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Abstract

Ribosome profiles are often interpreted with underlying naive models that are unable to grasp
the complexity of the biological process. We develop a Non-Equilibrium Analysis of Ribo-seq
(NEAR), and provide unprecedented estimates of translation initiation and elongation efficien-
cies, emphasising the importance of rating these two stages of translation separately. When
examining ribosome profiling in yeast, we observe that translation initiation and elongation are
close to their optima, and traffic is minimised at the beginning of the transcript to favour ribosome
recruitment. However, we find many sites of congestion along the mRNAs where the probability
of ribosome interference can reach 50%. Our analysis excludes unreliable datapoints and dis-
cusses biases of the experimental technique; as a result, we conclude that current analyses and
definitions of translation efficiency are not adapt to quantitatively asses ribosome interference.

1 Introduction
Understanding the rationale behind codon usage bias and the role of synonymous codons in regu-
lating protein synthesis are among the main open questions in molecular biology. Despite the fact
that mRNA translation is one of pivotal stages of gene expression, its sequence determinants are
in fact still largely elusive (Gorochowski and Ellis, 2018). Recent technical advances, such as ribo-
some profiling, allow probing translation at codon resolution, making quantitative studies of transcript
efficiency more accessible.

Ribosome profiling (or Ribo-seq or ribosome footprinting, as it is often called), is an experimen-
tal technique delivering a snapshot of ribosome positions along all transcripts in the cell at a given
condition. Its archetypal version has been developed at the end of the 1960s to study translation
initiation (Steitz, 1969; Kozak, 1981), then it has been extended in the 1980s to investigate the role
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of slow codons and ribosome pausing (Wolin and Walter, 1988). Recently, Ingolia et al. (2009)
revamped this technique in the light of the Next Generation Sequencing era, and since then it is
considered to be the state-of-the-art technique for studying gene expression at the level of transla-
tion.

In short, the method consists in isolating mRNA fragments covered by a ribosome engaged in
translation (∼ 30 nucleotides), which are then sequenced and aligned to build histograms of ribo-
some occupancy at codon resolution on each transcript. This technique has granted unprecedented
view on translation leading to many new discoveries (Brar and Weissman, 2015). Examples include
detecting novel translation initiation sites (Fritsch et al., 2012), identifying actively translated open
reading frames (Calviello et al., 2016), quantifying the extent of stop codon readthrough (Dunn et al.,
2013) and elucidating the translation of long non-coding RNAs (Guttman et al., 2013).

While this technique has significantly advanced our understanding of translation, there exist re-
lated issues that concern both the experimental side and the analysis of the raw data. The former
includes for instance artefacts induced by the use of cycloheximide, an elongation inhibitor present
in the original protocol to freeze ribosomes in their in vivo configuration, see for instance Weinberg
et al. (2016); Duncan and Mata (2017). Besides, the processing of raw reads in order to determine
the ribosome’s A-site position is a complex task that requires advanced statistical methods (Ahmed
et al., 2019), and it could be susceptible to known biases during the bioinformatic analysis, including
the normalisation in order to obtain absolute values of the ribosomal densities (Bartholomäus et al.,
2016). Although ribosome profiling has been very successful in studying mRNA translation at the
genomic scale, the analysis of Ribo-seq still lacks a general and common scheme. The rate of
mRNA translation, which is also called translation efficiency (TE), is commonly assumed to be pro-
portional to the ribosomal density: the more ribosomes on a transcript, the more efficient is protein
synthesis. On the one hand, this definition implicitly assumes that ribosome interference is absent.
On the other hand, the extent to which ribosome queuing affects translation has been frequently
debated (Li, 2015; Dao Duc et al., 2018; Dao Duc and Song, 2018; Diament et al., 2018; Riba et al.,
2019).

Our work aims to establish a rigorous procedure for interpreting ribosome profiling data based on
kinetic modelling, which we name NEAR (Non-Equilibrium Analysis of Ribo-seq). NEAR is able to
estimate the balance between initiation and elongation rates at codon resolution by means of a non-
equilibrium model of translation. Additionally, we propose a new gene-specific index for Translation
Initiation Efficiency (TIE) that can be used to estimate the relative rate of initiation and elongation,
and a codon-specific index for Translation Elongation Efficiency (TEE) that can detect ribosome
queuing.

Codon elongation rates are usually estimated from Ribo-seq data assuming that the ribosome
density at codon i is proportional to the time spent by the ribosome on that particular codon (Li,
2015; Weinberg et al., 2016). However, translation is intrinsically a multi-ribosome process and thus
ribosome interference (traffic) is supposed to give rise to correlations between ribosome positions.
The crux of the matter is that it is difficult to distinguish from the ribosome profiling data whether
the ribosome spent long time on a particular codon because of the long decoding time or because
it had to wait for the downstream ribosome to move away. Consequently, the relationship between
codon elongation rates and ribosome density profile is potentially much more complex compared to
the naive estimate that ignores correlations between ribosome positions. A few recent works have
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attempted to investigate ribosome profiling using the same model as we do (Sharma et al., 2019;
Dao Duc et al., 2018), but the aforementioned effect of ribosome interference was otherwise largely
ignored, and the conclusions in the literature are contradictory.

