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 2 

Abstract 21 

Progression through the cell cycle in eukaryotes is regulated on multiple levels. 22 

The main driver of the cell cycle progression is the periodic activity of cyclin-23 

dependent kinase (CDK) complexes. In parallel, transcription during the cell cycle 24 

is regulated by a transcriptional program that ensures the just-in-time gene 25 

expression. Many core cell cycle regulators are present in all eukaryotes, among 26 

them cyclins and CDKs; however, periodic transcriptional programs are divergent 27 

between distantly related species. In addition, many otherwise conserved cell 28 

cycle regulators have been lost and independently evolved in yeast, a widely 29 

used model organism for cell cycle research. To gain insight into the cell cycle 30 

regulation in a more representative opisthokont, we investigated the cell cycle 31 

regulation at the transcriptional level of Capsaspora owczarzaki, a species 32 

closely related to animals. We developed a protocol for cell cycle synchronization 33 

in Capsaspora cultures and assessed gene expression over time across the 34 

entire cell cycle. We identified a set of 801 periodic genes that grouped into five 35 

clusters of expression over time. Comparison with datasets from other 36 

eukaryotes revealed that the periodic transcriptional program of Capsaspora is 37 

most similar to that of animal cells. We found that orthologues of cyclin A, B and 38 

E are expressed at the same cell cycle stages as in human cells and in the same 39 

temporal order. However, in contrast to human cells where these cyclins interact 40 

with multiple CDKs, Capsaspora cyclins likely interact with a single ancestral 41 

CDK1-3. Thus, the Capsaspora cyclin-CDK system could represent an 42 

intermediate state in the evolution of animal-like cyclin-CDK regulation. Overall, 43 

our results demonstrate that Capsaspora could be a useful unicellular model 44 

system for animal cell cycle regulation. 45 

Keywords 46 

cell cycle, evolution of cell cycle, periodic gene, transcriptional program, cell 47 

division, synchronization of cell cultures, opisthokonta, holozoan 48 
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Author’s summary 50 

When cells reproduce, proper duplication and splitting of the genetic material is 51 

ensured by cell cycle control systems. Many of the regulators in these systems 52 

are present across all eukaryotes, such as cyclin and cyclin-dependent kinases 53 

(CDK), or the E2F-Rb transcriptional network. Opisthokonts, the group 54 

comprising animals, yeasts and their unicellular relatives, represent a puzzling 55 

scenario: in contrast to animals, where the cell cycle core machinery seems to 56 

be conserved, studies in yeasts have shown that some of these regulators have 57 

been lost and independently evolved. For a better understanding of the evolution 58 

of the cell cycle regulation in opisthokonts, and ultimately in the lineage leading 59 

to animals, we have studied cell cycle regulation in Capsaspora owczarzaki, a 60 

unicellular amoeba more closely related to animals than fungi that retains the 61 

ancestral cell cycle toolkit. Our findings suggest that, in the ancestor of 62 

Capsaspora and animals, cyclins oscillate in the same temporal order as in 63 

animals, and that expansion of CDKs occurred later in the lineage that led to 64 

animals.  65 
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Introduction 66 

The cell cycle is an essential and fundamental biological process that 67 

underpins the cell division and proliferation of all cells. Progression through the 68 

cell cycle involves multiple layers of regulation [1]. The main regulatory networks 69 

that govern the transitions between cell cycle stages are broadly conserved in 70 

eukaryotes, both on the level of individual regulators [2], as well as on the level 71 

of network topology [3]. However, it is still not well understood how this conserved 72 

regulatory network is deployed in cells with different cellular lifestyles and how it 73 

changes across evolution.  74 

Among the main regulators of the progression through the cell cycle are 75 

cyclins and cyclin-dependent kinases (CDKs), two gene families broadly 76 

conserved across eukaryotes [1,2]. Cyclins and CDKs have undergone 77 

independent expansions and subfunctionalization in every major lineage of 78 

eukaryotes, including opisthokonts [4–6]. In animals, there are multiple cyclins 79 

and CDKs that form discrete complexes, activating specific downstream effectors 80 

in different phases of the cell cycle [7,8]. Cyclin D-CDK4,6 complexes control 81 

entry into the cell cycle in response to mitogenic factors [9–11]. The G1/S 82 

transition is driven by the Cyclin E/CDK2 complex [12,13], and progression 83 

through S phase is controlled by the Cyclin A/CDK2 complex [13]. Lastly, cyclin 84 

