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Abstract 
Spatial heterogeneity is a fundamental feature of the tumor microenvironment (TME), and tackling 
spatial heterogeneity in neoplastic metabolic aberrations is critical for tumor treatment. Genome-
scale metabolic network models have been used successfully to simulate cancer metabolic 
networks. However, most models use bulk gene expression data of entire tumor biopsies, ignoring 
spatial heterogeneity in the TME. To account for spatial heterogeneity, we performed spatially-
resolved metabolic network modeling of the prostate cancer microenvironment. We discovered 
novel malignant-cell-specific metabolic vulnerabilities targetable by small molecule compounds. 
We predicted that inhibiting the fatty acid desaturase SCD1 may selectively kill cancer cells based 
on our discovery of spatial separation of fatty acid synthesis and desaturation. We also uncovered 
higher prostaglandin metabolic gene expression in the tumor, relative to the surrounding tissue. 
Therefore, we predicted that inhibiting the prostaglandin transporter SLCO2A1 may selectively 
kill cancer cells. Importantly, SCD1 and SLCO2A1 have been previously shown to be potently 
and selectively inhibited by compounds such as CAY10566 and suramin, respectively. We also 
uncovered cancer-selective metabolic liabilities in central carbon, amino acid, and lipid 
metabolism. Our novel cancer-specific predictions provide new opportunities to develop selective 
drug targets for prostate cancer and other cancers where spatial transcriptomics datasets are 
available.  
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Introduction 
Cancer cells reprogram their metabolism to fulfill the energetic and biosynthetic needs of 
proliferation, invasion and migration1. This is exemplified in prostate cancer, the second most 
common cancer in American men after melanoma2. Previous studies have uncovered profound 
metabolic dysregulation in multiple pathways, particularly in fatty acid and lipid metabolism3, 4 . 
Discovering novel cancer-specific metabolic aberrations has significant translational applications, 
because cancer-associated metabolic dysfunctions can be exploited to advance cancer detection 
(e.g., 18F-FDG (Fludeoxyglucose) imaging based on elevated glycolysis in cancer5 ) and treatment 
(e.g., L-asparaginase in treating acute lymphoblastic leukemia6 ).  
 
Cancer metabolic reprograming is profoundly impacted by spatial heterogeneity, a fundamental 
feature of the tumor microenvironment (TME)7  . Heterogeneous distributions of blood vessels 
and stromal tissues create uneven spatial gradients of nutrients and metabolic byproducts, which 
significantly shape the phenotypes of many cell types in the TME8. Recent technologies, such as 
spatial transcriptomics9, 10   and Slide-seq11  have enabled transcriptomic profiling of hundreds of 
locations within tissue sections with high spatial resolution (2-100 μm), and have been used to 
study multiple types of malignancies, including prostate cancer, breast cancer, pancreatic cancer, 
and melanoma9, 10, 12-14. These spatially-resolved datasets provide novel opportunities to dissect 
spatial metabolic heterogeneity in the TME and uncover novel tumor-specific metabolic 
vulnerabilities. However, due to the complexity of the cancer metabolic landscape15, uncovering 
the mechanistic connections of many spatially heterogeneous metabolic enzymes and evaluating 
their effects on cancer proliferation has been a significant challenge.  
 
Genome-scale metabolic models (GEMs) are a computational framework that connect the 
thousands of metabolic enzymes, transporters and metabolites into a computable model. GEMs 
enable systematic in silico simulation of how metabolic perturbations affect cellular phenotypes 
such as growth and energy production. GEMs have been used to develop new strategies to 
selectively target cancer metabolism16, 17 , including in prostate cancer18. However, current cancer 
GEMs are mostly based on bulk transcriptomics data that do not capture the spatial or cellular 
heterogeneity of the tumor microenvironment (TME).  
 
To characterize cancer-specific metabolic vulnerabilities, we have developed a novel pipeline to 
build spatially resolved metabolic network models for prostate cancer using publicly available 
spatial transcriptomics data12. We identified metabolic genes and pathways with distinct spatial 
expression patterns that differ across separate tissue sections of the same primary tumor. This 
suggests that under a set of common hallmarks of cancer metabolism, tumor cells develop diverse 
survival strategies adapted to their local microenvironments. We also found malignant-cell-
specific metabolic vulnerabilities by systematic in silico simulation, many of which have strong 
literature support. These genes can be targeted by potent and selective small molecule chemical 
compounds, some of which are already FDA-approved. This study demonstrated that spatially-
resolved metabolic network models can generate mechanistic and clinically relevant insights into 
the metabolic complexities in the TME. The computational approach developed in this study 
represents an important first step to understand and untangle spatial metabolic heterogeneity. As 
spatial transcriptomics becomes increasingly used to characterize molecular heterogeneity in the 
tumor microenvironment of multiple types of cancer9, 10, 12-14, we expect that our novel modeling 
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pipeline will provide a useful tool set to inform contextualization and interpretation of these 
complex datasets.  
 
Results 
Intra-tumor heterogeneity of spatially variable metabolic genes and pathways.  
 
We focused our analysis on previously published spatial transcriptomics data for three tumor tissue 
sections (numbered 1.2, 2.4 and 3.3) from the same primary tumor of a prostate cancer patient12. 
Transcriptome-wide data (3000 expressed genes per location on average) were available for 
hundreds of locations within each of the three tissue sections. The regions as outlined in Berglund 
et al12  with malignant cells circled as in (Figure 1A). These outlines were inferred from spatial 
transcriptomics data using a factor analysis method and confirmed by immunohistochemical 
staining12. We identified spatially variable (SV) genes using the spatialDE method19. SV genes 
show differential expression that significantly co-varies with spatial coordinates (i.e., adjacent 
locations have similar expression levels but distal locations have different expression).  Figure 1B 
shows two examples. ACSL5 is spatially variable in tissue section 1.2 (highly expressed mainly 
in the tumor), while LRP1 is not (erratically expressed across the entire section). Compared to the 
analysis done in the Berglund et al study, spatialDE was more tailored for identifying specific 
genes with significant spatial variation.  
 
