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Abstract 14 

How gene function evolves is a central question of evolutionary biology. It can be 15 

investigated by comparing functional genomics results between species and between genes. 16 

Most comparative studies of functional genomics have used pairwise comparisons. Yet it 17 

has been shown that this can provide biased results, since genes, like species, are 18 

phylogenetically related. Phylogenetic comparative methods should allow to correct for 19 

this, but they depend on strong assumptions, including unbiased tree estimates relative to 20 

the hypothesis being tested. Such methods have recently been used to test the “ortholog 21 

conjecture”, the hypothesis that functional evolution is faster in paralogs than in orthologs. 22 

Whereas pairwise comparisons of tissue specificity (𝜏) provided support for the ortholog 23 

conjecture, phylogenetic independent contrasts did not. Our reanalysis on the same gene 24 

trees identified problems with the time calibration of duplication nodes. We find that the 25 

gene trees used suffer from important biases, due to the inclusion of trees with no 26 

duplication nodes, to the relative age of speciations and duplications, to systematic 27 

differences in branch lengths, and to non-Brownian motion of tissue-specificity on many 28 

trees. We find that incorrect implementation of phylogenetic method in empirical gene 29 

trees with duplications can be problematic. Controlling for biases allows to successfully 30 

use phylogenetic methods to study the evolution of gene function, and provides some 31 

support for the ortholog conjecture using three different phylogenetic approaches. 32 

Keywords: ortholog; paralog; gene expression; phylogenetic comparative methods; 33 

Brownian; Ornstein-Uhlenbeck  34 
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Introduction 36 

The “ortholog conjecture”, a standard model of phylogenomics, has become a topic of 37 

debate in recent years (Koonin 2005; Studer and Robinson-Rechavi 2009; Nehrt et al. 2011; 38 

Altenhoff et al. 2012; Chen and Zhang 2012; Gabaldón and Koonin 2013; Rogozin et al. 39 

2014; Kryuchkova-Mostacci and Robinson-Rechavi 2016; Dunn et al. 2018; Stamboulian 40 

et al. 2020). The ortholog conjecture is routinely used by both experimental and 41 

computational biologists in predicting or understanding gene function. According to this 42 

model, orthologs (i.e. homologous genes which diverged by a speciation event) retain 43 

equivalent or very similar functions, whereas paralogs (i.e. homologous genes which 44 

diverged by a duplication event) share less similar functions (Studer and Robinson-Rechavi 45 

2009). This is linked to the hypothesis that paralogs evolve more rapidly. This hypothesis 46 

was challenged by results suggesting that paralogs would be functionally more similar than 47 

orthologs (Nehrt et al. 2011). Such findings not only raised questions on the evolutionary 48 

role of gene duplication but also questioned the reliability of using orthologs to annotate 49 

unknown gene functions in different species (Sonnhammer et al. 2014). Several studies 50 

(Altenhoff et al. 2012; Chen and Zhang 2012; Rogozin et al. 2014; Kryuchkova-Mostacci 51 

and Robinson-Rechavi 2016) later found support for the ortholog conjecture, mostly based 52 

on comparisons of gene expression data. 53 

While all previous studies of the ortholog conjecture had used pairwise comparisons of 54 

orthologs and paralogs, a recent article suggested that this was flawed, and that 55 

phylogenetic comparative methods should be used (Dunn et al. 2018). Phylogenetic 56 

structure can violate the fundamental assumption of independent observations in statistics, 57 

and thus ignoring it can lead to mistakes (Felsenstein 1985). A solution is to use phylogeny-58 
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based methods. Phylogenetic Independent Contrast (PIC) (Felsenstein 1985), and 59 

Phylogenetic Generalized Least-Square (PGLS) (Martins and Hansen 1997; Grafen 1989; 60 

Rohlf 2001) are the most commonly used phylogenetic comparative methods. They were 61 

developed under a purely neutral model of evolution, i.e. Brownian motion (BM). Such 62 

Brownian process have been extended using a maximum likelihood approach, to allow for 63 

different rates of evolution on different branches of a phylogeny (O’Meara et al. 2006; 64 

Thomas et al. 2006), and to include stabilizing selection in which the trait is shifted towards 65 

a single fitness optimum, or multiple different adaptive optima (i.e. “Ornstein-Uhlenbeck” 66 

or OU process) (Hansen 1997; Butler and King 2004; Beaulieu et al. 2012). These 67 

phylogenetic data modeling with different modes of trait evolution (e.g. BM, OU) require 68 

a priori knowledge of different states on the tree. Other approaches implemented a Markov 69 

chain Monte Carlo (MCMC) sampling in a Bayesian framework to accurately estimate the 70 

number, location, and magnitude of shifts in evolutionary rates, or in optimal trait values 71 

without a priori assignment of states (Eastman et al. 2011; Pennell et al. 2014; Uyeda and 72 

Harmon 2014; Catalan et al. 2019). Bayesian approaches are time consuming, while OU 73 

modeling with phylogenetic lasso algorithm allows a faster detection of directional 74 

selection due to a shift in optimal trait value (Khabbazian et al. 2016). Moreover, OU has 75 

been used to model gene expression evolution (Rohlfs and Nielsen 2015; Chen et al. 2019). 76 

Among all the phylogenetic methods, PIC is widely adopted for its relative simplicity, and 77 

its applicability to a wide range of statistical procedures (Cooper et al. 2016a; Dunn et al. 78 

2018). The performance of PIC relies on three basic assumptions: a correct tree topology; 79 

accurate branch lengths; and trait evolution following Brownian motion (where trait 80 

variance accrues as a linear function of time) (Felsenstein 1985; Garland 1992; Garland et 81 
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al. 1992; Díaz-Uriarte and Garland 1998; Freckleton and Harvey 2006; Cooper et al. 82 

2016a). If any of these assumptions is incorrect, this can lead to incorrect interpretation of 83 

results without control for biases (Diaz-Uriarte and Garland 1996; Díaz-Uriarte and 84 

Garland 1998). While previous applications of PIC used multivariate traits on pure 85 

speciation trees to explore the relationship between them, Dunn et al. (2018) took an 86 

innovative approach in applying PIC to compare the divergence rates of a univariate trait 87 

between two different node events (“speciation” and “duplication”), to test the ortholog 88 

conjecture. They performed extensive analyses in support of their results. However, such 89 

an application might be problematic since the time of occurrence of gene duplication, one 90 

of the two types of events compared, is unknowable by external information (e.g. no fossil 91 

evidence). Therefore, further study is required to understand why Dunn et al. (2018) 92 

obtained results which are inconsistent with previous studies. It is possible that all the 93 

conclusions drawn by previous studies on gene duplication are incorrect due to overlooking 94 

phylogenetic tree structure. If so, it should be well supported. 95 

 We re-examined the data of Dunn et al., after reproducing their results using the resources 96 

and scripts provided by the authors (Dunn et al. 2018). We have uncovered problems with 97 

the use of PIC on biased calibrated gene trees, violation of the underlying assumptions, and 98 

the inclusion of pure speciation gene trees. We used PIC on gene trees after fixing 99 

calibration bias for old duplication nodes. With proper controls, the phylogenetic method 100 

supports the ortholog conjecture. To verify this result, we also applied data modeling 101 

approaches using a maximum likelihood framework, and using a reversible-jump Bayesian 102 

MCMC algorithm. Support for the ortholog conjecture still holds with proper controls. 103 

 104 
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Results 105 

Issues with straightforward application of Phylogenetic Independent Contrasts 106 

(PICs) 107 

Dunn et al. (2018) have made a relevant argument that the test should be done in a 108 

phylogenetic framework, since closely related species or genes tend to share more similar 109 

traits. They applied PIC method to a processed dataset of 8520 time-calibrated trees (details 110 

in the Materials and Methods, Table 1) by assuming that the computed node contrasts 111 