B/CDK1 drive completion of mitosis [14,15]. In contrast, in the budding yeast 85 

Saccharomyces cerevisiae one single CDK sequentially binds to nine cyclins in 86 

three temporal waves [16,17]: Cln1-2 are expressed in G1 and mark the 87 

commitment to a new cycle [18–21], Clb5,6 promote DNA replication at S phase 88 

[22,23], and Clb1-4 drive progression through mitosis [24,25]. The fission yeast 89 

Schizosaccharomyces pombe has a single CDK that also binds different cyclins 90 

at G1,S, and M: Cig1,2 drive progression through G1 and S phase [26,27], and 91 

Cdc13 drives progression through mitosis [28,29]. However, a single CDK-Cyclin 92 

complex can drive progression through the entire cell cycle in this species [30]. 93 

In addition to the cyclin-CDK activity, the cell cycle is also regulated at the 94 

transcriptional level by timing the expression of genes required in its different 95 

phases. For instance, the E2F-Rb network of transcription factors controls 96 

initiation of DNA replication in animals at the G1/S transition [31–33]. In yeasts, 97 
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transcriptional regulation of the G1/S transition is driven by SBF and MBF, two 98 

transcription factor complexes that bear no homology to E2F [34]. Recent findings 99 

show that these transcription factors were acquired through lateral gene transfer 100 

during fungal evolution [2]. In addition, other transcription factors are the mitotic 101 

Fkh1 and Fkh2 [35,36] in S. cerevisiae or the Hcm1 transcription factor, 102 

controlling progression through G2 and mitosis [37]. In human cells, a protein of 103 

the same family, FoxM1, also regulates gene expression in mitosis [32,38]. 104 

Although oscillatory transcriptional activity during the cell cycle is present in 105 

numerous species and cell types [32,33,46–50,37,39–45], the genes affected by 106 

cell cycle-regulated transcription are divergent between distantly related species 107 

[51]. Likewise, even among different human cell types, periodic expression of 108 

only a fraction of genes is common to all of them [32,52].  109 

Yeasts have historically been a powerful model system to understand the 110 

control of the cell cycle in animals. However, it has become clear that many 111 

otherwise conserved cell cycle regulators have been lost and independently 112 

evolved in the fungal lineage [2,3,53–55]. Thus, we sought to investigate the cell 113 

cycle control in another organism within opisthokonts that has retained the 114 

ancestral cell cycle regulation. We focused on Capsaspora owczarzaki (hereafter 115 

Capsaspora), a species more closely related to animals than yeasts, easy to 116 

culture, and for which good genomic resources are available [56–59]. This 117 

amoeba has a life cycle that includes three distinct stages that differ both in their 118 

morphology and transcriptional and proteomic profiles: amoebas with filopodia 119 

that proliferate in adherent cultures, an aggregative multicellular stage in which 120 

cells produce an extracellular matrix, and a cystic form that lacks filopodia [60–121 

62]. Moreover, Capsaspora has a compact, well-annotated genome, with many 122 

homologs to animal genes [59]. With recent advances that allow transfection in 123 

the laboratory [63], Capsaspora is becoming a tractable model organism. 124 

In this work, we have established a protocol to synchronize cell cycle 125 

progression in Capsaspora and have characterized its cell division and 126 

transcriptional profile across the entire cell cycle. We found that globally, the 127 

periodic transcriptional program of Capsaspora is enriched in genes that date 128 

back to eukaryotic origin, and it resembles human cells more than the periodic 129 

transcriptomes of yeasts. Out of four human cyclin types, Capsaspora contains 130 
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homologs of cyclins A, B, and E. We found that these three cyclins are 131 