We also compared SV genes (i.e., those identified by spatialDE) to genes identified by t-test as 
differentially expressed between tumor vs. non-tumor regions (defined in Figure 1A). Genes 
uniquely discovered by spatialDE tend to have a spatially clustered structure (i.e., spatial 
continuity, left panels of Figure 1 C and D). On the other hand, differentially expressed genes 
uniquely found by t-test tend to lack spatial continuity and show scattered expression (right panels 
of Figure 1 C and D). Thus, we used spatialDE throughout the following analysis. It is worth noting, 
however, that many SV genes are not captured by t-test (Figure S1A) and that SV genes need not 
to be restricted to tumor vs. normal comparison a priori; e.g., COX7A2 is expressed in both tumor 
and prostate intraepithelial neoplasia (PIN) regions and depleted in normal prostate gland (Figure 
1C and Figure 2A). 
 
Interestingly, most SV genes are unique to each tissue section (Figure 1E), potentially because 
tumor cells from different regions of the prostate developed distinct survival strategies. Only one 
gene–Acid Phosphatase, Prostate (ACPP)–is spatially variable in all three tissue sections. ACPP 
is a known prostate cancer marker20, but spatial transcriptomics data suggest that ACPP is only 
enriched in the tumor region in section 3.3. It is enriched in non-tumor regions in section 1.2 and 
2.4. (Figure S1B). This highlights the spatially heterogeneous expression pattern of this known 
marker gene that would have been missed by bulk averaging of the whole biopsy. 
 
Metabolic pathway enrichment analysis also showed that SV genes are enriched in arachidonic 
(i.e., eicosanoid) and fatty acid metabolism in section 1.2, while SV genes are enriched in 
glycolysis and OXPHOS in section 3.3 (Figure 1F). Notably, the mean expression profiles of SV 
genes in glycolysis and OXPHOS are both high in the region surrounding the malignancy, and low 
in the malignant region itself (Figure S1C and D). This is consistent with previous findings that, 
unlike other cancer types, early stage primary prostate cancer is known to not exhibit elevated 
glucose consumption (i.e., does not exhibit the Warburg effect)3. Our analysis further showed that 
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certain primary prostate cancer cells have lower glycolysis and OXPHOS activities than their 
adjacent normal tissues, and thus may not respond as effectively to glycolysis or OXPHOS 
inhibitors. However, as prostate cancer cells become more invasive and metastatic at later stages, 
the glycolysis pathway is up-regulated3, 21  .  
 
Our analysis also revealed interesting spatial patterns of reactive oxygen species (ROS) gene 
expression. SOD2 (superoxide dismutase 2), which protects mitochondria from reactive oxygen 
species, including those generated by OXPHOS complexes22 , has a spatial pattern that is opposite 
of OXPHOS genes in section 3.3 (Figure S1D and E). This suggests that certain prostate cancer 
cells are under higher ROS stress despite lower OXPHOS activity, and thus require higher 
expression of SOD2. Therefore, targeting the ROS detoxification machinery may selectively kill 
these cancer cells. On the other hand, SOD3, which is an extracellular superoxide dismutase, has 
the same spatial distribution as OXPHOS expression (i.e., lower in tumor region, higher in adjacent 
non-tumor region, Figure S1D and E). This agrees with previous reports that loss of SOD3 
expression has been shown to promote cancer cell migration and invasion, including in prostate 
cancer23 , and increasing SOD3 expression has been shown to improves tumor response to 
chemotherapy by regulating endothelial cell structure and function24 . Thus, spatially resolved 
transcriptomics data can be used to guide whether patients will respond to drugs that increase 
SOD3 levels (e.g., by the FDA-approved drug Lovastatin) and synergize with chemotherapy24 .  
 
Taken together, the data suggest that there is significant spatial heterogeneity of metabolic gene 
expression within the same tumor biopsy, and such spatial metabolic heterogeneity can be 
exploited to guide targeted therapy.  
 
Intra-biopsy tumor metabolic heterogeneity presents new selective metabolic targets in 
cysteine and succinate metabolism 
To further elucidate the spatial patterns of metabolic gene expression, and identify opportunities 
to selectively target metabolic aberrations in malignant cells, we built spatially resolved metabolic 
network models of each tumor and no-tumor region in each tissue section using the mCADRE 
algorithm25 . mCADRE infers a tissue-specific metabolic sub-network based on context-specific 
transcriptomic data and the input generic human metabolic network. It has been independently 
validated as achieving high accuracy predicting lethal cancer metabolic genes26 .  
 
After identifying what metabolic genes are spatially variable, we further identified where these SV 
metabolic genes are expressed. Cancer, prostate intraepithelial neoplasia (PIN), and normal 
prostate gland regions are outlined based on computational inference and IHC staining in Berglund 
et al 12 . We built a genome-scale metabolic network model (GEM) for each region (Figure 2A), 
and systematically simulated how knocking down each metabolic gene affects proliferation. We 
identified 16 genes whose in silico knockdowns are selectively lethal for malignant cells using the 
tumor-specific model but are missed by a model built using the mean transcriptome of all spatial 
locations within the tissue section (i.e., “pseudo-bulk data”, Table 1). Malignant-, normal-specific 
and “pseudo-bulk” GEMs provide potential mechanistic explanations for why these genes may be 
selectively lethal in malignant cells. Figure 2B and 2C provide two such examples discussed below.  
 