(PICs) are always phylogenetically independent, and reported evidence in contradiction 112 

with the ortholog conjecture for tissue-specificity 𝜏	(median: PICspeciation = 0.0072, 113 

PICduplication = 0.0051, one-sided Wilcoxon test P = 1).  Yet the same data supported the 114 

ortholog conjecture when analyzed by pairwise comparisons, both in Kryuchkova-115 

Mostacci and Robinson-Rechavi (2016), and in the re-analysis by Dunn et al. (2018). To 116 

understand the incongruence between results of PIC and of pairwise comparison 117 

approaches, they performed simulations of 𝜏 on their trees under the OC (ortholog 118 

conjecture), and under a null of uniform Brownian motion. PICs and pairwise comparisons 119 

have different expectations under the null (𝜎2duplication = 𝜎2speciation) and under the ortholog 120 

conjecture (𝜎2duplication > 𝜎2speciation) (Supplementary fig. S1). The simulation results of Dunn 121 

et al. (2018) indicated that the pairwise comparisons of events could not distinguish the 122 

two scenarios (null and OC), unlike the PIC method. As the result on their empirical data 123 

resembled their null simulation result, they questioned both the use of pairwise 124 

comparisons, and the support for the ortholog conjecture from tissue specificity data. 125 
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To understand their results, we first reproduced and reanalyzed the data of Dunn et al. 126 

(2018) by focusing on the phylogenetic approach. Dunn et al. reported a non-significant 127 

result (P = 1) for the PIC under the null simulation as well as for the empirical data, using 128 

a Wilcoxon one-tailed rank test to check if the contrasts of duplication events are higher 129 

than the contrasts of speciation events. Surprisingly, our reanalysis with a Wilcoxon two-130 

tailed rank test on the same data shows that the PIC rejects the null hypothesis on the null 131 

simulations (Fig. 1A), with significant support for higher contrasts after speciation than 132 

duplication. This means that the PIC method supports a trend opposite to the trend expected 133 

under the ortholog conjecture in a null simulation. This was robust to repeating the 134 

simulations with different random seed number (Supplementary fig. S2). This indicates 135 

that neither of the approaches, PIC or pairwise, worked properly for these calibrated trees, 136 

since both the approaches reject the null hypothesis when simulations are performed under 137 

the null. Similarly, when we used a Wilcoxon two-tailed rank test instead of a one-tailed 138 

test on the empirical data, the non-significant result (P = 1) (Dunn et al. 2018) was also 139 

significant (P < 2.2e-16)	in the same unexpected direction as the null simulation results.  140 

Statistical non-independence among species trait values because of their phylogenetic 141 

relatedness can be measured by phylogenetic signal (Pagel 1999; Freckleton et al. 2002; 142 

Blomberg et al. 2003; Münkemüller et al. 2012; Molina-Venegas and Rodríguez 2017). 143 

Use of the PIC is mainly important for the data sets with strong phylogenetic signal, where 144 

it allows to recover phylogenetically independence. Dunn et al. (2018) used Blomberg’s 145 

K. Its value ranges from 0 to ∞ for each tree, where a value of 0 indicates no phylogenetic 146 

signal for the trait studied, and a value close to 1 or higher indicates strong phylogenetic 147 

signal (Pagel 1999; Freckleton et al. 2002; Blomberg et al. 2003; Münkemüller et al. 2012; 148 
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Molina-Venegas and Rodríguez 2017). With a cutoff of K > 0.551, Dunn et al. (2018) 149 

obtained only 2082 trees	(Table 1), 24.4% of the total, with strong phylogenetic signal. The 150 

phylogenetic method still rejects the null hypothesis under null simulations for those 2082 151 

trees using a Wilcoxon two-tailed rank test (Fig. 1B), showing that the problem is not 152 

simply due to low phylogenetic signal. Using a cut-off of P < 0.05 together with K > 0.551 153 

leads to 1135 statistically significant trees with strong phylogenetic signals, for which we 154 

obtained a similar result (Supplementary fig. S3). This means that the bias is not limited to 155 

the selection of tree sets or to the number of speciation or duplication events used for the 156 

analyses. Since the trend was similar for these 1135 trees we continued analyses with the 157 

2082 trees of Dunn et al. (2018) for consistency.  158 

The accuracy and performance of the PIC method largely depend on proper branch length 159 

calibration in absolute time (e.g. in Million Years – My) (Garland 1992; Díaz-Uriarte and 160 

Garland 1998; Cooper et al. 2016a). We thus investigated possible biases created during 161 

calibration of gene trees. Due to non-availability of external references for duplication time 162 

points (e.g. no fossils), Dunn et al. (2018) used only 7 speciation time points to calibrate 163 

gene trees. The ages of other node events are estimated using the penalized likelihood 164 

method (Sanderson 2002) by the chronos() function of the “ape”  R package (Paradis et al. 165 

2004), and varies for the same duplication clade labels even within the same gene trees. 166 

The oldest speciation age for their calibrated trees was 296 My (Table 1), corresponding to 167 

the use of chicken as the outgroup. Surprisingly, the calibrated node age of the oldest 168 

duplication event was 11799977 My (Table 1, Supplementary table S1), that is, 2600 times 169 

older than the Earth. This is indicative of issues with calibration. The tree pruning to species 170 

with t data (details in Materials and Methods) lead to trees for which all nodes older than 171 
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296 My are duplication or NA events, even if there were older speciation events present 172 

before pruning (Supplementary fig. S4A). If the root node of a pruned tree is a speciation, 173 

the duplication ages are constrained by speciation ages. Otherwise, there are no constraints 174 

for the duplication events older than the oldest speciation events (Supplementary fig. S4, 175 

Supplementary Table S1), which can introduce a calibration bias. This unreliable branch 176 

length estimation for the old duplication nodes eventually led to much larger expected 177 

variances for gene duplication events than for speciation events (Supplementary figs. S5A 178 

and S5B). 179 

PIC of a node is a ratio of changes in trait values (𝜏 here) for descendant nodes to their 180 

expected variance, i.e. the lengths of the two branches that connect the node to its two 181 

descendants. This means that similar changes in 𝜏 for two nodes can produce different PIC 182 

values, with the lower contrast for the node with higher expected variance (i.e., calibrated 183 

branch length). In the null simulations only the 𝜏 values are simulated, while the branch 184 

lengths (hence the expected variances) are taken from the empirical data, and thus share its 185 

biases. This explains why contrasts are lower for duplications than for speciations under 186 

null simulations as well as with empirical data. Such calibration bias in branch lengths 187 

violates the second assumption of PIC applicability, and inflates type I error rates (Diaz-188 

Uriarte and Garland 1996; Díaz-Uriarte and Garland 1998). 189 

 190 

Randomization tests to assess the performance of phylogenetic method 191 

We used randomization tests to assess bias in different analyses of the empirical dataset. 192 

Our expectation is that the trend of the empirical result should differ from the randomized 193 
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ones. In a first randomization test, we permuted the 𝜏 values across the tips of each tree 194 

without altering the node events of the trees. By such randomization, the real phylogenetic 195 

relationships between trait values are removed for each tree. When we compared the node 196 

contrasts of the speciation and duplication events computed based on these 8420 197 

randomized 𝜏 trees (Fig. 2A), we found the same pattern as reported for the empirical gene 198 

trees by Dunn et al. (2018), contrary to expectation. It confirms that results are driven by 199 

their large differences in branch lengths (i.e. in expected variances) (Fig. 2B), as on 200 

simulated null data. Any effect of trait divergence rates of speciation and duplication events 201 

is always masked by this branch length difference of node events. This violates the basic 202 

assumption of applicability of the PIC method to Brownian trait evolution. To remove the 203 

problem of difference in expected variances of the two events, we performed a second 204 

randomization test: we kept the original 𝜏 value for tips but randomly shuffled the events 205 