transcriptionally regulated during the cell cycle and have a conserved temporal 132 

order and cell cycle stage with human cells. In contrast, Capsaspora only 133 

contains one ancestral copy of the CDK, which likely form complexes with all of 134 

the Capsaspora cyclins. We also found that orthologs of many other cell cycle 135 

regulatory genes have a conserved timing of expression compared with animal 136 

cells. Our findings suggest that the cyclin-CDK system of animals evolved 137 

gradually, through an intermediate stage where one single CDK was able to 138 

interact with several cyclins at distinct stages of the cell cycle. Thus, while 139 

expansion and subfunctionalization of animal cyclins occurred earlier, expansion 140 

of CDKs occurred concomitantly with the emergence of animals.  141 
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Results 142 

Synchronization of cell cultures in Capsaspora 143 

Synchronization of cell cultures is a basic experimental tool required to 144 

study the cell cycle [64].  Cell synchronization methods include temperature-145 

sensitive strains, elutriation, cell sorting and commercially available inhibitors that 146 

arrest the cell cycle. Arrest and release approaches have previously been used 147 

to assess cell cycle progression in several organisms [39,42,65,66]. 148 

Hydroxyurea, a widely used S-phase inhibitor in yeast cells [67], was already 149 

shown to inhibit cell proliferation in Capsaspora cultures during the adherent cell 150 

stage [62]. Therefore, to check if cell cycle inhibition occurred before entering S 151 

phase and was reversible, we treated Capsaspora adherent cultures with 152 

hydroxyurea and assessed DNA content by flow cytometry. Upon hydroxyurea 153 

treatment, cells exhibited 1C DNA content, indicating arrest in G1 phase (Fig. 154 

1A). Upon wash and release into fresh media, we observed synchronous 155 

progression through the cell cycle as assessed by DNA content (Fig. 1C). This 156 

indicates that hydroxyurea inhibits the cell cycle in S phase in Capsaspora and 157 

that its effect is reversible. 158 

To measure the timing of cell cycle stages in Capsaspora, we treated two 159 

biological replicates of adherent proliferative Capsaspora cultures with 160 

hydroxyurea, and we later released them into fresh medium. Samples were taken 161 

at 45-minute intervals, starting from 2 hours after release, taking a total of 16 time 162 

points that were analyzed using flow cytometry (Fig. 1B). Following release, cells 163 

spent approximately 1.5 hours duplicating their DNA content, and after 8 hours 164 

from release a G1 peak appeared again, indicating completion of the cell cycle 165 

(Fig. 1C). These observations were reproduced in the two replicates. At later time 166 

points, we noticed co-occurrence of 1C and 2C peaks. This may be due to some 167 

cells progressing through the cell cycle more rapidly than others [68], causing 168 

loss of synchrony, or due to an irreversible arrest in a fraction of the cells upon 169 

HU treatment [69]. Nevertheless, our time course encompasses a complete 170 

round of the cell cycle, as we observed an increase in 1C at later time points. 171 
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Dynamics and morphology of cell division in Capsaspora 173 

To characterize the dynamics of cell division in Capsaspora, we used time-174 

lapse microscopy in synchronized cells. In parallel, we analyzed synchronized 175 

cells for DNA content by flow cytometry and characterized the cell morphology 176 

during cell division using fluorescence microscopy. Out of a total of 100 mitotic 177 

cells observed by live imaging (Fig. 2A), the highest fraction underwent 178 

cytokinesis at approximately 10 hours (Fig. 2C). Cells seemed to round up and 179 

slightly detach from the plate surface while retaining their filopodia (Fig. 2A, Video 180 

1). This phenomenon has been previously characterized in other eukaryotic cells 181 

lacking a rigid cell wall, such as animal cells or Dictyostelium amoeboid cells [70–182 

77]. Cells took an average of 3 minutes to completely undergo cytokinesis (Fig. 183 