Cysteine. Our metabolic model simulations predict that malignant cells are selectively vulnerable 
to the knockdown of the cysteine transporter complex that consists of the transporters SLC3A2 
and SLC7A11, because the enzyme for cysteine de novo biosynthesis, cystathionine-beta-synthase 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 19, 2019. ; https://doi.org/10.1101/719294doi: bioRxiv preprint 

https://doi.org/10.1101/719294
http://creativecommons.org/licenses/by-nd/4.0/


(CBS), is selectively depleted in malignant cells (Figure 2B, CBS expression; Figure S2A, bar plot 
of CBS-expressing, i.e., expression level >0, locations in tumor and non-tumor regions). Cysteine 
depletion by inhibiting the cysteine-glutamate antiporter xCT using Sulfasalazine (SSZ) has been 
previously shown to markedly inhibit the proliferation of prostate cancer cell lines DU-145 and 
PC-3 in vitro27. Our models suggest that cysteine depletion can also selectively affect malignant 
cell growth in vivo due to loss of de novo synthesis. Since SSZ is already approved by the FDA to 
treat rheumatoid arthritis, ulcerative colitis, and Crohn's disease, it is attractive to re-purpose it for 
prostate cancer treatment. SSZ may be more effective in androgen-independent prostate cancer 
cells where CBS expression is lower28 .  
 
Succinate. Succinate is a key intermediate in the TCA cycle. Our model predicts that malignant 
cells are selectively vulnerable to the inhibition of the heme synthesis pathway because fumarate 
hydratase and succinate dehydrogenase are selectively depleted in malignant cells (Figure 2C and 
Figure S2B). Fumarate hydratase and succinate dehydrogenase are known tumor suppressors29. It 
has been previously shown that inhibiting heme synthesis is selectively lethal to renal clear cell 
carcinoma with fumarate hydratase mutation17. Our model suggests that this synthetic lethal 
interaction may also be exploited in prostate cancer. This is especially interesting given that 
somatic mutations in fumarate hydratase have been reported in a small subset of prostate cancer 
patients30. Succinate metabolism is also spatially variable in tissue section 2.4. Our model also 
predicts that GTP-specific beta subunit of succinyl-CoA synthetase (SUCLG2) is selectively lethal 
in malignant prostate cancer cells because the alternative route via ATP-specific succinyl-CoA 
synthetase (SUCLA2) is absent in the malignant model (Figure S2C). SUCLA2 has been 
previously reported to be significantly down-regulated in prostate cancer31. Our model predicts 
that SUCLA2 down-regulation creates a selective vulnerability to SUCLG2 knockdown in 
malignant cells.  
 
These results demonstrated that metabolic network models based on spatial transcriptomics data 
can reveal novel selective metabolic vulnerabilities that are missed by models based on bulk gene 
expression data from entire tissue biopsies.  
 
Spatial heterogeneity of fatty acid metabolism in the tumor microenvironment presents new 
selective targets 
Spatially variable genes in tissue section 1.2 are enriched for fatty acid (FA) and arachidonic acid 
metabolism (Figure 1F). Furthermore, our tumor-specific model also predicts that perturbations in 
multiple genes of the fatty acid synthesis pathway are selectively lethal in malignant cells (Table 
1). Given that dysregulation of lipid and fatty acid metabolism is a major feature of prostate cancer4, 

32 , we further explore spatial heterogeneity of FA and lipid metabolism using spatially-resolved 
metabolic network models.  
 
Cholesterol synthesis. Acetoacetate-CoA is a precursor for cholesterol synthesis, an essential 
component of cellular membranes. Our model predicts that Acetoacetyl-CoA Synthetase (AACS) 
depletion is selectively lethal to malignant cells because the alternative route for Acetoacetate-
CoA synthesis, Acetyl-CoA Acetyltransferase 2 (ACAT2) is selectively depleted in the tumor 
region (Figure 3A). ACAT2 is known to be down-regulated in prostate cancer33. This selective 
prediction is missed by the pseudo-bulk model. 
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Fatty acid metabolism. We found that hypoxia potentially explains the spatially distinct 
distributions of fatty acid metabolic genes. Metabolic genes in lipolysis (LIPF), and fatty acid 
synthesis (ACSL5) are selectively expressed in the malignant region (Figure 3B and S3A & B). 
Recent studies showed that prostate cancer cells show elevated uptake of extracellular fatty acids4, 

32 . Our analyses suggest that free fatty acids generated by lipolysis via LIPF can be a potential 
source of extracellular free fatty acids. In contrast to tumor-enriched lipolysis and fatty acid 
synthesis enzymes that do not require oxygen, fatty acid metabolic genes that require molecular 
oxygen are depleted in the tumor region, including fatty acid desaturation (SCD, FADS2) and 
oxidation (ACSL1) (Figure 3C & S3C). Although ACSL1 and ACSL5 are isozymes with similar 
catalytic function, genetic knockout studies in mice showed that ACSL5 has a major role in fatty 
acid biosynthesis and deposition, while ACSL1’s function is mostly involved in fatty acid 
oxidation34. A metabolic model based on bulk gene expression data would incorrectly assume that 
both enzymes are expressed by malignant cells, thus over-estimating the metabolic capabilities of 
malignant cells.  
 
We identified additional selective metabolic liabilities that are driven by malignant cells’ 
dependence on de novo fatty acid synthesis, by maximizing metabolic flux through the tumor-
enriched ACSL5 reaction in our model (Figure 3D). Reassuringly, we recovered several genes 
involved in de novo fatty acid synthesis, specifically citrate synthase (CS), mitochondrial citrate 
transporter (SLC25A1), ATP citrate lyase (ACLY), and fatty acid synthase (FASN). We also 
identified additional selective liabilities, specifically, ACSL1, cytosolic malic dehydrogenase 
(MDH1), carbonic anhydrase, and stearoyl CoA desaturase (SCD). ACSL1 has been previously 
shown to be important for biosynthesis of C16:0−, C18:0−, C18:1− and C18:2-CoA, triglycerides 
and lipid in prostate cancer cells and ACSL1 knockdown inhibited prostate cancer cell 
proliferation and migration in vitro and in vivo35 . In addition to knockdown, ACSL1 can also be 
pharmacologically inhibited by small molecules Triacsin C36. Carbonic anhydrase has been 
previously reported to be important for de novo lipogenesis37 . SCD1 produces monounsaturated 
fatty acids from saturated fatty acids, and has been shown to be important for cancer initiation, 
proliferation, and metastasis in many types of cancer, including prostate cancer, and can be 
inhibited using small molecules such as CAY10566 and TOFA38-40 . Thus, the role of ACSL1, 
carbonic anhydrase, and SCD1 in cancer are all supported by literature. Although MDH1 
inactivation inhibits pancreatic cancer growth by suppressing glutamine metabolism41 , the role of 
MDH1 in de novo fatty acid synthesis has not been previously studied, and may be a potential new 
target to manipulate fatty acid metabolism for prostate cancer treatment.  
 