In this work we show how to account for ribosome interference based on the mathematical solu-
tion of the exclusion process that we recently developed (Szavits-Nossan et al., 2018a,b). We also
emphasise that it is not possible to quantitatively estimate absolute elongation rates from ribosome
profiling data alone. Instead, we show how with NEAR it is only possible to infer elongation rates of
an mRNA relative to the initiation rate of that transcript.

In the rest of the paper we first introduce the model underlying our method to infer elongation de-
terminants, show that we cannot estimate absolute elongation rates from ribosome densities alone,
and then explain the principles of our framework. Then we apply NEAR to a Ribo-seq dataset to
identify the efficiency of translation initiation (compared to elongation), show that codon elongation
rates are highly variable and context dependent, and identify codons at which the model is incon-
sistent with the ribosome profiling data. Moreover, we propose a new codon-specific method to
quantify the elongation efficiency, and show evidence of local queuing in vivo.

2 Results
We base our method on a well-established stochastic model for mRNA translation known in the liter-
ature as the totally asymmetric simple exclusion process (TASEP), which has been introduced more
than fifty years ago (MacDonald et al., 1968; MacDonald and Gibbs, 1969). Since then the model
has been refined in many ways (von der Haar, 2012; Zur and Tuller, 2016) and has been explicitly
and implicitly used in state-of-the-art modelling approaches of transcription and translation (Klumpp
and Hwa, 2008; Mitarai et al., 2008; Reuveni et al., 2011; Ciandrini et al., 2013; Dao Duc and Song,
2018; Cholewa-Waclaw et al., 2019).

2.1 The model
In the TASEP, particles (ribosomes) move on a discrete one-dimensional lattice (the mRNA) with
only steric interactions, i.e. particles cannot overtake each other. Each lattice site corresponds to
a codon, and particles cover ` = 10 sites, as the ribosome footprint covers ∼ 30 nt or equivalently
∼ 10 codons. A ribosome initiates translation with a rate α and it is then positioned with its A-site at
codon 2; this happens only if the beginning of the lattice is not occupied by another ribosome. The
ribosome then advances from codon i to codon i+1 with a rate ki, provided that the next codon is
not covered by the downstream ribosome (see top right drawing of the model in Fig. 1); eventually,
when the A-site of the ribosome is at the STOP codon (the L’th site), it detaches with rate kL = β .
A coding sequence is then defined by a set of L rates α,{ki}, with i = 2, . . .L. Further information
about the model can be found in the Material and Methods section.

Normally, the knowledge of all those rates allows one to compute simulated ribosome density
profiles and protein production rates that can be compared to experimental outcomes; this is how
this class of models has been exploited in the literature so far. However, there is an open debate
regarding the estimates of the initiation and elongation rates, and no direct experimental method to
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measure these rates exists. For example, codon-specific translation elongation rates ki are often
assumed to be proportional to the tRNA gene copy number or to the local tAI (Shah et al., 2013;
Rudorf and Lipowsky, 2015; Gorgoni et al., 2016). Instead, we use this modelling framework in order
to quantitatively determine codon elongation rates from ribosome profiling data.

This is an inverse problem in which we need to optimise the parameters {ki} in order to match
the experimental Ribo-seq data. At first sight this may seem a straightforward problem, but there
are several subtle complications. First of all, the parameter space is extremely vast: a typical protein
consists of a few hundreds of amino acids, meaning that one would generally need to optimise a
comparable number of parameters. Secondly, a change in a single ki could in principle affect large
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Figure 1: Sketch of the framework proposed. Experimental Ribo-seq profiles are first normalised
and then processed using the stochastic model. In this figure we randomly chose a gene (YAL007C)
to represent the work-flow. Its normalised density profile {ri} is represented in the bottom left
panel. The model is shown in the top right green box: ribosomes covering ` sites are injected
in the lattice with an initiation rate α , provided that there are ` empty sites between the A-site of
the injected ribosome and the following one. Ribosomes then move from site i to site i+ 1 with
rate ki provided that the A-site of the ribosome downstream is more than ` sites away. Eventually,
ribosomes leave the lattice with rate β (kL = β ) when their A-site is on the last site. In this drawing
`= 3 for clarity, while in our analysis we used `= 10. The NEAR procedure then informs the model
with the experimental data, and after optimising the parameters of the model in order to match
the experimental ribosome profile for each gene, it estimates elongation rates (relative to initiation
rate) at codon resolution. By further analysing the outcomes we define the translation initiation and
elongation efficiencies (TIE and TEE), highlight the strong context dependence of elongation rates,
and identify problematic transcript regions in which Ribo-seq are not consistent with the model.
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part of the density profile or, in other words, there is a complex non-linear relation between the set
of rates and the number of reads of each codon. Finally, from ribosome profiling data we have only
access to measurements corresponding to the number of reads for each one of the L−1 codons in
the coding sequence (excluding thus initiation). However, counting initiation, there are L rates to fix
for each profile, meaning that it is not possible to estimate absolute rates without integrating more
information. We emphasise this non-trivial point in the following section.