2A, Video 1), measured as the time from rounding up to the splitting of two 184 

daughter cells. This value is at least twice as fast as in animal cell types, where 185 

the average time for cytokinesis is 6 minutes [78–80], and it is also considerably 186 

faster than in yeasts [81–84] when considered in relation to the total generation 187 

time of Capsaspora (estimated to be around 12 hours in our culture conditions). 188 

As shown in Fig. 2D, the measured area of daughter cells is roughly the same, 189 

suggesting that cell division is symmetric and yields two equally sized cells.  190 

To investigate the morphology of mitotic cells, we stained tubulin and DNA. 191 

On each cell, we observed one dot of dense concentrations of tubulin, from which 192 

microtubules emanate (Fig. 2B, white arrows). These dots duplicated and 193 

remained close, first associated with the nucleus and then surrounding densely 194 

packed DNA. A central, thicker spindle emerged and grew as DNA separated and 195 

moved to opposite poles of the dividing cell. A similar phenomenon has been 196 

described for Dictyostelium [85]. Previous studies have reported the absence of 197 

proteins from the gamma-tubulin ring complex and the yeast spindle pole body in 198 

Capsaspora [86], which together with our observations suggests that Capsaspora 199 

mitotic spindle is organized without a microtubule organizing center (MTOC), or 200 

that it possesses an independently evolved MTOC, such as in yeast [87]. 201 
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Detection of periodically expressed genes during the Capsaspora cell 202 
cycle 203 

In many cell types, cell division cycles are accompanied by a transcriptional 204 

program of periodic gene expression over time. To understand the transcriptome 205 

dynamics during the cell cycle of Capsaspora, we performed time-series RNA-206 

seq experiments. We used RNA extracts from the same two biological replicates 207 

as in the flow cytometry assay and sequenced them using Illumina HiSeq v4. We 208 

processed the sequencing reads using Kallisto [88] (Supplementary File 1). 209 

Spearman correlations by gene expression profiles showed that time points are 210 

grouped according to the temporal order of sampling (Supplementary Fig. S2). 211 

This indicates that gene expression is not shifted over time and was reproducible 212 

between the two replicates. To detect periodicity patterns in gene expression, we 213 

applied two algorithms, JTK_CYCLE [89] and RAIN [90], on an average dataset 214 

of the two replicates where non-expressed genes were filtered out 215 

(Supplementary Fig. S1A). We assigned two ranks to every gene according to 216 

the p-values calculated by JTK_CYCLE and RAIN (Fig. 3B), and assigned the 217 

final periodicity rank as the sum of JTK and RAIN ranks. We applied a 218 

conservative cutoff to identify genes that are undoubtedly periodically transcribed 219 

by taking the top 800 genes ranked within the top 2000 ranking for each 220 

independent dataset (Fig. 3B) (Supplementary Fig. S1B). This cutoff corresponds 221 

to 10% of the total number of genes in Capsaspora, a fraction similar to those 222 

observed in other species [39,42,50,91]. Although false negatives with higher 223 

ranks might have been discarded due to our conservative approach, we 224 

confirmed that top-ranked genes showed oscillatory behavior. We manually 225 

included Capsaspora Cyclin A (CAOG_04719T0) [4,59] (see below) to the list of 226 

periodic genes despite ranking in position 1916, as it has a periodic expression 227 

profile (Fig. 5A). 228 

For a gene expression dataset containing only genes identified as periodic, 229 

we observed stronger correlations by time points (Fig. 3C) or pairwise genes than 230 

for the entire dataset (Supplementary Fig. S3A). We also observed a strong 231 

correlation between initial and late time points (Fig. 3C), suggesting that the 232 

cultures indeed completed the entire cell cycle despite the loss of synchrony. A 233 

principal coordinate analysis using data for the top-ranked periodic genes 234 
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retrieved a grouping of time points that resembles a circle with two components 235 

explaining around 70% of the total distance (Fig. 3D, Supplementary Fig. S3B), 236 

and a similar layout is obtained on a t-SNE plot of periodically expressed genes 237 