Spatial patterns of arachidonic acid metabolism 
 
Arachidonic acid is the starting point for the synthesis of prostaglandins and leukotrienes, both of 
which have immunomodulatory functions42. We identified enzymes in arachidonic acid 
metabolism that show spatially distinct expression patterns, as well as selective targets to disrupt 
prostaglandin synthesis from arachidonic acids (Figure 4). PTGDS (Prostaglandin D2 Synthase) 
and HPGD (15-Hydroxyprostaglandin Dehydrogenase) are enriched in the tumor region, while 
MGST3 (Microsomal Glutathione S-Transferase 3) is depleted in the tumor region in tissue section 
1.2 (Figure 4A and S4A). The reaction network formed by these enzymes is depicted in Figure 4A. 
HPGD, MGST3 and other arachidonic acid metabolic genes also show spatially distinct expression 
patterns in other tissue sections (Figure S4B and C).  
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Previous analyses have shown that arachidonic metabolism is dysregulated in multiple types of 
cancer25, 43 , and inhibition of key arachidonic metabolic genes results in massive apoptosis in 
prostate cancer cells44. The distinct spatial expression patterns of arachidonic acid metabolism 
genes imply that different molecular species of prostaglandin and leukotrienes are enriched or 
depleted in the malignant region. MGST3 is used for the synthesis of leukotriene C4, a major 
mediator of endoplasmic reticulum stress and oxidative DNA damage45. Our analysis suggests that 
leukotriene C4 is depleted in malignant cells. HPGD catabolizes prostaglandin  E2 (PGE2) into 
PGF2. Intriguingly, while HPGD has been widely reported as a tumor suppressor in multiple types 
of cancer46-48  , it is selectively enriched in the malignant cells of both tissue sections 1.2 and 2.4. 
HPGD expression is induced by androgen and is up-regulated in the androgen-dependent prostate 
cancer cell line LNCaP 49.  Because PGE2 has angiogenic50  and immunosuppressive functions51, 
higher HPGD expression indicates that the malignant region is depleted of PGE2 and more 
amenable to cancer immunotherapy.  
 
Since the reaction catalyzed by PTGS1 and 2 (Prostaglandin-Endoperoxide Synthase 1 and 2, 
commonly known as COX-1 and COX-2) is the first step in prostaglandin synthesis and known to 
be up-regulated in prostate cancer52 , we used our tumor-specific metabolic network model to 
simulate additional metabolic liabilities that are driven by the PTGS reaction (Figure 4B). We 
found that SLCO2A1 is essential for the PTGS reaction. Blocking SLCO2A1 has been shown to 
reduce colon cancer tumorigenesis53. Importantly, SLCO2A1 can be potently and selectively 
inhibited by the FDA approved drug suramin54. Therefore, SLCO2A1 may be an attractive target 
in prostate cancer. Arachidonic acid is required for prostaglandin synthesis. In addition to 
arachidonic acid uptake, our model simulation also revealed that cancer cells can use adrenic acid 
as an alternative source of arachidonic acid. Our model predicted that adrenic acid can be converted 
to arachidonic acid via reactions catalyzed by ACSL4, ACOX1, and ACAA1 (Figure 4B). In 
particular, ACOX1 is selectively up-regulated in HER2-positive subtypes of breast cancer and is 
positively associated with shorter survival55 and may be a potential target in prostate cancer. In 
addition to cancer-intrinsic functions, arachidonic acid uptake and synthesis of prostaglandins such 
as PGE2 have immunosuppressive functions51 . Because both adrenic acid and arachidonic acid 
are present in prostate cancer specimens56, the adrenic-to-arachidonic pathway suggests that 
blocking both arachidonic and adrenic uptake may be required to abolish the immunosuppressive 
effects of PGE2.  
 
Spatial patterns of arginine and urea metabolism 
 
Arginine metabolism is dysregulated in a wide range of cancers, and arginase is an attractive drug 
target57. One product of arginase is urea, and we found that the urea transporter SLC14A1 is 
selectively depleted in the malignant region in both tissue sections 1.2 and 2.4 (Figure 5A). More 
importantly, we also found that SLC14A1 is significantly lower in PIN, prostate cancer in situ and 
metastatic prostate cancer compared to normal prostate by re-analyzing a large set of prostate 
cancer patients58  (Figure 5B). SLC14A1 is also down-regulated in lung, prostate and urothelial 
cancer59 . Arginine catabolism by arginase generates ornithine, a key substrate for polyamine 
synthesis, which has important signaling functions in prostate cancer60 . Alternatively, arginine is 
also important for biosynthesis, which creates a competition for polyamine synthesis (Figure 5C). 
Through model simulation, we found that increased flux through the urea transport reaction leads 
to decreased growth (Figure 5D). Thus, down-regulation of urea transport is a strategy by 
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malignant cells to use arginine for growth. Therefore, inducing SLC14A1 expression is a potential 
strategy to inhibit prostate cancer growth. Indeed, transfection of SLC14A1 into lung cancer cell 
line H520 inhibited colony formation61 . Our model simulation also found that, to compensate for 
increased flux via SLC14A1 and maintain growth rate, cells need to increase the uptake of arginine 
by 4- to 5-fold (Figure 5E). Thus, our model predicts that induction of SLC14A1 expression, 
combined with arginine depletion may kill cancer cells.  
 
