186 

biological change) according to study (Figure 3d). 187 

Neuronal subtypes group according to three major coexpression-based patterns. Genes 188 

most unique to the first group are enriched in glutamergic structures (GO:0098978, FDR q = 1.5 189 

× 10-11) and glutamate signaling (GO:0035235, FDR q = 6.4 × 10-3). In contrast, the second 190 

group has significant enrichments for both adrenergic (GO:0004935, FDR = 0.017) and 191 

cholinergic (GO:0032224, FDR q = 0.037) processes. The third group, which also contains the 192 

highest number of adolescent subtypes, is most significantly enriched for neurons with synaptic 193 

plasticity (GO:0048167, FDR q = 9.3 × 10-8) and involved in cognition (GO:0007611, FDR q = 194 

1.9 × 10-4), learning, and memory (GO:0007611, FDR q = 7.4 × 10-5). The hierarchy of subtypes 195 

has additional structure as well, though we focused on only the three largest, highest-level 196 

groupings that each contain subtypes from both studies (Figure 3d). 197 

Trajectorama constructs a multi-tissue hematopoietic trajectory 198 

Based on the ability of Trajectorama to integrate neuronal studies while respecting 199 

biological change, we next set out to establish if it could demonstrate similar capabilities within a 200 

completely separate developmental system. To this end, we analyzed the coexpression landscape 201 

of four hematopoietic datasets from the fetal thymus39, bone marrow, cord blood7, and peripheral 202 

blood6. Throughout these tissues, we expect to observe cells in many stages of hematopoiesis, 203 
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including stem cells and erythroid progenitors, mostly in the bone marrow and cord blood, to 204 

more mature lymphocytes and myeloid cells, mostly as peripheral blood mononuclear cells 205 

(PBMCs)40. 206 

Visualizing the coexpression landscape of panresolution clusters obtained across all 207 

studies reveals an organization consistent with the three main branches of hematopoiesis 208 

corresponding to erythropoiesis, myelopoiesis, and lymphopoiesis (Figure 4a). Such 209 

organization (with similar developmental granularity) has been observed in the gene expression 210 

space20 and in the chromatin accessibility space41 of single studies in single tissues, but, 211 

importantly, here we instead show a unified hematopoietic landscape across multiple tissues 212 

generated by disparate laboratories. 213 

We interpret different branches in the coexpression trajectory partially based on 214 

experimentally-determined PBMC labels. Prior to scRNA-seq, a large number of the PBMCs 215 

underwent fluorescence activated cell sorting (FACS) for progenitor-associated (CD34+), 216 

myeloid-associated (CD14+), and lymphoid-associated (CD4+, CD8+, CD19+, CD56+) cell-217 

surface marker expression (Supplementary Fig. 3). Dictionary learning yielded four main 218 

dictionary entries corresponding to the major regions within the landscape (Figure 4b). The first 219 

dictionary entry, which we call progenitor-associated, corresponds to all of the CD34+-labeled 220 

clusters. The second dictionary entry, which we call erythropoietic, includes GO enrichments 221 

related to heme biosynthesis (GO:0006783, FDR q = 0.04) and strong metabolic signatures 222 

(GO:0044237, FDR q = 1.0 × 10-12). The third dictionary entry, which we call lymphopoietic, 223 

includes all lymphoid-specific (CD4+, CD8+, CD19+, CD56+) clusters. The fourth dictionary 224 

entry, which we call myelopoietic, includes some CD14+ clusters and GO enrichments involving 225 

myeloid differentiation (GO:0045637, FDR q = 3.4 × 10-4). 226 
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We also note that PBMCs largely exist at the periphery of the landscape, consistent with 227 

such cells being the most mature within the hematopoietic lineage. In contrast, Harmony-based 228 

integration removes all tissue-specific differences and obscures the lineage relationships among 229 

the tissues (Figure 4c) while mean expression of clusters without correction, and even following 230 

