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 22 

Abstract 23 
The seasonal influenza vaccine is an important public health tool but is only effective in a subset of 24 
individuals. The identification of molecular signatures provides a mechanism to understand the drivers of 25 
vaccine-induced immunity. Most previously reported molecular signatures of influenza vaccination were 26 
derived from a single age group or season, ignoring the effects of immunosenescence or vaccine 27 
composition. Thus, it remains unclear how immune signatures of vaccine response change with age across 28 
multiple seasons. Here we profile the transcriptional landscape of young and older adults over five 29 
consecutive vaccination seasons to identify shared signatures of vaccine response as well as marked 30 
seasonal differences. Along with substantial variability in vaccine-induced signatures across seasons, we 31 
uncovered a common transcriptional signature 28 days post-vaccination in both young and older adults. 32 
However, gene expression patterns associated with vaccine-induced antibody responses were distinct in 33 
young and older adults; for example, increased expression of Killer Cell Lectin Like Receptor B1 (KLRB1; 34 
CD161) 28 days post-vaccination positively and negatively predicted vaccine-induced antibody responses 35 
in young and older adults, respectively. These findings contribute new insights for developing more 36 
effective influenza vaccines, particularly in older adults. 37 
 38 
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 3 

Introduction 43 
Influenza is a major public health burden, particularly in high-risk populations such as older adults. The 44 
seasonal inactivated influenza vaccination (IIV) is estimated to be 50-70% effective in randomized 45 
controlled trials of young adults (1–5), and efficacy is reduced to under 50% in adults over age 65 (6). 46 
Understanding the dynamics of vaccination-induced immune responses, and the factors associated with 47 
immunological protection should provide insights important for improving vaccine design. 48 
 49 
Systems vaccinology approaches utilizing high-throughput immune profiling techniques have identified 50 
signatures of response to influenza vaccination (7–14). These include pre-vaccination transcriptional 51 
signatures of apoptosis-related gene modules (9), as well as B cell signaling and inflammatory modules 52 
(15). Post-vaccination transcriptional signatures have also been identified, including an early interferon 53 
response 1 day post-vaccination and a plasma cell response 3 and 7 days post-vaccination (13). Interferon 54 
stimulated genes were upregulated in both monocytes and neutrophils between 15 and 48 hours post-55 
vaccination and correlated with influenza-specific antibody responses (7, 12). In addition, the expression 56 
of genes enriched for proliferation and immunoglobulin production 7 days post-vaccination accurately 57 
predicted antibody response in an independent cohort (10). Studies of the influence of aging revealed that 58 
an early interferon response 1-2 days post-vaccination as well as an oxidative phosphorylation and plasma 59 
cell response 7 days post-vaccination were correlated with antibody response in young adults but were 60 
diminished or dysregulated in older adults (13, 14). 61 
 62 
Notably, previous studies of influenza vaccine response studying the effects of aging used data from a 63 
single vaccine season (9) or from two consecutive seasons in which vaccine composition was identical 64 
(13, 14); consequently, the generalizability of these signatures is unknown. To date, no comprehensive 65 
characterization of vaccine response in both young and older adults has been reported to multiple 66 
influenza vaccines which vary in composition. To address this gap, we profiled young and older adults 67 
over five consecutive vaccination seasons (2010-11, 2011-12, 2012-13, 2013-14, and 2014-15) hereafter 68 
referred to by the first year of each season. We developed a new automated metric to quantify antibody 69 
response while accounting for baseline titers and used this novel metric to identify predictive 70 
transcriptional signatures of vaccine response using post-vaccination as well as baseline gene expression 71 
profiles. 72 

 73 
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Materials and Methods 75 
 76 
Clinical Study Design and Specimen Collection 77 
A total of 317 subjects were recruited at Yale University over the five vaccination seasons between 2010 78 
and 2014 and HAI titers pre- (D0) and post-vaccination (D28) were available from the 294 subjects 79 
reported in Table 1. Informed consent was obtained for all subjects under a protocol approved by the 80 
Human Subjects Research Protection Program of the Yale School of Medicine. Participants with an acute 81 
illness two weeks prior to recruitment were excluded from the study, as were individuals with primary or 82 
acquired immune-deficiency, use of immunomodulating medications including steroids or chemotherapy, 83 
a history of malignancy other than localized skin or prostate cancer, or a history of cirrhosis or renal 84 
failure requiring hemodialysis. Blood samples were collected into Vacutainer sodium heparin tubes and 85 
serum tubes (Becton Dickinson) at four different time points, immediately prior to administration of 86 
vaccine (D0) and on D2 (2011, 2012, 2013, 2014) or D4 (2010), D7, and D28 post-vaccination. 87 
 88 
In order to understand the transcriptional program underlying a successful vaccination response, we 89 
identified a subset of 134 subjects with extreme (strong or weak) antibody responses to perform 90 
transcriptional profiling by microarrays. In the first three seasons, the selection criteria were a four-fold 91 
increase to at least 2 strains (strong response) or no four-fold increase to any strain (weak response) as 92 
described previously (14). In the fourth and fifth seasons, the adjMFC metric was used in addition to the 93 
fold change criteria to account for baseline titers (11). The maxRBA response endpoint was developed 94 
after the study completed, however, less than 10% (12/134) of subjects chosen for transcriptional 95 
profiling had indeterminate responses by maxRBA (neither high or low responders using a 40% cutoff) 96 
(Table 1). These 12 subjects were excluded from the predictive modeling of antibody response. 97 
  98 
HAI and VNA Analyses, Cell Sorting, RNA processing and Gene Expression Analyses 99 
Detailed methods are provided in SI Appendix. 100 
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 5 

Results 102 
 103 
Antibody Titer Dynamics 104 
 105 
We evaluated 294 healthy young (21 - 30 years old, n = 147) and older (≥ 65 years old, n = 147) adults 106 
over five consecutive influenza vaccination seasons from 2010-2014. All subjects received the standard 107 
dose trivalent (2010, 2011, 2012) or quadrivalent (2013, 2014) seasonal inactivated influenza vaccine 108 
(IIV). We measured influenza-specific hemagglutination inhibition (HAI) titers pre-vaccination (D0) and 109 
28 days post-vaccination (D28). Over the course of our study, the vaccine composition changed relative 110 
to the previous season in three of five seasons (Table 1). 111 
 112 
In all seasons, pre-vaccination titers were negatively correlated with the increase in titers post-vaccination 113 
(SI Appendix, Fig. S1). Previous work defined an adjusted maximum fold change (adjMFC) endpoint that 114 
removes the nonlinear correlation between fold change and baseline titers (11). However, adjMFC 115 
separates subjects into manually defined bins, making it difficult to perform high-throughput analysis. 116 
Furthermore, adjMFC does not allow for information sharing between bins as each bin is adjusted 117 
independently. To address these limitations, we developed maximum Residual after Baseline Adjustment 118 
(maxRBA), which corrects for the dependence on baseline titers for each strain by modeling titer fold 119 
changes as an exponential function of pre-vaccination titers and selecting the maximum residual across 120 
strains (Fig. 1A). All vaccine strains were approximately equally responsible for the maximum residual in 121 
any given season. “High responders” (HR) and “low responders” (LR) were defined as the top and bottom 122 
40th percentiles of the residuals, respectively. maxRBA can be interpreted as the maximum change from 123 
expected fold change given the initial titer; it is fully automated, is strain agnostic, and is correlated with 124 
plasmablast frequencies seven days post-vaccination (SI Appendix, Fig. S2A-B). Thus, maxRBA allows a 125 
completely automated assessment of the relative strength of each subject’s antibody response independent 126 
of pre-existing antibody titers. 127 
 128 
Older adults had significantly lower pre-vaccination titers than young adults for three of five seasons (Fig. 129 
1B). The maximum fold change to any vaccine strain showed an increasing trend in young adults 130 
compared to older adults (SI Appendix, Fig. S3C). Because of the inverse relationship between baseline 131 
titers and fold change (SI Appendix, Fig. S1), we adjusted for baseline titers using maxRBA and found 132 
that the difference in vaccine response between young and older adults was statistically significant in 133 
more seasons (Fig. 1C). Males and females had similar pre-vaccine geometric mean titers (preGMTs) (SI 134 
Appendix, Fig. S3A). However, the antibody response calculated by maxRBA showed a trend toward 135 
stronger antibody responses in females compared to males with similar baseline titers in both age groups 136 
(Fisher’s combined p = 0.02 (Young), p = 0.12 (Older); SI Appendix, Fig. S3B). We did not detect any 137 
significant difference in baseline titers or titer responses across seasons when stratifying subjects by body 138 
mass index, smoking history, aspirin use, or diabetes medication use (p > 0.05 two-sided Wilcoxon rank 139 
sum test (discrete) or simple linear regression (continuous)). 140 
 141 
 142 
 143 
 144 
 145 
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Table 1 146 
Vaccine Compositions and Cohorts  147 

