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1 Abstract

2 Time-calibrated molecular phylogenies of extant species ("extant timetrees") are widely used for esti-
3 mating the dynamics of diversification rates (1-6) and testing for associations between these rates and
4 environmental factors (5, 7) or species traits (8). However, there has been considerable debate surround-
5 ing the reliability of these inferences in the absence of fossil data (9—13), and to date this critical question
6 remains unresolved. Here we mathematically clarify the precise information that can be extracted from
7 extant timetrees under the generalized birth-death model, which underlies the majority of existing es-
8 timation methods. We prove that for a given extant timetree and a candidate diversification scenario,
9 there exists an infinite number of alternative diversification scenarios that are equally likely to have gen-
10 erated a given tree. These “congruent” scenarios cannot possibly be distinguished using extant timetrees
11 alone, even in the presence of infinite data. Importantly, congruent diversification scenarios can exhibit
12 markedly different and yet plausible diversification dynamics, suggesting that many previous studies may
13 have over-interpreted phylogenetic evidence. We show that sets of congruent models can be uniquely
14 described using composite variables, which contain all available information about past dynamics of di-
15 versification (14); this suggests an alternative paradigm for learning about the past from extant timetrees.
16 Keywords: speciation; extinction; macroevolution; phylogenetic trees; pulled speciation rate
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17 Introduction

e A central challenge in evolutionary biology is to explain why some taxonomic groups and some time periods
10 have so many species while others have so few; ultimately this means estimating and explaining variation
20 in rates of speciation and extinction (13). Estimating these rates is crucial to investigating fundamental
1 questions such as the role of biotic and abiotic processes in shaping patterns of species richness (7), how
> Barth’s biota recover after mass extinction events (15, 16) and whether there are general dynamics that govern
>3 how biodiversity accumulates (17). Measuring such rates has taken on a new urgency as we try to understand
2« how anthropogenically induced extinctions compare to "background" rates (18, 19). In the medical domain,
5 “‘speciation” and extinction rates are key parameters that provide insights into the historical dynamics and
26 future trajectories of viral epidemics (20, 21).

27 Unfortunately, the vast majority of lineages that have ever lived have not left any trace in the fossil
25 record, and hence we are forced to attempt to reconstruct their diversification dynamics from incomplete
20 data. Indeed, for many groups the fossil record is so incomplete that the primary source of information on
50 past diversification dynamics comes from time-calibrated molecular phylogenies of extant lineages ("extant
51 timetrees"). There is now an abundance of increasingly sophisticated methods for extracting this information,
s> with most state-of-the-art methods fitting variants of a birth-death process (22) to extant timetrees (1-6, 23).
;3 These methods have, collectively, been used in thousands of studies and have substantially contributed to
s« our understanding of the drivers of diversity through time. Despite their popularity, there has been a long-
55 lingering doubt about many of these inferences. For one, simulation studies have repeatedly shown that some
56 variables, especially extinction rates, are generally difficult to estimate (11, 24-28). But an even more funda-
;7 mental issue, which has particularly drawn the attention of paleobiologists, is that there may not be sufficient
;s information in a molecular phylogeny to fully reconstruct historical changes in diversification rates. For ex-
50 ample, when speciation and extinction rates vary through time — and there is abundant evidence from the
20 fossil record that they do (13) — mass extinction events can erode much of the signal of preceding diversifi-
41 cation dynamics (9, 10, 12), and may themselves even be confused with stagnating speciation rates (29). To
2 date these critical identifiability issues remain poorly understood, and no general theory exists for describ-
«3 ing which diversification scenarios can be distinguished from each other and precisely what information on
a4 diversification rates is in principle extractable from extant phylogenies.

45 Here, we present a solution to this problem: We develop a mathematical framework for assessing
s the identifiability of the general stochastic birth-death process with homogeneous rates, where speciation
a7 (“birth”) rates (\) and extinction (“death”) rates (1) can vary over time, and which underlies the majority of
s existing methods for reconstructing diversification dynamics from phylogenies (5). By considering the full
20 space of possible diversification scenarios (i.e., with arbitrary A and ), rather than special cases (as has been
s0 done so far), we reveal a fundamental and surprisingly general property of the birth-death process that has far
51 reaching implications for diversification analyses. Specifically, we show that for any given birth-death model
2 there exists an infinite number of alternative birth-death models that can explain any given extant timetree
53 equally well as the candidate model. This ambiguity persists for arbitrarily large trees and cannot be resolved
s« even with an infinite amount of data using any statistical method. Crucially, these alternative models may
ss appear to be similarly plausible and yet exhibit markedly different features, such as different trends through
56 time in both A and p. Using simulated and real timetrees as examples, we demonstrate how failing to rec-
57 ognize this immense ambiguity may seriously mislead our inferences about past diversification dynamics,
ss  shedding doubt on conclusions from countless previous studies. We further show that these sets of “congru-
5o ent” models can be uniquely identified based on suitably defined composite variables: the “pulled speciation
s rate”, corresponding to the effective A in the hypothetical absence of extinction and under complete species
st sampling, or equivalently, the “pulled diversification rate”, corresponding to the effective net diversification
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rate in the hypothetical case where ) is time-independent. Based on either one of these variables, it becomes
possible to determine whether different diversification scenarios are at all distinguishable, to explore the full
range of plausible scenarios that are consistent with the data, and to make inferences about diversification
dynamics without knowing A and p themselves.

Computing the likelihood of diversification models from lineages-through-time curves

One of the most important features of extant timetrees is the lineages-through-time curve (LTT), which counts
the number of lineages at each time in the past that are represented by at least one extant descending species
in the tree. The LTT provides a simple visual overview of a tree’s branching density over time and impor-
tantly, contains all the information encoded in the tree regarding speciation and extinction rates (30) (see also
Supplement S.1.2). This is because the likelihood of a extant timetree under a given birth-death model with
homogeneous rates depends solely on the tree’s LTT, but not on any other properties of the tree that do not
affect the LTT.

Here we show that an elegant analogous relationship also exists between the likelihood of a tree and
the LTT that would be predicted by a given birth-death model. Any given speciation and extinction rates over
time, A and p, and the probability that an extant species will be included in the tree p (present-day “sampling
fraction”), can be used to define a “deterministic” diversification process, where the number of lineages
through time no longer varies stochastically but according to a set of differential equations (3, 31-33; also
see Supplement S.1). The LTT predicted by these differential equations (“deterministic LTT”, or dLTT) is a
mere theoretical property of the model that resembles the LTT of a tree only if the tree is sufficiently large for
stochastic effects to become negligible, and assuming the model is an adequate description of the process that
generated the tree. It can be shown, however, that the likelihood of a tree under a given birth-death model can
be written purely in terms of the tree’s LTT and the model’s dLTT (Supplement S.1.2). This means that any
two models with the same dLTT (conditioned on the number of extant species sampled, M,) yield identical
likelihoods for the tree. In the following, we shall therefore call any two models “congruent” if they have
the same dLTT for any given M,. Note that two models are either congruent or non-congruent regardless
of the particular tree considered, meaning that model congruency is a property of models and not the data
(Supplement S.1). Furthermore, the probability distribution of tree sizes generated by a birth-death model,
when conditioned on the age of the stem (or crown), is identical among congruent models (Supplement S.1.7).
Hence, congruent models have equal probabilities of generating any given timetree and LTT, analogous to
how congruent geometric objects exhibit similar geometric properties (discussion in Supplement S.1.8). In
the absence of further information or constraints, congruent models cannot possibly be distinguished solely
based on extant timetrees, neither through the likelihood nor any other test statistic (such as the ~ statistic
(34)). Note that whether or not a given phylogenetic data set is sufficient to statistically distinguish between
non-congruent models is an entirely different matter.

Congruent model sets are infinitely large and infinite-dimensional

The above considerations lead to an important question: For any birth-death model (i.e., with given A\ and p
as functions of time, and a given sampling fraction p), how many alternative congruent models are there and
how could one possibly construct them? To answer this question, we first present an alternative method for
recognizing congruent models. Given a number of sampled species M,, a model’s dLTT is fully determined
by its relative slope, A\, = —M ~1dM /dr (where M is the dLTT and 7 is time before present or “age”). It
can be shown that )\, is related to the model’s speciation rate as A, = P\, where P(7) is the probability
that any lineage that existed at age 7 survives to the present and is included in the timetree (Supplement
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w04+ S.1.1). In the absence of extinction (1 = 0) and under complete species sampling (p = 1), A, is identical
105 to A, however in the presence of extinction A, is pulled downwards relative to A at older ages, while under
106 incomplete sampling A, is pulled downwards relative to A near the present. We thus henceforth refer to A, as
17 the “pulled speciation rate” of a model. Since a model’s dLTT is fully determined by A, and, reciprocally, A,
108 is fully determined by the dLTT, it becomes evident that two models are congruent if and only if the have the
100 same pulled speciation rate. The latter can also be used to calculate a variable called “pulled diversification

1o rate” (14), defined as:
1dA

Adr’ M
11 The 7, is equal to the net diversification rate (r = A — p) whenever A is constant in time (dA/dr = 0), but
112 differs from » when A varies with time. As shown in Supplement S.1.1, A, and 7}, are linked through the
13 following differential equation:

Tp=A— -+

dA
= (e = ), )

14 with initial condition A,(0) = pA, (where A\, = A(0) is the present-day speciation rate). Equation (2)
15 reveals that r, is completely determined by A, (one can just solve for ). Reciprocally, A, is completely
116 determined by 7, and some initial condition (i.e., A, specified at some fixed time), since one can just solve
17 the differential equation for A, (see solution in Supplement S.1.6). We thus conclude that two birth-death
115 models are congruent if, and only if, they have the same r}, and the same A}, at some time point (for example
119 the same product p),).