(duplication, speciation, or NA) of internal nodes of the 8420 empirical gene trees to 206 

maintain the original proportions of speciation and duplication events. The resulting trend 207 

(Fig. 2C) still resembled the empirical gene trees data. This appears due to the fact that the 208 

majority of the nodes are speciations (Fig. 2D, Table 1) with node ages ≤ 296 My. Most 209 

of the trees with many duplication events on the other hand have ancient duplication events 210 

for which the evolutionary rates of duplication are often masked by the effect of longer 211 

branch lengths. Opposite to our expectation, the calibrated trees with no or few duplications 212 

have higher overall nodes contrast (apparent fast evolution) than trees with many 213 

duplications (apparent slow evolution). This might be due to greater difficulty in detecting 214 

paralogs for fast evolving genes. Therefore, reshuffling of the events may not change the 215 

observed pattern of higher speciation contrasts than duplication contrasts. 216 
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Out of 8520 calibrated trees, 2990 were pure speciation trees with no duplication events. 217 

For these 2990 trees, random shuffling of events had no impact. To avoid this bias, we 218 

removed those 2990 speciation trees as well as trees with negative branch lengths, and 219 

randomized the trait or the internal node events 100 times on the remaining 5479 trees. 220 

However, we still always obtained significantly higher contrasts of speciation than of 221 

duplication (Supplementary figs. S6A and S6B). The randomization tests pattern is the 222 

same when we used 2082 trees with strong phylogenetic signals (Supplementary figs. S6C 223 

and S6D). 224 

All these analyses indicate that the results reported by Dunn et al. (2018) are biased by the 225 

calibrated phylogeny structures, and that this bias is not easy to correct. We propose three 226 

approaches to correct for this bias and recover a proper phylogenetic signal of trait 227 

evolution. 228 

 229 

Approach-1: PIC with 	diagnostic tests 230 

Diagnostic tests (details in the Materials and Methods) for each tree are essential to ensure 231 

phylogenetic independence of node contrasts, especially since there is evidence of bias in 232 

the calibrated trees. This can be verified by the lack of correlation between the absolute 233 

value of PICs of 𝜏 and their standard deviations, node height, node age, or node depth 234 

(Garland 1992; Garland et al. 1992; Diaz-Uriarte and Garland 1996; Díaz-Uriarte and 235 

Garland 1998; Freckleton 2000; Freckleton and Harvey 2006; Cooper et al. 2016a). A 236 

statistically significant negative or positive correlation in any of the diagnostic tests 237 

confirms that the PICs for that tree are non-independent (Garland 1992; Garland et al. 1992; 238 
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Diaz-Uriarte and Garland 1996; Díaz-Uriarte and Garland 1998; Freckleton 2000; 239 

Freckleton and Harvey 2006; Cooper et al. 2016a); in practice, we used  P < 0.05 for 240 

significance. 241 

We performed such diagnostic tests on 4288 trees, for which calibration biases are fixed 242 

for old duplication nodes (see Materials and Methods, Table 1). Among them only 2088 243 

(48.7%), which includes 15321 speciation and 6213 duplication nodes, passed all 4 244 

diagnostics tests for 𝜏 evolution. We performed our PIC analyses separately for 3948 young 245 

(≤ 296 My, the oldest speciation in the trees) and 2265 old (> 296 My) duplication events. 246 

Analyses on young duplicates after diagnostic tests provided support for the ortholog 247 

conjecture (Fig. 3), but old duplicates did not. Randomization tests showed patterns distinct 248 

from real data only for the young duplicates (Supplementary figs. S7A and S7B), indicating 249 

a biological pattern rather than a data bias. Thus PIC on the trees after diagnostic plot tests 250 

supports the ortholog conjecture for young duplicates, whereas the inference remains 251 

biased for older duplicates.  252 

 253 

Approach-2: PIC with branch length transformation 254 

Most phylogenetic methods are developed for the Brownian model of trait evolution, 255 

including the PIC method (Felsenstein 1985; Cornwell and Nakagawa 2017). Deviations 256 

from pure BM violate the fundamental assumptions of PIC applicability and can affect its 257 

performance for testing hypotheses about correlated evolution (Garland 1992; Garland et 258 

al. 1992; Diaz-Uriarte and Garland 1996; Díaz-Uriarte and Garland 1998). Using model-259 

fitting (see Materials and Methods), we found that 75.6% gene trees (Supplementary fig. 260 
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S8) supported the Ornstein-Uhlenbeck (OU) model. Remedial measures such as branch 261 

length transformations along with diagnostic tests, can substantially recover the 262 

performance of the PIC methods when character evolution is not BM or when contrasts are 263 

non-independent of the phylogeny (Garland et al. 1992; Diaz-Uriarte and Garland 1996; 264 

Díaz-Uriarte and Garland 1998).  265 

We applied branch length transformation (details in the Materials and Methods) on all 4288 266 

trees, along with diagnostic tests for consistency. We found substantial support for the 267 

ortholog conjecture for the 4190 trees (97.7%) which pass diagnostic tests after branch 268 

length transformation (Fig. 4A). Due to the lack of absolute age for these transformed trees, 269 

we did not distinguish young and old duplicates. Applying such branch length 270 

transformation then diagnostic tests to the gene trees of Dunn et al. we also found support 271 

for the ortholog conjecture in 98.8% (8417 out of 8520) (Supplementary fig. S9A), as well 272 

as for 99.9% (2080 out of 2082) of their trees with strong phylogenetic signal 273 

(Supplementary fig. S10A). Randomization tests on all these sets of trees following branch 274 

length transformations clearly showed distinct patterns compared to the empirical data 275 

(Figs. 4B and 4C, Supplementary figs. S9B, S9C, S10B, S10C), indicating that results are 276 

not due to inference bias once the data is properly transformed.  277 

Approach-3: Phylogenetic data modeling  278 

State dependent model-fitting allows to compare the evolutionary rates (𝜎2), and the 279 

changes in adaptive optimum value (θ) associated to specific states (speciation or 280 

duplication) for each tree (Beaulieu et al. 2012; Clavel et al. 2015). Under the ortholog 281 

conjecture, our expectation is that there should be more shifts in optimum value of 𝜏 282 
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between paralogs than orthologs. Moreover, the evolutionary rates after duplication should 283 

be higher than after speciation (𝜎2duplication > 𝜎2speciation). Of course, trends on empirical data 284 

should differ from randomized ones. When we modeled the evolution of 𝜏 (see Materials 285 

and Methods), 32 out of 4288 trees failed to fit any model due to invariance in 𝜏. Among 286 

the others, 308 supported BM1, 704 BMM, 2874 OU1, and 370 OUM, as the best fit 287 

models (Supplementary fig. S8). We performed our analyses separately for young and old 288 

duplicates.  289 

On the 8.6% multi optima trees (OUM) the optimum value are significantly higher for both 290 

young and old duplications (θdup > θspe) (Supplementary Table S2). Thus paralogs regime 291 

shift towards higher tissue-specificity. These results are not observed on randomized trees, 292 

supporting a biological pattern in the data (Supplementary Table S2). 293 

We also applied a Bayesian method (Udeya and Harmon 2014) on them to quantify the 294 

number of adaptive optimum shifts, as suggested for small trees (Cooper et al. 2016b). 295 