 2010-11 2011-12 2012-13 2013-14 2014-15 
Vaccine 

Compositiona 
 

A/California/7/2009 A/California/7/2009 A/California/7/2009 A/California/7/2009 A/California/7/2009 
A/Perth/16/2009 A/Perth/16/2009 A/Victoria/361/2011 A/Texas/50/2012 A/Texas/50/2012 

B/Brisbane/60/2008 B/Brisbane/60/2008 B/Wisconsin/1/2010 B/Brisbane/60/2008 B/Brisbane/60/2008 
   B/Massachusetts/2/2012 B/Massachusetts/2/2012 

Subjects 42 69 92 56 35 
Gender (% Male) 33 42 40 36 51 

Age Group (% Older) 48 54 49 52 46 
Transcriptomesb 19 39 30 26 20 

Young (LR | I | HR)c 4 | 1 | 6 8 | 2 | 6 6 | 0 | 9 6 | 2 | 5 4 | 2 | 5 
Older (LR | I | HR)c 5 | 0 | 3 11 | 5 | 7 7 | 0 | 8 7 | 0 | 6 2 | 0 | 7 

a The three vaccine strains in 2009-10 were A/Brisbane/59/2007, A/Brisbane/10/2007, and B/Brisbane/60/2008. A monovalent 148 
A/California/7/2009 vaccine was administered to some subjects in March 2010. 149 
b Subjects with transcriptional data are a subset of subjects with antibody titers. 150 
c Subjects are listed by antibody response category: low responder (LR), indeterminate (I), high responder (HR). 151 
 152 
We also examined the dynamics of viral titers over the course of the five seasons (SI Appendix, Fig. S3D). 153 
The A/California 7/2009 H1N1 strain was introduced into the seasonal vaccine in 2010 and remained 154 
through the 2014 season; however, pre-vaccine titers to this strain were consistently lower in older vs. 155 
young adults for 2011-2014. While we did not follow the same subjects across multiple seasons, 50-80% 156 
of young and 80-98% of older adults self-reported receiving influenza vaccine in the previous year. Taken 157 
together, these results support existing evidence that the capability for antibody persistence is reduced 158 
with age (16). 159 
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Figure 1 
Influenza-Specific Antibody Titers. (A) An 
illustration of the maximum Residual after 
Baseline Adjustment (maxRBA) method for 
hemagglutination inhibition (HAI) titers to the 
B/Wisconsin/1/2010 strain in the 2012 season. 
An exponential curve (blue) is fit to the data and 
the residual is used to stratify subjects into high 
and low responders. Subjects with largest 
positive residuals are high responders (green) 
and subjects with smallest negative residuals are 
low responders (red). maxRBA is calculated 
using the maximum residual across all vaccine 
strains. (B and C) Violin plots of pre-vaccination 
HAI titers (B) and HAI responses measured by 
maxRBA (C) are separated by season and 
gender to compare age groups. Crossbars 
indicate the mean. Not Significant (ns) p > 0.05, 
* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 
0.0001 independent two-sided Wilcoxon rank 
sum test. 
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 7 
Figure 2 8 
Substantial Seasonal Variability in Signatures Induced by Influenza Vaccination. (A) A row-9 
normalized heatmap of the 2,462 significantly differentially expressed genes (DEGs). Clusters A-G were 10 
defined by hierarchical clustering. Asterisks within the heatmap indicate genes significantly differentially 11 
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 3 