Scanorama and scVI correction, primarily exhibits study-specific structure (Figure 4c). Overall, 231 

our hematopoietic analysis adds additional support for coexpression as an integrative strategy 232 

that can preserve key biological differences among disparate studies. 233 

Trajectorama reveals a disease-specific microglial gene network 234 

While Trajectorama can yield panoramic views across long developmental scales, we 235 

next wanted to assess if it could also reveal more fine-grained insight into biological systems that 236 

are less well understood. In particular, recent work has begun to illuminate the key role of 237 

microglia in neurodegenerative disease42,43, for which coexpression provides a unique 238 

opportunity to integrate information across multiple microglial studies while still preserving 239 

disease-specific signal. 240 

We therefore integrated microglia from mouse and human samples across three 241 

studies5,8,9, which together contained single-cell microglial transcriptomes from multiple points 242 

along a mouse lifespan, from models of mouse brain injury (facial nerve axotomy and 243 

demyelination), and from human donors with and without multiple sclerosis (MS). The 244 

Trajectorama coexpression landscape includes a main age-related trajectory, from embryonic 245 

(E14.5) through aged (P540) microglia, and off-trajectory outlier clusters from injured tissue 246 

samples (Figure 5a); similarly, hierarchically grouping the known microglial conditions based 247 

on similarity in coexpression space (Methods) obtains a clear outlier group consisting of 248 

microglia from mice that had undergone artificial demyelination and from human MS patients 249 
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(Figure 5b). We note that, in coexpression space, this injury-associated group naturally separates 250 

from other microglial conditions without supervision.  251 

We then constructed an injury-associated coexpression network by considering the gene 252 

pairs with the highest increase in coexpression, combined across both mouse and human injury 253 

conditions, relative to baseline microglial coexpression (Methods). GO enrichment analysis of 254 

genes ranked by increased coexpression in disease state reveals three main functional categories: 255 

lipid and protein clearance, leukocyte-mediated cytotoxicity, and cellular activation involved in 256 

inflammation (Figure 5c; Supplementary Data). These processes are consistent with the 257 

hypothesized role of microglia in MS as involved in clearance of damaged myelin via 258 

phagocytosis42 and as drivers of neurodegenerative pathogenesis by inducing neuronal cell 259 

death44 and promoting local inflammation42. 260 

The most valuable insight into microglial processes relevant to disease, and to myelin 261 

injury in particular, comes from visualizing the injury-associated coexpression network itself 262 

(Figure 5d). Two major connected components appear in the network: the first related to lipid 263 

clearance and leukocyte-mediated cytotoxicity and the second related to inflammatory activation. 264 

The first connected component recovers key gene modules that have been implicated in 265 

neurodegeneration. Of special note, the network recovers an APOE/TREM2/GM2A gene module 266 

that has been extensively linked to a microglial “sensor” of neurodegeneration9,43,45. Another 267 

high-degree module includes SIRPA, which regulates demyelination repair46, and MSR1, which 268 

has been implicated in myelin uptake in MS lesions47. The network suggests a correlative link 269 

from the APOE/TREM2 neurodegenerative sensing module to the SIRPA/MSR1 uptake and 270 

clearance module through genes like AXL, which has also been suggested as essential to recovery 271 

from myelin injury48. While many of these genes have been individually implicated in 272 
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neurodegeneration, we note that our coexpression-based analysis suggests links among these key 273 

genes that are useful for follow up study. Experimentally establishing the causal role these genes 274 

play in disease pathogenesis is important future work. 275 

The second major connected component centers on the NEAT1 long noncoding 276 

(lnc)RNA, which recently has been linked to inflammatory activation of macrophages49. These 277 

results suggest that the observation of NEAT1 in MS serum, for which the mechanism was 278 

previously unknown50, is tied in part to microglial inflammation. Further experimentation is 279 

needed to see if NEAT1 leads to or is a consequence of inflammation-mediated pathogenesis, or 280 

it could also serve as a biomarker of MS disease or related inflammation. 281 

More broadly, the injury-associated microglia network illustrates how coexpression-282 

based analysis across multiple experiments can generate further hypotheses that lead to novel 283 

biological discovery. Not only can coexpression analysis elucidate broad developmental changes, 284 

its rich feature space and inherent interpretability can also provide deep insight into cell state 285 

changes such as those in health versus disease. 286 

Trajectorama is practical for datasets with millions of cells 287 

 To enable consortium-scale analysis, we made algorithmic choices that allow scalability 288 

to large numbers of cells, while preserving the ability to model complex phenomena. For 289 

example, we choose to sparsify our coexpression matrices using a nominal cutoff rather than the 290 

memory intensive strategy of preserving dense correlation matrices or the runtime intensive 291 

strategy of learning sparse covariance matrices via regularization51 (Supplementary Table 1). 292 