120 We are now ready to assess the breadth of congruent model sets. Consider a birth-death model with
121 speciation rate A > 0, extinction rate 1 > 0 and sampling fraction p € (0, 1]. If we denote 1, = p),, then
12> for any alternative chosen extinction rate function p* > 0, and any alternative assumed sampling fraction
s p* € (0,1], there exists a speciation rate function A* > 0 such that the alternative model (A\*, u*, p*) is
124 congruent to the original model. In other words, regardless of the chosen p* and p*, we can find a hypothetical
125 \* that satisfies:

A= +;$:TP’ P AT (0) = 1. (3)
126 Indeed, to construct such a A* one merely needs to solve the following differential equation:
ax* N .
TN (= X ), 4)

127 with initial condition A*(0) = 7,/p* (solution given in Supplement S.1.4). The above observation implies
s that, starting from virtually any birth-death model, we can generate an infinite number of alternative congru-
120 ent models simply by modifying the extinction rate i+ and/or the assumed sampling fraction p. Alternatively,
150 congruent models can be generated by assuming various ratios of extinction over speciation rates, € = p/A
131 (formula in Supplement S.1.5). This set of congruent models — henceforth “congruence class” — is thus
132 infinitely large. The congruence class can have an arbitrary number of dimensions (depending on restrictions
133 imposed a priori on A* and p*), since p* could depend on an arbitrarily high number of free parameters.

134 For illustration, consider the simulations in Figure 1, showing four markedly distinct and yet congruent
135 birth-death models. The first scenario exhibits a constant A and a temporary spike in y (mass extinction
136 event), the second scenario instead exhibits a constant x and a temporary drop in A (temporary stasis of
137 speciations) around the same time, the third scenario exhibits a mass extinction event at a completely different
135 time and a fluctuating A, while the fourth scenario exhibits an exponentially decaying i and a fluctuating A.
130 These congruent scenarios were obtained simply by assuming alternative extinction rates, and a myriad of
120 other congruent scenarios also exist. Analogous situations can be readily found in the literature. Figures
u1 2A-C, for example, show a birth-death model with exponentially varying speciation and extinction rates,

4
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2 A= X and u = ,uoeBT (where \,, 110, o and [ are fitted parameters), as commonly considered in other
113 studies (3, 39), fitted to a massive timetree of 79,874 extant seed plant species via maximum likelihood.
122 Simply by modifying the coefficient 5 and choosing A according to Eq. (4), one can obtain an infinite number
us of congruent and similarly complex scenarios, with even opposite trends over time (Fig. 2B). Similarly,
126 Figs. 2D-F show origination and extinction rates of marine animal genera estimated from fossil data (36),
127 compared to two congruent scenarios, one where the linear trend of 1 has been reversed (Fig. 2B) and one
125 where u was set to zero (Fig. 2C).

149 Such ambiguities were described previously in special cases. For example, Kubo and Iwasa (31)
150 recognized that a variable A and constant p can be exchanged for a constant A and a variable u to produce
151 the same dLTT; similarly Stadler (29) and Crisp et al. (37) observed that simulations of mass extinctions
152 produced similar LTTs as simulations of temporarily stagnating diversification processes. Other previous
153 work on constant-rate birth-death models revealed that alternative combinations of time-independent A, p
152 and p can yield the same likelihood for a tree (38—41). By generalizing these analyses to the time-variable
155 case, we have revealed that in fact vast expanses of model space are practically indistinguishable.

155 Model congruency compromises existing reconstruction methods

157 Since the likelihood of an extant timetree can be expressed purely in terms of r, and the product pA, (Sup-
155 plement S.1.6), or alternatively purely in terms of A, (Supplement S.1.3), extant timetrees only provide
150 information about the congruence class of a generating process and not the actual speciation and extinction
160 rates. This identifiability issue can be interpreted as follows: Since all information available on past diversi-
161 fication dynamics (representable by birth-death models, to be precise) is encoded in a single curve, namely
162 the LTT, one should not expect to be able to “extract” from it two independent curves (A and u) without
163 additional information, as this would essentially double the amount of information at hand.

164 In order to estimate A and u, previous phylogenetic studies have been imposing strong and largely
165 arbitrary constraints. For example, many studies assume that A\ or p vary exponentially through time (42).
166 However this specific functional form is rarely justified biologically, and alternative functional forms of com-
17 parable simplicity and shape (e.g., the logistic function, or the Gauss error function) can be envisioned. Nor-
165 mally one expects that, regardless of which of these functional forms is considered, with sufficient data fitting
160 any of these forms will lead to qualitatively similar trends and shapes. This expectation simply does not hold
170 in our case, because the best-fitting representative within any given model set will generally only be the one
171 closest to the congruence class of the true process, rather than closest to the true process itself (Fig. 3). Con-
172 sequently, fitting alternative functional forms (i.e., alternative model sets) can result in drastically different
173 inferences with alternative trends in A and p over time, even if the each functional form used is in principle
17+ adequate for approximating the true historical A and p (examples in Supplement S.6 and Supplemental Fig.
175 S5). This conclusion applies to virtually any model set, including birth-death shift models where A and u
176 change at discrete time points (43).

177 We stress that common model selection methods based on parsimony or “Occam’s razor”, such as
175 the Akaike Information Criterion (AIC; 44) and the Bayesian Information Criterion (BIC; 45) that penalize
170 excessive parameters, generally cannot resolve this issue for multiple reasons. First, these information criteria
150 were designed to minimize the error of future model-based predictions by avoiding overfitting to finite data,
151 and not to identify the actual process that generated the data — these are very different scientific goals with
152 well-known trade-offs. There is no reason to believe that the simplest scenario in a congruence class will be
153 the one closest to the truth. Indeed, even if the true model is included in a congruence class, it will almost
154 always be the case that there are both simpler and more complex scenarios within the same congruence class
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155 (e.g., Figs. 2D-F) and, crucially, all of these alternative models remain equally likely even with infinitely
16 large datasets. Second, if one were to apply AIC or BIC, it is unclear how to quantify the complexity of
17 a diversification scenario in comparison with alternative scenarios, which may be described using different
15 functional forms. It is tempting to think that one could simply count the number of parameters. However, any
150 given curve can be written using various alternative functional forms parameterized in distinct ways (recall
100 that ultimately we wish to approximately estimate the curves A and i, not the parameters of some functional
101 form); the number of parameters is a property of parameterized sets of curves, not of a single curve. Even
102 if that were not the case, the number of parameters conventionally associated with a given functional form
103 need not necessarily reflect our intuition about complexity: Is a linear extinction rate (u = a + 3 - 7, two
104 parameters) more or less complex than an exponentially decaying rate (1 = «e”7) or an oscillating rate of the
105 form 1 = asin?(B7)? In addition, different members of a congruence class may be described with different
105 functional forms involving the same number of parameters. For example, the diversification scenario with
107 linear extinction rate (1 = o+ 3 - 7) and constant speciation rate (A = ) (3 parameters, assuming complete
105 species sampling) is congruent to an alternative and markedly different scenario with zero extinction rate
1o (u* = 0) and \* defined as the solution to the differential equation d\* /dT = \* - (y — o — 7 — \) with
200 initial condition A*(0) = ~ (again 3 parameters); there is no reason to prefer one congruent scenario over
201 the other based on the number of parameters or biological realism. Third, even when fitting models of the
202 same functional form, as explained above the maximum-likelihood model will a priori tend to be the one
203 closest to the congruence class of the true process, rather than the true process itself, and neither AIC nor
204 BIC would resolve this (since all other allowed models would have the same number of parameters but lower
205 likelihood). Supplemental Fig. S6 shows examples where maximum-likelihood fitted models, chosen among
206 a wide range of model complexities based on AIC, grossly fail to estimate the true rates even when fitting to a
207 massive tree with 1,000,000 tips, despite the fact that the models could in principle have accurately captured
205 the true rates.

209 Previous studies have not recognized the breadth of this issue because they typically only consider
210 a limited set of candidate models at a time, both when analyzing real datasets as well as when assessing
> parameter identifiability via simulations; as a result, previous studies have been (un)lucky enough to not
212 compare two models in the same congruence class (see Supplements S.2 and S.3 for reasoning). For example,
213 if atree was generated by an exponentially decaying A and  (e.g., via simulations), then fitting an exponential
214 functional form will of course yield accurate estimates of the exponents; however if the generating process
215 was only approximately exponential and better described by another gradually decaying function, then fitting
216 an exponential curve could even lead to opposite trends (examples in Fig. 2 and Supplement S.6).