2.2 Ribosome profiles alone cannot estimate absolute elonga-
tion rates

We first want to show that ribosome density profiles alone are not sufficient to estimate absolute
elongation rates at codon resolution. In the Supplementary Material we show that it is only possible
to extract codon elongation rates relative to the initiation rate of the gene of interest. In essence, it is
possible to write equations for the ribosome density at codon i involving all other densities, the initia-
tion rate α , and the elongation/termination rates ki (i = 2, . . . ,L). From these equations we observe
that the ribosome density at codon i depends only on the ratio between the elongation/termination
rates {ki} and the initiation rate α . This is expected since ribosome density at codon i measures
the probability to find the ribosome at that particular codon and thus bears no information on the
absolute timescales.

In other words and without further assumptions, for a gene n it will only be possible to estimate
the elongation-to-initiation ratio κ

(n)
i := k(n)i /α(n), where k(n)i is the elongation rate of codon i of the

gene n, and α(n) is the initiation rate of the same gene. However, since the initiation rate is severely
gene-dependent, it will not be possible to compare the absolute elongation rates k(n)i from different
genes without the knowledge of α(n) of each gene.

Despite that, many works in the literature fix a unique timescale shared by all mRNAs (for in-
stance the average ribosome speed of 5.6 aa/s in yeast (Ingolia et al., 2011) to compute absolute
elongation rates. This typical timescale could however be highly variable from transcript to tran-
script, which in turn would introduce a bias when obtaining absolute rates and when comparing the
outcome of different genes.

To make this point clear, we show a practical example by means of a simulation mimicking the
outcome of an in silico Ribo-seq experiment. We fix the coding sequence or, being more precise,
we fix the elongation speed profile {k(n)i } of the isolated ribosomes along the coding sequence. We
then simulate the dynamics of ribosomes according to the exclusion process at several ribosome
recruitment rates (initiation) α(n)’s. Unsurprisingly, this leads to different profiles shown in Fig. 2(a).

On the other hand, identical density profiles may emerge from different sets of absolute elon-
gation rates k(n)i , but with the same elongation-to-initiation profile {κ(n)

i } = {k
(n)
i /α(n)}. We thus

emphasise that ribosome profiles depend on the elongation-to-initiation ratios {κi} only, and thus
that indistinguishable density profiles can be obtained with different absolute elongation rates {ki}.
This is evident from the analytical solution of the exclusion process (and the qualitative argument
given above). To further demonstrate this point, in Fig. 2(b) we show the outcome of simulations of
translation having different absolute rates {ki} but same relative speed profile {κi}.
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Figure 2: Density profiles obtained by stochastic simulations. In panel (a) we fix the speed profile
{ki} of the in silico transcript for three different values of the initiation rate α . As expected, by
increasing the initiation rate we obtain different profiles with increasing density and traffic effects.
The green (filled) profile in panel (b) corresponds to the density obtained with the same speed
profile of panel (a) for α = 0.1/s. The yellow line corresponds to the profile of a transcript simulated
with a tenfold larger initiation rate, but keeping {κi} constant (i.e. also increasing the elongation
rates by a factor 10). This shows that densities obtained with the same elongation-to-initiation ratios
{κi} are indistinguishable.

The fact that Ribo-seq profiles are determined by the ratio between elongation and initiation
rates, see Fig. 2(b), rather than absolute elongation rates alone is crucial to interpret Ribo-seq data,
and this is an issue so far neglected in the literature.

For the sake of simplicity, in the remaining of the text we drop the index (n) of the gene in all the
equations.

2.3 Non-Equilibrium Analysis of Ribo-seq (NEAR)
In order to improve existing estimates of translation determinants we develop NEAR, a Non-
Equilibrium Analysis of Ribo-seq data. It consists of a model-driven interpretation of ribosome den-
sity profiles based on the exclusion process. Our method is able to formally extract information on
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the determinants of elongation at codon resolution from experimental ribosome footprints.
NEAR infers the relative elongation profiles {κi} with an optimisation procedure that aims to find

a theoretical density profile {ρi} which is the closest as possible to the experimental one {ri}, and
which is predicted by the exclusion process explained in the Model Section and further in the Sup-
plementary Information. To this end we developed an inverse method that returns the elongation-
to-initiation ratio κi of each codon i from the knowledge of the experimental ribosome density at
each codon. This has been possible since we have recently found a mathematical expression for
the ribosome density profile in terms of translation initiation, elongation and termination rates. This
expression was obtained under the assumption of a limiting initiation rate α (Szavits-Nossan et al.,
2018a,b), which is supposed to hold for most of the mRNAs in physiological conditions. The mathe-
matical details of the method are summarised in the Supplementary Information.