(Supplementary Fig. S4). The results from these analyses indicate that there is a 238 

set of periodically transcribed genes during the cell cycle of synchronous 239 

Capsaspora cells. This set of genes represents the periodic transcriptional 240 

program of Capsaspora (Supplementary File 2). 241 

Gene expression is clustered in periodic waves during the cell cycle 242 

The cell-cycle-associated transcriptional program responds to the 243 

requirements of the cell at a given moment. For example, in many cell types, 244 

genes necessary for DNA replication or mitosis are transcribed only at the time 245 

of their biochemical activity. The detection of periodic genes in Capsaspora 246 

prompted us to classify them into temporal clusters, by centering their expression 247 

profiles to the mean and grouping them using hierarchical clustering based on a 248 

dissimilarity matrix by Euclidean distance (Fig. 4A). Five clusters were detected 249 

according to the similarity in expression profiles over time (Fig. 4A, 250 

Supplementary Fig. S4A, Supplementary Fig. S4B), and we obtained very similar 251 

results by using k-means clustering (Supplementary Fig. S5). We then associated 252 

these gene clusters to the cell cycle stage during the peak of expression: the 253 

G1/S cluster, S cluster, G2/M cluster, M cluster, and G1 cluster. Next, we 254 

calculated gene ontology (GO) enrichment for every cluster against the whole 255 

periodic transcriptional program using Ontologizer [92] Parental-Child-Union 256 

calculation (Fig. 4B, Supplementary File 3).  257 

The G1/S cluster contains 194 genes peaking in the initial time points, from 258 

2 to 3.5 hours after release. Genes found here exhibit the largest differences in 259 

gene expression between time points and are enriched in GO terms related to 260 

DNA replication, deoxyribonucleotide biosynthesis, and chromosome 261 

organization. There is also enrichment in the GO term “response to stress”, 262 

suggesting an effect of the treatment with hydroxyurea [68,69]. The small cluster 263 

assigned to S/early G2 contains 36 genes peaking between 3.5 to 5.75 hours 264 

enriched in the GO term “nucleosome binding” and includes several histone 265 

genes. 266 
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In the G2/M cluster, we found 176 genes with the peak of expression at 6.5-267 

7.25 hours post-release. This cluster is enriched in the GO term “non-coding RNA 268 

metabolic process”, and contains genes related to tRNA maturation such as 269 

RTCB, DDX1 [93], and tRNA ligases. It has been previously reported that tRNA 270 

synthesis can increase during the cell cycle in several systems [94–96]. To our 271 

knowledge, however, there is still no link reported between tRNA modification 272 

and progression through the cell cycle. 273 

The M cluster is the largest one in the dataset, with 241 genes peaking 274 

between 9.5 and 11 hours. Genes reach the highest expression during time 275 

points when the cells enter mitosis, reaching a plateau which reflects the partial 276 

asynchrony of the cells at the time. This cluster is enriched for genes annotated 277 

with chromosome segregation, organelle fission, and diverse cytoskeletal 278 

components like spindle proteins and myosins. All these GO terms can be linked 279 

to mitotic cell division. 280 

The G1 cluster has 157 genes. Genes in this cluster show higher expression 281 

levels in both the late and initial time points of the experiment. Many GO terms 282 

enriched in this cluster are related to the mitochondrion and diverse metabolic 283 

processes that indicate an increase in cell metabolism as the cell progresses 284 

through the cell cycle [97]. 285 

Taken together, the GO enrichment analyses show that gene expression 286 

clusters contain conserved genes involved in the cell cycle in Capsaspora. 287 

Conserved temporal order of cyclin and CDK expression in 288 
Capsaspora 289 

In eukaryotes, the cell cycle events are regulated by cyclins in complex with 290 

CDKs. While the cyclin and CDK gene families are broadly conserved across 291 

eukaryotes [2,3], some of the subfamilies are lineage specific and have radiated 292 

differently. In budding yeast, two types of cell cycle cyclins can be found: cyclin 293 