217 It is important to realize that congruent scenarios can have markedly different macroevolutionary im-
215 plications. For example, Steeman et al. (46) reconstructed past speciation rates of Cetaceans (whales, dol-
210 phins, and porpoises) based on an extant timetree and using maximum-likelihood (assuming ;4 = 0). Steeman
20 et al. (46) found a temporary increase of A\ during the late Miocene-early Pliocene (Fig. 4), suggesting a po-
21 tential link between Cetacean radiations and concurrent paleoceanographic changes. However, alternatively
22> to assuming p = 0, one could assume that p was close to A, consistent with common observations from
23 the fossil record (13). For example, by setting ¢+ = 0.9 - A one obtains a congruent scenario in which A\ no
224 longer peaks during the late Miocene-early Pliocene but instead exhibits a gradual slowdown throughout most
25 of Cetacean evolution (Fig. 4B). Both scenarios are similarly complex and both could have generated the
26 timetree at equal probabilities. Even the common methodological decision to estimating net diversification
27 (r = A — p) rather than A and p separately (8, 11), is no longer meaningful in light of our results; the shape
28 of r is not conserved across a congruence class. Likewise, the models in a congruence class will not share
20 “average” (however defined) rates; hence absolute rate estimates (1), which have been used to estimate broad
23 macroevolutionary patterns (17) and background rates of extinction (19), are also unlikely to be accurately
231 reconstructed. These issues are likely also present in more complex models with additional free parameters,
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>3 for example where some clades exhibit distinct diversification regimes (42, 47). In such situations, the tree
233 can always be decomposed into a set of sub-trees with distinct LTT curves, each of which is subject to the
23 same identifiability issues as described here. Our findings thus shed doubts over a lot of previous work on
235 diversification dynamics, including some of the conclusions from our own work (14, 17).

6 Ways forward

237 Our findings for birth-death models of diversification are closely analogous to classic results from coalescent
233 theory in population genetics (48, 49), where an infinite number of models can give rise to the same drift
230 process as the idealized Wright-Fisher model. This realization was profoundly important for the field; it fo-
220 cused researchers’ attention on the dynamics of the effective population size N, a composite but identifiable
241 parameter that is the same for all models with the same Wright-Fisher drift process, rather than on the actual
22 (but non-identifiable) historical demography, sex ratios etc. of the population. Consequently, the field has
223 adapted and developed a plethora of tools to infer changes in N, through time and across the genome. Here
224 we have found an analogous generality, and have confirmed previous suspicions that many historical diversi-
205 fication scenarios may not be distinguishable using extant phylogenies alone (10, 13, 30, 31). We have shown
246 that such congruent scenarios can be defined in terms of the Ap,, or equivalently, in terms of the r, and pA,,
27 all of which are identifiable provided sufficient data (indeed, for sufficiently large trees these variables can
24 be directly calculated from the slope and curvature of the LTT; 14). Each congruence class contains exactly
220 one model with 4 = 0 and p = 1, which is also the only model where A = A,; hence the pulled speciation
250 rate can be interpreted as the effective speciation rate generating the congruence class’s dLTT in the absence
251 of extinctions and under complete species sampling. Similarly, each congruence class contains an infinite
2;2 - number of models with time-independent A, and for these models r, = r; hence the pulled diversification
253 rate can be interpreted as the effective net diversification rate if A was time-independent. It is in this way that
254 Ap and 7, being identifiable and “effective” rates in idealized scenarios, are analogous to N, in population
255 genetics.

256 Of course fossil data could in principle help resolve the issues highlighted here, for example via
257 fossilized-birth-death models (50, 51) or birth-death-chronospecies models (52), however for a large number
53 of taxa (e.g., all prokaryotes and many soft-bodied eukaryotes) fossil data are virtually non-existent. Rather
250 than attempting to estimate A and 1, one can instead estimate A, 7, and pA, (and A, if p is known) either
260 using likelihood methods (Supplement S.5) or based on the slope and curvature of a tree’s LTT (14). Our
261 previous work(14) has shown that r, itself can yield valuable insight into diversification dynamics and can
262 be useful for testing alternative hypotheses (also see Supplement S.4). Using simulations, for example, we
263 found that sudden rate transitions, for example due to mass extinction events, usually lead to detectable fluc-
264 tuations in rp,; therefore, a relatively constant r, over time would be indicative of constant — or only slowly
265 changing — speciation and extinction rates (14). One can also obtain other useful composite variables from
266 Ap, Tp and pA,. For example, in cases where p is known one can obtain the “pulled extinction rate”, defined
%7 @S lp := A, — 1, (14). Note that yu,(7) is equal to the extinction rate ;(7) if A has been constant from 7
26s  to the present, but differs from y in most other cases. The present-day s, is related to the present-day p as

260 follows: "
1

0) =p(0) — —— .

Mp( ) ILL( ) )\o dT o

270 Hence if the present-day speciation rate changes only slowly, the present-day 1, will resemble the present-

o7 day p. Further, since 14(0) is non-negative, we can obtain the following one-sided bound for the rate at which

o2 A changes at present:

&)

1 dA

)TOE > _Mp<0)‘ (6)

=0
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o3 If a macroevolutionary question is only concerned with recent speciation events (7) then one can test hy-
274 potheses using A,, which can be readily identified if p is known.

75 Conclusions

276 We have shown that for virtually any candidate birth-death process, suspected of having generated some ex-
277 tant timetree, there exists an infinite number of alternative and markedly different birth-death processes that
275 could have generated the timetree with the same likelihood. Without further information or prior constraints
279 on plausible diversification scenarios, extant timetrees alone cannot be used to reliably infer speciation rates
250 (except at present-day), extinction rates or net diversification rates, raising serious doubts over a multitude of
251 previous estimates of past diversification dynamics. Our work could thus explain why frequently diversifi-
232 cation dynamics observed in the fossil record are in great disagreement with phylogenetics-based inferences
263 (3,5, 10, 13, 46).

284 On a more positive note, we resolved a long-standing debate and precisely clarified what information
25 can indeed be extracted from extant timetrees alone — namely A, 7, the product pA, (and A, if p is known),
256 and any other variables that can be expressed in terms of A, 7, and pA,. These identifiable variables not
257 only tell us when two models are in principle distinguishable but they can themselves yield valuable insight
23 into past diversification dynamics. We see these as analogous to the concept of effective population size
250 in population genetics — we cannot uniquely determine the exact sequence of events that led to current
200 diversity, but by blending out some of the historical details we could potentially gain powerful and robust
201 insights into general macroevolutionary phenomena.
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Code availability

N
©
N

203 Computational methods used for this article, including functions for simulating birth-death models, for con-
204 structing models within a given congruence class, for calculating the likelihood of a congruence class, and
205 for directly fitting congruence classes (either in terms of A, or in terms of r, and p),) to extant timetrees
206 (Supplement S.5), are implemented in the R package castor (53).
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Figure 1: Illustration of congruent birth-death processes (simulations). Example of four hypothetical, congruent
yet markedly different birth-death models. The first model exhibits a constant speciation rate and a sudden mass extinc-
tion event about 5 Myr before present; the second model exhibits a constant extinction rate and a temporary stagnation
of the speciation rate about 5-6 Myr before present; the third model exhibits a mass extinction event about 10 Myr
before present and a variable speciation rate; the fourth model exhibits an exponentially decreasing extinction rate and
a variable speciation rate. In all models the sampling fraction is p = 0.5. All models exhibit the same deterministic
LTT (dLTT), the same pulled speciation rate (A,) and the same pulled diversification rate (rp,), and would yield the
same likelihood for any given extant timetree. (A) dLTT and deterministic total diversities (/V) predicted by the models,
plotted over age (time before present). (B) Pulled extinction rate A, of the models. (C) Pulled diversification rate r, of
the models. (D) Speciation rates (\) of the models. (E) Extinction rates (1) of the models. (F) Net diversification rates
(r = A — p) of the models. For additional examples see Supplemental Fig. S1.
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Figure 2: Illustration of congruent birth-death processes (real data). Top row: Birth-death model with exponen-
tially varying A and p, fitted to a reconstruct timetree of 79,874 seed plant species (54) over the past 100 Myr, compared
to a congruent model obtained by simply modifying the exponential coefficient of 1. (A) LTT of the tree, compared
to the dLTT predicted by the two models. (B) Speciation rates (\) and extinction rates (u) of the two models. (C)
Pulled diversification rate of the two models. Bottom row: (D) Origination and extinction rates of marine invertebrate
genera, estimated from fossil data by Alroy (36). (E) Congruent scenario to D, after reversing the linear trend of . (F)
Congruent scenario to D, assuming zero extinction rate.
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Figure 3: Conceptual implications for reconstructing diversification history. Conceptual illustration of the limited
identifiability of a diversification process, assumed to be adequately described by some unknown birth-death model
(red circle, henceforth “true process”). The congruence class of the true process is shown as a sub-space comprising
a continuum of alternative models (pink area). In practice, maximum-likelihood model selection is performed among
a parameterized low-dimensional set of allowed models, the precise nature of which can vary from case to case, for
example depending on assumed functional forms for A and p or the number of allowed rate shifts (43). The two
continuous lines shown here represent two alternative cases of allowed model sets (e.g., considered in two alternative
studies), from within each the model closest to the truth is (ideally) sought. In each case, however, likelihood-based
model selection will converge towards the allowed model closest to the congruence class (blue and green filled circles),
which in general is not the allowed model actually closest to the true process (white circles). This identifiability issue
persists even for infinitely large datasets.
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Figure 4: Previous studies have likely over-interpreted phylogenetic data. Time-dependent birth-death model fitted
to a nearly-complete Cetacean timetree by Steeman et al. (46) under the assumption of zero extinction rates (1 = 0),
compared to a congruent model where the extinction rate is close to the speciation rate (u = 0.9X). (A) LTT of the
tree, compared to the dLTT predicted by the two models. (B) Speciation rates (\) and extinction rates (u) of the two
models. (C) Net diversification rates (r = A — u) of the two models. The original fitted rates were used by Steeman
et al. (46) to link Cetacean diversification dynamics to past paleoceanographic changes.
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s S.1 Mathematical derivations

10 In the following, we provide mathematical derivations for various claims made in the main article. Some
20 parts can be found in previous literature (1, 2, 3, 4, 5, 6), but are included here for completeness.