In Fig. 1 we outline the procedure: single-gene experimental ribosome profiles are integrated
with the stochastic model of translation and, after optimising the parameters of the model, NEAR
finds the set of elongation rates (relative to the initiation of the gene of interest) that generate a
theoretical density profile which is the closest as possible to the one obtained experimentally. As
a proof of concept, we apply our method to extract information from the the dataset experimentally
obtained by Weinberg et al. (2016) and mapped to A-site positions by Dao Duc et al. (2018) (yeast).
In more detail:

1. We first normalise the number of footprint reads on each codon by the total number of reads.
This number is then multiplied by the absolute ribosome density for that particular gene ob-
tained from sucrose gradient experiment. The end result is a normalised ribosome density
profile {ri} that reveals how likely is to find a ribosome at codon i. When applying NEAR in
yeast, we normalise the Ribo-seq profiles from Dao Duc et al. (2018) using absolute (gene-
dependent) ribosome densities found in MacKay et al. (2004).

2. Next we run the optimisation of {κi} based on our theory (details in the Supplementary Infor-
mation).

3. We then compute the density profile {ρsim
i } from stochastic simulations based on the esti-

mated {κi}.

4. We perform a quality check on each κi, and verify that:

(a) the theoretical approximation holds by comparing analytical density profiles and simu-
lated ones. This step is necessary because our solution of the model is approximate,
see Refs. (Szavits-Nossan et al., 2018a,b) and also the Supplementary Information.

(b) the estimated κi reproduces the experimental density ri (within 5% tolerance).

These are the main steps of the proposed method, and we provide further mathematical details in
the Supplementary Information. We stress that NEAR is also able to reject codons whose κi cannot
be trusted, and identify why the inference of elongation rates for those codons is problematic (quality
check - point 4). We are in fact able to say whether our theoretical solution is satisfied or not, or if
the problem is due to the model being inconsistent with the experimental data. This particular point
will be developed later on in this work.
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As an example, we tested NEAR on a mock sequence {ki}, and show that it can accurately
predicts the elongation rates of the original sequence; we also remark that the quality check allows
to push the analysis to relatively high elongation rates (Figure S3).

2.3.1 Using NEAR to study translation of individual genes
Before applying our method genome-wide to investigate the elongation-to-initiation ratio of each
codon type, we first show that its implementation successfully works at the individual gene. We de-
scribe NEAR on a concrete example, and we randomly choose a gene (here YLR301W) to highlight
differences with previous methods and to point out the excellence of the results obtained.
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Figure 3: As an example we apply NEAR to the YLR301W gene. (a) The NEAR profile {κi} is
plotted (blue line, triangle markers) as a function of the codon position i, and compared to the
naive estimates {1/ri} (orange line, round marker). In panel (b) we compare the theoretical density
profile obtained using the inferred {κi} (green line) with the experimental normalised profile {ri}.
The inset shows the scatter plot between the two densities (for each codon i) demonstrating an
excellent agreement between theory and experiments.

We first compute the normalised experimental density profile {ri} using the experimental total
density r from MacKay et al. (2004) (in units of ribosomes/codon). This profile is then analysed
following the method explained in the previous section. A set of elongation-to-initiation ratios {κi}
is drawn by optimising the match between the theoretical density profile and the experimental one.
Each value κi is then examined to see whether it provides a good prediction for that particular codon
and to check for inconsistencies in the method as previously explained. As a result, a few values
of κi that do not pass this quality check are rejected and are not included in the final analysis. In
Fig. 3(a) we plot the final {κi} profile (blue line, triangle markers) obtained for a randomly selected
yeast gene (YLR301W). In the same figure we plot the naive estimate 1/ri for each codon i (orange
line, round marker) that ignores ribosome interference but it is usually judged as a good estimator
of the elongation rate. As it is evident from the figure, the two profiles {κi} and {1/ri}, although
they share a common trend, quantitatively differ from each other. Moreover, we are able to identify
controversial values of κi that we do not consider as reliable, while this cannot be done when using
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{1/ri} as a proxy for elongation determinants.
The result of a stochastic simulation of ribosome dynamics performed with the first set of opti-

mised elongation weights {κi} is shown in Fig. 3(b). The agreement between the simulated density
profile {ρsim

i } (green line) and the experimental one (in blue) is excellent for most of the genes. The
inset shows the scatter plot between the values (for each codon) of the simulated and experimental
ribosome density.

2.4 Estimate of elongation-to-initiation ratios at codon resolu-
tion in yeast

We gather the NEAR elongation-to-initiation ratios {κi} for each gene and compute their distribution
for each codon type. We thus aim to understand if each codon type has a characteristic elongation
timescale and verify or reject the well accepted hypothesis that elongation rates are determined
by the availability of aminoacyl-tRNAs, or if elongation is context dependent. However, since κi
is by definition the ratio ki/α between the elongation rate of codon i and the initiation rate α of
the gene, we cannot easily compare elongation-to-initiation ratios of the same codon types from
different genes. The distribution of all κ belonging to a given codon type shows large variations (see
Supplementary Figure S4) and we are not able to determine if the source of the broad distribution
resides in the elongation rates of the codon or if it is generated by the broad distribution of the
initiation rates.