expressed compared to day 0. (B) The first two principal components from a principal component 12 
analysis of all DEGs. Each point is a sample and lines connect the median of the points at each day post-13 
vaccination within each season. (E) DUSP2 expression in sorted CD4 and CD8 T cells. ** p < 0.01, *** p 14 
< 0.001 one-sided t-test comparing day 28 and day 0 only. (F) Probability density functions calculated by 15 
QuSAGE for two representative gene modules significantly downregulated 28 days post-vaccination in 16 
four seasons. M31 contains DUSP1 while M89.1 contains both DUSP1 and DUSP2. 17 
 18 
 19 
Substantial Seasonal Variability in Vaccine-Induced Signatures 20 
 21 
To identify correlates and predictors of vaccine response, we selected a subset of individuals (20 - 40 22 
subjects per season) from young and older adult cohorts who had strong or weak antibody responses 23 
according to HAI titers and performed longitudinal transcriptional profiling pre-vaccination (baseline) 24 
and 4 (2010 cohort) or 2 days (all other cohorts), 7 days, and 28 days post-vaccination (Table 1; 25 
Methods). We first performed differential expression analysis independently in each season without 26 
differentiating subjects by antibody response. We compared each post-vaccination time point to baseline 27 
and found a vaccine-induced signature that comprised a total of 2,462 significantly differentially 28 
expressed genes (DEGs) over all five seasons (FDR < 0.05, Fold Change > 1.25; SI File 1). 29 
 30 
Most of the DEGs were from the first two seasons whereas vaccination in the latter three seasons induced 31 
relatively weak changes (Fig. 2A; SI Appendix, Fig. S4E). In fact, a substantial fraction of DEGs were 32 
unique to a single season and not differentially expressed at any time point in another season (Young: 33 
38%, Older: 75%). In young adults, there were 1,330 DEGs shared across two or more seasons while in 34 
older adults there were 265 shared DEGs. In both young and older adults, a substantial fraction of these 35 
shared genes was differentially expressed 28 days post-vaccination (SI Appendix, Fig. S4F). To assess 36 
whether vaccine-induced changes were consistent between seasons, we divided the 2,462 DEGs into 7 37 
clusters by hierarchical clustering (Fig. 2A; SI File 2) and tested for their activity in every season using 38 
QuSAGE (17) (SI Appendix, Fig. S5). In young adults, three of the clusters (B, F, G) had significant, but 39 
opposite, activity during the 2010 and 2011 seasons, while these clusters were relatively consistent across 40 
seasons in older adults. Genes in cluster A were induced strongly in the 2011 season in both age groups 41 
and notably enriched for multiple pathways related to mitochondria, including mitochondrial inner 42 
membrane, oxidative phosphorylation, respiratory electron transport, citric acid (TCA) cycle and 43 
respiratory electron transport, and mitochondrial respiratory chain complex assembly (FDR < 0.05; SI 44 
File 2). These findings reflect our previous identification of a mitochondrial biogenesis signature 45 
associated with influenza vaccine antibody response (14). Cluster D was only significantly induced in the 46 
2013 season at 7 and 28 days post-vaccination and was not significantly enriched for any gene sets tested 47 
(FDR > 0.05; SI File 2). The cluster with the most consistent expression pattern across the five seasons 48 
was cluster C, which was enriched for pathways related to Toll-like receptor signaling, B and T cell 49 
signaling, NF-kB signaling, MAPK signaling, cell senescence or proliferation, and apoptosis (SI File 2). 50 
Interestingly, cluster C contains three genes (DUSP1, DUSP2, CCL3L3) which were significantly 51 
downregulated 28 days post-vaccination in four of five seasons. CCL3L3 is a ligand for CCR1, CCR3 and 52 
CCR5, known to be chemotactic for monocytes and lymphocytes (18). DUSP1 and DUSP2 are dual 53 
specificity phosphatases; DUSP2 dephosphorylates STAT3, leading to inhibition of survival and 54 
proliferation signals (19–21), and an age-associated decrease in DUSP1 function contributed to 55 
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inappropriate IL-10 production in monocytes before and after influenza vaccination (22). To determine 56 
whether downregulation of these three genes was a result of changes in cell subset composition or 57 
observed in subpopulations of cells, we performed transcriptional profiling on sorted B and T cells in a 58 
subset of individuals from three seasons. DUSP1 and DUSP2, but not CCL3L3, were significantly 59 
downregulated 28 days post-vaccination over multiple seasons in CD4 and CD8 T cells of young adults 60 
(One sided t-test p < 0.01; Fig. 2C, SI Appendix, Fig. S4C-D). Furthermore, while DUSP2 was only 61 
significantly decreased in PBMCs of older individuals in the 2011 season, expression of DUSP2 was 62 
significantly decreased 28 days post-vaccination in sorted CD4 and CD8 T cells from older individuals in 63 
multiple seasons (Fig. 2C). Thus, the downregulation of DUSP2 28 days post-vaccination is observed in 64 
the T cell compartment of both young and older adults. 65 
 66 
To further assess shared patterns in vaccine-induced changes across five seasons, we performed a 67 
principal component analysis (PCA) on gene expression fold changes post-vaccination for all DEGs. The 68 
first two components together explained 38% of the variation in young adults’ and 46% of the variation in 69 
older adults’ transcriptional changes post-vaccination (Fig. 2B, SI Appendix, Fig. S4B). Notably, in young 70 
adults, the 2011 and 2014 seasons (both with vaccine composition identical to the previous year) had 71 
similar trajectories, increasing along the first principal component (PC1) by D28 post-vaccine. Examining 72 
the genes contributing to PC1 reveals that four of the top 10 genes (SLMAP, MATR3, MBNL3, RANBP3) 73 
increase in expression post-vaccination more in the 2011 and 2014 seasons than in any other season. The 74 
shared trajectories along PC1 are not significantly enriched for any blood transcription modules (BTMs) 75 
(23), KEGG pathways (24), or cell subset signatures (25) (FDR > 0.05; SI File 3). The trajectory of the 76 
2010 season was quite distinct from the other seasons in young adults. This season is consistently 77 
elevated on PC2, which is significantly enriched for monocytes, TLRs and inflammatory signaling (FDR 78 
< 0.05; SI File 3). The 2012 and 2013 seasons also appear to have similar trajectories, both decreasing in 79 
PC2 over time. The vaccines used in these two seasons each introduced multiple new strains while 80 
retaining the A/California/7/2009 strain. Five of the top 10 genes (ZNF493, ZNF652, OCIAD1, C21orf58, 81 
IL11RA) contributing to PC2 increased in expression 28 days post-vaccination in the 2012 and 2013 82 
seasons while decreasing in expression in the other seasons. This differential expression analysis shows 83 
that there are large variations in vaccine-induced transcriptional signatures between seasons which, in 84 
young adults, might be explained in part by vaccine composition. 85 
 86 
Given the substantial seasonal variation in the number of DEGs, we next performed an analysis of 87 
differential expression of gene modules using QuSAGE to quantify the gene module activity of 346 88 
previously defined BTMs (23). There were 262 differentially expressed modules (DEMs) (FDR < 0.05; SI 89 
File 4, SI Appendix, Fig. S4A). Similar to the gene-level analysis, no significant changes were identified 90 
in the 2014 season, but six modules (cell cycle and growth arrest (M31), chemokines and inflammatory 91 
molecules in myeloid cells (M86.0), enriched for TF motif TTCNRGNNNNTTC, leukocyte differentiation 92 
(M160), putative targets of PAX3 (M89.1), and signaling in T cells (I) (M35.0)) were significantly 93 
downregulated in young adults at D28 in four of five seasons (Fig. 2D). These changes were largely 94 
driven by decreases in DUSP1/2, EGR1/2, JUN/JUNB, FOS/FOSB, TNF, CD83, and IL1B. Thus, while 95 
there was substantial variability in the signatures induced by vaccination across multiple seasons, there is 96 
a shared signature consisting of three genes and six modules which was downregulated at D28 in four of 97 
five seasons. 98 
 99 
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 100 
Figure 3 101 
Vaccine-Induced Changes are Correlated Between Young and Older Adults at Day 28. Scatter plots 102 
show the meta-analysis effect sizes of changes post-vaccination for every gene in young vs older adults 103 
on days 2 (A), 7 (B) and 28 (C) post-vaccination.  104 
 105 
Shared Vaccine-Induced Signatures Across Five Seasons 106 
 107 
The differential expression approach is limited by fixed fold change and significance cutoffs that may 108 
vary between seasons. To increase our power to identify shared signatures across seasons and in older 109 
adults, we performed a meta-analysis at the individual gene and gene module level. We identified 338 110 
genes with significantly altered expression post-vaccination (FDR < 0.05; SI File 5). In young adults, we 111 
identified significant genes at D2, D7 and D28 with little overlap among genes on each day. Genes 112 
induced on D2 were moderately enriched for innate immune genes from InnateDB (http://innatedb.com/) 113 
including MYH9, TYK2, GLRX, and IP6K1 (p = 0.12, hypergeometric test). Some of the genes 114 
consistently induced at D7 included IGLL1, CD38, ITM2C, TNFRSF17, MZB1, and TXNDC5. We 115 
previously identified TNFRSF17, B cell maturation antigen, as induced seven days following influenza 116 
vaccination (26), and it was also identified as a predictive marker gene of antibody response to multiple 117 
vaccines including influenza, meningococcal conjugate (MCV4), and yellow fever (YF17D) vaccines (11, 118 
23, 27–29). Consistent with the individual season analysis, the majority of genes identified by the meta-119 
analysis were altered at D28; these D28 DEGs included DUSP1, DUSP2, and CCL3L3, identified in the 120 
single-season analysis, and many other downregulated genes including IL1B, CCL3, and JAK1. Thus, 121 
there are consistent changes identified across all seasons in young adults at every time point measured. 122 
 123 
In older adults, we identified 125 genes with significantly altered expression at D28, but no genes with 124 
significantly altered expression at D2 or D7 (SI File 5). The most significantly increased gene at D28 is 125 
XRN1, the primary 5’ to 3’ cytoplasmic exonuclease involved in mRNA degradation (30). XRN1 plays a 126 
critical role in the control of RNA stability in general, but in addition appears to regulate the response to 127 
viral infection at several levels—for example, by targeting viral RNAs for degradation (31), or regulating 128 
levels of potential activating ligands such as double-stranded RNA (32). Notably, XRN1 has also been 129 
reported to facilitate replication of influenza and other viruses by inhibiting host gene expression (33, 34) 130 
- suggesting that dysregulated expression of XRN1 in older adults could influence host response to 131 
vaccination. We identified 3 genes shared between both age groups: ARRDC3 and USP30 were 132 
downregulated while TNPO1 was upregulated, all at D28. ARRDC3 encodes a member of the arrestin 133 
protein family which regulates G protein-mediated signaling and is implicated in regulating metabolism 134 
(35). USP30 is a ubiquitin-specific protease that acts as a mitochondrial deubiquitinating enzyme (36). 135 
TNPO1 encodes Transportin-1 that serves to import proteins into the nucleus (37). The effect sizes of all 136 
genes at D28 were positively correlated between young and older adults with weak positive associations 137 
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at D2 and D7 (Fig. 3). These results provide additional evidence that transcriptional changes are broadly 138 
similar in young and older adults at D28 post-vaccine. 139 
 140 
We carried out a gene set level meta-analysis using QuSAGE to combine probability density estimates of 141 
gene module activity for each season (38). We identified 186 BTMs significantly altered post-vaccination 142 
across five seasons (FDR < 0.05; SI File 4). The module with the largest increase in activity was plasma 143 
cells, immunoglobulins (M156.1) which peaked on D7 with a combined fold change of 1.17 in young 144 
adults and 1.08 in older adults at D7. Most BTMs showing significant changes were identified in young 145 
adults and, unlike the individual gene level, there was a large overlap between sets at each time point, 146 
suggesting the same module changes were sustained over the 28 days following vaccination (SI Appendix, 147 
Fig. S4A). Indeed, a heatmap of module activity shows that in young adults, transcriptional changes 148 
continued to intensify at D28 for many modules rather than returning to the baseline state (SI Appendix, 149 
Fig. S6). Older adults showed a qualitatively similar pattern to young adults on D2 and D28, but not D7. 150 
The majority (40/59) of the modules significantly altered in older adults on D28 were also significantly 151 
altered in young adults at D28 (SI Appendix, Fig. S4A).  The modules downregulated on D28 in both 152 
young and older adults were annotated with antigen processing and presentation (M95.0, M95.1, M28, 153 
M71, M200, M5.0) and T cell activation (M36, M44, M52). The modules upregulated on D28 included 154 
golgi membrane (II) (M237), enriched in DNA interacting proteins (M182), and chaperonin mediated 155 
protein folding (I, II) (M204.0, M204.1). Taken together, the high correlation between individual gene 156 
changes and overlap of many BTMs suggest a convergence toward a common transcriptional program in 157 
young and older adults at D28. 158 
 159 
Age-Associated Genes are Induced 7 Days Post-Vaccination 160 
 161 
A meta-analysis across all five seasons revealed markedly different baseline transcriptional profiles in 162 
young vs. older adults, with 1,072 genes significantly altered (FDR < 0.05, SI File 6). Of these age-163 
associated genes, 204 genes were also significantly induced by the vaccine in young adults and 125 genes 164 
in older adults. We tested whether age-associated genes were enriched for vaccine-induced genes at each 165 
time point and found that the overlap was significantly more than expected by chance for the 6 age-166 
associated genes induced on D7 in young adults (p = 0.017, hypergeometric test). Of these 6 overlapping 167 
genes, 5 genes (ITM2C, MZB1, IGLL1, TNFRSF17, and TXNDC5) exhibited decreased basal expression 168 
in older adults while 1 (SELENOS) exhibited increased basal expression compared to young adults. While 169 
these genes were induced in young adults, they were not significantly induced in older adults on D7. 170 
Notably, MZB1 and TNFRSF17 are B cell associated genes, suggesting that older adults have decreased B 171 
cell activity pre-vaccination and fail to induce the same B cell response as young adults at D7. SELENOS 172 
encodes selenoprotein S, which is involved in degrading misfolded endoplasmic reticulum (ER) proteins 173 
and influences inflammation via the ER stress response (39, 40). Our results show that age-associated 174 
genes are significantly over-represented in the set of genes altered in young adults 7 days post-175 
vaccination.  176 
 177 
We next performed a meta-analysis of BTMs between age groups at baseline and identified 120 modules 178 
significantly altered with age (FDR < 0.05, SI File 7). Most of the modules that were decreased with age 179 
were associated with adaptive immunity, whereas those that had increased expression with age were 180 
mostly innate and inflammatory modules (reflecting age-associated inflammatory dysregulation; SI 181 
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Appendix, Fig. S7B). Of these 120 modules, 52 were also significantly altered post-vaccination; however, 182 
the overlap at each time point was not significantly more than expected by chance (hypergeometric p > 183 
0.05, SI Appendix, Fig. S7A). Thus, age-related genes are enriched among the genes induced at D7 in 184 
young adults while no gene modules were significantly over-represented. 185 
 186 
Post-Vaccination Predictors of Antibody Response 187 
 188 
We next asked whether any transcriptional changes post-vaccination could discriminate high antibody 189 
responders (HR) from low antibody responders (LR). Regularized logistic regression models with an L1 190 
(Lasso) or L1 and L2 (Elastic Net) penalties were fit to identify genes predictive of antibody response. In 191 
addition, to identify biologically interpretable predictors we used the Logistic Multiple Network-192 
constrained Regression (LogMiNeR) framework (26) that facilitates the generation of predictive models 193 
with improved biological interpretability over standard methods. We combined the fold changes in gene 194 
expression data post-vaccination from five seasons and trained LogMiNeR to predict HR vs. LR in young 195 
and older cohorts separately (SI Appendix). At each time point, models were trained on all five seasons of 196 
data (except for D2, which was not available in the 2010 season; see Methods). Publicly-available data 197 
sets from independent groups were used to validate the models. For the models built from expression 198 
changes at D2 or D28, no studies at identical time-points were available, so we attempted to validate these 199 
models on studies with similar time points (day 1 or 3 in (11) and day 14 in (13)). While we could build 200 
predictive models on our data (median AUC ≥ 0.75) they did not validate on other data sets at the 201 
(different) time points available (median AUC ≤ 0.55).  202 
 203 
For D7 post-vaccine, direct validation data were available in independent datasets. In young adults, D7 204 
models were predictive for HR in the discovery and validation (11) datasets (Fig. 4A). Another MAP 205 
kinase phosphatase acting on ERK1/2, DUSP5, was one of 37 genes selected by the Lasso model whose 206 
expression was increased in HR (Fig. 4C). DUSP5 is expressed in multiple immune cell types such as B 207 
cells (including plasma cells), T cells, dendritic cells, macrophages and eosinophils (41). In murine T 208 
cells, DUSP5 appears to promote the development of short-lived effector CD8+ T cells and inhibit 209 
memory precursor effector cell generation in an LCMV infection model (42); while optimizing memory 210 
precursor cell generation would be the goal of vaccination, the upregulation of DUSP5 in HR could 211 
reflect regulation of the balance between short-lived vs. memory precursor effector CD8+ T cells.  A 212 
sensitivity analysis of the maxRBA cutoff shows that the average expression of predictive genes is 213 
consistent across a range of definitions for HR and LR (20th – 40th percentile; SI Appendix, Fig. S2C-D). 214 
Using LogMiNeR, the models were consistently enriched for the B Cell signature as well as the KEGG 215 
chemokine signaling pathway (SI File 8).  216 
 217 
In older adults, models predicting antibody responses built from D7 gene expression were highly 218 
predictive in the discovery dataset but did not validate on an independent dataset (13) (Fig. 4B, D). 219 
Expression of the Solute Carrier Family 25 gene SLC25A20 of mitochondrial transporters contribute to 220 
predicting HR vs. LR in older adults. SLC25A20 is the carrier for carnitine and acylcarinitine (43), and so 221 
would be expected to be crucial for the transport of fatty acids into mitochondria. The models of response 222 
in older adults were significantly enriched for several BTMs of monocyte signatures as well as TLR and 223 
Inflammatory Signaling (M16), which positively predicted vaccine response; together with previous 224 
studies linking age-associated impairments in TLR function to influenza vaccine antibody response (44, 225 
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45), these findings provide additional support for the crucial role of innate immune function in 226 
vaccination (SI File 8). 227 
 228 
Notably, none of the models built in young adults at any time point are predictive in older adults (AUC ≤ 229 
0.5). In fact, models built on transcriptional changes at D28 in young adults had a median AUC near 0.8 230 
in young adults, but no more than 0.3 in older adults, suggesting that the same genes predictive of HR in 231 
young adults predicted LR in older adults (SI Appendix; Fig. S8E). The Lasso models making these 232 
predictions often chose a single gene, Killer Cell Lectin Like Receptor B1 (KLRB1, also known as 233 
CD161), which was driving this inverse pattern (Fig. 4E). KLRB1 is an inhibitory receptor on NK cells 234 
(46, 47) and is also a biomarker of Th17 cells (48–50). Notably, changes in KLRB1 expression in sorted 235 
CD4 and CD8 T cells at D28 closely mirrored the changes in PBMCs for young, but not older adults (SI 236 
Appendix, Fig. S8A-B). We confirmed this inverse correlation between age groups on a genome-wide 237 
scale by performing a meta-analysis comparing HR vs. LR (SI File 9). We observed a weak negative 238 
correlation in effect sizes between young and older adults at D28 (r = -0.27; Fig. 4F). We confirmed this 239 
negative correlation in effect sizes between young and older adults using a virus neutralization assay 240 
(VNA) in a test sample of blood from seasons 2011 and 2012 (r = -0.32; SI Appendix, Fig. S8D). Thus, 241 
expression changes of many genes at D28 have opposing signs between age groups for the effect size 242 
comparing HR vs. LR, and a single gene, KLRB1, predicts response with AUC > 0.7 in opposing 243 
directions in young vs. older adults.  244 
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 245 
Figure 4 246 
Post-Vaccination Transcriptional Predictors of Antibody Response. (A and B) Boxplots of the area 247 
under the receiver operating characteristic curve (AUROC) in the validation data for Lasso (L1), Elastic 248 
Net (EN), and Logistic Multiple Network-constrained Regression (LogMiNeR) models built from day 7 249 
transcriptional changes in young (A) and older (B) adults. 50 iterations of cross-validation were 250 
performed. x-labels indicate the prior knowledge network for LogMiNeR (see SI Appendix). (C and D) 251 
Heatmaps of Discovery (Disc.) and Validation (Valid.) data showing the z-score of the fold change for 252 
individual genes selected by the L1 models in any iteration for young (C) and older (D) adults. (E) 253 
Boxplots of KLRB1 expression changes in PBMCs 28 days post-vaccination in low responders (LR) and 254 
high responders (HR). (F) A scatter plot of the gene effect sizes comparing HR to LR 28 days post-255 
vaccination in young vs older adults. KLRB1 is indicated as a gene that has a positive effect size in one 256 
age group and negative effect size in the other. 257 
  258 
 259 
 260 
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Baseline Predictors of Antibody Response 261 
 262 