»1 S.1.1 General considerations

2> We begin with listing some basic mathematical properties of deterministic birth-death models that will be of
23 use at various later stages. Our starting point is some time-dependent speciation rate A, some time-dependent
2« extinction rate . and some sampling fraction p (fraction of extant species included in the tree). Let 7 denote
»s  time before present (“‘age”). The deterministic total diversity, i.e. the number of species predicted at any point
26 in time according to the deterministic model, and conditional upon M, extant species having been sampled
o7 at present-day, is obtained by solving the following differential equation backward in time:

dN
N (u— 1
o =N (w=A), (D
> with initial condition N (0) = M, /p, i.e.:
M, T
N(7) = Texp [/0 du [p(u) — A(w)]| . 2

20 The deterministic LTT (dLTT), i.e. the number of lineages represented in the final extant timetree at any time
50 point according to the deterministic model, is given by:

M(r) = N(7) - (1 = E(7)), 3)

51 where E(7) is the probability that a lineage extant at age 7 will be missing from the timetree (either due
5> to extinction or not having been sampled). As explained by Morlon et al. (5), the extinction probability F
3 satisfies the differential equation:

dFE

E:M—E‘Qﬂ‘ﬂ)-i-E%\’ E0)=1-p. “)
s+ We mention that the solution to Eq. (4) is provided by Morlon et al. (5, Eq. 2). Taking the derivative of both
55 sides in Eq. (3), and then using Eq. (4) to replace dE/dr as well as Eq. (1) to replace dN/dt quickly leads

56 to the differential equation:

dM

7 with initial condition M (0) = M,. The solution to this differential equation is:

M(71) = M, - exp {/OTdu Au) - [E(u) —1]| . (6)

;s Observe that E' is a property purely of the model, and does not depend on the particular tree considered;
50 together with Eq. (6), this shows that any two models either have equal dLTTs for any given tree or they have
20 non-equal dLTTs for any given tree. Hence, model congruency is a property of two models, regardless of
41 tree.
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2 Defining the relative slope of the dLTT:

1 dM
Ay = —— 8 7
P M dr ™
23 allows us to write Eq. (5) as follows:
Ap=A-(1-E). )

x4 We note that P(7) := 1 — E(7) is the probability that a lineage extant at age 7 is represented in the extant
s5 timetree. P can thus be interpreted as a generalization of the present-day sampling fraction p to previous
s times. In fact, trimming a timetree at some age 7, > 0 (i.e., omitting anything younger than 7,) would yield
27 anew (shorter) timetree, whose tips are a random subset of the lineages that existed at age 71, each included
s at probability P(7,).

s As becomes clear in Eq. (8), in the absence of extinction and if p = 1, the relative slope A, becomes equal
so  to the speciation rate \; in the presence of extinction A is artificially pulled downwards relative to A towards
51 the past. Reciprocally, under incomplete sampling A is artificially pulled downwards near the present. We
s> shall therefore henceforth call A, the “pulled speciation rate”.

53 Taking the derivative on both sides of Eq. (8) and using Eq. (4) to replace dE'/dr leads to:

dXp 1dA 1dX
iy S W P El=).|222 —u—=-X-(1—E) =\ - _
dr p |:Ad7_ /.L—i‘)\ :| )‘p |:)\d7—+)\ 2 A ( ) )‘p (rp AP)? (9)
s« where we defined the “pulled diversification rate”:
1dA
=\ — ——. 10
Tp m+ N dr (10)
ss  Rearranging terms in Eq. (9) yields:
1 dA
=\ s t)
Tp pt N dr’ (11)

so which shows that r, can be directly calculated from the dLTT.

57 S.1.2 The likelihood in terms of the LTT and dLTT

ss  In the following we show how the likelihood of an extant timetree under a birth-death model can be expressed
5o purely in terms of the tree’s LTT and the model’s dLTT. We begin with the case where the stem age is known
¢ and the likelihood is conditioned on the survival of the stem lineage; the alternative case where only the
et crown age is known is very similar and will be discussed at the end.

2 Our starting point is the likelihood formula described by Morlon et al. (5):

n+1 n
p \IJ(TI7TO)

L T M) W (510, 70) W (4,2, 70), 12
I—E(To) izl)\(T) (871 T> (8’2 T) ( )

L=

o3 where n is the number of branching points (internal nodes), 7, is the age of the stem, 71 > 7 > .. > 7, are
o« the ages (time before present) of the branching points, s; 1, s; 2 are the ages at which the daughter lineages
s originating at age 7; themselves branch (or end at a tip), p is the tree’s sampling fraction (fraction of present-
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s day extant species included in the tree), E'(7) is the probability that a single lineage that existed at age 7
¢ would survive to the present and be represented in the tree (5, Eq. 2 therein), ¥ is defined as:

s 2
1+ p/ du A(u)ef ™
(s, 1) = lH~EE) 0_ (13)
1+ p/ du A(u)e
0
s and R(7) is defined as:
R(r) = [ du (AW = (). (14)

so It is straightforward to confirm that U satisfies the property W(s,7) = W(0,7)/¥(0, s); using this property
70 in Eq. (12) leads to:
pt! U(0,7) 1 Am)¥(0,7)?

- 1-— E(TO) ‘ \11(0,7'1) z:l_Il \I/(O,Sijl)\lf(o,si’g).

L

15)

71 Since each internal node except for the root is the child of another internal node, the enumerator and denom-
72 inator in Eq. (15) partly cancel out, eventually leading to:

pn+1\p(0’ 7_0) n ‘ '
mg)\(ﬂ)w(oaﬂ)- (16)

L=

73 Since the set of branching times 7; is completely determined by the LTT (branching events correspond to
72 jumps in the LTT), we conclude that the likelihood of a tree is entirely determined by its LTT.

75 Further, from Eq. (11) we know that the model’s dLTT satisfies:

dlnA _dlnX, dlnM

17
dr dr dr 17

A—pu+
76 Integrating both sides of Eq. (17) yields:

T | T 1 In M M
R(T)+1n)‘)(\7>:/ . [)\_M+ddn)\} :/ . {dn)\p_dn b0 M)
0 0

o u du du Ap(0) M, ’
(18)
77 where M, is the number of extant species included in the timetree. Hence:
ROAT) _ Ap(T)M, (19)
Ao Ap(0)M(7)
7z Using Eq. (19) in Eq. (13) yields:
-2
Ao Ap(T)M, PAo T Ap(u)
B(0,7) = 22 . 2 1+ e, [ 2 (20)
=50 R [ a0 M b
7o Recall that pA, = Ap(0) according to Eq. (8), so that Eq. (20) can be written as:
1 A\(T)M, T A(u)]7?
W(0,7) = 2p -{1+MO/ du 22 } . @1)
O = Am M) o ™ M
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so  Note that:

2 _d 1 22)
M drM
st Hence, Eq. (21) can be further simplified to:
L (1M, T ood 1\
v(0,7) = £ 1+ M, [ du— (—
0.7 =37 M) [ e )y M (Mﬂ
L ()M, 1 1\172
= . 1+ M, [ —— — 23
a1 () 2
_ p(7)M(7)
PA(T) M,
&2 Inserting Eq. (23) into the likelihood formula (16) yields:
1 Ao (To) M (7,) 1=
L= 2P Ap(70) M (73).
T B gt M) @
53 Recall that (1 — E) A = A, according to Eq. (8), which when inserted into (24) yields:
M”+ 1:[ (13) M (73). (25)
s Since A\,M = —dM/dr, Eq. (25) becomes:
M(1,) +~ aM
]

ss A corollary of Eq. (26) is that for any given extant timetree, any two models with the same dLTT will also
g6 yield the same likelihood.

s7  Note that the likelihood in Eq. (12) or equivalently Eq. (26) is conditioned upon the survival of the stem
ss lineage, assuming that the stem age is known. If the stem age is unknown the likelihood should be conditioned
so upon the splitting at the root and the survival of the root’s two daughter-lineages, as follows:

pn—i-l n
Ly = A7) (51, 7:)¥(81,2,Ti)-
Nr) (1= B LA e ¥ (se27) @0

o0 Note that Eq. (27) can be obtained from (12) by setting the stem age equal to the crown age (7, = 1)
o1 and adjusting the conditioning. Following a similar procedure as above, it is easy to show that L, can be
o> expressed in the following alternative forms:

+1\I’O7'1
L, = )\7'z OTZ 28
AT 2H 29

03 and

L M?2(7y) ﬁ [ dM

Myt Cdr

] . (29)

1=2
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S.1.3 The likelihood in terms of )\,

In the following we show how the likelihood of an extant timetree under a birth-death model can be expressed
purely in terms of the tree’s LTT and the model’s pulled speciation rate .