Unlike the other approach, such detection of evolutionary shifts in a phylogeny does not 296 

need a priori knowledge of different states on the tree. Using a strict posterior probability 297 

threshold of ≥ 0.7 with this method, we find that most optimum shifts per branch for 𝜏 298 

follow duplications (median after speciation: 0%, after duplication: 12.5%, paired two-299 

sided Wilcoxon rank-sum test P < 2.2e-16). An OU model can often be incorrectly favored 300 

over a BM model in a maximum likelihood framework when applied to trees with < 200 301 

tips (Cooper et al. 2016b). Our gene trees have a median of only 15 tips. We thus applied 302 

a conservative Bayesian approach on all of the 3244 trees for which OU was the preferred 303 

model (OU1 + OUM). Even with such a strict posterior probability threshold of ≥ 0.7, 1101 304 

trees (33.9%) still supported the OUM model, including 901 trees identified as OU1 by 305 
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maximum likelihood. We detected the same trend of optimum shifts per branch (median 306 

after speciation: 2.3%, after duplication: 10%, paired Wilcoxon rank-sum test P < 2.2e-16). 307 

These results are largely consistent for both young and old duplicates (Table 2; 308 

Supplementary Table S3). However, the rates of optimum shifts are faster only for young 309 

duplicates (Table 2; Supplementary Table S3). 310 

Analyses on the trees where 𝜎2 varies between events (BMM) also supports the ortholog 311 

conjecture for young duplicates (Table 3). Randomized data showed distinct patterns 312 

from empirical data.  However, again there was neither support for the ortholog 313 

conjecture nor signal relative to randomization for the old duplicates. 	 	314 
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Discussion 315 

We agree with Dunn et al. (2018) that evolutionary comparisons should be done 316 

considering a phylogenetic framework when possible. However, this does not imply that 317 

phylogenetic methods can be applied easily to phylogenomics. To get a clear picture, we 318 

limited our study to the same gene trees used by Dunn et al. (2018). Our reanalysis 319 

identified problems generated by the time calibration of old duplication nodes of pruned 320 

trees, the inclusion of pure speciation gene trees, and violations of the Brownian model. 321 

The strongest bias was for duplication nodes preceding the oldest speciation nodes. This, 322 

in turn, introduced several biases in the analyses, and influenced results. 323 

When we identified and controlled for such biases, PIC results changed to support the 324 

ortholog conjecture, consistent with our previous pairwise analysis (Kryuchkova-Mostacci 325 

and Robinson-Rechavi 2016) on the same 𝜏 data. Our fundamental point is that the 326 

conclusions drawn by Dunn et al, but also by anyone else who will have followed the same 327 

approach of applying PIC to gene trees, are not reliable unless extreme care is taken. This 328 

is because gene trees with orthologs and paralogs have more complex evolutionary 329 

histories, and different sampling biases, than species trees for which these methods were 330 

developed. 331 

To date, a few studies have applied phylogenetic comparative methods to understand the 332 

effect of gene duplication on functional evolution (Oakley et al. 2005; Oakley et al. 2006; 333 

Eng et al. 2009; Rohlfs and Nielsen 2015; Dunn et al. 2018; Fukushima and Pollock 2020). 334 

None before Dunn et al. applied PIC method to compare speciation and duplication events 335 

on the same trees using a single continuous trait. Such application requires thorough testing 336 
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of the fundamental assumptions of the method on such time calibrated trees (Garland 1992; 337 

Garland et al. 1992; Diaz-Uriarte and Garland 1996; Díaz-Uriarte and Garland 1998; 338 

Freckleton 2000; Freckleton and Harvey 2006; Cooper et al. 2016a). Hence, we explored 339 

whether the application of a phylogenetic method might inflate errors (e.g. rejection of the 340 

null hypothesis in null condition) if applied without assumption testing. Indeed, it is the 341 

case (Figs. 1A and 1B). Along with the calibration bias for old duplication nodes, the 342 

relative ages of the speciation and duplication events strongly differ in these trees due to 343 

the choice of species. Using such trees without control for biases may bring about lack of 344 

statistical power to detect the signal of ortholog conjecture, and even bias towards an 345 

opposite pseudo-signal.  346 

Time calibration of ancient duplication events is one of the major issues we uncovered. 347 

The approach of Dunn et al. considered pruned trees with available trait (𝜏 here) data for 348 

time-calibration using speciation time points (see Materials and Methods). Such pruned 349 

trees often have many duplication nodes older than the oldest speciation nodes. Sequence 350 

based evolutionary rate (e.g., dN/dS) analyses in different species have found higher 351 

sequence evolutionary rate following gene duplication (Conant and Wagner 2003; Kim  352 

and Yi 2006; Scannell and Wolfe 2008; Han et al. 2009; Studer and Robinson-Rechavi 353 

2009; Panchin et al. 2010; Pegueroles et al. 2013; Pich and Kondrashov 2014; Holland et 354 

al. 2017). Therefore, calibration bias is not surprising for those duplication nodes in the 355 

absence of time constraints (Supplementary figs. S4A-S4C, Supplementary Table S1). 356 

Instead, we performed time calibration before pruning, so that the oldest speciation time 357 

points can provide upper age limits and reduce calibration bias (Supplementary figs. S4D-358 

S4F). This is strongly recommended since the performance of the phylogenetic methods 359 
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rely on accurate branch length information, especially for multi-states univariate trait 360 

analysis. 361 

Dunn et al. (2018) performed several analyses (e.g. added random noise in the speciation 362 

calibration time points, extended terminal branch length, removed old duplication nodes, 363 

etc.) to take into account issues with branch lengths, but their simulations and our 364 

randomization tests show that they appear not to have been sufficient to correct for this 365 

bias (Figs. 2A and 2C). Dunn et al. also provided the hutan::picx() R function to compute 366 

PIC for OU trees. In their simulation-based function, they estimated ancestral states by the 367 

‘GLS_OUS’ method using the bias calibrated phylogeny. Therefore, their method does not 368 

add anything specific to deal with the OU trees. Since they did not control for phylogenetic 369 

independence of the contrasts, and did not consider the relative ages of the speciation and 370 

old duplication events, they always obtained lower PIC of duplication events. Due to such 371 

phylogenetic internal parameter dependence, their PIC analyses produced similar trends 372 

with real or randomized data.  373 

Assumptions of proper branch length information and of Brownian motion of trait 374 

evolution are related, so that modifications of branch lengths can change the evolutionary 375 

model (Diaz-Uriarte and Garland 1996; Díaz-Uriarte and Garland 1998). Contrasting a 376 

single rate OU to BM models, Dunn et al. (2018) identified 99.9% gene trees which favored 377 

an OU model, more explicitly an OU1 model. This appears to be 67% when we performed 378 

multivariate data modeling in a maximum likelihood framework on trees with less or no 379 

calibration bias (Supplementary fig. S8). PIC analyses with diagnostic tests provided weak 380 

support for the ortholog conjecture for the young duplicates (Figs. 3A-3C), in contrast to 381 

previous results of Dunn et al. Small effect size difference in our inference is not surprising 382 
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since PIC is applied on OU trees. Similar patterns of results from empirical and 383 

randomization tests for the old duplicates indicate that one should be extremely careful 384 

before integrating them into a phylogenetic analysis. Branch length transformation 385 

attempts to transform the OU trees to BM trees to meet the underlying assumption of 386 

phylogenetic comparative method (Butler and King 2004). Hence, it can address the issue 387 

of low power when underlying assumptions of phylogenetic methods are violated (Diaz-388 

Uriarte and Garland 1996; Díaz-Uriarte and Garland 1998). Following this approach along 389 

with the diagnostic tests, we obtained substantial support for the ortholog conjecture (Figs. 390 