However, we observe that STOP codons are the codons with less variability of the elongation-
to-initiation ratio κ (Supplementary Figure S3). This result has been previously found by Dao Duc
and Song (2018), and it is consistent with the expectation of a context-independent termination.
Thanks to this observation, we then compute the elongation-to-termination ratio κi/κL = ki/β , i.e.
the elongation rate of codon i with respect to the termination of the gene under investigation. This
quantity does not depend on the initiation rate α that is supposed to be context-dependent and
largely varies from gene to gene. We can thus better compare elongation of the same codon type
extracted from different genes.

The result of the NEAR analysis of Saccharomyces cerevisiae ribosome profiles from Weinberg
et al. (2016) is shown in Fig. 4. In Fig. 4(a) we plot the boxplot of the distribution of the elongation-
to-termination ratios κ/κL for each codon type. We find a large variability in the median values
of κ/κL for different codon types. In particular there is a ≈5-fold difference in the median value
of κ/κL between the slowest (CGG) and the fastest (GUU) codon, in accordance with a common
view that translation elongation is a non-uniform process. In Fig. 4(b) we compared median values
of κ/κL against two common measures of tRNA availability, a codon-dependent rate of translation
based on the tRNA gene copy number (GCN) from Ciandrini et al. (2013) and the tRNA adaptation
index (tAI) (Reis et al., 2004). We find a moderate correlation between the median of the κ/κL
distributions and both measures of tRNA availability (k(GCN): Spearman ρ = 0.53, p = 1.4×10−5;
tAI: ρ = 0.46, p = 3×10−4).

In our dataset we also find a large variability in the values of κ/κL belonging to the same codon
type. This variability, together with a moderate correlation between κ/κL and tRNA availability, sug-
gests that the elongation speed of individual codons is only partially determined by their codon type.
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Figure 4: Result of the NEAR procedure. Panel (a) shows the distributions of the estimated κi/κL
passing the quality check for all the codon types (x-axis). The boxplots show the quartiles Q1 and
Q3 (∆Q = Q3−Q1) of the distribution, the median is the orange horizontal line; the whiskers extend
to the most extreme, non-outlier data points (i.e. to the last data point less than Q3+ 1.5∆Q and
greater than Q1− 1.5∆Q). The comparison between the NEAR estimates (median values of the
κ/κL distributions) and k(GCN) (blue) or the tAI (orange) for each codon type is shown in panel (b).
In panel (c) we show the distribution of the κi/κL for three different codon types (slow-medium-high
median).

Furthermore we find that the degree of variability in the elongation speed differs among different
codon types. Typically we find a narrow distribution of κ/κL for slow codons such as CGG and a
wide distribution for fast codons such as AUU, see Fig. 4(c).

A distinctive feature of the exclusion process is that it takes into account ribosome interference
that may increase the time ribosome spends on a particular codon. If the ribosome movement was
never hindered by other ribosomes, we would expect to see κi ≈ 1/ri corresponding to the usual
estimate of the rates (Li, 2015). However, as it is already clear from the example shown in Fig. 3, the
outcomes of NEAR deviate from the naive estimates. In Fig. 5(a) we plot the scatter plot of κi versus
the corresponding inverse ribosome densities 1/ri of each codon analysed. We find that there are

10

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 6, 2019. ; https://doi.org/10.1101/719302doi: bioRxiv preprint 

https://doi.org/10.1101/719302
http://creativecommons.org/licenses/by/4.0/


0 200 400 600 800 1000
1
ri

0

200

400

600

800

1000
i

(a)

1.5 1.0 0.5 0.0 0.5
log2( iri)

0.0

0.5

1.0

1.5

2.0

2.5

pr
ob

ab
ilit

y d
en

sit
y (b)

Figure 5: Elongation-to-termination ratio κi compared to the inverse ribosome density 1/ri of each
codon analysed using NEAR (a). Dashed line corresponds to the naive estimate κi = 1/ri which is
expected to hold if ribosome movement is not hindered by other ribosomes on the same mRNA. In
panel (b) we show the log2 of the fold change κi/(1/ri) between the NEAR and the naive estimate.

many inferred κi that are not accurately described by the inverse ribosome density and, as it can be
seen in Fig. 5(a), in extreme cases κi could be 50% smaller than the corresponding value of 1/ri.
In panel (b) we also plot the log2 of the fold change between the NEAR estimate κi and 1/ri.

Our findings in Fig. 5 thus suggest that the effect of ribosome interference is not negligible. In
order to quantify its impact more precisely, we devise two new measures of translation efficiency:
the translation initiation efficiency (TIE) and the translation elongation efficiency (TEE), which we
describe in detail below.

2.5 Translation Initiation Efficiency (TIE)
From the simulation of translation with the inferred rates we can measure the ribosomal current J,
and extract J/α which is a quantity dependent on {κi} only. The current J can be used as a proxy
for protein synthesis rate (at the level of translation).