We next sought to identify baseline transcriptional predictors of antibody response. In young adults, 263 
LogMiNeR models were predictive above random on discovery and validation (11) (Fig. 5A) datasets. 264 
Lasso models included the gene VASH1, known as an angiogenesis inhibitor and mediator of stress 265 
resistance in endothelial cells, which was expressed at lower levels in HRs (Fig. 5C); notably, the KEGG 266 
gene set leukocyte transendothelial migration was significantly enriched in over 50% of the models when 267 
LogMiNeR was used with ImmuNet as prior knowledge (51). Another predictive gene, EIF4E, a 268 
translation initiation factor important in type I interferon production, was decreased in HRs. A sensitivity 269 
analysis of the maxRBA cutoff shows that the average expression of predictive genes is consistent across 270 
a range of definitions for HR and LR (20th – 40th percentile; SI Appendix, Fig. S2E-F). Finally, the BTMs 271 
cell adhesion (M51) and B cell surface signature (S2) were consistently enriched in the models (SI File 272 
8). In older adults, LogMiNeR models were also predictive on the discovery and one validation dataset 273 
(9) (Fig. 5B) but not another (13) (SI Appendix, Fig. S8C). Two of the individual genes that predict 274 
response, ALDH1A1 and ALDH3B1, are aldehyde dehydrogenases which metabolize vitamin A to retinoic 275 
acid (Fig. 5D). Recently, aldehyde dehydrogenases were implicated in antiviral innate immunity as 276 
mediators of the interferon response through their role in the biogenesis of retinoic acid (52). Multiple 277 
monocyte gene sets are enriched in the predictive genes, including the BTM enriched in monocytes (II) 278 
(M11.0), which negatively predicts vaccine response (SI File 8). Thus, these baseline predictive models 279 
built from five seasons of transcriptional profiling data provide further evidence for functional 280 
distinctions present in subjects prior to vaccination that influence the immunologic response to influenza 281 
vaccine in young and older adults.  282 
 283 