B and Cln-type cyclins. Both types bind to one single CDK, Cdk1 [16]. In animals, 294 

this ancestral CDK expanded and specialized [4] resulting in multiple cyclin-CDK 295 

partners involved in different phases of the cell cycle: CDK2 binds to cyclins E 296 

and A at the onset and later stages of S phase [13], cyclin B binds to Cdc2 in 297 
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mitosis [14], and CDK4 and CDK6 bind to cyclin D types during G1 [98]. To our 298 

knowledge, how cyclin-CDK binding partnership grew in complexity remains 299 

unclear. 300 

To provide some insights into the evolution of cyclin-CDK binding 301 

partnership, we used our temporal gene expression dataset to infer the timing of 302 

cyclin-CDK activity during the cell cycle in Capsaspora. Due to inconsistencies in 303 

published work [4,59], we first revised the classification of cyclin and CDK genes 304 

found in Capsaspora by phylogenetic profiling using a complete taxon sampling 305 

for Holozoa (the clade comprising animals and their closest unicellular relatives) 306 

and validated the gene previously reported as Capsaspora CDK1 [59] by Sanger 307 

sequencing and transcriptomics (see Methods) (Supplementary File 4, 308 

Supplementary File 5, Supplementary Figs 6-8). Despite the limited phylogenetic 309 

resolution, Capsaspora and other unicellular holozoan sequences appeared in 310 

earlier branching positions to the metazoan Cyclin A, B and E clades, this being 311 

compatible with Capsaspora having orthologs of these cyclins (Supplementary 312 

Fig. S6). The phylogeny does not suggest the presence of a Cyclin D ortholog in 313 

Capsaspora. In the CDK phylogeny (Fig. 5-Fig. supplement 2), sequences from 314 

Capsaspora and other filastereans branch as a sister-group to the metazoan 315 

CDK1 clade (100% of UFBoot), whereas the branching of sequences from other 316 

unicellular holozoans is more uncertain concerning the CDK1 and CDK2-3 317 

metazoan clades. From this, we envision two possible evolutionary scenarios. In 318 

a first scenario, an ancestral duplication of CDK1-3 into CDK1 and CDK2-3 319 

occurred in a common ancestor of Holozoa. As most unicellular holozoans have 320 

only one sequence within the CDK1-3 clade, this would imply differential losses 321 

of either CDK1 or CDK2-3 in Ichthyosporea, Filasterea and Choanoflagellatea, 322 

and Metazoa conserving both paralogs. Despite Salpingoeca rosetta has two 323 

sequences within the CDK1-3 clade, both paralogs are likely to descend from a 324 

duplication event occurred in the Choanoflagellatea lineage, with Monosiga 325 

brevicollis losing one of the two copies. In a second scenario, which we find more 326 

parsimonious, the duplication would have occurred in the lineage leading to 327 

Metazoa, but the limiting phylogenetic signal would not have allowed 328 

reconstruction of the real phylogenetic pattern of the CDK1-3 clade. Thus, we 329 

propose that the subfunctionalization of CDK1-3 is a specific feature of Metazoa, 330 
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with Capsaspora retaining the ancestral CDK1-3 gene instead of having a CDK1 331 

ortholog as previously reported [59]. 332 

We report a clear temporal ordering of expression of the putative 333 

Capsaspora Cyclins A, B, and E (Fig. 5A). Cyclin E belongs to the G1/S cluster, 334 

cyclin A clusters together with S-phase genes, and cyclin B is in the M cluster, 335 

peaking at mitosis (Fig.4) together with Capsaspora CDK1-3 (Fig. 5B), although 336 

we found the CDK1/2/3 transcript expressed at high levels also during the rest of 337 

the cell cycle. In conclusion, our results suggest that cyclins A, B and E follow the 338 

same temporal order and cell cycle phases as cyclins in human cells. 339 

 340 

The Capsaspora periodic transcriptional program includes ancient 341 
eukaryotic genes and is similar to that of animal cells 342 