Since scRNA-seq experiments typically measure little to no signal for many genes, we also 293 

limited analysis to around two thousand genes with highest statistical variability, a common 294 

dimensionality reduction strategy in conventional expression analysis28,52 (Methods). 295 
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We performed all of our analyses in a practical amount of computational time and 296 

resources. Our entire coexpression-based procedure, which includes panresolution clustering 297 

through downstream analysis of the coexpression landscape, analyzes almost a million cells in a 298 

little over an hour on a standard cloud instance with 16 cores (Supplementary Table 2). Our 299 

pipeline has a runtime and memory usage with a close-to-linear asymptotic scaling in the number 300 

of cells and a worst-case quadratic asymptotic scaling in the number of features (i.e., genes). 301 

While the coexpression space may seem cumbersomely quadratic, scRNA-seq experiments 302 

typically measure only around one or two thousand genes with nontrivial variability52; moreover, 303 

the number of strong correlations is usually within the same order of magnitude as the number of 304 

highly variable genes. 305 

Once the data has been summarized as panresolution clusters, further downstream 306 

analysis including visualization, pseudotime assignment, and dictionary learning becomes 307 

extremely efficient due to the greatly reduced number of datapoints; in the case of mouse 308 

neuronal development, analysis is done on just 2,442 panresolution clusters instead of 932,301 309 

single cells. The resource requirements for different stages of our analytic pipeline on the mouse 310 

neuronal development analysis are provided in Supplementary Table 2.  311 
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Discussion 312 

Our work shows that researchers can analyze an unprecedented amount of information 313 

across scRNA-seq studies, while retaining key biological variation, by focusing on the 314 

coexpression matrix of a group of cells as the fundamental unit of analysis. While not intended 315 

as a complete replacement for current integrative methods, as we have shown, Trajectorama can 316 

be valuable when researchers wish to integrate data while preserving inter-study biological 317 

variation. As laboratories continue to conduct single-cell experiments that explore heterogeneous 318 

biological models and conditions, we expect such scenarios to be ubiquitous. 319 

By leveraging coexpression, Trajectorama benefits from a number of additional 320 

properties. Current integrative methods map cells into an arbitrary feature space that only 321 

preserves relative meaning (for example, cell A is more similar to cell B than to cell C). In 322 

contrast, coexpression has intrinsic meaning: each feature in coexpression space is simply the 323 

correlation between two genes (for example, Spearman correlation53), a fundamental and 324 

intuitive data science concept. Trajectorama is also highly efficient, since it combines 325 

information across many cells similar to existing algorithms that accelerate workflows via data 326 

sketching or summarization54,55. 327 

 Our results suggest many directions for future work. Our coexpression matrices are not 328 

positive semidefinite (PSD) for practical reasons, but efficiently learning large numbers of 329 

nontrivially sparse PSD matrices is an interesting and challenging task. If all coexpression 330 

matrices are PSD, it may be possible to leverage the distance along the manifold represented by 331 

all PSD matrices to obtain more natural dictionary learning-based decompositions33 and nearest-332 

neighbor queries (which would involve designing new techniques for efficient nearest-neighbor 333 

search). Additional methods might also enforce further constraints within the dictionary learning 334 
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objective (for example, basis matrices that are valid correlation matrices) or take other 335 

approaches to interpreting large numbers of coexpression matrices like common principal 336 

components analysis56 or other kinds of tensor decomposition57. 337 

Other considerations include exploring alternative methods for measuring coexpression58, 338 

inferring causal gene regulatory networks, or exploring different clustering strategies, 339 

panresolution or otherwise. A larger question is whether other feature spaces exist that enable 340 

multi-study trajectories; for example, metric learning approaches could directly construct such a 341 

space via known developmental metadata59. Reasoning about the relationship between 342 

coexpression and other functional associations within single cells, like those involving chromatin 343 

accessibility or methylation, remains an important consideration. 344 

 Trajectorama can be used to probe biological systems beyond those interrogated in this 345 

study, providing an informative analysis that is complementary to existing integrative methods 346 

for studying biological processes at single-cell resolution and at multi-institution scale. We make 347 

our analysis pipelines and data available at http://trajectorama.csail.mit.edu.  348 
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Methods 349 