 284 
Figure 5 285 
Baseline Transcriptional Predictors of Antibody Response. (A and B) Boxplots of the area under the 286 
receiver operating characteristic curve (AUROC) in the validation data for Lasso (L1), Elastic Net (EN), 287 
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and Logistic Multiple Network-constrained Regression (LogMiNeR) models built from baseline (pre-288 
vaccination) transcriptional profiles in young (A) and older (B) adults (9). 50 iterations of cross-validation 289 
were performed. x-labels indicate the prior knowledge network for LogMiNeR (see SI Appendix). (C and 290 
D) Heatmaps of Discovery (Disc.) and Validation (Valid.) data showing the z-score of the fold change for 291 
individual genes selected by the L1 models in any iteration for young (C) and older (D) adults. 292 
 293 
 294 
Behavior of Published Signatures Over Five Seasons 295 
 296 
To link our findings to previously identified influenza vaccine signatures, we performed a comprehensive 297 
assessment of the behavior of 1,603 previously published individual gene and gene module signatures in 298 
our data set. We manually curated published signatures from studies that carried out transcriptional 299 
profiling on adult cohorts after influenza vaccination (9, 11, 13, 15, 27, 53). We further limited the 300 
signatures to shared time points post-vaccination. This set of findings describe 935 response-associated 301 
and 653 temporal signatures in B cells and PBMCs as well as 15 age-associated signatures (SI File 10).  302 
 303 
Most of the previously published signatures we validated in our data were single genes induced 7 days 304 
post-vaccination in PBMCs or B cells (SI Appendix, Fig. S9). Of the 135 signatures that showed 305 
significant differential expression (p < 0.001), 103 changed in the same direction as the published 306 
signature. In PBMCs we validated 26 D7 vaccine-induced genes including four genes independently 307 
discovered in our meta-analysis: CD38, ITM2C, TNFRSF17, and SPATS2 (SI Appendix, Fig. S9B) (11). 308 
CD38 is upregulated on the surface of antibody secreting cells, and TNFRSF17, or B cell maturation 309 
antigen (BCMA) is a receptor for B cell activating factor (BAFF) expressed on memory B cells and 310 
plasma cells (54). Notably, validated vaccine-induced genes in B cells include several associated with 311 
mitochondrial function whose expression was upregulated at Day 7, including UQCRQ (ubiquinol 312 
cytochrome c reductase, complex III, subunit VII), ME2 (NAD-dependent malic enzyme), TAL 313 
(transaldolase 1), and GLDC (glycine decarboxylase) (SI Appendix, Fig. S9A). We validated several 314 
modules significantly associated with antibody response at baseline in young and older adults (SI 315 
Appendix, Fig. S9D) (13). Of these modules, one positively associated with antibody response (enriched 316 
in B cells (I) (M47.0)) is enriched in our baseline predictive model of young adults and three negatively 317 
associated with antibody response are enriched in our baseline predictive model of older adults (Monocyte 318 
surface signature (S4), myeloid cell enriched receptors and transporters (M4.3), enriched in monocytes 319 
(II) (M11.0)). Interestingly, these latter three modules are also enriched in predictive models of HR vs LR 320 
from D7 fold changes. Finally, there are seven validated single genes whose fold change at D7 is 321 
positively associated with antibody response in young adults (SI Appendix, Fig. S9C) (11). One of these 322 
genes, HSP90B1, or gp96 – an ER-based chaperone protein implicated in innate and adaptive immune 323 
function – is also selected as a predictive gene of antibody response (55, 56). 324 
 325 

Discussion 326 
 327 
This study is the first to evaluate the transcriptomic response to influenza vaccination in young and older 328 
adults in five consecutive vaccine seasons with three different vaccine compositions. We sought to 329 
address whether common signatures of vaccine response or transcriptional predictors of antibody 330 
response could be elucidated despite differences in seasonal vaccine composition.  331 
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 332 
To adjust for the inverse relationship between baseline antibody titers and vaccine-induced antibody 333 
production, we developed a novel vaccine response endpoint, maxRBA, to automatically correct for 334 
variation in baseline titers; this allowed us to demonstrate an age-associated decrease in antibody response 335 
in gender-matched participants. Comparing the transcriptional profiles across five seasons revealed 336 
substantial seasonal variability in both the magnitude as well as direction of response. For example, the 337 
vaccines administered in the 2010 and 2011 seasons elicited large changes in gene expression, but no 338 
statistically significant DEGs were found in the 2014 season despite a comparable sample size. 339 
Potentially, the large transcriptional changes observed in 2010 and 2011 could reflect the introduction of 340 
the A/California/7/2009 viral pandemic strain to the seasonal vaccine (as well as a change in the H3N2 341 
vaccine strain beginning in 2010—the only year of the five studied when both influenza A strains 342 
changed). Notably, a principal component analysis revealed similar vaccine-induced signatures in the 343 
2011 and 2014 seasons and in the 2012 and 2013 seasons. The similarities between the 2011 and 2014 344 
seasons are intriguing because in both seasons the composition of the vaccine was identical to that in the 345 
preceding year, perhaps suggesting that these gene signatures reflect a relatively recent recall response. In 346 
contrast, the 2012 and 2013 vaccines each contained two strains which had not been present in the 347 
previous year’s vaccine. We did not observe the same trends in older adults; nonetheless, our results 348 
indicate that changes in vaccine composition, influencing factors such as vaccine strain immunogenicity 349 
and the effects of previous vaccination or infection, can alter the transcriptional response to influenza 350 
immunization. 351 
 352 
Despite substantial inter-season variability, we identified shared vaccine-induced signatures in both young 353 
and older adults at D28. We expected D28 expression profiles to be similar to baseline; however, there 354 
were numerous transcriptional changes at D28 that were consistent across seasons with different vaccine 355 
compositions. Some of the most significant changes identified from single-season differential expression 356 
analysis in four out of five seasons were in DUSP1, DUSP2, and CCL3L3; moreover, DUSP2 expression 357 
was also decreased in sorted CD4+ and CD8+ T cells from both young and older adults at D28. It is 358 
notable that a basal age-related alteration in phosphorylation of DUSP1, a negative regulator of IL-10 359 
production, was associated with increased expression of IL-10 in monocytes from older adults (seen pre- 360 
and post-influenza vaccination) (57) and that increased DUSP6 expression was associated with impaired 361 
T cell receptor signaling in CD4+ T cells from older adults (58). These results emphasize the importance 362 
of modulation of MAP kinase function, such as through phosphatases of the DUSP family, in the 363 
regulation of influenza vaccine response. Surprisingly, early response signatures at D2 and D7 post-364 
vaccination were not as consistent across seasons as D28 signatures in a meta-analysis of genes and gene 365 
modules. One potential hypothesis that explains this observation is that temporal variations in early 366 
responses across seasons were not captured at the time points used, and that responses at D28 are less 367 
variable, and thus were captured in every season. It is possible that this common transcriptional program 368 
at D28 reflects a convergence towards resolution of the vaccine response in both young and older adults. 369 
However, a substantial number of BTMs showed upregulated activity at D28 without evidence of 370 
resolution to baseline, particularly in young adults; notably, we previously found evidence of enhanced 371 
TNF-alpha and IL-6 production in monocytes 28 days post-influenza immunization (57) that was blunted 372 
in monocytes from older adults. Thus, it remains possible that the transcriptional signature we observed 373 
also reflects elements of an ongoing immune activated state several weeks after vaccination. 374 
 375 
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We built predictive models of antibody response from post-vaccination transcriptional responses which 376 
were successfully validated in an independent cohort of young adults. Although transcriptional changes 377 
were correlated between age groups at D28, models of antibody response built in young adults did not 378 
validate in older adults. Strikingly, we identified a genome-wide inverse correlation between the effect 379 
size of genes discriminating HR and LR at D28 and confirmed this finding with both HAI and VNA 380 
titers. A similar inverse correlation related to age was recently reported using baseline (D0) gene 381 
expression signatures (15). We identified a single gene, KLRB1, whose expression alone predicted 382 
response in both age groups but in opposite directions. In young adults, changes in KLRB1 expression 383 
were also observed in sorted CD4 and CD8 T cells, perhaps reflecting the finding that KLRB1 expression 384 
is increased in populations of memory T cells (59). Furthermore, KLRB1hi CD8+ T cells are self-renewing 385 
memory cells that are able to reconstitute the memory T cell pool after chemotherapy (60). Thus, KLRB1 386 
induction in young adults may reflect an increase in memory T cell populations. In older adults, these 387 
expression patterns were not observed in sorted T cells, implying that KLRB1 expression in another cell 388 
type, perhaps NK cells or Th17 cells, was the basis for the predictive performance.  389 
 390 
We also built and validated predictive models of antibody response in young and older adults from D0 391 
gene expression data. One of the predictive genes in young adults, VASH1, showed evidence of genetic 392 
regulation of gene expression in a previous study of influenza vaccination, suggesting that genotype may 393 
have predictive power to explain the antibody response (8). Leukocyte migration and a B cell surface 394 
signature were enriched in the predictive models. This is consistent with a recently reported meta-analysis 395 
which included baseline transcriptional profiles from the 2010, 2011, and 2012 seasons of the present 396 
study and validated a temporally stable B cell receptor signaling gene module that positively predicted 397 
response at baseline (15). While the B cell surface signature (S2) module we identified was not the same 398 
one identified in the previous study, our findings further support the implication of B cell transcriptional 399 
signatures as pre-vaccine biomarkers of antibody response in young adults. In older adults, we 400 
incorporated prior knowledge on gene coexpression using LogMiNeR to identify monocyte signatures 401 
which were enriched in the predictive models and were negatively associated with antibody response. Our 402 
model validated on one older adult cohort (9) but not another (13); this may reflect substantial variability 403 
in cohorts of older adults, which would be expected to be more heterogeneous in terms of comorbid 404 
medical conditions or medication use compared to young adults. Finally, we linked our findings to 405 
previously identified influenza vaccination signatures by performing a comprehensive assessment of 406 
1,603 previously published individual gene and gene module signatures. We present the signatures that 407 
validate in any season or a meta-analysis of all seasons of our data to highlight the most consistent set of 408 
genes and gene modules associated with vaccination or antibody response in PBMC and B cells. 409 
 410 
In summary, we profiled nearly 300 young and older adults across five vaccination seasons and, despite 411 
substantial seasonal variability in vaccine-induced transcriptional signatures, identified a core 412 
transcriptional signature shared between seasons and across age groups 28 days post-vaccination. In 413 
addition, we defined a new endpoint (maxRBA) to capture antibody response relative to baseline titer and 414 
were able to predict response in young and older adults separately using baseline transcriptional profiles. 415 
Our results suggest that vaccine composition, in concert with differences in pre-existing immunity and 416 
other individual factors, dramatically influences immune response to inactivated influenza vaccination. 417 
Furthermore, this work is a step toward understanding the underlying mechanisms of response in older 418 
adults which may be beneficial for rationally designing more effective vaccines. 419 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 1, 2019. ; https://doi.org/10.1101/719203doi: bioRxiv preprint 