Discussion  
The genome-scale metabolic network models of prostate cancer developed by our novel pipeline 
using spatially-resolved transcriptomics data have revealed many new, malignancy-specific 
metabolic perturbations that would have been missed by models based on bulk gene expression 
data of the whole tissue biopsy. Our model predictions span amino acid (cysteine and 
arginine/urea), fatty acid and lipid (cholesterol, fatty acid synthesis/oxidation, arachidonic acid) 
metabolism, and the TCA cycle (succinate). Many of our predictions are supported by previous 
literature, which provides further confidence to explore the novel predictions as potential drug 
targets for prostate cancer. Importantly, many of the metabolic genes predicted to be selectively 
lethal in prostate cancer cells can be targeted by FDA-approved small molecule compounds.  
 
Unlike other solid tumors, primary prostate cancer does not exhibit the classical Warburg effect 
(i.e., does not exhibit elevated glycolysis). Instead, prostate cancer shows elevated de novo fatty 
acid and lipid synthesis62. Recent evidence also demonstrates that extracellular fatty acids are 
major contributors to lipid synthesis in prostate cancer32. In fact, prostate cancer cells show higher 
uptake of fatty acids than glucose, especially in metastatic and circulating prostate cancer cells63, 

64. Suppressing fatty acid uptake via CD36 has also been shown to inhibit prostate cancer growth4. 
However, the sources of free fatty acids are not fully characterized. Our modeling analysis suggests 
that Lipase F (LIPF) can potentially degrade extracellular triglycerides and generate free fatty acids 
for cancer cells to uptake (Figure 3B). Thus, targeting extracellular lipid degradation may inhibit 
prostate cancer growth.  
 
In addition to the uptake of extracellular free fatty acid through LIPF and CD36, our model also 
suggested that prostate cancer cells also exhibit elevated de novo fatty acid synthesis. Our analysis 
finds that ACSL5 gene is strongly enriched in one tumor region (section 1.2), and it has been also 
been found to be over-expressed in other prostate cancer65. ACSL5 plays a critical role in lipid 
droplet formation 66, and lipid droplet formation promotes prostate cancer aggressiveness67, 68 . 
Therefore, targeting ACLS5 may be a potential strategy to inhibit the formation of lipid droplet 
formation and prostate cancer cell survival.  
 
Hypoxia is a prominent feature of the tumor microenvironment, and malignant cells adapt their 
metabolic profiles to survive in the hypoxic environment69. Fatty acid desaturation, which requires 
molecular oxygen, is inhibited in hypoxic tumor regions (SCD and FADS2, Figure 3B). SCD is 
the best-known route to fatty acid desaturation. A recent study found that cancer cells can bypass 
SCD by using FADS2 for fatty acid desaturation70 . However, our analysis of the spatial 
transcriptomics data revealed that both SCD and FADS2 are depleted in the malignant region. 
Inactivation of fatty acid desaturation creates the need to uptake exogeneous unsaturated fatty acids 
in order to maintain correct composition of saturated vs. unsaturated lipids in biological 
membranes69,71 . Although exogeneous fatty acid uptake has been shown to be important for 
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prostate cancer4, 32 , the relative importance of exogeneous saturated vs. unsaturated fatty acids has 
not been examined32 . Our model predicts that malignant cells will be more sensitive to depletion 
of exogeneous unsaturated fatty acids due to defective endogenous desaturation. Therefore, 
inhibition of exogeneous fatty acid uptake by targeting CD36 may synergize with inhibition of 
desaturation by targeting SCD (e.g., via small molecules CAY-10566 and TOFA39, 40 ) in killing 
hypoxic cancer cells. Hypoxia also induces lipid droplet formation by up-regulating the expression 
of fatty acid transporters via HIF-1a72 .  
 
Besides fatty acid desaturation and lipid droplet formation, our analysis also suggests that the 
fluctuating oxygen levels in the TME73 could also sensitize prostate cancer cells to the inhibition 
of the mitochondrial citrate transporter SLC25A1 (Figure 3D). Our model’s prediction of 
SLC25A1’s essentiality in hypoxic tumor cells is substantiated by prior findings that SLC25A1 
expression is up-regulated when prostate cancer cells are exposed to cycling hypoxia/re-
oxygenation stress74 Notably, pharmacological inhibition of SLC25A1 sensitizes cancer cells to 
ionizing radiation, cisplatin or EGFR inhibitor treatments in lung cancer74, 75 . Thus, treating 
prostate cancer cells in a hypoxic TME with the SLC25A1 inhibitor, 1,2,3-benzene-tricarboxylic 
acid (BTA) could not only yield direct tumor-specific killing, but it could also potentiate the 
activity of concomitant radiation or chemotherapy interventions.  

 
Arachidonic acid is a potent signaling lipid, and precursor to the synthesis of a wide range of other 
signaling lipids such as prostaglandins and leukotrienes. Prostaglandin and leukotriene C4 have 
important functions in angiogenesis and immunomodulation. Our analysis showed that malignant 
cells have elevated synthesis of prostaglandins and decreased synthesis of leukotriene C4 (Figure 
4A), which may influence the sensitivity to immunotherapy. Elevated prostaglandin synthesis may 
be targeted by suramin, a FDA-approved drug that potently and inhibits the prostaglandin 
transporter SLCO2A154 .  
 
Cancer cells showed elevated dependence on multiple amino acids, including cysteine (Figure 2B), 
glutamine, aspartate, asparagine and arginine76-78 . Arginase breaks down arginine into urea and 
ornithine. Arginase is an important regulator of the immune system79 . Arginine deprivation via 
arginase activation suppresses anti-tumor T cell activity, so blocking arginase activity may 
improve tumor immunotherapy80, 81 . We showed that the urea transporter SLC14A1 is selectively 
depleted in the malignant region, which is supported by additional transcriptomics data (Figure 5A 
& B). While decreased flux through urea transport is beneficial for biomass synthesis (Figure 5 C 
& D), the accumulation of urea may be toxic to cells59 .  
 
The spatial locations of cells have profound impacts on their function. In addition to prostate cancer, 
our modeling approach can be used to study spatial heterogeneity and coordination of metabolic 
activities in a wide range diseases where spatially resolved transcriptomic datasets are currently 
available, such as breast cancer9 , pancreatic cancer14 , melanoma13 , and amyotrophic lateral 
sclerosis82 . It can also be used to study spatial regulation of normal organ physiology in the liver83 , 
heart84, 85  and kidney86 .  
 