We begin with the case where the stem age is known and the likelihood is conditioned on the survival of the
stem lineage. Our starting point is the likelihood formula in Eq. (26):

M(1,) dM
L ( )Hl_dTr-]’

e +1
Mo i

where M is the dLTT and M, := M (0). From Eq. (7) it is easy to obtain the following relationship between

M and Ap:

(30)

M(7) = Moe (), 31)
where we defined:
Ap(T) = / ds Ap(s). (32)
0
Inserting Eq. (31) into Eq. (30) yields:
-1 dM
L = e_Ap(TO) - .e_Ap(Ti)’
Z.l_[l M(m;) dr | (33)
Ap(ﬂ')
and hence:
L= [T Ap(mi) - e, (34)
i=1

If only the crown age is known and the likelihood is conditioned on the splitting at the root and the survival
of the root’s two daughter-lineages (likelihood formula in Eq. (29)), we instead obtain the expression:

—Ap(m1) m
€’ Ap(7i)
L, = Ap(Ti) e T 35
S.1.4 Calculating \ from 7, and p
In the following we provide the general solution to the differential equation (4) in the main article:
dA
==, (36)
with initial condition:
A0) =no/p > 0. (37
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110 We assume that 7, and p* are sufficiently “well-behaved”, specifically that they are integrable over any finite
11 interval. Observe that Eq. (36) is an example of a Bernoulli-type differential equation, as it can be written
112 in the standard form:

dA
2 = PNA(T) +a(T)A%(7), (38)
13 wherea = 2, p = rp, + pu* and ¢ = —1. Using the standard technique for solving Bernoulli differential

114 equations (i.e., substituting u = A\~ to obtain a linear differential equation for w), it is straightforward to
115 obtain the solution:

A(T)
No€
)\(7—) = T ) 39
p—i-no/ ds ) %)
0
116 where we defined:
A= [ ds I(s) + ()] (40)

117 Note that the solution in Eq. (39) is strictly positive and continuous, and hence A is indeed a valid speciation
118 rate.

110 For future reference, we mention that the above solution can be easily generalized to the case where the
120 “initial condition” for A is given at some arbitrary age 71, rather than at present-day. Specifically, the solution
121 to the differential equation:

dA
E:)\-(rrﬂ—u*—)\), (41)
122 with condition:
A1) = A1, (42)
123 is given by:
)\1€A(T)
A7) = .
Ny [T Ny [T st )
0 0
122 Special cases:
125 e In the special case where 7, and /* are time-independent and 7, + p* # 0, the solution in Eq. (39)
126 takes the form:
P
A7) = , 44
= Pojn— e “
127 where P = rj, + p*.
128 e If and only if p*(7) = n,/p — rp(7), the solution in Eq. (39) is time-independent:
Ar) = . (45)

p
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129 Hence, for a fixed p, a congruence class can include at most one model with constant speciation rate;
130 it includes exactly one model with constant speciation rate if and only if 1,/p > max, (7).

i S.1.5  Calculating A from 7, and ¢

12 In the following we show how the speciation rate A can be calculated from the pulled diversification rate 7,
153 the present-day speciation rate A, and the ratio of extinction over speciation rate, £ := p/\. Specifically, we
132 provide the general solution to the following differential equation:

dA
E:)\'[Tzﬁ'(f—l)/\]- (46)
135 We assume that r, and ¢ are sufficiently “well-behaved”, specifically that they are integrable over any finite
136 interval. Observe that Eq. (46) is an example of a Bernoulli-type differential equation, as it can be written
137 in the standard form:

dA
7= = PNA(T) +a(T)X%(7), 7
132 where o = 2, p = r, and ¢ = € —1. Using the standard technique for solving Bernoulli differential equations
120 (i.e., substituting 4 = A!~ to obtain a linear differential equation for w), it is straightforward to obtain the
140 solution:

Apelte (™)
A(T) = T ) (48)
1+(1—¢)- /\O/ ds efto(®)
0

121 where we defined:

Rolr) = [ dsy(s) (49)
0
12 In the special case where 7, is time-independent and non-zero, the solution in Eq. (48) simplifies to:
)\ 6’f’pT
Alr) = 3 ' (50)
1+ (1—¢g)- 22 (e —1)
Tp

1135 S.1.6  The likelihood in terms of the 7,

122 In the following we show how the likelihood of a tree under a birth-death model can be expressed solely in
s terms of the model’s pulled diversification rate r, and the product p),. We first consider the case where the
126 stem age is known and the likelihood is conditioned on the survival of the stem lineage (5); the alternative
147 case where only the crown age is known and the likelihood is conditioned upon the survival of the root’s two
s daughter lineages (Eq. 28) can be treated similarly and is briefly mentioned at the end.

1o Our starting point is the likelihood formula in Eq. (16), Supplement S.1.2. Define:

Ry(r) = /O du (). 51)
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150 Then from the definition of 7, (Eq. 1 in the main article) we have:

T T dlnA A
Ry(r) = / du [Mw) — p(u)] + / du A gy 20 (52)
0 0 du Ao
151 Exponentiating (52) and rearranging yields:
A
R(7) _ oRo(T) 20
e e Nr) (53)
152 Inserting Eq. (53) into the definition of W in Eq. (13) yields:
A T —2
\IJ(O, 7') = eRP(T)io {l + ,0)\0/ du eRp(u)} . (54)
A(T) 0
153 Inserting Eq. (54) into the likelihood formula (16) yields:
(p)\o)nJrleRp(To) [ To R -2 n R . R -2
L= 1+ )\0/ due p(“)} efto(7) {1 + )\o/ due p(“)} . 55
(e pYeAl el Il o >

15« Recall that (1 — E)A = A, according to Eq. (8), which when inserted into Eq. (55) yields:

(pAo)Lefte(To) { /TD Ry )}2 T Ro(r) [ /T R >]2
L= 1 o | due® {71 o [ due™Wl .
(7o) + pA A ue g e + pA A ue (56)

155 From Eqgs. (8) and (11) we know that A, satisfies the initial value problem (Bernoulli differential equation):

d\
T: =Ap- (Tp - )‘p) ) )‘p(o) = po. (37

156 It is straightforward to verify that the solution to Eq. (57) is given by:

pAOeRP(T)
A = . 58
p(7) L+ pXo fg efrWdu 8
157 Inserting the solution (58) into Eq. (56) yields the following expression for the likelihood:
o -1 n T -2
L= [1 + p)\o/ du eRP(“)} (pAo)™ H efto(7) [1 + p)\O/ du eRP(“)] . (59)
0 i1 0

1ss  In the alternative case where only the crown age is known, and the likelihood is conditioned on the splitting
150 at the root and the survival of the root’s two daughter lineages, we obtain the following expression for the
160 likelihood:

n T —2
L, = e_Rp(To) (p)\o)n_l H eRp(T) |:1 + p)\o/ du eRp(u):| . (60)
i=1 0
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61 S.1.7 Congruent models have the same probability distribution of generated tree sizes

162 In the following, we show that the distribution of extant timetree sizes generated by a birth-death model,
163 either conditional upon the age and survival of the stem, or conditional upon the age of the root and the
164 survival of its two daughter lineages, is the same for all models in a congruence class.

165 Consider a birth-death process with parameters (\, y, p), starting from a single lineage at some time before
166 present 7, and ultimately resulting in a timetree at age 0, comprising only extant species that are included at
167 some probability p. The probability that the timetree will comprise n tips can be expressed using formulas
165 first derived by Kendall et al. (7):

Pin)=Q1Q—-E(r,))-(1-H)-H"!, n>1

P(0) = E(r,), ©b

160 where E(7,) is the probability that a lineage existing at age 7, will be missing from the timetree (as defined
170 previously), H is defined as:

p/ " ds eRIN(s)
H = 0

= - : (62)

1+ p/o ds eI \(s)
171 and R was previously defined in Eq. (14). Note that the formula in Eq. (61) can be readily obtained using
172 equations 8, 10b and 11 in (7), after setting the time variable therein equal to 7, (i.e. ¢ = 7,), switching
173 from time to age (7 = 7, — t), and adding the term —4(7) In p to the extinction rate (where ¢ is the Dirac
174 distribution, peaking at age 0) to account for incomplete species sampling. As shown previously in Eq. (53),
175 we have

A
R(r) _ ,Rp(1)_70_
e e )\(T), (63)
176 where R, is defined as:
Ry(7) := / du rp(w), (64)
0

177 and 7y, is the pulled diversification rate. Inserting Eq. (63) into Eq. (62) allows us to write H as follows:

p)\o/ " ds efte(®)
0

H= - .
1+ p)\o/ ds efr(®)
0

(65)

s Since pA,, 1, and R, are the same for all models in a congruence class, H is also constant across the
170 congruence class.