Mouse neuronal development dataset preprocessing 350 

 We obtained publicly available datasets from five large-scale, published single-cell 351 

transcriptomic studies of the mouse brain at different developmental timepoints1–5. We used only 352 

the cells that passed the filtering steps of each respective study and additionally removed low-353 

complexity or quiescent cells with less than 500 unique genes. For the embryonic dataset from 354 

Cao et al.1, we only considered cells that the study authors had assigned to the “neural tube and 355 

notochord” trajectory. For the datasets from Zeisel et al.4 and Saunders et al.5 we only 356 

considered cells that the study authors had labeled as neuronal. We then intersected the genes 357 

with the highest variance-to-mean ratio (i.e., dispersion) within each study to obtain a total of 358 

around 2,000 genes that were highly variable across all studies. All studies provided data as 359 

digital gene expression (DGE) counts, which we further log transform after adding a pseudo-360 

count of 1. 361 

Human hematopoiesis dataset preprocessing 362 

 We obtained publicly available datasets of cord blood and bone marrow cells from the 363 

Human Cell Atlas7 (https://preview.data.humancellatlas.org/) and PBMCs from Zheng et al.6 364 

(https://support.10xgenomics.com/single-cell-gene-expression/datasets). We removed cells with 365 

less than 500 unique genes; we also noticed a large number of cells with high percentages of 366 

ribosomal transcripts, which may indicate nontrivial amounts of ambient ribosomal RNA 367 

contamination during the scRNA-seq experiment, so we only included cells with less than 50% 368 

ribosomal transcripts in further analysis. As described previously, we intersected the genes with 369 

the highest dispersions within each study to obtain a total of around 2,000 genes that were highly 370 
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variable across all studies. All studies provided data as digital gene expression (DGE) counts, 371 

which we further log transform after adding a pseudo-count of 1. 372 

Microglia dataset preprocessing 373 

 We obtained publicly available datasets from three single-cell transcriptomic studies of 374 

microglia across a diverse set of conditions5,8,9. We kept only the cells labeled by the original 375 

studies as microglia and we additionally removed low-complexity or quiescent cells with less 376 

than 500 unique genes. Mouse genes were mapped to human orthologs. As described previously, 377 

we intersected the genes with highest dispersions within each study to obtain around 2,000 genes 378 

that were highly variable across studies, followed by a log transformation after adding a pseudo-379 

count of 1. 380 

Panresolution clustering 381 

 We modify the Louvain clustering algorithm29,30 (https://github.com/vtraag/louvain-382 

igraph) to store community information at each iteration. We choose Louvain clustering due to 383 

its asymptotic efficiency, since its runtime and space usage scales with the size of the k-nearest 384 

neighbor (KNN) graph of cells (i.e., each cell is a node in the graph), rather than quadratically in 385 

the number of cells as in other hierarchical clustering algorithms. To capture a range of potential 386 

clustering results, we rerun the Louvain clustering algorithm at a diverse range of clustering 387 

resolutions (0.1, 1, and 10) on a 15-nearest neighbor graph, constructed using Euclidean 388 

distances in gene expression space, storing the hierarchical cluster information for each run. The 389 

three runs of Louvain clustering are done in parallel and we cluster each study individually. To 390 

reduce the effect of noisy correlations, we consider clusters with a minimum of 500 cells, which, 391 

combined with highly variable gene filtering (described below), reduces the chance that a strong 392 

correlation is due to a few outlier cells. 393 
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Computing coexpression matrices 394 

 We compute the Spearman correlation matrix 𝐑(𝑖) ∈ [−1,1]𝑀×𝑀 for each of the 395 

panresolution clusters obtained as described above, where 𝑖 ∈ {1,2, … , 𝑁} with 𝑁 denoting the 396 

number of panresolution clusters and 𝑀 denoting the number of highly variable genes. The entry 397 

𝐑𝑎𝑏
(𝑖)

 at row 𝑎 and column 𝑏 of 𝐑(𝑖), corresponding to the 𝑎th and 𝑏th genes, takes the value 398 

𝐑𝑎𝑏
(𝑖)

= {
𝑟𝑎𝑏

(𝑖)
       if |𝑟𝑎𝑏

(𝑖)
| > 𝜂 and 𝜎𝑎 > 0 and 𝜎𝑏 > 0

  0         otherwise,                                              
  399 

where 𝑟𝑎𝑏
(𝑖)

 is the Spearman correlation coefficient53 and 𝜎𝑎 and 𝜎𝑏 are the respective standard 400 

deviations of the rank values of the gene expressions (which appear in the denominator of the 401 