4A-4C, Supplementary figs. S9 and S10).  391 

Phylogenetic data modeling also appears to be a powerful tool for such hypothesis testing, 392 

where one can estimate the trait evolutionary rates or optima shift rates per event without 393 

transforming OU trees to BM trees. More support for the OU trees (Supplementary fig. S8) 394 

could be due to the fact that we performed multivariate evolutionary model-fitting mostly 395 

on small trees (Cooper et al. 2016b). Among them only 8.6% trees supported the OUM 396 

model. Following the recommendation of Cooper et al. (2016), we applied Bayesian 397 

approach on small trees to accurately identify multi optima trees. Although previous studies 398 

(Uyeda and Harmon 2014; Khabbazian et al. 2016; Uyeda et al. 2017) have suggested a 399 

liberal cutoff of ≥ 0.2 to detect an optimum shift with a Bayesian approach, we used a strict 400 

posterior probability cutoff of ≥ 0.7. We performed our analyses on the 33.9% OUM trees 401 

passing such a strict posterior probability threshold. Our results from the PIC analyses with 402 

controls was also supported by the maximum likelihood, and Bayesian data modeling 403 

approaches. This shows that once proper precautions are taken, the empirical trends do not 404 

depend on the number of selected gene trees or of internal node events included. 405 
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Empirical support for the ortholog conjecture has been mixed, with some studies 406 

supporting it (Koonin 2005; Studer and Robinson-Rechavi 2009; Altenhoff et al. 2012; 407 

Chen and Zhang 2012; Gabaldón and Koonin 2013; Rogozin et al. 2014; Kryuchkova-408 

Mostacci and Robinson-Rechavi 2016;	Fukushima and Pollock 2020), and a few failing to 409 

do so (Nehrt et al. 2011; Dunn et al. 2018; Stamboulian et al. 2020). Our results provide 410 

additional support for the ortholog conjecture using tissue specificity data in a phylogenetic 411 

framework after controlling for biases. Due to lack of detailed functional information, 412 

many studies are still limited to gene expression data as a proxy of function. Recently, 413 

using functional replaceability assay, experimental studies (Kachroo et al. 2015; Laurent 414 

et al. 2020) have shown that orthologous genes can be swapped between essential yeast 415 

genes and human, although this is rarely the case for all the members of expanded human 416 

gene families (Laurent et al. 2020), validating one prediction of the ortholog conjecture. 417 

  418 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 29, 2020. ; https://doi.org/10.1101/719336doi: bioRxiv preprint 

https://doi.org/10.1101/719336
http://creativecommons.org/licenses/by/4.0/


	 21	

Materials and Methods 419 

Data reproducibility details 420 

Our analyses are based on 21124 gene trees obtained from ENSEMBL Compara v.75 421 

(Herrero et al. 2016) as used by Dunn et al. (2018). We used the same random seed number 422 

as in Dunn et al. (2018) to reproduce the simulation results for reanalysis. All reproduced 423 

data of Dunn et al. were stored in the “manuscript_dunn.RData” file 424 

(https://doi.org/10.5281/zenodo.4003391). We used the results stored in the ‘data’ or 425 

‘phylo’ slot of the trees for further analyses. To differentiate our own function from theirs 426 

(Dunn et al. 2018), we renamed the original function script of Dunn et al. from 427 

“functions.R” to “functions_Dunn.R”. We made separate scripts for PIC analyses 428 

(“Premanuscript_run_TMRR.R”), and for data modeling analyses (“Model_fitting.R”). 429 

Some of the analyses were time consuming, so we stored our outputs in 430 

“Analyses_TMRR.RData”, and in “Model_fitting_TMRR.Rdata” files 431 

(https://doi.org/10.5281/zenodo.4003391), to load during analyses. All the details of 432 

different functions are provided inside the scripts. We supply all the previously stored data 433 

(to reduce computation time during reproduction of result) and function files including our 434 

own (“functions_TM_new.R”) with this manuscript. All scripts are available on GitHub: 435 

https://github.com/tbegum/Testing_the_ortholog_conjecture. 436 

Fixing time calibration bias of duplication nodes 437 

We first present the approach that Dunn et al. (2018) used, for clarity. When two speciation 438 

nodes had the same label in the gene tree, Dunn et al. edited the more recent one to “NA” 439 

rather than “speciation”. Indeed the presence of the same clade names at different node 440 
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depths forces all the intervening branches to have length zero when the tree is time 441 

calibrated, leading to failure of calibration (Dunn et al. 2018). For trait evolution, they 442 

annotated the tips of these modified trees with precomputed tissue specificity data,	𝜏 from 443 

8 vertebrate species (human, gorilla, chimpanzee, macaque, mouse, opossum, platypus, and 444 

chicken) (from Kryuchkova-Mostacci and Robinson-Rechavi 2016). 𝜏 is a univariate index 445 

between 0 and 1 that measures tissue-specificity of gene expression (Yanai et al. 2005): 	𝜏 446 

close to 1 indicates high tissue specificity, while close to 0 indicates more ubiquitous 447 

expression. Here 𝜏 was computed across 6 tissues: brain, cerebellum, heart, kidney, liver, 448 

and testis, based on the RNA-seq data of Brawand et al. (2011). Dunn et al. pruned the 449 

gene trees to remove tips with missing 𝜏 data, and then time calibrated them using 450 

speciation clade ages in the chronos() function with the ‘correlated’ model from the R 451 

package “ape” (Paradis et al. 2004). The modified NA clades were not used for this 452 

calibration. They used 7 speciation time points with a maximum age of 296 My. Thus they 453 

obtained 8520 calibrated gene trees having at least 4 tips with non-null trait data (Table 1; 454 

Supplementary figs. S4A-S4C). Among these trees, 2990 were pure speciation trees, which 455 

includes 12919 speciation events, or 19% of all speciation nodes. 456 

Relative to Dunn et al., we exchanged the order of pruning and time calibration steps, i.e., 457 

we first time calibrated the 21124 modified (i.e. with NA added) gene trees, followed by 458 

pruning to have at least 4 tips with 𝜏 data.	This makes use of all 32 available speciations 459 

time points, and helps to limit the calibration bias of the old duplication events 460 

(Supplementary figs. S4D-S4F). Calibration fails for some trees, and we obtained 7336 461 

calibrated gene trees. The maximum node age of old duplication events is 1175.2 My for 462 

these trees, as opposed to 11799977 My (older than the universe) for the trees obtained by 463 
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the original approach (Table 1, Supplementary table S1). Among these 7336 gene trees, we 464 

kept 4288 which have at least 1 speciation and 1 duplication events; we removed 39 pure 465 

duplication and 3009 pure speciation trees. This 4288 gene tree set is our basis for 466 

evaluating phylogenetic methods' capacity to test the ortholog conjecture (Table 1): we 467 

compare the evolutionary rates, 𝜎2, or PICs of speciation and duplication events of the same 468 

genes.  469 

Model selection for 𝝉 evolution  470 

We followed a state dependent model-fitting approach to identify Brownian motion (BM) 471 

or Ornstein-Uhlenbeck (OU) trees. We classified time-calibrated gene duplication nodes 472 

as “young” (≤ 296 My, the maximum speciation age) or “old” (> 296 My) before model 473 

fitting. We performed stochastic mapping of our gene trees by assigning discrete states 474 

(“speciation”, “young-duplication”, “old-duplication”, and “NA”) to the branches based on 475 

the corresponding ancestral node events using the simmap() function of the phytools R 476 

package (Revell 2012). For each mapped tree, we fitted 4 different models of 𝜏 evolution 477 

using maximum-likelihood: (i) BM1, a single Brownian motion rate of evolution (i.e. 478 

σ2speciation = σ2young-duplication = σ2old-duplication), (ii) BMM, a BM with multiple rates of evolution 479 

for different events (i.e. different σ2 are allowed), (iii) OU1, a single optimum OU model 480 