10 The probability of obtaining a tree of size n > 1 conditional upon the age of the stem lineage (7,) and its
151 survival to the present, denoted Pyen(n2), is given by the ratio P(n)/(1 — E(7,)), i.e.:

Pyem(n) = (1—H)-H" %, (66)

12 Since H is constant across a congruence class, the same also holds for Pyter, (1) for any n. The probability

10
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153 of obtaining a tree of size n > 1 conditional upon the splitting of the root at age 7, and the survival of its
154 two daughter lineages, denoted Pyo0t(n2), can be derived in a similar way, as follows. The probability that
15 the two daughter lineages survive, conditional upon the split at age 7, is given by the product:

P(daughter lineages survive | split at 7,) = (1 — E(7,))%. (67)

16 The probability that the two daughter lineages survive and the timetree has size n > 1, conditional upon the
157 split at age 7, is given by the following sum of probabilities:

P(daughter lineages survive and tree has size n | split at 7,)
n—1

= > P(k)P(n—k)
k=1

1

=(1- E(To))2 (1-H)- HEL. (1—H)- grk-1 (68)
1

= (1-E(1,))*(1 - H)? nf H" 2
k=1

=(n—-1)-(1-E(r))*1 - H)?H" 2

S
|

B
Il

15 Dividing Eq. (68) by Eq. (67) yields the desired probability:

Proot(n) = (n—1)- (1 — H)?H" 2 (69)

150 Since H is constant across the congruence class, the same also holds for Pyt (n).
190 D

91 S.1.8 The geometric nature of congruence classes

12 In the following, we provide a geometric interpretation of model congruence classes, by pointing out an
103 analogy to the concept of object congruency in geometry. A basic background in abstract algebra is assumed.

104 In geometry, two objects are called congruent if they exhibit similar geometric properties, such as identical
105 angles between corresponding lines and identical distances between corresponding points. More precisely,
105 two geometric objects (sets of points in Euclidean space R"™) are called congruent if one set can be trans-
107 formed into the other set by means of an isometry, i.e. a mapping that preserves distances between pairs of
108 points (via translations, rotations, and/or reflections). Object congruency is a type of equivalence relation,
100 and hence the set of models congruent to some focal object is an equivalence class. The set of all isometries
200 is itself a group (known as “Euclidean group™) that acts on the set of geometric objects, and congruence
201 classes of objects correspond to “orbits” under the action of isometries (8).

202 By analogy, two birth-death models are called “congruent” if they exhibit similar statistical properties in
203 terms of their generated extant timetrees and LTTs (see main text and Supplement S.1). In fact, congruence
204 classes can be interpreted as the orbits of a group of mappings acting on model space that preserve dLTTs (just
205 as isometries preserve distances in Euclidean space). For technical reasons, we shall henceforth only consider
206 the space of birth-death models (denoted B3) with strictly positive A, 1z and p and continuously differentiable A
200 and pu defined over some age interval [0, 7,] C R. LetC1 [0, 7,] denote the set of all continuously differentiable
205 real-valued strictly positive functions defined on the interval [0, 7,]. For any S, € (0,00) and any f €

11


https://doi.org/10.1101/719435
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/719435; this version posted September 14, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-ND 4.0 International license.

200 CL[0,7,), define S[S,, f] € CL[0, 7, as the solution to the following initial value problem:

dS[S,, f]

T dr = S[Sm f](T) ) [f(T) - S[Sm f](T)] ’ S[Sm f](O) = So. (70)

210 It is straightforward to verify that the solution to the above problem is given by:

S[S Soe™) 71
[ O?f](T)_l_i_Sof(;'dseF(s)) ( )
211 where we denoted:
F(r) = / ds f(s). (72)
0

21> For any arbitrary € (0,00) and 8 € CL[0, 7], let g5 : B — B be a transformation of birth-death models
213 defined as follows:

1d\
Ga,3(A, i, p) = (5 [A/a, A—ptyo— ﬂu} . B, ocp) : (73)

212 Note that g, g is dLTT-preserving, that is, it maps models to models within the same congruence class.
215 Indeed, the variable

1dX
=8 [A/a,A—u++ﬁu} (74)
Adr
216 1s exactly the speciation rate of a model with extinction rate u* := Su € Ci [0, 7,] and sampling fraction
27 p*i=ap € (0,00), congruent to the original model (A, y, p). The set of all such transformations,
G i={gap:a€(0,00),8CL0,7]}, (75)

215 constitutes a group with group operation:

Ga,p © g@ﬁ = QO@WBB (76)

210 and identity element g; ;. The group G acts on the set of birth-death models, while preserving dLTTs.
220  Abstractly, each mapping g € G corresponds to an “isometric” transformation in model space that preserves
21 the statistics of generated extant timetrees and dLTTs, in analogy to how rotations, translations or reflections
22 preserve distances in Euclidean space.

23 Note that not all dLTT-preserving mappings defined on B are members of G. It turns out, however, that G is
224 large enough to completely generate congruence classes in B. In other words, for any model (\, , p) € B,
225 the orbit:

G\, p) =={g(A\ p,p) : g € G} (77)

226 is exactly the congruence class of the model; indeed, for any congruent model (\*, u*, p*) € B one can find
227 atransformation g, g € G such that (\*, u*, p*) = g4 8(\, 11, p), by choosing a := p*/p and § := p*/p.

12
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» 8.2 Why previous studies failed to detect model congruencies

29 In practice, reconstructions of A and p over time are typically performed by selecting among a limited set
230 of allowed models, i.e., considering specific functional forms described by a finite number of parameters
231 (9,10, 11, 12, 13, 5). In these situations it is generally unlikely that the allowed model set intersects a given
32 congruence class more than once (see Supplement S.3 for mathematical justification). For example, when
233 considering only constant-rate birth-death models and assuming that p is fixed (as is usually the case; 14),
231 each congruence class reduces to a single combination of A and p. Likelihood functions defined over a limited
235 allowed model set thus generally don’t exhibit ridges associated with congruence classes, and may even
236 exhibit a unique global maximum in the space of considered parameters, leaving the impression that A and p
237 have been estimated close to their true values. Our findings suggest that this impression is almost certainly
233 false. Instead, obtained estimates for A and 4 are almost always going to be a random outcome that depends
230 on the particular choice of allowed models, such as the functional forms considered for A and p, and will be
220 as close as possible to the congruence class of the truth rather than close to the truth itself. Unless one has
211 reasons to prefer specific functional forms for A and p (e.g., based on a mechanistic macroevolutionary model;
22 15), fitted A and p are unlikely to resemble the true rates even if in principle the functional forms considered
213 are flexible enough to resemble the true A and p (see Supplement S.6 for examples using simulations and
22, real data).

25 By analogy, studies that test whether diversification dynamics are influenced by some environmental or ge-
26 ological variable X (e.g., temperature), either by testing for correlations between X and the estimated A or
27 1 (16, 17) or by fitting models in which A or i are explicit functions of X (18, 19, 20), will generally lead to
215 unreliable conclusions. Indeed, specifying A or p as functions of X (e.g., assuming 4 = aX + S and fitting
210 the coefficients « and f3) is essentially equivalent to choosing particular functional forms for X or . Inciden-
250 tally, evaluations of estimation methods based on simulations of the same limited model set as considered by
51 the very estimation method evaluated (9, 11, 12, 13, 5), for example simulating trees with linearly varying
52 A and p and then fitting models with linearly varying A and g to check if linear coeflicients are accurately
253 estimated, can generate the false impression that A and u can in general be reliably identified. Indeed, any
254 given simulated model is typically going to be the sole representative of its congruence class that’s also in
255 the method’s allowed model set.

» 9.3 Typical model sets do not exhibit congruence ridges

257 In the following we explain why it is unlikely in practice that a limited set of allowed models (e.g., considered
255 for maximume-likelihood estimation) will intersect any given congruence class more than once, and that it
250 is especially unlikely that multiple intersections of a congruence class form a sub-manifold in parameter
%0 space (i.e., a “congruence ridge”). Consider a set of allowed models, parameterized through n independent
261 parameters qi, .., ¢, € R, i.e. such that the speciation and extinction rates of a model are given as functions
262 of age (7) and the chosen parameters (q € R™):

A= >‘(7_7 q)v n= :U(Ta q)' (78)

263 For simplicity, assume that the sampling fraction p is given (identifiability issues associated with uncertainties
264 in p are already well known; 21, 22, 23, 24).

13
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265 INow consider some particular choice of parameters, q, with corresponding PDR:

1 0X(r,q)

AT,q) o1 (79)

mo(7,d) = A7, q) — pu(7,q) +

266 and present-day speciation rate A(0, q). For any other choice of parameters h € R"™, the corresponding model
27 would be in the same congruence class as the first model if and only if A(0,h) = A(0,q) and r,(7,h) =
28 1p(7,q) for all ages 7 > 0, in other words A(-, h) must be a solution to the initial value problem:

OA(7, h)

5 = A1, h) - [rp(7,q) — A(m,h) + p(7,h)],  A(0,h) = X\(0,q). (80)

260 Unless the functional forms of A and p have been specifically designed for this purpose, it is generally unlikely
70 that Eq. (80) will be satisfied for some h # q.