Spearman correlation expression). 𝜂 ∈ [0, 1] is a sparsification parameter that sets low 402 

correlations to zero and can be interpreted as a smoothing parameter that preserves only the most 403 

important associations. Low values of this parameter can introduce additional structure into the 404 

analysis, but may also introduce larger amounts of noise (see Supplementary Fig. 2). 405 

Visualization and diffusion pseudotime analysis of panresolution clusters 406 

 To visualize the coexpression landscape defined by the panresolution clusters, the 407 

symmetric correlation matrices 𝐑(𝑖) ∈ [−1, 1]𝑀×𝑀 are treated as vectors 𝐫(𝑖) ∈ [−1, 1](𝑀
2 )+𝑀 on 408 

which we construct the 𝑘-nearest neighbors graph using the Euclidean distance in coexpression 409 

space as the distance metric. This graph was visualized with a force-directed embedding using 410 

the ForceAtlas2 algorithm31 (https://github.com/bhargavchippada/forceatlas2). For the mouse 411 

neuronal development analysis, a diffusion pseudotime (DPT) algorithm19 was applied to this 412 

graph using the panresolution cluster with the earlies average age as the root. Larger values of 𝑘 413 

can also increase the amount of smoothing in the structure captured by the 𝑘-nearest-neighbors 414 

graph and subsequent visualization and DPT analysis (see Supplementary Fig. 2). We used the 415 
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implementation in Scanpy60 (https://scanpy.readthedocs.io/en/stable/) for the 𝑘-nearest neighbors 416 

graph construction and DPT analysis. 417 

 We also visualized panresolution clusters in gene expression space, Harmony-integrated 418 

expression space14, Scanorama-corrected expression space32, and scVI-integrated latent space16. 419 

To summarize features across multiple cells into a single feature vector for each panresolution 420 

cluster, we used the mean expression. We similarly constructed the 𝑘-nearest-neighbors graph 421 

with panresolution clusters as nodes and Euclidean distance between the summarized gene 422 

expression values as the distance metric. 423 

Coexpression matrix dictionary learning 424 

 We formulated the dictionary learning problem for coexpression matrices by optimizing 425 

argmin
𝐮(1),…,𝐮(𝑁),𝐕

{∑‖𝐫(𝑖) − 𝐕𝐮(𝑖)‖
2

2
𝑁

𝑖=1

+ 𝛼‖𝐮(𝑖)‖
1

} 426 

subject to ‖𝐯𝑗‖
2

= 1 for all 𝑗 ∈ [𝜅] 427 

where 𝐮(𝑖) ∈ ℝ≥0
𝜅  is a sparse code of weights for panresolution cluster 𝑖, 𝛼 is a sparsity-428 

controlling parameter, 𝐕 = [𝐯1 ⋯ 𝐯𝑗 ⋯ 𝐯𝜅] ∈ ℝ≥0

((𝑀
2 )+𝑀)×𝜅

 is a dictionary of 𝜅 (vectorized) 429 

coexpression matrices, and 𝜅 is a user-defined parameter indicating the number of dictionary 430 

entries to learn. We used an iterative optimization algorithm that alternatively estimated 431 

dictionary weights and dictionary entries using least angle regression-based optmiziation61 until 432 

convergence. We tune 𝜅 by plotting the objective function error versus values of 𝜅 and manually 433 

selecting a value after which there are relatively smaller drops in objective function values, a 434 

parameter selection procedure often referred to as the “elbow method.”  435 

Interpretation of dictionary entries 436 
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 We can interpret each dictionary entry 𝐯𝑗 as a coexpression network in which genes are 437 

nodes and elements of 𝐯𝑗 define edge weights between those genes. We use the networkx Python 438 

package62 to represent graphs and compute various graph statistics. Using genes that are involved 439 

in edges that are unique to a given coexpression network, we look for gene ontology (GO) 440 

process enrichments using a background set of all highly variable genes considered in the 441 

analysis, for which P-values can be computed using a hypergeometric null model followed by 442 

subsequent FDR q-value computation63. We use the GOrilla webtool (http://cbl-443 

gorilla.cs.technion.ac.il/)35 with default parameters, which reports all enrichments more 444 

significant than a nominal P-value of 1e-3. We use the REVIGO webtool (http://revigo.irb.hr/) 445 

with default parameters, which consolidates similar GO terms and visualizes terms in a two-446 

dimensional “semantic space” that places similar terms closer together64. We only consider 447 

dictionary entries that have nonzero weights in at least ten panresolution clusters. 448 