In the biological literature it is often assumed that J =α , thus identifying translation initiation with
protein synthesis rate. However this is true only if initiation is much slower than elongation so that
substantially only one ribosome is translating a transcript at a given time. Yet, this approximation is
too crude to quantitatively describe translation (Szavits-Nossan et al., 2018a). Instead, when more
than one ribosome is engaged in translation, J becomes a function of α and the elongation rates
{ki}; the current J can be thought of as the “bare” initiation rate α multiplied by the probability that
the first codons of the mRNA are not occupied by another ribosome (which would otherwise obstruct
initiation).

Therefore we propose to use J/α as a measure of the Translation Initiation Efficiency (TIE),
which takes values between 0 and 1. The TIE would be equal to 1 in the optimal case in which
initiation is not hindered by ribosome traffic (J = α , hence TIE = 1). Otherwise, the TIE gives the
probability that the first codons, potentially interfering with ribosome recruitment and initiation, are
unoccupied. A TIE smaller than 0.5 means that more than half of the times a new ribosome tries to
initiate, it fails because of another ribosome whose A-site is located within the first ten codons. In
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Figure 6: Histogram of estimated Translation Initiation Efficiency (TIE) for all Saccharomyces cere-
visiae genes included in our study. The TIE gives the probability that the first codons are unoccupied.

Fig. 6 we plotted the histogram of TIE for all the genes included in our study. We find that almost all
genes show TIE > 0.5 with a median and mean values around 0.77 and 0.76, respectively. These
values suggest that the first codons are mainly free from ribosomes already engaged in translation.
Our previous theoretical work on the exclusion process showed that if translation is rate-limited by
initiation, then TIE predominately depends on the κi of the first `≈ 10 codons, which is the ribosome
footprint on the mRNA (Szavits-Nossan et al., 2018a). Based on that prediction, TIE > 0.5 indicates
that the first codons of Saccharomyces cerevisiae genes have been selected for fast elongation
(relative to initiation) in order to maximise protein production rate.

2.6 Translation Elongation Efficiency (TEE) shows congestion
of ribosomes in vivo

Analogously to the TIE, we now define an efficiency index for translation elongation aiming to iden-
tify local ribosome interference along the transcript and not only around the initiation region. We
remind that the ribosomal current is given by J = kiρiP(` free codons |i), where P(` free codons |i)
is the probability that the i+1 . . . i+ ` codons are not occupied, given that a ribosome’s A-site is at
site i. We name this probability Translation Elongation Efficiency (TEE), which is a measure of the
local mRNA congestion seen by a ribosome translating the codon i. When the ribosome does not
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encounter interference then TEE=1, otherwise 0 < TEE < 1. In the extreme case of a transcript
completely jammed with ribosome one would get TEE ≈ 0, i.e. the probability that a ribosome ad-
vances is negligible. Based on the definition of the TIE given in the previous section, we estimate
the elongation efficiency as TEEi = TIE/(κiρi). More details are given in the Supplementary Infor-
mation. We also stress that the TEE is a function of {κi} only, meaning that the balance between
initiation and elongation rates is what determines ribosome interference.

Figure 7: (a) Translation Elongation Efficiency profile averaged among the entire set of genes in-
cluded in our study. The full line is the averaged TEE profile, while the shadow (green) area corre-
sponds to the region included between the averaged TEE profile and ± the standard deviation of
the distribution. Panels (b)-(c)-(d)-(e) are single-gene TEE profiles.

We first evaluate the TEE profiles of all the yeast genes previously analysed, and then compute
an averaged metagene TEE profile by aligning the genes at their START codon; the result is plotted
in Figure 7(a). This genome-averaged profile shows that TEE is close to its optimum value, and that
the first 10 sites seem to have a larger elongation efficiency. This result is consistent with the large
TIE previously observed, and it confirms the importance of the beginning of the coding sequence in
controlling translation.

From Fig. 7(a), since TEE is close to 1 one could conclude that ribosome interference is not
relevant in translation. However, as it can be remarked from the standard deviation of its distribution,
the TEE for each fixed codon position i varies substantially. When looking more carefully at the
profiles of individual genes, although the TEE is typically close to 1 indicating that traffic is negligible
for most of codons, we are able to identify codons where ribosome interference is significant, with
ribosome congestion (defined as 1−T EE, i.e. the probability of finding a ribosome obstructing the
movement) reaching values close to 50%. In order to show that, we randomly selected four genes
of the analysed dataset and plotted the TEE profile in Fig. 7(b)-(c)-(d)-(e). We thus stress that the
method developed can locate, at codon resolution and excluding unreliable estimates, particular
regions on the transcript that are affected by ribosome interference.
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3 Discussion
In this work we introduce NEAR, a Non-Equilibrium Analysis of Ribo-seq, which is based on a
well-studied model borrowed from statistical physics. The model tracks individual ribosomes en-
gaged in translation and predicts their spatial distribution on the mRNA using initiation, elongation
and termination rates as input parameters. Normally one has to makes certain assumptions in
order to estimate the input parameters. Here we do the opposite: we develop a method that in-
fers elongation-to-initiation ratios at codon resolution directly from ribosome profiling experiments.
Thanks to this method we can inspect ribosome profiling data to reveal “slow” elongation regions of
each transcript, quantify ribosome interference and the interplay between initiation and elongation
with unprecedented detail.