(i.e. θspeciation = θyoung-duplication = θold-duplication, σ2speciation = σ2young-duplication = σ2old-duplication, α 481 

speciation = αyoung-duplication = α old-duplication),  and (iv) OUM, a multi optimum OU model with 482 

identical strength of selection and rate of drift acting on all selective regimes (i.e. like OU1 483 

but θspeciation ≠ θyoung-duplication ≠ θold-duplication).  484 
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We used both the mvMORPH (Clavel et al. 2015), and OUwie (Beaulieu et al. 2012) R 485 

packages to perform model-fitting. Sometimes the information contained within a tree is 486 

insufficient with respect to the complexity of the fitted models. This can lead to poor model 487 

choice by returning a log-likelihood that is suboptimal and may provide incorrect 488 

estimation of one or more model parameters for that tree (Beaulieu et al. 2012). Hence, we 489 

included the diagnostics (diagnostic=T or diagn=T) during model-fitting. The eigen values 490 

of the Hessian matrix of the diagnostics indicate whether convergence of the model has 491 

been achieved or whether the parameter estimates are reliable (Beaulieu et al. 2012). For 492 

the BM1, BMM, OU1, and OUM models, we first fitted the model using mvMORPH for 493 

each gene tree. If any of the model failed to converge for the tree or if the eigen values of 494 

the Hessian matrix indicated that it was not reliable, we re-fitted that model using OUwie 495 

to include it in model comparison. If still it failed, we removed that model for that tree. For 496 

model comparisons on each gene tree, we calculated the Akaike weights (w) for each fitted 497 

model by means of the second order Akaike information criteria (AICc), which includes a 498 

correction for small sample sizes (Akaike 1974; Burnham and Anderson 2002). The model 499 

with highest w was selected as the best-supported model of 𝜏 evolution for the tree 500 

(Burnham and Anderson 2002; Gearty et al. 2018). We estimated model parameters for 501 

each tree based on the best fit model.  502 

Bayesian modeling to detect phenotypic optimum shift  503 

Regime shifts, i.e. shifts of optimal 𝜏 values, in OU models were detected by a Bayesian 504 

phylogenetic approach of the bayou R package (Uyeda and Harmon 2014). The reversible-505 

jump phylogenetic comparative approach was used to perform MCMC sampling of 506 

locations, magnitudes and numbers of shifts in multiple-optima Ornstein–Uhlenbeck 507 
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models. We ran MCMC chains for 100000 generations, and the first 30% of samples were 508 

dropped as burn-in. We used a strict threshold of posterior probability ≥ 0.7 to detect an 509 

adaptive shift at a given branch of the phylogeny. For each event (“speciation” or 510 

“duplication”), we used a ratio of the number of optimum shifts to the number of branches 511 

for that event to estimate the proportions of shifts in a phylogeny.  512 

Randomization test of 𝜏 values 513 

For each tree, we used 𝜏 data (column name “Tau” in each tree ‘data’ object) across the 514 

tips to carry out our randomization test. To randomize we permuted the actual 𝜏 data 515 

without altering internal node events. The pic() function of the “ape” package (Paradis et 516 

al. 2004) was used to compute PIC of nodes for each tree using permuted 𝜏 of tips. For 517 

each run, we compared the contrasts of speciation and duplication events of the whole set 518 

of randomized trees to estimate difference in event contrasts based on Wilcoxon signed 519 

rank test. For 100 runs, we repeated the above process 100 times to obtain a distribution 520 

plot of 100 independent P values. For our model-fitting approach, we used the same 521 

empirical simmap trees with permuted 𝜏 data at the tips. We re-estimated the model 522 

parameters of the randomized 𝜏	trees using the best fit model chosen for the corresponding 523 

empirical gene trees.  524 

Randomization test of node events 525 

Some of the speciation nodes had daughters with same clade names in the gene trees we 526 

used for our study. Dunn et al. changed such node events to “NA” to avoid problems during 527 

time calibration of the trees. Such annotated node event information (“Speciation”, 528 

“Duplication”, “NA”) for each tree was available as “Event” in the tree ‘data’ slot. To 529 
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randomize, we permuted the internal node events (added as column name “event_new” in 530 

the ‘data’ slot) by maintaining the actual proportion of events for each tree. Then, we used 531 

the PIC of actual 𝜏 at tips to estimate contrasts difference between newly assigned 532 

speciation and duplication node events by Wilcoxon rank tests. For 100 independent runs, 533 

we repeated the same procedure to obtain 100 independent P values. Since the internal 534 

node events were changed after such randomization, we reclassified gene duplication nodes 535 

as “young” or “old” on the event modified trees, and repainted the trees. We re-estimated 536 

the model parameters for the discrete states of the randomized events trees using the best 537 

fit model chosen for the corresponding empirical gene trees.  538 

Checking for contrasts standardization by diagnostic tests 539 

We used several additional diagnostic tests on those trees to identify adequate independent 540 

nodes contrast standardization before drawing any inference by PIC method, as 541 

recommended in several studies (Garland 1992; Diaz-Uriarte and Garland 1996; Díaz-542 

Uriarte and Garland 1998; Freckleton and Harvey 2006; Cooper et al. 2016a). The most 543 

usual method for contrasts standardization is to check a correlation between the absolute 544 

values of PICs and their expected standard deviations (i.e. square root of sum of branch 545 

lengths) (Garland et al. 1992; Díaz-Uriarte and Garland 1998; Cooper et al. 2016a). Under 546 

Brownian motion, there should be no correlation. This test and the correlation between the 547 

absolute values of PICs and the logarithm of their node age are model diagnostic plot tests 548 

in the caper (“Comparative Analyses of Phylogenetics and Evolution in R”) package 549 

(Purvis and Rambaut 1995; Cooper et al. 2016a; Orme 2018; R Core Team 2018). We used 550 

both of them by using the “crunch” algorithm of the caper package, which implements the 551 

methods originally provided in CAIC (Purvis and Rambaut 1995; Cooper et al. 2016a; 552 
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Orme 2018; R Core Team 2018). Correlation of node heights with absolute values of 553 

contrasts or PICs has also been reported to be a reliable indicator of deviation from the 554 

Brownian model (Freckleton and Harvey 2006). Hence, we computed node height for each 555 

node in a tree using the ape package (Paradis et al. 2004). We also used the correlations of 556 

node height and node depth to the absolute value of nodes contrasts to rule out significant 557 

trend in any of the 4 tests. We used P < 0.05 to assess a significant correlation for the 558 

diagnostic tests. A significant trend (positive or negative) indicates phylogenetic 559 

dependence for that tree (Garland 1992; Garland et al. 1992; Díaz-Uriarte and Garland 560 

1998; Freckleton and Harvey 2006; Cooper et al. 2016a), and we removed those trees from 561 

our analysis. Contrast calculation on negative branch lengths is not desirable, so we 562 

removed trees with negative branch lengths before applying the crunch() function. To 563 

assure that nodes contrast standardization is independent of the phylogeny, we considered 564 

sets of trees passing all 4 diagnostic tests for further analyses. 565 

Branch length transformation 566 

Transformation of branch lengths has been proposed to restore the performance of PIC 567 

method when the true evolutionary model is not BM or is unknown, or when branch lengths 568 

are in error (Garland et al. 1992; Diaz-Uriarte and Garland 1996; Díaz-Uriarte and Garland 569 

1998). In such cases, branch lengths are transformed by raising a family power of branch 570 

length ranging from 0 to 2 in intervals of 0.1, plus the log10 of the branch lengths (Diaz-571 

Uriarte and Garland 1996; Díaz-Uriarte and Garland 1998). For each transformation, the 572 

program computes the correlation between the absolute value of the standardized contrasts 573 

and their standard deviations until no significant correlation is obtained, to ensure adequate 574 

independent contrasts standardization (Diaz-Uriarte and Garland 1996; Díaz-Uriarte and 575 
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Garland 1998). Finally, we excluded trees for which adequate contrasts standardization is 576 

not achieved even after raising the branch length power to 2 (Diaz-Uriarte and Garland 577 