Neuronal subtype hierarchical grouping and interpretation 449 

 Cellular subtypes were determined according to expert curated labels provided by the 450 

original studies4,5. Each subtype was featurized by coexpression and by mean expression for 451 

benchmarking purposes. Agglomerative hierarchical clustering of the subtypes was then 452 

performed using the scipy Python library65. To interpret genes unique to a group of subtypes, we 453 

computed the mean coexpression within the group and sorted each dimension according to the 454 

highest increase in correlation from the mean coexpression of all subtypes. Genes were then 455 

ranked according to the first appearance of the gene within the sorted list of coexpression 456 

dimensions; this gene ranking was used as input into the GOrilla webtool for GO enrichment 457 

analysis. 458 
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Microglial subtype analysis and interpretation 459 

 Microglial subtypes were determined based on unique combinations of age, species, and 460 

tissue injury status. For the coexpression landscape analysis, each of these subtypes was 461 

considered as a separate study. Fewer clusters enabled a lower sparsification threshold of 𝜂 =462 

0.1. All other methods and parameters remained the same. 463 

As in the neuronal subtype analysis, we also hierarchically clustered the microglial 464 

subtypes and observed an injury-associated group of microglial subtypes. We took the 465 

coexpression mean of this injury-associated microglial group, including both mouse and human 466 

clusters, and compared it to the mean of all microglial subtypes. Coexpression dimensions were 467 

sorted according to the highest increase in correlation within the injury-associated group. This 468 

sorted list was used to rank genes as input into the GOrilla webtool for GO enrichment analysis 469 

and the first 150 edges in this list (all with an increase in correlation greater than 0.26) was used 470 

to visualize the disease-specific coexpression network. We used Gephi version 0.9.2 471 

(https://gephi.org/) to visualize the network66. 472 

Statistical analysis and implementation 473 

 We use the scientific Python toolkit, including the scipy and numpy Python packages65, 474 

to compute the statistical tests described in the manuscript, including Spearman correlation and 475 

associate P-values. P-values listed as less than 10-308 indicate values returned by the statistical 476 

software below the minimum nonzero floating-point value representable by the machine. 477 

Runtime and memory profiling 478 

We used Python’s time module to obtain runtime measurements and used the top 479 

program in Linux (Ubuntu 17.04) to make periodic memory measurements. We made use of 480 

default scientific Python parallelism. We benchmarked our pipelines on a Google Cloud 481 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2020. ; https://doi.org/10.1101/719088doi: bioRxiv preprint 

https://gephi.org/
https://doi.org/10.1101/719088
http://creativecommons.org/licenses/by/4.0/


24 

 

Enterprise instance with 16 logical cores and 104 gigabytes of memory and, for memory-482 

inefficient alternative algorithms (Supplementary Table 1), on a local 2.30 GHz Intel Xeon E5-483 

2650v3 with 48 logical cores and 384 GB of RAM. scVI was trained on a Nvidia Tesla V100-484 

SXM2 with 16 GB of RAM.485 
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Data Availability 

We used the following publicly available datasets: 

• Notochord and neural plate cells from Cao et al.1 (GSE119945) 

• Neurons from Mayer et al.2 (GSE104158) 

• Neurons from Han et al.3 (https://figshare.com/articles/MCA_DGE_Data/5435866) 

• Neurons from Zeisel et al.4 (http://mousebrain.org/) 

• Neurons and microglia from Saunders et al.5 (GSE116470) 

• In-situ hybridization images from the Allen Developing Mouse Brain Atlas36 

(https://developingmouse.brain-map.org/) 

• Bone marrow and cord blood cells from the Human Cell Atlas 

(https://preview.data.humancellatlas.org/) 

• PBMCs from Zheng et al.6 (https://support.10xgenomics.com/single-cell-gene-

expression/datasets) 

• Fetal thymus hematopoietic cells from Zeng et al.39 (GSE133341) 

• Microglia from Hammond et al.8 (GSE121654) 

• Microglia from Masuda et al.9 (GSE124335) 
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Figure 1. Overview of coexpression-based single-cell transcriptomic analysis. 