https://doi.org/10.1101/719203
http://creativecommons.org/licenses/by/4.0/


 14 

 420 

Acknowledgments 421 
 422 
We gratefully acknowledge Dr. Randy Albrecht and Dr. Adolfo Garcia-Sastre at the Icahn School of 423 
Medicine at Mount Sinai, who led the Human Immunology Project Consortium (HIPC) core for influenza 424 
viral neutralization assays.  This work was supported by NIH grant U19 AI089992, K24 AG042489, and 425 
by the Claude D. Pepper Older Americans Independence Center at Yale (to H.J.Z. and A.C.S.: P30 426 
AG021342). Computational resources and support were provided by the Yale Center for Research 427 
Computing [NIH grants RR19895 and RR029676-01]. H.J.Z. was supported by a GEMSSTAR award 428 
from NIA (R03 AG050947). D.G.C. was supported by NIH training grant T32 EB019941. S.A. was 429 
supported by the NSF Graduate Research Fellowship Program [grant number DGE-1122492]. Any 430 
opinions, findings and conclusions or recommendations expressed in this material are those of the authors 431 
and do not necessarily reflect the views of the National Science Foundation. 432 
 433 

Author Contributions 434 
Conceptualization, S.M.K., A.C.S., and S.H.K.; Software, S.A.; Formal Analysis, S.A., D.G.C., and 435 
H.M.; Investigation, S.M., H.J.Z., T.B., I.U., K.P., T.P.B, and R.B.B.; Data Curation, S.T. and H.M.; 436 
Writing – Original Draft, S.A., A.C.S., and S.H.K.; Writing – Review & Editing, All Authors; 437 
Visualization, S.A., D.G.C. 438 
 439 

References 440 
 441 
1. Ohmit, S. E., J. C. Victor, E. R. Teich, R. K. Truscon, J. R. Rotthoff, D. W. Newton, S. a Campbell, M. 442 
L. Boulton, and A. S. Monto. 2008. Prevention of symptomatic seasonal influenza in 2005-2006 by 443 
inactivated and live attenuated vaccines. J. Infect. Dis. 198: 312–317. 444 
2. Frey, S., T. Vesikari, A. Szymczakiewicz-Multanowska, M. Lattanzi, A. Izu, N. Groth, and S. Holmes. 445 
2010. Clinical Efficacy of Cell Culture-Derived and Egg-Derived Inactivated Subunit Influenza Vaccines 446 
in Healthy Adults. Clin. Infect. Dis. 51: 997–1004. 447 
3. Jackson, L. a, M. J. Gaglani, H. L. Keyserling, J. Balser, N. Bouveret, L. Fries, and J. J. Treanor. 2010. 448 
Safety, efficacy, and immunogenicity of an inactivated influenza vaccine in healthy adults: a randomized, 449 
placebo-controlled trial over two influenza seasons. BMC Infect. Dis. 10: 71. 450 
4. Monto, A. S., S. E. Ohmit, J. G. Petrie, E. Johnson, R. Truscon, E. Teich, J. Rotthoff, M. Boulton, and 451 
J. C. Victor. 2009. Comparative efficacy of inactivated and live attenuated influenza vaccines. N. Engl. J. 452 
Med. 361: 1260–1267. 453 
5. Beran, J., V. Wertzova, K. Honegr, E. Kaliskova, M. Havlickova, J. Havlik, H. Jirincova, P. Van Belle, 454 
V. Jain, B. Innis, and J.-M. Devaster. 2009. Challenge of conducting a placebo-controlled randomized 455 
efficacy study for influenza vaccine in a season with low attack rate and a mismatched vaccine B strain: a 456 
concrete example. BMC Infect. Dis. 9: 2. 457 
6. Goodwin, K., C. Viboud, and L. Simonsen. 2006. Antibody response to influenza vaccination in the 458 
elderly: A quantitative review. Vaccine 24: 1159–1169. 459 
7. Bucasas, K. L., L. M. Franco, C. a Shaw, M. S. Bray, J. M. Wells, D. Niño, N. Arden, J. M. Quarles, R. 460 
B. Couch, and J. W. Belmont. 2011. Early patterns of gene expression correlate with the humoral immune 461 
response to influenza vaccination in humans. J. Infect. Dis. 203: 921–9. 462 
8. Franco, L. M., K. L. Bucasas, J. M. Wells, D. Niño, X. Wang, G. E. Zapata, N. Arden, A. Renwick, P. 463 
Yu, J. M. Quarles, M. S. Bray, R. B. Couch, J. W. Belmont, and C. a Shaw. 2013. Integrative genomic 464 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 1, 2019. ; https://doi.org/10.1101/719203doi: bioRxiv preprint 