1996; Díaz-Uriarte and Garland 1998). 578 

Details of other packages used in this study 579 

We used phylosig function() of the phytools package (Revell 2012) to identify trees with 580 

phylogenetic signal (P < 0.05) using Blomberg’s K (Blomberg et al. 2003; Münkemüller 581 

et al. 2012; Revell 2012). Analyses and plotting were performed in R version 3.5.1 (R Core 582 

Team 2018) using treeio (Guangchuang 2018), ggtree (Guangchuang et al. 2017), stringr 583 

(Wickham 2019), digest (Antoine Lucas et al. 2018), dplyr (Wickham et al. 2017), 584 

tidyverse (Wickham 2017), ggrepel (Slowikowski 2018), gtools (Warnes et al. 2018), 585 

ggplot2 (Wickham 2016), cowplot (Wilke 2019), easyGgplot2 (Kassambara 2014), 586 

gridExtra (Auguie 2017), and png (Urbanek 2013) libraries. 587 

	588 
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Figure captions 837 

Figure 1: Reanalyses of phylogenetic simulation data of Dunn et al. (2018). P values 838 

are from Wilcoxon two-tailed tests. Values inside boxplots denote median PIC values of 839 

the corresponding events. In null simulations, there should be no difference in contrasts 840 

between events. In OC (Ortholog Conjecture) simulations, contrasts are expected to be 841 

higher for duplication than for speciation. (A) Higher contrasts for speciation than 842 

duplication reject the null hypothesis under null simulation scenario for all empirical time 843 

calibrated gene trees. (B) Results are similar with a subset of trees with strong phylogenetic 844 

signal for 𝜏. 845 

Figure 2: Analyses on calibrated empirical gene trees of Dunn et al. (2018). P values 846 

are from Wilcoxon two-tailed tests. (A) Randomly shuffling the 𝜏 values of the tips for 847 

8520 gene trees does not alter the empirical trend of an opposite trend to the ortholog 848 

conjecture. (B) The expected variance is much higher for duplication than speciation events 849 

irrespective of the number of tips considered for the study. (C) Using the original 𝜏 data, if 850 

we permute the events (Speciation or Duplication or NA) of the nodes, the trend of result 851 

remains. (D) The proportions of speciation events is much higher than duplication events 852 

for all time-calibrated trees; the dotted line represents the median proportion of both events; 853 

a high proportion of trees have no duplication events. 854 

Figure 3: The ortholog conjecture test on 𝝉 for trees passing diagnostic plot tests. P 855 

values are from Wilcoxon two-tailed tests. Values inside boxplots denote median PIC 856 

values of the corresponding events. Young duplicates: age ≤ 296 My, the maximum 857 

speciation age; old duplicates: age > 296 My.  858 
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Figure 4: The ortholog conjecture test for contrasts standardized branch transformed 859 

trees. P values are from Wilcoxon two-tailed tests. Values inside boxplots denote median 860 

PIC value of the corresponding event. (A) Using 4190 out of 4288 calibrated trees that 861 

passed diagnostic tests following branch length transformation. (B) Permuting τ, and (C) 862 

permuting internal events on contrasts standardized branch length transformed trees 863 

produces distinct patterns compared to the empirical gene trees of (A). 864 

  865 
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Table 1: Information on different tree sets, number of internal node events, and node 866 

ages used in this reanalysis.   867 

Note- My: Million years; young: age ≤ 296 My; old: age > 296 My.	 	868 

Datasets 
Number 

of trees 

Number of 

speciation 

events 

Number of 

duplication 

events 

Number 

of NA 

events 

Maximum 

speciation 

node age 

(My) 

Maximum 

duplication 

node age 

(My) 

Dunn et al.: full 

set 
8520 67911 21071 26794 296 11799977 

Dunn et al.: 

trees with 

strong 

phylogenetic 

signals 

2082 13118 4056 5186 296 1342 

This study: after 

excluding pure 

speciation trees  

4288 38882 

 

15274 

(8556 

young + 

6718 old) 

 

15201 296 1175 
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Table 2: Summary statistics on 1101 OUM trees passing a posterior probability cutoff 869 

of ≥ 0.7 in a Bayesian framework.   870 

Duplication 

Age 

Proportions of regime 

shifts per branch 

Paired 

two-

sided 

Wilcoxon 

rank 

sum test 

Regime shift rates 

(shifts/My) 
Two-

sided 

Wilcoxon 

rank test 
After 

speciation 

After 

duplication 

After 

speciation 

After 

duplication 

Young 3.1% 4.5% 3.4e-12 0.013 0.031 1.7e-11 

Old 2.6% 10% < 2.2e-16 0.013 0.0023 < 2.2e-16 

Note- Above analyses include 13824 speciation, 3027 young and 2814 old duplication 871 

events. Values shown in the table indicate median values. The difference in proportions of 872 

regime shifts per branch after speciation events for two types of duplications is due to the 873 

different sets of trees used. Few trees shared both types of duplicates. Proportions of regime 874 

shifts per branch of events is estimated for each tree, and thus paired Wilcoxon test is used 875 

to compare the difference. A single gene tree can have multiple optima shift rates for 876 

events, and thus two-sided Wilcoxon rank test was used for comparison. 877 

 878 

879 
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Table 3: Summary statistics for Brownian trees.   880 

Duplication 

age 
Data s2Speciation s2Duplication 

s2Duplication / 

s2Speciation 
P-value 

Young 

Empirical 

(nSpeciation= 4642; 

nDuplication = 1742) 

9e-5 1.4e-4 1.5 5e-12 

Randomized τ 

(nSpeciation= 4618; 

nDuplication = 1723) 

6.9e-4 2.2e-4 0.32 1.4e-13 

Randomized 

events 

(nSpeciation= 3215; 

nDuplication = 1438) 

1.7e-4 8.5e-5 0.5 0.02 

Old 

Empirical 

(nSpeciation= 5356; 

nDuplication = 1295) 

1.7e-4 2e-9 1.2e-5 < 2.2e-16 

Randomized τ 

(nSpeciation= 5337; 

nDuplication = 1291) 

9.1e-4 2.5e-10 2.7e-7 < 2.2e-16 

Randomized 

events 

(nSpeciation= 2788; 

nDuplication = 800) 

1.8e-4 2.1e-9 1.2e-5 < 2.2e-16 

Note:  Median values of s2 are shown. P-value from paired two-sided Wilcoxon test. 881 
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Supporting Information 883 

 884 

Figure S1: Expectations from phylogenetic and pairwise comparison approaches 885 

under null and ortholog conjecture scenarios. PIC: Phylogenetic Independent Contrast, 886 

OC: Ortholog Conjecture. We present 4 time-calibrated gene trees of Dunn et al. (2018) as 887 

illustration. Trees A and B are well calibrated, with the duplication ages are constrained by 888 

speciation ages, as shown by the time scales below each phylogeny. Trees C and D 889 

represent biased calibrated trees, where old duplication branches are inaccurately calibrated 890 

due to lack of age constraints. To evaluate the impacts of gene duplication and speciation 891 

events in trait evolution, pairwise comparisons do not rely on the branch lengths of a 892 

calibrated phylogeny, but phylogenetic methods do. If time calibration of old duplication 893 

nodes has no influence in the inference of phylogenetic approaches, we expect to obtain 894 

patterns under a null and OC scenarios as shown in the right part of the figure. This means 895 

that the phylogenetic contrasts or pairwise correlations of different events should be drawn 896 

from the same distribution under a null model, while the expectation differs under the OC 897 

model. We used 2 times higher rates of trait evolution (𝜏 here) following duplications than 898 

speciations (i.e. σ2duplication = 2 * σ2speciation) in this example for the OC model. 899 