71 A stronger argument for the low probability of congruence ridges can be made as follows. Suppose that q
> was part of a congruence ridge, i.e. a sub-manifold in parameter space belonging to the same congruence
273 class. Then there must exist a curve in parameter space, i.e. a one-parameter function h : [—¢,¢] — R”,
272 passing through q (e.g., say h(0) = q), such that:

rp(7,h(s)) = rp(7, q), (81)
275 and such that:
A(0,h(s)) = A0, q), (82)
276 forall s € [—e,¢] and all 7 > 0. Taking the derivative of Eq. (81) with respect to s at 0 yields:

" Oy
2 9q;

=1

dh;
ds

= 0. (83)
s=0

(.a)

277 Denote H := % e and R(7) := 88% ra Then the condition in Eq. (83) can be written in vector notation:

R(7)" - H=0. (84)

27s Note that H can be interpreted as the “velocity vector” along the ridge curve h at the point q, and hence con-
270 dition (84) means that the ridge must move perpendicular to the direction of steepest descent of r,. Observe
250 that condition (84) must be satisfied for all ages 7 > 0. Hence, for any arbitrary choice 71, 72, .., T, > 0, we
251 obtain the following m linear equations that must be satisfied by H:

R(r)T -H=0.
: (85)
R(mn)T -H=0.

2 Unless the functional forms of A and p are specifically designed for this purpose, the system in Eq. (85)
253 will almost certainly be over-determined if m is chosen sufficiently high (m > n). Hence, in practice, for a
234 chosen set of allowed models and a given point q in parameter space, a congruence ridge will almost never
2s5  exist at that point.

286 D
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- S.4 Interpreting the PDR

235 Given that the PDR is a composite quantity that depends on both A and u (Eq. 1), properly interpreting the
250 estimated PDR in terms of actual speciation/extinction rates remains the responsibility of the investigator.
200 Previous work has shown that the PDR can indeed yield valuable insight into diversification dynamics and
201 can be useful for testing alternative hypotheses (6). For example, sudden rate transitions (e.g., due to mass
202 extinction events) almost always lead to fluctuations in the PDR; thus, a relatively constant PDR over time
203 would be indicative of constant — or only slowly changing — speciation and extinction rates.

20+ The PDR can be used to obtain other useful variables. For example, it is straightforward to confirm that the
205 PDR and the total diversity IV satisfy the following relationship:

ool [

206 Observe that the left hand side of this equation, henceforth called deterministic “pulled normalized diversity”
207 (dPND), corresponds to the ratio of deterministic total diversity at some age T over the assumed present-day
205 total diversity N (0), modulated by the factor A,/ A(7). Like the PDR, the dPND is the same for all models in
200 acongruence class, and can be readily estimated from extant timetrees (Fig. S4C). As becomes apparent from
s0  Eq. (86), while the dPND can yield information on variations of past diversity, the amount of information
s00  depends on how well X can be constrained a priori.

502 Another useful derived variable is the “pulled extinction rate”, or PER (6), defined as:
Hp 1= Ao — Tp. (87)

s03  The PER is equal to the extinction rate y if A is time-independent, but differs from x4 in most other cases.
;0 Note that calculating the PER requires knowing the present-day speciation rate \,, which can be estimated
;05 from the timetree if the sampling fraction p is known (simply divide the estimated pA, by p). The present-day
;s PER is related to the present-day extinction rate as follows:

1 dX

pp(0) = p(0) — =~

Ao dT (88)

7=0

s07  Observe that if the present-day speciation rate changes only slowly, the present-day PER will resemble the
s0s  present-day extinction rate. Further, since £4(0) is non-negative, we can obtain the following lower bound for
a0 the exponential rate at which A changes:

1 dA

)\70% > _Mp(o)- (89)

7=0

s10 In particular, if the estimated p,(0) is negative, this is evidence that A is currently decreasing over time.

1 S.5 Fitting congruence classes instead of models

s> The discussion in the main article revealed that speciation and extinction rates constitute partly interchange-
513 able (and thus partly redundant) parameters that cannot be completely resolved from extant timetrees alone,
;14 no matter how large the dataset. Extant timetrees do, however, contain the proper information to estimate
315 the pulled diversification rate r}, and 7, (recall that 1, = pA,), and may thus be used to at least identify the

15


https://doi.org/10.1101/719435
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/719435; this version posted September 14, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-ND 4.0 International license.

216 congruence class from which a tree was likely generated. In fact, for sufficiently large trees r, and 7, can
317 be directly calculated from the slope and curvature of the tree’s LTT (6). Since each congruence class cor-
315 responds to a unique 7, and 7, the r, and 7, can be used to parameterize the space of congruence classes;
a9 on this space the likelihood function no longer exhibits the highly problematic ridges seen in the original
220 model space. We thus suggest describing birth-death models in terms of r}, and 7, rather than A and g,
s21 - when fitting models to timetrees. Since the likelihood function can be expressed directly in terms of r, and
322 1) (Supplement S.1.6), such a parameterization is suitable for maximum-likelihood or Bayesian estimation
223 methods. Reciprocally, since every given r, and 7, correspond to a unique and non-empty congruence class
524 (as shown in the main article), any r, and 7), estimated from an extant timetree will represent at least one
325 biologically meaningful scenario. It is thus possible to directly fit congruence classes, rather than individual
326 models, via maximum-likelihood. A similar reasoning can also be applied to the pulled speciation rate Ap,
327 which provides an alternative representation of congruence classes.

225 To demonstrate this approach, we created software for fitting r, and 7, to extant timetrees via maximum
320 likelihood. The code is integrated into the R package castor (25) as function fit_hbd_pdr_on_grid. The
330 function accepts as input an extant timetree, and an arbitrary number of discrete ages at which to estimate 7,
331 assuming 7, varies linearly or polynomially between those ages. The function also accepts optional lower
22 and upper bounds for the fitted 7, and/or 7,. The code then maximizes the likelihood of the tree, given by
:33 BQ. (56) in the Supplement, by iteratively refining the r, values on the age grid and/or 7,. Optionally, one
334 can limit the evaluation of the likelihood function to a smaller “truncated” age interval than covered by the
535 tree, i.e. some age interval [0, 7*], where 7* may be smaller than the root age. This may be useful for avoid
336 estimation errors towards older ages due to a small number of lineages in the tree. The likelihood formula
;37 for the “truncated” case can be easily obtained by assuming that the tree is split into multiple sub-trees, each
338 originating at the truncation age, and considering each sub-tree an independent realization of the same birth-
;30 death process and subject to the same sampling fraction p. To avoid non-global local optima, the fitting can
30 be repeated multiple times, each time starting at random start values for the fitted parameters, and the best
;a1 fit among all repeats is kept. We also developed similar computer code for fitting the pulled speciation rate
w2 Ap to extant timetrees, implemented as function fit_hbd_psr_on_grid in the R package castor.

113 Supplemental Fig. S4 shows an example where either the r}, or A, were accurately fitted to an extant timetree,
s« simulated under a birth-death scenario subject to an early rapid radiation event and followed by a mass
;5 extinction event. In this example, we limited fitting to ages where the LTT was over 500 lineages (i.e.,
ss - M () = 500), and repeated the fitting 100 times to avoid non-global local optima.

« 5.6 Fitting birth-death models to trees yields unreliable results

ass To illustrate the identifiability issues discussed in the main article, we simulated and analyzed two massive
;a0 extant timetrees (~114,000 and ~785,000 tips) via a birth-death process, subject to a mass extinction event
350 (both trees) and a rapid radiation event (second tree). Instead of fitting models of the exact same functional
;51 form as used in the simulations, we fitted generic piecewise-linear curves for A and g that could in principle
352 take various alternative shapes (including approximately the shapes used for the simulations), and visually
553 compared the estimated profiles to their true profiles (Supplemental Figs. S5A-F). Specifically, we fitted A
354 and p at multiple discrete time points, treating the rates at each time point as free parameters, while assuming
555 a known p. Despite the enormous tree sizes, and despite the fact that the fitted models reproduced the trees’
356 LTTs and the true r}, extremely well (Supplemental Figs. SSA,C,D,F), the estimated A and y were far from
357 their true values and even exhibited spurious trends (Supplemental Figs. SSBE). This is consistent with our
353 expectation that the particular combination of fitted A and p is essentially a random pick from the periphery
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350 of the true process’s congruence class. In contrast, when we fixed w to its true profile, A was accurately
360 estimated (Supplemental Fig. S2), consistent with the expectation that any given p and p fully determine the
561 corresponding A in the congruence class.