This study has several limitations that need to be addressed in the future. First, the models are 
based only on transcriptomics data, which does not directly reflect metabolic activities. Thus, 
although we recapitulated known metabolic features of prostate cancer, other metabolic 
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dysregulation may be missed. This can be addressed in the future as spatially-resolved proteomic87  
and metabolomic88  technologies improve and such data can be incorporated into the metabolic 
network model. Indeed, new technologies already enables simultaneous measurement of spatially-
resolved transcriptome and proteome89 . Second, due to the relatively small number of expressed 
genes per location (around 3000 genes), we could not build a model for each individual location. 
Instead, we built separate, discrete genome-scale metabolic models for each region (tumor, normal, 
and PIN) that aggregate transcriptomics data over the spatial locations that span each region. Given 
that the expression profiles of many metabolic genes are likely to exhibit gradient-like patterns 
that change with the distance to the tumor core and/or vasculature, we anticipate that models based 
on our region-specific data aggregation represent useful approximations of the regions’ underlying 
metabolic states. In the future, we will develop a hierarchical approach that adaptively balances 
spatial resolution with the amount of data to better model metabolic spatial continuity. Lastly, this 
study is based on detailed spatial analysis of three biopsies from one prostate cancer patient. Given 
the highly heterogeneous nature of prostate cancer, analysis of a single individual does not 
represent a comprehensive survey of important selective metabolic target genes. However, many 
of the metabolic genes we identified as selectively lethal based on the prostate cancer spatial 
transcriptome do have strong functional support from literature (i.e., inhibition or induction known 
to affect cancer proliferation, Table 2). This suggests that the additional novel targets we identified 
may also be involved in prostate cancer. Moreover, many metabolic genes we identified as having 
spatially selective expression pattern also agree with much larger cohorts of laser-capture micro-
dissected transcriptomes of prostate cancer patients (ACSL565  in Figure 3, SLC14A158  in Figure 
5, and SUCLA231  in Figure S2C). As spatially-resolved transcriptomics technology become even 
more powerful and accessible to more researchers, we anticipate that the computational workflow 
we developed will be applied on larger cohorts in the future. 
 
Methods 
The spatial transcriptomics dataset for prostate cancer12  was downloaded from the Spatial 
Transcritpomics Research website [http://www.spatialtranscriptomicsresearch.org/datasets/]. To 
identify spatially variable metabolic genes, we first extracted metabolic genes based on the latest 
version of the human metabolic network, Recon3D90 . We used spatialDE19  to identify spatially 
variable genes. Briefly, we normalized expression data to the total read counts of all genes, 
removed metabolic genes with low expression, and we used spatialDE to find genes whose 
expression level at two locations depended on the distance between these two locations. spatialDE 
classifies genes into SV or non-SV by fitting two models: one where a gene’s expression 
covariance depended on location, and one without a spatial covariance matrix.  If the former model 
fits better, then a gene is SV. 
 
We used mCADRE25  to build genome-scale metabolic networks for normal, PIN and tumor 
regions. mCADRE has been previously validated as having good performance in predicting lethal 
metabolic genes in cancer26 . mCADRE infers a tissue-specific metabolic network using context-
specific transcriptomic data and a generic human metabolic network model. Some reactions 
involving multiple enzymes, such as enzyme complex formation, require the presence of all 
constituents, and are limited by the least abundant.  By default, mCADRE modeled these by taking 
the min of the expression levels of the constituent genes.  Given the sparsity of data (3000 detected 
genes per spatial location), taking the min for genes connected by AND (enzyme complexes) will 
result in mostly zeros. Therefore, we modified mCADRE to take the mean instead. Gene-level 
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score was the mean expression level of a gene across all locations, not how often it is expressed 
above 0. Dually, we sum expression levels for genes connected by OR. A metabolic reaction is 
defined as a core reaction if it is expressed in 30% of all locations within each region. Remaining 
reactions are first ranked by their expression frequency across locations, then by their connectivity-
based evidence. We removed highly connected metabolites such as H2O, ATP, ADP, Pi, NAD, 
NADH, etc., before calculating reaction connectivity. The COBRA Toolbox91  was used for gene 
knock out simulations. 
 
Model improvements: Recon 192  (and Recon 293 , 3D90 ) all assumed SLC27A5 is the only 
transporter for arachidonic acid uptake. Latest evidence also demonstrates that SLC27A2 (FATP2) 
has a major influence for arachidonic acid uptake51 . Latest evidence also suggests that ACSL4 
(not ACSL1) favors arachidonic acid and adrenic acid as substrate94 . We modified the gene-
reaction rules to reflect both findings. 
 
Data availability statement:  
Prostate cancer spatial transcriptomics data used in this study can be found at: 
http://www.spatialtranscriptomicsresearch.org/datasets/10-1038-s41467-018-04724-5/ 
Bulk transcriptomics of prostate cancer samples are from Gene Expression Omnibus ( accession 
number GSE6099).  
 