https://doi.org/10.1101/719203
http://creativecommons.org/licenses/by/4.0/


 15 

analysis of the human immune response to influenza vaccination. Elife 2: e00299. 465 
9. Furman, D., V. Jojic, B. Kidd, S. Shen-Orr, J. Price, J. Jarrell, T. Tse, H. Huang, P. Lund, H. T. 466 
Maecker, P. J. Utz, C. L. Dekker, D. Koller, and M. M. Davis. 2013. Apoptosis and other immune 467 
biomarkers predict influenza vaccine responsiveness. Mol. Syst. Biol. 9: 659. 468 
10. Tan, Y., P. Tamayo, H. Nakaya, B. Pulendran, J. P. Mesirov, and W. N. Haining. 2014. Gene 469 
signatures related to B-cell proliferation predict influenza vaccine-induced antibody response. Eur. J. 470 
Immunol. 44: 285–295. 471 
11. Tsang, J. S., P. L. Schwartzberg, Y. Kotliarov, A. Biancotto, Z. Xie, R. N. Germain, E. Wang, M. J. 472 
Olnes, M. Narayanan, H. Golding, S. Moir, H. B. Dickler, S. Perl, and F. Cheung. 2014. Global analyses 473 
of human immune variation reveal baseline predictors of postvaccination responses. Cell 157: 499–513. 474 
12. Obermoser, G., S. Presnell, K. Domico, H. Xu, Y. Wang, E. Anguiano, L. Thompson-Snipes, R. 475 
Ranganathan, B. Zeitner, A. Bjork, D. Anderson, C. Speake, E. Ruchaud, J. Skinner, L. Alsina, M. 476 
Sharma, H. Dutartre, A. Cepika, E. Israelsson, P. Nguyen, Q. A. Nguyen,  a. C. Harrod, S. M. Zurawski, 477 
V. Pascual, H. Ueno, G. T. Nepom, C. Quinn, D. Blankenship, K. Palucka, J. Banchereau, and D. 478 
Chaussabel. 2013. Systems scale interactive exploration reveals quantitative and qualitative differences in 479 
response to influenza and pneumococcal vaccines. Immunity 38: 831–844. 480 
13. Nakaya, H. I., T. Hagan, S. S. Duraisingham, E. K. Lee, M. Kwissa, N. Rouphael, D. Frasca, M. 481 
Gersten, A. K. Mehta, R. Gaujoux, G. M. Li, S. Gupta, R. Ahmed, M. J. Mulligan, S. Shen-Orr, B. B. 482 
Blomberg, S. Subramaniam, and B. Pulendran. 2015. Systems Analysis of Immunity to Influenza 483 
Vaccination across Multiple Years and in Diverse Populations Reveals Shared Molecular Signatures. 484 
Immunity 43: 1186–1198. 485 
14. Thakar, J., S. Mohanty, A. P. West, S. R. Joshi, I. Ueda, J. Wilson, H. Meng, T. P. Blevins, S. Tsang, 486 
M. Trentalange, B. Siconolfi, K. Park, T. M. Gill, R. B. Belshe, S. M. Kaech, G. S. Shadel, S. H. 487 
Kleinstein, and A. C. Shaw. 2015. Aging-dependent alterations in gene expression and a mitochondrial 488 
signature of responsiveness to human influenza vaccination. Aging (Albany. NY). 7: 38–52. 489 
15. HIPC-CHI Signatures Project Team, T., and T. HIPC-I Consortium. 2017. Multicohort analysis 490 
reveals baseline transcriptional predictors of influenza vaccination responses. Sci. Immunol. 2: eaal4656. 491 
16. Song, J. Y., H. J. Cheong, I. S. Hwang, W. S. Choi, Y. M. Jo, D. W. Park, G. J. Cho, T. G. Hwang, 492 
and W. J. Kim. 2010. Long-term immunogenicity of influenza vaccine among the elderly: Risk factors for 493 
poor immune response and persistence. Vaccine 28: 3929–3935. 494 
17. Yaari, G., C. R. Bolen, J. Thakar, and S. H. Kleinstein. 2013. Quantitative set analysis for gene 495 
expression: A method to quantify gene set differential expression including gene-gene correlations. 496 
Nucleic Acids Res. 41: e170. 497 
18. Proost, P., P. Menten, S. Struyf, E. Schutyser, I. De Meester, and J. Van Damme. 2000. Cleavage by 498 
CD26 / dipeptidyl peptidase IV converts the chemokine LD78β into a most efficient monocyte attractant 499 
and CCR1 agonist. Blood 96: 1674–1680. 500 
19. Kwak, S. P., D. J. Hakes, K. J. Martell, and J. E. Dixon. 1994. Isolation and Characterization of a 501 
Human Dual Specificity Protein-Tyrosine Phosphatase Gene. J. Biol. Chem. 269: 3596–3604. 502 
20. Rohan, P. J., P. Davis, C. A. Moskaluk, M. Kearns, P. J. Rohan, P. Davis, C. A. Moskaluk, M. 503 
Kearns, H. Krutzsch, U. Siebenlist, and K. Kelly. 1993. PAC-1 : A Mitogen-Induced Nuclear Protein 504 
Tyrosine Phosphatase. Science (80-. ). 259: 1763–1766. 505 
21. Wei, W., Y. Jiao, A. Postlethwaite, J. M. Stuart, Y. Wang, D. Sun, and W. Gu. 2013. Dual-specificity 506 
phosphatases 2: surprising positive effect at the molecular level and a potential biomarker of diseases. 507 
Genes Immun. 14: 1–6. 508 
22. Mohanty, S., S. R. Joshi, I. Ueda, J. Wilson, T. P. Blevins, B. Siconolfi, H. Meng, L. Devine, K. 509 
Raddassi, S. Tsang, R. B. Belshe, D. A. Hafler, S. M. Kaech, S. H. Kleinstein, M. Trentalange, H. G. 510 
Allore, and A. C. Shaw. 2015. Prolonged proinflammatory cytokine production in monocytes modulated 511 
by interleukin 10 after influenza vaccination in older adults. J. Infect. Dis. 211: 1174–1184. 512 
23. Li, S., N. Rouphael, S. Duraisingham, S. Romero-Steiner, S. Presnell, C. Davis, D. S. Schmidt, S. E. 513 
Johnson, A. Milton, G. Rajam, S. Kasturi, G. M. Carlone, C. Quinn, D. Chaussabel,  a K. Palucka, M. J. 514 
Mulligan, R. Ahmed, D. S. Stephens, H. I. Nakaya, and B. Pulendran. 2014. Molecular signatures of 515 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 1, 2019. ; https://doi.org/10.1101/719203doi: bioRxiv preprint 

https://doi.org/10.1101/719203
http://creativecommons.org/licenses/by/4.0/


 16 

antibody responses derived from a systems biology study of five human vaccines. Nat. Immunol. 15: 195–516 
204. 517 
24. Kanehisa, M., and S. Goto. 2000. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids 518 
Res. 28: 27–30. 519 
25. Abbas,  a R., D. Baldwin, Y. Ma, W. Ouyang, A. Gurney, F. Martin, S. Fong, M. van Lookeren 520 
Campagne, P. Godowski, P. M. Williams,  a C. Chan, and H. F. Clark. 2005. Immune response in silico 521 
(IRIS): immune-specific genes identified from a compendium of microarray expression data. Genes 522 
Immun. 6: 319–331. 523 
26. Avey, S., S. Mohanty, J. Wilson, H. Zapata, S. R. Joshi, B. Siconolfi, S. Tsang, A. C. Shaw, and S. H. 524 
Kleinstein. 2017. Multiple network-constrained regressions expand insights into influenza vaccination 525 
responses. Bioinformatics 33: i208–i216. 526 
27. Nakaya, H. I., J. Wrammert, E. K. Lee, L. Racioppi, S. Marie-Kunze, W. N. Haining, A. R. Means, S. 527 
P. Kasturi, N. Khan, G.-M. Li, M. McCausland, V. Kanchan, K. E. Kokko, S. Li, R. Elbein, A. K. Mehta, 528 
A. Aderem, K. Subbarao, R. Ahmed, and B. Pulendran. 2011. Systems biology of vaccination for 529 
seasonal influenza in humans. Nat. Immunol. 12: 786–795. 530 
28. Gaucher, D., R. Therrien, N. Kettaf, B. R. Angermann, G. Boucher, A. Filali-Mouhim, J. M. Moser, 531 
R. S. Mehta, D. R. Drake, E. Castro, R. Akondy, A. Rinfret, B. Yassine-Diab, E. a Said, Y. Chouikh, M. 532 
J. Cameron, R. Clum, D. Kelvin, R. Somogyi, L. D. Greller, R. S. Balderas, P. Wilkinson, G. Pantaleo, J. 533 
Tartaglia, E. K. Haddad, and R.-P. Sékaly. 2008. Yellow fever vaccine induces integrated multilineage 534 
and polyfunctional immune responses. J. Exp. Med. 205: 3119–3131. 535 
29. Querec, T. D., R. S. Akondy, E. K. Lee, W. Cao, H. I. Nakaya, D. Teuwen, A. Pirani, K. Gernert, J. 536 
Deng, B. Marzolf, K. Kennedy, H. Wu, S. Bennouna, H. Oluoch, J. Miller, R. Z. Vencio, M. Mulligan, A. 537 
Aderem, R. Ahmed, and B. Pulendran. 2009. Systems biology approach predicts immunogenicity of the 538 
yellow fever vaccine in humans. Nat. Immunol. 10: 116–125. 539 
30. Mitchell, P., and D. Tollervey. 2000. mRNA stability in eukaryotes. Curr. Opin. Genet. Dev. 10: 193–540 
198. 541 
31. Molleston, J. M., and S. Cherry. 2017. Attacked from all sides: RNA decay in antiviral defense. 542 
Viruses 9. 543 
32. Liu, S. W., G. C. Katsafanas, R. Liu, L. S. Wyatt, and B. Moss. 2015. Poxvirus decapping enzymes 544 
enhance virulence by preventing the accumulation of dsRNA and the induction of innate antiviral 545 
responses. Cell Host Microbe 17: 320–331. 546 
33. Khaperskyy, D. A., S. Schmaling, J. Larkins-Ford, C. McCormick, and M. M. Gaglia. 2016. Selective 547 
Degradation of Host RNA Polymerase II Transcripts by Influenza A Virus PA-X Host Shutoff Protein. 548 
PLoS Pathog. 12: 1–25. 549 
34. Gaglia, M. M., S. Covarrubias, W. Wong, and B. A. Glaunsinger. 2012. A common strategy for host 550 
RNA degradation by divergent viruses. J Virol 86: 9527–9530. 551 
35. Patwari, P., and R. T. Lee. 2012. An expanded family of arrestins regulate metabolism. Trends 552 
Endocrinol. Metab. 23: 216–222. 553 
36. Nakamura, N., and S. Hirose. 2008. Regulation of Mitochondrial Morphology by USP30, a 554 
Deubiquitinating Enzyme Present in the Mitochondrial Outer Membrane. Mol. Biol. Cell 19: 1903–1911. 555 
37. Twyffels, L., C. Gueydan, and V. Kruys. 2014. Transportin-1 and Transportin-2: Protein nuclear 556 
import and beyond. FEBS Lett. 588: 1857–1868. 557 
38. Meng, H., G. Yaari, C. R. Bolen, S. Avey, and S. H. Kleinstein. 2019. Gene set meta-analysis with 558 
Quantitative Set Analysis for Gene Expression (QuSAGE). PLOS Comput. Biol. 15: e1006899. 559 
39. Curran, J. E., J. B. M. Jowett, K. S. Elliott, Y. Gao, K. Gluschenko, J. Wang, D. M. Abel Azim, G. 560 
Cai, M. C. Mahaney, A. G. Comuzzie, T. D. Dyer, K. R. Walder, P. Zimmet, J. W. MacCluer, G. R. 561 
Collier, A. H. Kissebah, and J. Blangero. 2005. Genetic variation in selenoprotein S influences 562 
inflammatory response. Nat. Genet. 37: 1234–1241. 563 
40. Ye, Y., Y. Shibata, C. Yun, D. Ron, and T. A. Rapoport. 2004. A membrane protein complex 564 
mediates retro-translocation from the ER lumen into the cytosol. Nature 429: 841–847. 565 
41. Jeffrey, K. L., M. Camps, C. Rommel, and C. R. Mackay. 2007. Targeting dual-specificity 566 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 1, 2019. ; https://doi.org/10.1101/719203doi: bioRxiv preprint 