52 We also examined a large extant timetree of 79,874 seed plant species (Supplemental Fig. S3) published
363 by Smith ef al. (26), and estimated A and . over the last 100 million years using two alternative approaches
564 (methods details in Supplement S.7). In the first approach, we fitted generic piecewise-linear curves for A
s6s and u, similarly to the previous example. In the second approach, we fitted parameterized time curves for A
366 and p that included an exponential as well as a polynomial term (5). Even though both approaches yielded
367 similar estimates for rp,, and both accurately reproduced the tree’s LTT, they yielded markedly different A
ses and p (Supplemental Figs. SSD-F). This observation is consistent with our argument that, depending on the
360 precise set of models considered, the estimated A and i will generally be a random pick from the underlying
a0 (true or close-to-true) congruence class.

s To illustrate our point that common model selection approaches such as minimizing the Akaike Information
a2 Criterion (AIC) (27) cannot resolve the identifiability issues discussed, we also fitted a series of models of
373 variable complexity to a massive timetree of 1,000,000 tips. The tree was simulated based on origination and
s74  extinction rates of marine invertebrate genera, previously estimated from marine invertebrate fossil data (28)
;75 (Fig. 2D in the main article). We fitted two types of models: piecewise constant models and piecewise linear
s7e - models. In piecewise constant models (sometimes also referred to as “birth-death-shift” models; 13) the rates
;77 A and p have constant values within discrete time intervals, with every time interval exhibiting distinct A and
as . In piecewise linear models A and p vary linearly between discrete time points. For both model types we
s79 - considered various temporal grid sizes, ranging from 5 up to 15 grid points, thus including sufficient model
30 complexity for approximating the true rates. In all cases the time grid points where located at equidistant
351 intervals between the present and the tree’s root. For each model type (piecewise constant or piecewise
32 linear) and for each grid size we estimated the free parameters (either the rates within each interval, or the
33 rates at each grid point, respectively) via maximum likelihood using the function fit_hbd_model_on_grid
s34 inthe R package castor. Only the most recent 100 million years were considered for fitting, in order to focus
355 estimations on times with greater lineage density in the simulated tree (towards the root estimated rates will be
;56 inaccurate regardless of the arguments presented in this paper). Fitting was repeated 20 times with random
357 start parameters to avoid local non-global optima. Among each model type, we then kept the maximum
sss likelihood model with smallest AIC value, shown in Supplemental Fig. S6. As expected, estimated rates
a0 were highly inaccurate and missed important features, despite the fact that we were using a massive tree of
s00 1,000,000 tips, and the fact that the tree’s LTT was almost perfectly matched by the models’ dLTTs.

« 8.7 Fitting birth-death models to seed plants

302 An extant timetree of 79,874 seed plant species, constructed using GenBank sequence data with a backbone
303 provided by Magallén et al. (29), was obtained from the Supplemental Material published by Smith ez al. (26,
504 tree “CBMB”). The tree is shown in Supplemental Fig. S3. The sampling fraction was calculated based on
s0s  the tree size and the number of extant seed plant species estimated at 422,127 by Govaerts (30). As mentioned
306 in Supplement S.6, two approaches were used to fit A and p over time. In the first approach, A and p were
307 allowed to vary independently at 8 discrete and equidistant time points (assuming piecewise linearity between
08 grid points) and were estimated via maximum-likelihood using the function fit_hb_model_on_grid in the
399 R package castor (25) (options “condition=‘stem’, relative_dt=0.001"). Fitting was repeated 100
200 times using random start parameters to avoid local non-global optima in the likelihood function. The PDR
a1 was then estimated from the fitted A and p using the formula in Eq. (1) and using central finite differences to
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> calculate derivatives on the time grid. In the second approach, A and 1 were assumed to be of the following
03 general functional forms:

2 3 4
A(T) = max <07p1 eTP2TIT fps 4y - 7_1 + 5 - (:) + D6 - C__) +p7- (:) > (90)

r r T r
404 9 3 4

. T T T T
u(7) = max <O,q1-e T gs i — + g5 <) s () e <) ) O

Ty Tr Tr Tr
w05 where 7y is the age of the root and p1, .., p7, q1, .., g7 are fitted parameters. Parameters were fitted using the
206 castor function fit_hbd_model_parametric (options “condition=‘stem’, relative_dt=0.001,
207 param_min=-100, param_max=100"). As in the first approach, fitting was repeated 100 times to avoid
208 local non-global optima. In both approaches, the likelihood only incorporated branching events at ages
200 between 0 and 130 Myr, since the LTT and any parameter estimates become much less reliable at older ages.
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w0 S.8 Supplemental figures
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Figure S1: Examples of congruent birth-death processes. (A—C) Example of two congruent yet markedly different
birth-death models. Both models exhibit a temporary spike in the extinction rate and a temporary spike in the speciation
rate, however the timings of these events differ substantially between the two models. Both models exhibit the same
dLTT and the same pulled diversification rate r},, and would yield identical likelihoods for any given extant timetree.
(A) Speciation rates (A and \*) and extinction rates (u and p*) of the two models, plotted over time. Continuous curves
correspond to the first model, dashed curves to the second model. (B) Net diversification rates (r and r*) and pulled
diversification rate r, of the two models. (C) Deterministic LTT (dLTT) and deterministic total diversities (/V and
N*) predicted by the two models. (D-F) Another example of two congruent models. In the first model, the speciation
and extinction rates both decrease exponentially over time, whereas in the second model the extinction rate increases
exponentially over time and the speciation rate exhibits variable directions of change over time. In all models the

sampling fraction is p = 0.5.
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Figure S2: Estimating )\ when 1 and p are fixed. (A—C) Example analysis of a simulated extant timetree (~114,000
tips), exhibiting a mass extinction event at ~5 Myr before present. A birth-death model was fitted while fixing 1 and p
to their true values; A\ was fitted at 15 discrete time points. (A) Lineages through time curve (LTT) of the generated tree
(long-dashed curve), deterministic LTT (dLTT) of the true model that generated the tree (continuous curve), and dLTT
of a maximum-likelihood fitted model (short-dashed curve). The fitted dLTT is practically identical to the true dLTT
and is thus covered by the latter. (B) True speciation and extinction rates (continuous curves), along with the fitted
speciation rate and fixed extinction rate (dashed curves). (C) Pulled diversification rate (PDR) of the true model (7,
continuous curve), compared to the PDR of the fitted model (dashed curve). (D-F) Example analysis of a simulated
extant timetree (~785,000 tips), exhibiting a rapid radiation event at ~5 Myr before present and a mass extinction event
at ~2 Myr before present. A birth-death model was fitted similarly to the previous example, and D-F are analogous to
A-C. In both cases, rate estimation was restricted to ages where the LTT included at least 500 lineages.
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Figure S3: Seed plant tree. Extant timetree of 79,874 seed plant species, discussed in the main article. The tree was
constructed and made available by Smith et al. (26) (tree “GBMB”).
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Figure S4: Fitting congruence classes instead of models. Analysis of an extant timetree generated by a birth-death
model, exhibiting a temporary rapid radiation event about 5 Myr before present and a mass extinction event about 2
Myr before present. A congruence class was fitted to the timetree either in terms of the pulled diversification rate (PDR,
) and the product p,, or in terms of the pulled speciation rate (PSR, ;). (A) Lineages through time curve (LTT) of
the tree (long-dashed curve), together with the deterministic LTT (dLTT) of the true model (continuous curve) and the
dLTT of the fitted congruence classes (short-dashed curve); in both cases the fitted dLTT was virtually identical to the
true dLTT, and is thus completely covered by the latter. (B) PDR of the true model (continuous curve), compared to
the fitted PDR (short-dashed curve). (C) PSR of the true model (continuous curve), compared to the fitted PSR (short-
dashed curve). The PDR and PSR were fitted via maximum-likelihood using the R package castor (25), allowing the
PDR or PSR to vary freely at 15 discrete equidistant time points (Supplement S.5).
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Figure S5: Identifiability issues persist in large trees. (A—C) Diversification analysis of a timetree (~114,000 tips)
simulated from a birth-death process exhibiting a mass extinction event at ~5 Myr before present. (A) Lineages through
time curve (LTT) of the generated tree (long-dashed curve), deterministic LTT (dLTT) of the true model that generated
the tree (continuous curve), and dLTT of a maximum-likelihood fitted model (short-dashed curve). The fitted dLTT
is practically identical to the true dLTT and is thus covered by the latter. (B) True speciation and extinction rates
(continuous curves), compared to fitted speciation and extinction rates (dashed curves). Observe the great disagreement
between the fitted and true A and p, despite the fact that the allowed model set could in principle approximate the true
rates reasonably well. (C) Pulled diversification rate (PDR) of the true model (continuous curve), compared to the
PDR of the fitted model (dashed curve). (D-F) Diversification analysis of a timetree (~785,000 tips) simulated from
a birth-death process exhibiting a rapid radiation event at ~5 Myr before present and a mass extinction event at ~2
Myr before present. Sub-figures D-F are analogous to A—C. Again, observe the great disagreement between the fitted
and true A and p, despite the fact that the allowed model set could in principle approximate the true rates reasonably
well. See Supplemental Fig. S2 for fitting results when y is fixed to its true value. (G-I) Diversification analyses of an
extant timetree of 79,874 seed plant species (26), performed either by fitting A and x on a grid of discrete time points
or by fitting the parameters of generic polynomial/exponential functions for A and p. (G) LTT of the tree, dLTT of
the grid-fitted model and dLTT of the fitted parametric model. (H) Speciation and extinction rates predicted by the
grid-fitted model or the fitted parametric model. (I) PDR predicted by the grid-fitted model and the fitted parametric
model.
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Figure S6: Identifiability issues cannot be resolved with AIC. Maximum-likelihood birth-death models fitted to a
tree comprising 1,000,000 tips, simulated based on the origination and extinction rates of marine invertebrate genera
estimated from fossil data (28). Top row: Maximum-likelihood-fitted piecewise constant model (also known as birth-
death-shift model), with grid size (/N = 11) chosen by minimizing the AIC. Bottom row: Maximum-likelihood-fitted
piecewise linear model, with grid size (N = 12) chosen by minimizing the AIC. Left column: dLTTs of the fitted
models compared to the true dLTT and the tree’s LTT. Right column: Fitted speciation and extinction rates, compared
to the true rates used to generate the tree. Observe that in both cases the maximum-likelihood models poorly reflect
the true rates despite a near-perfect match of the LTT, even when the complexity of the models was optimized based
on the AIC. For Methods details see Supplement S.6.
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