We first emphasise that Ribo-seq profiles, being an averaged snapshot of the translatome, do not
contain information on the timescale of the process, and that thus it is possible to estimate relative
rates only. NEAR infers the elongation-to-initiation ratios κi, which are verified and reproduce the
experimental data. We can then discard problematic estimates that are not consistent with the model
nor the experiments.

A source of inconsistency between the model and the data is possibly hidden in the nature of the
ribosome profiling technique. Queuing ribosomes generate large footprints (Guydosh and Green,
2014) that are usually discarded in the experimental pipeline. Thus, one would expect ribosome pro-
filing not to be sensitive to ribosome interference. However, NEAR finds evidence of local jamming
despite the experimental bias that discards jammed ribosomes. We first show this by demonstrat-
ing a difference between the estimated elongation-to-initiation ratios and the naive estimates 1/ri
computed by neglecting ribosome interference (see Fig. 5). Additionally, the Translation Elongation
Efficiency index TEE better highlights the codons at which ribosomes are dwelling because their
movement is hindered by the presence of downstream ribosomes. When analysing the TEE of in-
dividual profiles we observe that the probability of finding ribosome interference can go as up as
∼ 50%. The TEE profile is however generally flat with the value of TEE close to 1, which suggests
that along most of the transcript the ribosome traffic is negligible.

When averaging the TEE profiles among all the genes we observe slightly higher values at the
beginning of the coding sequence. This could mean that elongation is optimised in this region to
avoid queuing and allow faster ribosome recruitment at the start codon. This result is consistent
with two recent studies that stressed the importance of the first 10 codons in regulating protein
production (Chu et al., 2014; Szavits-Nossan et al., 2018a). Furthermore, the first codons are also
experimentally recognised to be critical in determining protein synthesis (Kudla et al., 2009; Bentele
et al., 2014; Cambray et al., 2018; Verma et al., 2019). Finally, this result is also consistent with
the “slow ramp” hypothesis (Tuller et al., 2010): a ribosome translating the first (slower) codons
will be less prone to interfere with other ribosomes downstream the sequence. By averaging the
elongation-to-initiation profiles of different genes we also observe signatures of a bottleneck at the
beginning of the transcript (see Supplementary Fig. S5).

These are all signatures that translation elongation is largely optimised although one can locally
observe high levels of ribosome interference. Having a higher TEE at the beginning of the transcript
is also a way to optimise the Translation Initiation Efficiency (TIE), which we define as the probability
that a ribosome attempting to initiate translation is not obstructed by another ribosome on the mRNA.
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Figure 6 clearly shows that the coding sequence potentially affecting ribosome recruitment is most
likely under evolutionary pressure (Tuller et al., 2010)

Despite all the advances in the past ten years, we still do not have enough knowledge on the
translation process to formally identify all its sequence determinants. In this work we present a
method for interpreting ribosome profiling data and show its strengths when applied to a particular
dataset. We can affirm that there is a correlation between used indices of codon optimality, such
as the local tAI, and the estimated elongation-to-initiation ratios. However, the variability of the es-
timated rates of each individual codon type is such that using those indices for protein synthesis
optimisation or other synthetic applications will probably not lead to the expected results. Instead,
our findings indicate that codon context in the sequence seems to be relevant more than the par-
ticular codon used, and further studies should focus on the discovery of mechanisms giving rise to
the codon context dependence. For instance secondary structures might be relevant, particularly
around the initiation region (Kudla et al., 2009; Bentele et al., 2014; Cambray et al., 2018) or the
amino-acid charge at the beginning of the coding sequence (Dao Duc et al., 2018). What we can
formally state so far is that elongation is largely optimised (with respect to initiation) for endogenous
sequences; since we observe a TEE close to 1, elongation rates seem to be selected to avoid ri-
bosome interference. This also holds for the initiation step, for which we find TIE > 0.7. Instead of
finding a separate mechanism for efficient initiation and elongation, we highlight the importance of
the balance and the relative role of these two stages of translation. Consequently, we believe that
ordinary measures of translation efficiency cannot capture in detail the complexity of this biological
process.

Despite the fact that our results show signatures of efficient initiation and elongation, we find
evidence that local congestion happens in vivo in the genes we analysed (yeast). Moreover, we
stress once more that Ribo-seq are intrinsically biased towards genes that do not present ribosome
clustering and, consistently, small TEE can be observed in genes where many estimates are not
considered reliable and then discarded (see Supplementary Fig. S6). Future developments of NEAR
will include a formal study of this bias. Another key question that quantitative studies using ribosome
profiling should address in the future is the role of density normalisation in order to better compare
the outcome of different genes and of different organisms.