https://doi.org/10.1101/719203
http://creativecommons.org/licenses/by/4.0/


 17 

phosphatases: manipulating MAP kinase signalling and immune responses. Nat. Rev. Drug Discov. 6: 567 
391–403. 568 
42. Kutty, R. G., G. Xin, D. M. Schauder, S. M. Cossette, M. Bordas, W. Cui, and R. Ramchandran. 569 
2016. Dual specificity phosphatase 5 is essential for T cell survival. PLoS One 11: 1–16. 570 
43. Indiveri, C., V. Iacobazzi, A. Tonazzi, N. Giangregorio, V. Infantino, P. Convertini, L. Console, and 571 
F. Palmieri. 2011. The mitochondrial carnitine/acylcarnitine carrier: Function, structure and 572 
physiopathology. Mol. Aspects Med. 32: 223–233. 573 
44. van Duin, D., H. G. Allore, S. Mohanty, S. Ginter, F. K. Newman, R. B. Belshe, R. Medzhitov, and 574 
A. C. Shaw. 2007. Prevaccine Determination of the Expression of Costimulatory B7 Molecules in 575 
Activated Monocytes Predicts Influenza Vaccine Responses in Young and Older Adults. J. Infect. Dis. 576 
195: 1590–1597. 577 
45. Panda, A., F. Qian, S. Mohanty, D. van Duin, F. K. Newman, L. Zhang, S. Chen, V. Towle, R. B. 578 
Belshe, E. Fikrig, H. G. Allore, R. R. Montgomery, and A. C. Shaw. 2010. Age-Associated Decrease in 579 
TLR Function in Primary Human Dendritic Cells Predicts Influenza Vaccine Response. J. Immunol. 184: 580 
2518–2527. 581 
46. Aldemir, H., V. Prod’homme, M.-J. Dumaurier, C. Retiere, G. Poupon, J. Cazareth, F. Bihl, and V. 582 
M. Braud. 2005. Cutting Edge: Lectin-Like Transcript 1 Is a Ligand for the CD161 Receptor. J. Immunol. 583 
175: 7791–7795. 584 
47. Rosen, D. B., J. Bettadapura, M. Alsharifi, P. A. Mathew, H. S. Warren, and L. L. Lanier. 2005. 585 
Cutting Edge: Lectin-Like Transcript-1 Is a Ligand for the Inhibitory Human NKR-P1A Receptor. J. 586 
Immunol. 175: 7796–7799. 587 
48. Kleinschek, M. A., K. Boniface, S. Sadekova, J. Grein, E. E. Murphy, S. P. Turner, L. Raskin, B. 588 
Desai, W. A. Faubion, R. de Waal Malefyt, R. H. Pierce, T. McClanahan, and R. A. Kastelein. 2009. 589 
Circulating and gut-resident human Th17 cells express CD161 and promote intestinal inflammation. J. 590 
Exp. Med. 206: 525–534. 591 
49. Maggi, L., V. Santarlasci, M. Capone, A. Peired, F. Frosali, S. Q. Crome, V. Querci, M. Fambrini, F. 592 
Liotta, M. K. Levings, E. Maggi, L. Cosmi, S. Romagnani, and F. Annunziato. 2010. CD161 is a marker 593 
of all human IL-17-producing T-cell subsets and is induced by RORC. Eur. J. Immunol. 40: 2174–2181. 594 
50. Cosmi, L., R. De Palma, V. Santarlasci, L. Maggi, M. Capone, F. Frosali, G. Rodolico, V. Querci, G. 595 
Abbate, R. Angeli, L. Berrino, M. Fambrini, M. Caproni, F. Tonelli, E. Lazzeri, P. Parronchi, F. Liotta, E. 596 
Maggi, S. Romagnani, and F. Annunziato. 2008. Human interleukin 17–producing cells originate from a 597 
CD161 + CD4 + T cell precursor. J. Exp. Med. 205: 1903–1916. 598 
51. Gorenshteyn, D., E. Zaslavsky, M. Fribourg, C. Y. Park, A. K. Wong, A. Tadych, B. M. Hartmann, R. 599 
A. Albrecht, A. García-Sastre, S. H. Kleinstein, O. G. Troyanskaya, and S. C. Sealfon. 2015. Interactive 600 
Big Data Resource to Elucidate Human Immune Pathways and Diseases. Immunity 43: 605–614. 601 
52. Cho, N. E., B. R. Bang, P. Gurung, M. Li, D. L. Clemens, T. M. Underhill, L. P. James, J. R. Chase, 602 
and T. Saito. 2016. Retinoid regulation of antiviral innate immunity in hepatocytes. Hepatology 63: 603 
1783–1795. 604 
53. Furman, D., J. Chang, L. Lartigue, C. R. Bolen, F. Haddad, B. Gaudilliere, E. A. Ganio, G. K. 605 
Fragiadakis, M. H. Spitzer, I. Douchet, S. Daburon, J.-F. Moreau, G. P. Nolan, P. Blanco, J. Déchanet-606 
Merville, C. L. Dekker, V. Jojic, C. J. Kuo, M. M. Davis, and B. Faustin. 2017. Expression of specific 607 
inflammasome gene modules stratifies older individuals into two extreme clinical and immunological 608 
states. Nat. Med. . 609 
54. Darce, J. R., B. K. Arendt, X. Wu, and D. F. Jelinek. 2014. Regulated Expression of BAFF-Binding 610 
Receptors during Human B Cell Differentiation. J. Immunol. 179: 7276–7286. 611 
55. Pockley, A. G., and B. Henderson. 2018. Extracellular cell stress (Heat shock) proteins—immune 612 
responses and disease: An overview. Philos. Trans. R. Soc. B Biol. Sci. 373. 613 
56. Randow, F., and B. Seed. 2001. Endoplasmic reticulum chaperone gp96 is required for innate 614 
immunity but not cell viability. Nat. Cell Biol. 3: 891–896. 615 
57. Mohanty, S., S. R. Joshi, I. Ueda, J. Wilson, T. P. Blevins, B. Siconolfi, H. Meng, L. Devine, K. 616 
Raddassi, S. Tsang, R. B. Belshe, D. a. Hafler, S. M. Kaech, S. H. Kleinstein, M. Trentalange, H. G. 617 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 1, 2019. ; https://doi.org/10.1101/719203doi: bioRxiv preprint 

https://doi.org/10.1101/719203
http://creativecommons.org/licenses/by/4.0/


 18 

Allore, and  a. C. Shaw. 2014. Prolonged Proinflammatory Cytokine Production in Monocytes Modulated 618 
by Interleukin 10 After Influenza Vaccination in Older Adults. J. Infect. Dis. 211: 1174–1184. 619 
58. Li, G., M. Yu, W. W. Lee, M. Tsang, E. Krishnan, C. M. Weyand, and J. J. Goronzy. 2012. Decline in 620 
miR-181a expression with age impairs T cell receptor sensitivity by increasing DUSP6 activity. Nat. Med. 621 
18: 1518–1524. 622 
59. Kirkham, C. L., and J. R. Carlyle. 2014. Complexity and Diversity of the NKR-P1:Clr (Klrb1:Clec2) 623 
Recognition Systems. Front. Immunol. 5: 1–16. 624 
60. Turtle, C. J., H. M. Swanson, N. Fujii, E. H. Estey, and S. R. Riddell. 2009. A Distinct Subset of Self-625 
Renewing Human Memory CD8+ T Cells Survives Cytotoxic Chemotherapy. Immunity 31: 834–844. 626 
 627 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 1, 2019. ; https://doi.org/10.1101/719203doi: bioRxiv preprint 

https://doi.org/10.1101/719203
http://creativecommons.org/licenses/by/4.0/