 (a) A conceptual illustration of the difference between attempting to extract biological 

information from single-studies, each profiling different parts of a larger biological system 

(“Conventional single-cell expression analysis”); integrative algorithms that attempt to minimize 

inter-study variation but may also remove overarching biological structure, including temporal 

dynamics (“Conventional single-cell integration”); and piecing together structure across multiple 

studies of complex and dynamic biological systems, which we accomplish with single-cell 

coexpression (“Desired unified transcriptomic landscape”). (b) Overview of coexpression-based 

analysis, in which the fundamental analytic unit is a group of cells featurized by coexpression, 
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rather than a single cell featurized by expression. Many downstream analyses have analogs in 

standard single-cell expression analyses.  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2020. ; https://doi.org/10.1101/719088doi: bioRxiv preprint 

https://doi.org/10.1101/719088
http://creativecommons.org/licenses/by/4.0/


36 

 

 

Figure 2. Coexpression landscape of mouse neuronal development. 

(a) A force-directed layout of the k-nearest-neighbors graph of panresolution clusters in 

coexpression space, which we refer to as the “coexpression landscape,” reveals a trajectory 

consistent with developmental age. (b) Studies are arranged according to order in developmental 

time, without removing all study-specific signal. (c) Diffusion pseudotime starting from the 

lowest-age node is strongly associated (Spearman r = 0.87, P < 10-308, n = 2,442 panresolution 
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clusters) with biological age.  (d,e) Panresolution clusters in uncorrected expression space and 

after correction with Scanorama or scVI still show large study-specific patterns without clear 

age-related structure. Harmony integration removes all study-specific differences including those 

related to developmental age.  
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Figure 3. Neuronal trajectory interpretation and cross-study subtype integration. 

(a) Dictionary entries highlight different stages of neuronal development.  (b,c) We observe 

positive correlations between diffusion pseudotime, corresponding to development, with the 

expression of genes such as Fos and negative correlation with the expression of Eomes. Changes 

in expression of these genes over development are validated and spatially located by the Allen 

Developing Mouse Brain Atlas (ADMBA)36. Images show locations and levels of gene 

expression intensity measured by in situ hybridization (ISH); blue-green is low, yellow-orange is 

medium, and red is high. (d) Neuronal subtypes featurized by mean expression group primarily 
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according to study while subtypes featurized by coexpression group primarily according to three 

main groups, followed secondarily by study.  
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Figure 4. Coexpression landscape of human hematopoiesis. 

(a) The coexpression landscape of immune cells from bone marrow, cord blood, and peripheral 

blood organizes largely according to erythropoietic, lymphopoietic, and myelopoietic lineages. 

Some of the PBMCs have FACS-derived labels, enabling us to place clusters with known surface 

markers in various regions of the coexpression landscape (also see Supplementary Fig. 3). (b) 

Dictionary learning of the coexpression matrices separates the coexpression landscape into four 

main regions; FACs labels and GO process enrichments suggests that these dictionary entries 

correspond to the different, main stages of hematopoiesis. (c) Existing integrative methods either 

do not overcome study specific bias (Scanorama and scVI) or obscure the lineage relationships 

among the four tissues (Harmony). 
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Figure 5. Multi-study analysis of microglial response to myelin injury. 
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(a) The coexpression landscape of panresolution clusters reveals a main age-related trajectory as 

well as off-trajectory outlier clusters from injured tissue. (b) Grouping microglial subtypes 

reveals a cluster containing injury-associated conditions in both mouse and human microglia. (c) 

GO enrichment terms are visualized in two dimensional “semantic space” with key terms 

relevant to disease-associated microglia also displayed. (d) The disease-specific coexpression 

network reveals functional gene modules related to myelin injury. The top 150 edges in which 

coexpression increases from a baseline microglial state are arranged into a disease-associated 

coexpression network; almost all of these associations have not been described by previous 

studies. Major subgraphs are labeled according to GO terms associated with internal genes. 

Nodes are colored darker blue with higher degree; gene labels are larger and bolder with higher 

degree; and edges are thicker and darker blue with a higher increase in correlation from the 

baseline microglial state. 
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