R and Matlab codes, as well as spatially resolved metabolic networks for this project are deposited 
at Github (https://github.com/yuliangwang/prostate_cancer_spatial_metabolic_network.git) 
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Figure 1. Spatially variable metabolic gene expression across three tissue sections of a prostate 
cancer patient.  
A. Overview of the previously published spatial transcriptomics dataset used in the study. The 
malignant region is circled in each tissue section. Each spot in a biopsy is 100 μm diameter; 
adjacent spots are 200 μm center-to-center.  
B. Example of a spatially variable gene, ACSL5; and a gene that is not spatially variable, LRP1. 
Each dot represents a different locus at which gene expression was profiled. The colors correspond 
to the log2 transformation of normalized expression values across each tissue section. Red color 
denotes higher expression; blue denotes lower expression.  
C and D: Compared to t-test, spatially variables genes found by spatialDE tend to have spatial 
continuity. C: examples in section 1.2, COX7A2 is only found by spatialDE, while CYP51A1 is 
only found by t–test. D: examples in section 2.4. ACSL3 is only found by spatialDE, while 
HSD17B8 is only found by t-test. 
E. Venn diagram of spatially variable genes in three tissue sections. Majority of spatially variable 
genes are specific to a tissue section.  
F. Metabolic pathway enrichment of spatially variable genes in each tissue section. Color indicates 
negative log10 of enrichment p-value. There are 64 metabolic pathways in total. The four pathways 
with significant enrichment in at least one tissue section are shown. 
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Figure 2. Spatially resolved-metabolic network models for tissue section 1.2 and mechanistic 
predictions.  
A. Number of overlapping reactions for each region-specific metabolic network model. Mean 
expression profiles across locations circled for each region are used to build the models, via the 
mCADRE algorithm. mCADRE extracts a tissue-specific sub-network from the input generic 
human metabolic network model based context-specific transcriptomic data25 . Locations not 
outlined as tumor, normal or PIN (prostatic intraepithelial neoplasia) are enriched for stromal 
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markers, based on12 . SPINK1 and NPY gene expression mark malignant cells and PIN 
respectively.  
B. Model predicts that disrupting cysteine transport via SLC3A2 and SLC7A11 is selectively lethal 
in tumor region because de novo synthesis via the CBS gene is depleted in the tumor region. Left: 
metabolic pathway diagram. Each rectangle represents a metabolite. Each arrow represents a 
reaction or transport (black arrow: reaction is present in the tumor; gray arrow: reaction is absent 
from the tumor). The name of each reaction is labeled above the corresponding arrow, and CBS is 
highlighted in blue. The dashed arc represents the plasma membrane. Right: log2 transformation 
of normalized expression values of CBS across the tissue section. Red means higher expression; 
blue/white means low or no expression.   
C. Model predicts that disrupting succinate utilization via heme synthesis and degradation is lethal 
in tumor region because fumarate hydratase is depleted in the tumor region. Left: metabolic 
pathway diagram. Each rectangle represents a metabolite. Each arrow represents a reaction or 
transport (black arrow: reaction is expressed in tumor; grey arrow: reaction is absent in tumor), the 
name of each reaction is labeled above the corresponding arrow. Middle: log2 transformation of 
normalized expression values of FH across the tissue section. Right: Mean expression of FH in 
non-tumor and tumor region. Error bar represents standard error of the mean.  
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Figure 3. Fatty metabolism is spatially variable in prostate cancer. Tumor region is circled.  
A. Model predicted that AACS is lethal in tumor because the alternative route for acetoacetate-
CoA synthesis, ACAT2, is depleted in tumor region. Left: metabolic pathway diagram. Each 
rectangle represents a metabolite. Each arrow represents a reaction or transport (black arrow: 
reaction is present in the tumor; gray arrow: reaction is absent from the tumor), the name of each 
reaction is labeled above the corresponding arrow. Right: log2 transformation of normalized 
expression values across the tissue section. Red means higher expression; blue/white means low 
or no expression.  
B. Lipid hydrolysis (via Lipase F) and fatty acid synthesis (via ACSL5) is highly enriched in the 
tumor region.  
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C. Fatty acid oxidation (via ACSL1) and desaturation (via SCD and FADS2) are depleted in tumor 
region and higher in PIN and normal region. Color denotes log2 transformation of normalized 
expression values of a gene of interest. 
D. A schematic of all genes and reactions predicted to be essential for metabolic flux through the 
reaction catalyzed by the tumor-enriched gene ACSL5. Each rectangle represents a metabolite. 
Each arrow represents a reaction or transport, the name of each gene/reaction is labeled above the 
corresponding arrow (gene names: CS, SLC25A1, ACLY, MDH1, FASN, ACSL1, SCD, ACSL4; 
reaction names: carbonic anhydrase, acetyol-CoA carboxylase).   

 
Figure 4. Arachidonic acid metabolism is spatially variable.  
A. Metabolic genes in prostaglandin and leukotriene synthesis are spatially variable in tissue 
section 1.2. While PTGDS and HPGD are enriched in tumor region, MGST3 is selectively depleted 
in tumor region. HPGD is also spatially variable in tissue section 2.4; PTGS2 (i.e., COX-2) is 
spatially variable in tissue section 3.3 (Figure S4B). Top: metabolic pathway diagram. Each 
rectangle represents a metabolite. Each arrow represents a reaction or transport, the name of each 
reaction is labeled above the corresponding arrow. Bottom: Expression level of 3 arachidonic acid 
metabolism genes. Red color denotes higher expression; blue denotes lower expression. 
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B. Model predicted that SLCO2A1 is essential for arachidonic acid metabolism. In addition to 
arachidonic acid, adrenic acid can also contribute to prostaglandin metabolism.  Each rectangle 
represents a metabolite. Each arrow represents a reaction or transport, the name of each reaction 
is labeled above the corresponding arrow. Genes involved in conversion of adrenic acid to 
arachidonic acid is highlighted in red.  
 

 
Figure 5. Urea transport is spatially variable in prostate cancer.  
A. The urea transporter, SLC14A1, is depleted in tumor region and highly expressed in non-
malignant region in both tissue section 1.2 and 2.4. Red color denotes higher expression; blue 
denotes lower expression. Tumor regions are outlined. 
B. SLC14A1 is also down-regulated in another prostate cancer study using laser-capture micro-
dissected normal gland, PIN region, prostate cancer (PCA) and metastatic prostate cancer (MET-
HR).  
C. Arginine can be used for growth or arginase reaction. While arginase reactions produce an 
essential substrate of polyamine synthesis (L-ornithine), the other product, urea, are transported 
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out of cells by SLC14A1. Each rectangle represents a metabolite. Each arrow represents a reaction 
or transport, the name of each reaction is labeled above the corresponding arrow. The dashed arc 
represents the plasma membrane.  
D. Model predicted that higher flux through urea transport is correlated with reduced growth rate. 
x-axis, flux through the urea transport reaction as a percentage of maximum feasible flux; y-axis: 
growth rate as a percentage of maximal growth rate.  
E. Model predicted that, at maximum urea transport flux, cells need to increase arginine uptake 
flux by 4-5 fold in order to restore growth rate. x-axis, flux through the arginine uptake reaction 
as a percentage of maximum feasible flux; y-axis: growth rate as a percentage of maximal growth 
rate. 
 