Figure S2.: Repeating simulations on all calibrated trees with different random seed 900 

number. P values are from Wilcoxon two-tailed tests. Simulations with different seed 901 

number did not change the trend of results as reported in Fig. 1A. 902 

Figure S3: Simulation analyses on 1135 trees with strong phylogenetic signals. P 903 

values are from Wilcoxon two-tailed tests. Dunn et al. used a cutoff of K > 0.551 to identify 904 
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trees with strong phylogenetic signals. However, trees with higher K statistic can have 905 

corresponding P values which are non-significant. Considering both K statistic and P value, 906 

we found similar trends as was observed with 2082 trees. 907 

Figure S4:	Difference between time calibration approaches of Dunn et al. (2018) and 908 

of this study. In this example, we used the phylogeny of ACP1 gene. The top panel (A-C) 909 

shows the steps used by Dunn et al. (2018), while the bottom panel (D-F) shows the steps 910 

used in this study. Gene trees obtained from Ensembl (Herrero et al. 2016) have branch 911 

lengths in substitutions per site. (A) and (D) are the same gene tree, where Dunn et al. 912 

(2018) edited few speciation events to ‘NA’ to pass the time calibration step. (B) The gene 913 

trees are pruned to species with available τ. (C) The pruned tree is time calibrated using 914 

speciation time points. Pruning before time calibration produces tree with many 915 

duplications, and NA nodes older to the oldest speciation nodes as in (B). This leads to 916 

using only 7 speciation time points for calibration. Due to unavailable age constraints on 917 

the old duplication nodes, the time scale of the phylogeny in (C) reaches 880 million years 918 

(My). When we performed time calibration before pruning as in (E), we could use 32 919 

speciation nodes for time calibration. This means that we could use many speciation nodes 920 

for time calibration, although τ data was unavailable for species at tips due to the choice of 921 

species in this study. Hence, the old duplication nodes are constrained by the age of 922 

speciation nodes older to them, and thus the maximum age is now of 356 My (F). 923 

Figure S5: Re-analyses of expected variances of calibrated trees considered by Dunn 924 

et al.  The expected variance plots of (A) all 8520 calibrated trees, and (B) 2082 trees with 925 

strong phylogenetic signal. The dotted line represents the mean expected variance of the 926 
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events. These plots show why duplication nodes preceding ancient speciation nodes can be 927 

problematic for PIC. 928 

Figure S6: P value distribution plots after 100 independent runs on each set of trees. 929 

Wilcoxon two-tailed test with 95% confidence interval was used to compare the speciation 930 

and duplication contrasts after randomization tests. (A) and (B) applied to trees with at least 931 

one speciation and one duplication event. (C) and (D) applied to trees with strong 932 

phylogenetic signal. (A) and (C) randomization of trait (τ) over the trees. (B) and (D) 933 

randomization of internal node events. The inset plots show P values adjusted with 934 

Benjamini-Hochberg (Benjamini and Yekutieli 2005; Hochberg and Benjamini 1990). 935 

Supporting our observations of Figs. 2A and 2C, all the plots confirm that the empirical 936 

result of Dunn et al. (2018) is not different from randomized test results. 937 

Figure S7: The ortholog conjecture test after randomizations of contrasts 938 

standardized trees. P values are from Wilcoxon two-tailed tests. ‘PICs’: Phylogenetic 939 

Independent Contrasts. Values inside boxplots denote median PIC value of the 940 

corresponding event. (A-B) Plots after randomizing τ, and after randomizing events using 941 

the same trees as in Fig. 3.  942 

Figure S8: Multivariate model fitting result using a maximum likelihood framework. 943 

BM1: Single rate Brownian; BMM: Multi rates Brownian; OU1: Single optimum Ornstein-944 

Uhlenbeck; and OUM: Multi optima Ornstein-Uhlenbeck models. 945 

Figure S9: The ortholog conjecture test for τ on calibrated trees of Dunn et al. P values 946 

are from Wilcoxon two-tailed tests. ‘PICs’: Phylogenetic Independent Contrasts. Values 947 

inside boxplots denote median PIC value of the corresponding event. (A) Using 8417 out 948 

of 8520 calibrated trees that passed diagnostic tests following branch length transformation. 949 
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(B) Plot after randomizing τ, and (C) after randomizing events using the same branch 950 

transformed trees as in (A). 951 

Figure S10: The ortholog conjecture test for τ on branch transformed trees with 952 

strong phylogenetic signals. P value are from Wilcoxon two-tailed tests. ‘PICs’: 953 

Phylogenetic Independent Contrasts. Values inside boxplots denote median PIC value of 954 

the corresponding event. (A) using 2080 out of 2082 calibrated trees that passed diagnostic 955 

tests following branch length transformation. (B) Plot after randomizing τ, and (C) after 956 

randomizing events using the same branch transformed trees as in (A). 957 

   958 
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Table S1: Summary statistics of calibrated old duplication nodes for 8420 trees of 959 

Dunn et al. (2018).	960 

Maximum age group in 

Million Years (My) 
Count 

296-500 2917 

501-900 7548 

901-3000 49 

3001-10000 16 

10001-11799977 9 

 961 

  962 
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Table S2: Analyses on multi optima OU trees.   963 

Note:  Median values of s2 are shown. P-value from paired two-sided Wilcoxon test. 964 

Duplication 

age 
Data qSpeciation qDuplication 

qDuplication / 

qSpeciation 
P-value  

Young 

Empirical 

(nSpeciation= 2690; 

nDuplication = 842) 

0.41 0.74 1.8 8.6e-10 

Randomized τ 

(nSpeciation= 2690; 

nDuplication = 842) 

0.53 0.55 1.03 0.97 

Randomized 

events 

(nSpeciation= 1872; 

nDuplication = 698) 

0.50 0.53 1.06 0.75 

Old 

Empirical 

(nSpeciation= 4152; 

nDuplication = 847) 

0.42 0.92 2.19 2.4e-4 

Randomized τ 

(nSpeciation= 4152; 

nDuplication = 847) 

0.54 1.5e-11 2.8e-11 1.3e-07 

Randomized 

events 

(nSpeciation= 2081; 

nDuplication = 482) 

0.51 0.66 1.29 0.73 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 29, 2020. ; https://doi.org/10.1101/719336doi: bioRxiv preprint 

https://doi.org/10.1101/719336
http://creativecommons.org/licenses/by/4.0/


	 52	

Table S3: Summary statistics on OUM trees, passing both the maximum likelihood 965 

and the Bayesian approaches with a posterior probability cutoff of ≥ 0.7.   966 

 967 

Duplication 

Age 

Proportions of regime 

shifts per branch 

Paired 

two-

sided 

Wilcoxon 

rank 

sum test 

Regime shift rates 

(shifts/My) 
Two-

sided 

Wilcoxon 

rank test 
After 

speciation 

After 

duplication 

After 

speciation 

After 

duplication 

Young 2.8% 8.3% 8.3e-4 0.012 0.032 6.7e-6 

Old 0% 16.7% < 2.2e-16 0.012 0.0025 < 2.2e-16 

Note- Above analyses include 2779 speciation, 486 young, and 548 old duplication events. 968 

Values shown in the table indicate median values. The difference in proportions of regime 969 

shifts per branch after speciation events for two types of duplications is due to the different 970 

sets of trees used. Few trees shared both types of duplicates. Proportions of regime shifts 971 

per branch of events is estimated for each tree, and thus paired Wilcoxon test is used to 972 

compare the difference. A single gene tree can have one or many optima shift rate(s) for 973 

events, and thus two-sided Wilcoxon rank test was used for comparison. 974 

 975 

 976 
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