4 Methods and Materials
4.1 Notations
In this section we summarise the notations used in the paper. The main symbols for densities, rates,
and rates relative to initiation are given in Table 1. When the quantity is codon specific we use the
suffix i = 2, . . . ,L to identify the codon number (the first codon after the START codon is at i = 2,
the STOP codon is at i = L). Brackets {·} indicate a set of values: for instance {ai} is the set of all
the values ai for i = 2, . . . ,L.

We emphasise that we use normalised densities, in units of ribosomes (A-sites) per codon. The
total density is thus the averaged ribosome profile r = ∑

L
i=2 ri/(L−1), and the number of ribosomes

translating an mRNA is N = r(L−1).
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Symbol Meaning

L length of the mRNA (in codons, including
START)

` length of the ribosome (in codons)
α initiation rate [s−1]
ki elongation rate [s−1] of codon i, with i =

2, . . . ,L−1
kL (or β ) termination rate [s−1]
{ki} speed profile (elongation) of a given transcript
κi = ki/α relative (to initiation) elongation rate of codon i,

or elongation-to-initiation ratio
{κi} relative (to initiation) elongation profile
ri experimental (normalised) density of codon i
{ri} experimental (normalised) density profile
r = ∑

L
i=2 ri/(L−1) mean density of a given gene

ρi theoretical (normalised) density of codon i
{ρi} theoretical (normalised) density profile
ρsim

i simulated (normalised) density of codon i
{ρsim

i } simulated (normalised) density profile

Table 1: Summary of the symbols used and their meaning.

4.2 The Exclusion Process
We model translation by a stochastic process called the totally asymmetric simple exclusion process
(TASEP) introduced by MacDonald et al. (1968); MacDonald and Gibbs (1969). Messenger RNAs
are represented by a one-dimensional lattice consisting of L codons labelled by 1, . . . ,L, whereby
each ribosome takes ` = 10 lattice sites. Ribosomes on the lattice are tracked according to the
position of their A-site. A codon i that is occupied by the A-site of the ribosome is labelled by Ai and
is otherwise labelled by /0i. The model accounts for translation initiation, elongation and termination
of individual ribosomes described by the following first-order kinetic reactions:

initiation: /02 /03 . . . /0`+1
α−→ A2 /03 . . . /0`+1 (1)

elongation: Ai /0i+1 . . . /0i+`+1
ki−→ /0iAi+1 /0i+2 . . . /0i+`+1 (2)

termination: AL
kL−→ /0L. (3)

The process is described by the probability density P(C, t) to find a configuration C of ribosomes
on an mRNA at a particular time t. By configuration we mean a particular arrangement of ribosomes
described by the positions {Ai} of their A-sites. The time evolution of P(C, t) is governed by the
master equation

dP(C, t)
dt

= ∑
C′ 6=C

W (C′→C)P(C′)− ∑
C′ 6=C

W (C→C′)P(C), (4)
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where W (C→ C′) is the rate of transition from C to C′. We assume that translation takes place
in the stationary limit so that dP(C, t)/dt = 0 in which case Eq. (4) becomes a system of linear
equations,

0 = ∑
C′ 6=C

W (C′→C)P(C′)− ∑
C′ 6=C

W (C→C′)P(C). (5)

The three main quantities of interest are the rate of translation J, which measures the amount
of proteins produced per unit time, the local ribosome densities ρi, which measure the probability of
detecting a ribosome at codon i, and total ribosome density ρ , which measures the average number
of ribosomes per unit length of the transcript. In the stationary TASEP J, ρi and ρ are defined as

J = kL 〈τL〉 (6)

ρi = 〈τi〉 (7)

ρ =
1

L−1

L

∑
i=2

ρi, (8)

where averaging is performed with respect to the steady-state probability P(C) and τi is an occupa-
tion number whose value is equal to 1 if codon i is occupied by the A-site of the ribosome and is 0
otherwise. Computing these quantities requires an exact knowledge of P(C), which is known only in
the biologically unrealistic case of `= 1 (Derrida et al., 1993). Instead, we compute J, ρi and ρ using
two approximation methods: the mean-field approximation developed in MacDonald et al. (1968);
MacDonald and Gibbs (1969) and initiation-limited approximation developed in Szavits-Nossan et al.
(2018a,b).

4.3 Dataset used
We analysed the reads of the mapped A-site positions from Dao Duc et al. (2018), which are based
on the experimental results by Weinberg et al. (2016) in Saccharomyces cerevisiae (flash freeze).
Our method successfully optimised 838 of the total 839 genes from the dataset of Dao Duc et al.
(2018) for which the experimental ribosome density necessary for normalisation was known from
MacKay et al. (2004) (for one gene out of 839 genes the normalisation was not possible because it
resulted in ribosome density larger than 1). In Supplementary Table S1 we summarise the features
extracted from the data by NEAR, and the results for each individual gene at the codon detail can
be found in the Supplementary files.
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