Table legends 
 
Table 1. 16 metabolic genes predicted to be selectively lethal based on tumor-specific model but missed 
by the pseudo-bulk model for prostate cancer tissue section 1.2. Column 1 lists genes specifically lethal in 
the tumor-specific model but not the pseudo-bulk model built with mean expression across all spatial 
locations. Column 2 lists the pathways of genes in column 1. Column 3 lists genes that are not present in 
the tumor-specific model but present in the bulk model and underlie the differential lethality of genes in 
column 1 (i.e., genes in column 3 provide an alternative metabolic path).  
 
Table 2. List of cancer-selective metabolic target genes identified by spatial metabolic analysis 
with literature support for their functional role in prostate or other types of cancer, as well as known 
inhibitors of these genes. 
 
Tables 
 
Table 1.  
Genes lethal in 
tumor not in bulk 
model Pathways 

Alternative gene 
not in tumor 
model 

CPOX Heme synthesis 

FH 

HMBS Heme synthesis 
ABCC1 Heme synthesis 
PPOX Heme synthesis 
UGDH Heme synthesis 
UROD Heme synthesis 
UROS Heme synthesis 
SLC35D1 Heme synthesis 
UGT1A8 Heme synthesis 
SLC3A2 Cysteine metabolism CBS 
SLC7A11 Cysteine metabolism 
AACS Acetyl-Acetate-CoA ACAT2 
SLC6A14 Tryptophan transport SLC16A10 
SLC6A12 Glycine betaine transport BHMT 

FASN 
De novo fatty acid 
synthesis ADK1 
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SLC25A1 
De novo fatty acid 
synthesis 

 
Table 2.  
Identified 
target genes 

Role Possible 
drugs 

Types of 
cancer 

SLC7A11 Inhibition kills 
cancer 

Sulfasalazine27    Prostate27  

SOD3 Loss of 
expression 
promotes 
cancer 

Lovastatin24  Prostate23  

ACSL1 Inhibition kills 
cancer 

Triacsin C36  Prostate35  

SCD1 Inhibition kills 
cancer 

 CAY-10566 
and TOFA39, 40  
 

Prostate38  

SLC25A1 Inhibition kills 
cancer 

1,2,3-benzene-
tricarboxylic 
acid (BTA)74   
 

Prostate74 
and lung75   

SLCO2A1 Inhibition kills 
cancer 

suramin54  Colon53  

SLC14A1 Increased 
expression 
kills cancer 
cells 

 Lung61  and 
urothelial 
cancers59  
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Figure S1.  
A. Overlap of genes identified as spatially variable by spatial DE vs. t-test. The overlap is bigger 
when tumor region is well-defined and clustered together.  
B. Log2 expression level of the ACPP (Acid Phosphatase, Prostate) gene, a known prostate cancer 
marker gene. Red color denotes higher expression; blue denotes lower expression. The ACPP gene 
is spatially variable across all three tissue sections.  
C. Mean expression level of all spatially variable glycolysis genes (left) and an example, enolase 
1 (ENO1) in section 3.3  
D. Mean expression level of all spatially variable oxidative phosphorylation genes (left) and an 
example, NDUFB11 in section 3.3  
E. Extracellular (SOD3) and mitochondrial (SOD2) superoxide dismutase show spatially distinct 
expression profiles. SOD2 has the opposite spatial distribution as OXPHOS (S1D).   
 

  
Figure S2.  
A. Bar plot of percentage of locations within tumor and non-tumor regions that express CBS.  
B.  Succinate dehydrogenase is depleted in the tumor region of tissue section 1.2. Tumor region is 
circled. Left: log2 expression of SDHC across the tissue section. Red means higher expression; 
blue/white means low or no expression. Right: Mean expression of SDHC in non-tumor and tumor 
region. Error bar represents standard error of the mean.  
C. Model predicted that in tissue section 2.4, SUCLG2 (GTP-specific succinyl-CoA synthetase)  
is lethal because the alternative route to produce succinate-CoA via SUCLA2 (ATP-specific 
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succinyl-CoA synthetase) is absent in the malignant region. Each rectangle represents a metabolite. 
Each arrow represents a reaction or transport (black arrow: reaction is present in the tumor; gray 
arrow: reaction is absent from the tumor). The name of each reaction is labeled above the 
corresponding arrow. 
 

 
Figure S3.  
A. Lipase F is also enriched in the tumor region in tissue section 2.4. Red color denotes higher 
expression; blue denotes lower expression. Tumor region is circled by blue lines.  
B. Bar plot of mean expression level of lipolysis gene LIPF and fatty acid synthesis gene ACSL5 
in section 1.2. . Error bar represents standard error of the mean.  
C. Bar plot of mean expression level of fatty acid oxidation gene ACSL1, and fatty acid 
desaturation gene SCD and FADS2 in section 1.2.  
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Figure S4.  
Additional genes in arachidonic acid metabolism are spatially variable in prostate cancer 
A. Bar plot of mean expression level of arachidonic acid metabolism genes in section 1.2. MGST3 
is depleted in tumor region while PTGS and HPGD are enriched. Error bar represents standard 
error of the mean.  
B. HPGD is enriched in the tumor region in tissue section 2.4; PTGS2 (i.e. COX-2), the first step 
in prostaglandin synthesis, is enriched in tumor region in section 3.3. Red color denotes higher 
expression; blue denotes lower expression. Tumor regions are highlighted in blue.  
C. MGST3 is spatially variable and depleted in tumor regions in section 2.4 and 3.3 as well. Red 
color denotes higher expression; blue denotes lower expression. Tumor regions are highlighted in 
blue. 
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