Besides the cyclin-CDK system, other regulators are periodically expressed 343 

during the cell cycle [32,39,40]. To characterize the periodic expression program 344 

in Capsaspora in comparison to other species, we identified orthologs of cell cycle 345 

regulators from other species in Capsaspora using OrthoFinder [99] 346 

(Supplementary File 5) and using a list of one-to-one Capsaspora-human 347 

orthologs from a set of phylogenies of Capsaspora [61]. From these sources, we 348 

identified which periodic human genes with known functions in the cell cycle (as 349 

described in [32,39,40,100]) have also a periodic ortholog in Capsaspora. We 350 

found that numerous DNA replication genes are upregulated in the G1/S cluster 351 

in Capsaspora, including DNA polymerase subunits, replication factors, and 352 

proteins CDC45 and PCNA (Fig. 5C). Among human genes that peak in mitosis, 353 

we found Capsaspora orthologs of Aurora Kinase A (AURKA), protein regulator 354 

of cytokinesis 1 (PRC1) and the anaphase-promoting complex (APC) subunit 355 

UBE2S expressed in the G2/M cluster (Fig. 5D). In human cells, AURKA 356 

regulates the assembly of the centrosome and the mitotic spindle [101], mitotic 357 

cyclins and cohesins are degraded by the APC [1], and PRC1 regulates 358 

cytokinesis by cross-linking spindle midzone microtubules [102]. Although we did 359 

not find regulatory APC subunits CDC20 and CDH1 [103,104] among periodically 360 

expressed genes in Capsaspora, the UBE2S peak in mitosis suggests that APC 361 

activity might also be transcriptionally regulated during the cell cycle in 362 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 31, 2019. ; https://doi.org/10.1101/719534doi: bioRxiv preprint 

https://doi.org/10.1101/719534
http://creativecommons.org/licenses/by-nc/4.0/


 14 

Capsaspora. During M phase, we also observed upregulation of different 363 

kinesins, microtubule motors with conserved function in the mitotic spindle, and 364 

centromere proteins; a more detailed overview is provided in Supplementary File 365 

7. We also identified Capsaspora periodic genes belonging to the same 366 

orthogroups as other cell cycle regulators in human cells, but without a one-to-367 

one ortholog relationship (Supplementary File 8). 368 

In addition to the examples above, we were interested in the similarities of 369 

the periodic transcriptional program of Capsaspora with those of other eukaryote 370 

species. First, to understand the evolutionary origin of the periodic genes found 371 

in Capsaspora, we calculated gene age enrichment for every cell cycle cluster. 372 

We assigned a gene age to the orthogroups by Dollo parsimony [105] and 373 

compared the enrichment ratios for non-periodic genes and the five clusters 374 

separately with the gene age of the whole transcriptome of Capsaspora. Three 375 

of the clusters of periodic genes presented significant enrichment in pan-376 

eukaryotic genes (Fig. 6A, Fig. 6—source data 1). Our data thus shows that a 377 

large fraction of genes in the periodic transcriptional program of Capsaspora 378 

belong to gene families originating early in eukaryotic evolution. 379 

Next, we compared our dataset of Capsaspora periodic genes with datasets 380 

of cell cycle synchronized cells of different organisms, namely three different cell 381 

types of Homo sapiens (Hela Cells, U2OS cells, and foreskin primary fibroblasts) 382 

[32,41,50], Saccharomyces cerevisiae [43], Schizosaccharomyces pombe [91],  383 

and Arabidopsis thaliana [44]. For each dataset, we took the published lists of 384 

periodic genes and corrected for the number of genes in each species (Fig. 6—385 

source data 2). We set a threshold of less than 10% of genes to be periodic for 386 

human cells and the yeasts, and less than 5% for A. thaliana. Thus 1790 periodic 387 

genes were identified in HeLa cells, 1245 in U2OS cells, 461 in fibroblasts, 592 388 

in S. cerevisiae, 499 in S. pombe, and 1060 in A. thaliana datasets. We found 389 

1925 orthogroups that contained at least one periodic gene from either of the 390 

datasets (Fig. 6B), and named these “periodic orthogroups”. Of these, one third 391 

had orthologs in all five species. 392 

We first computed the number of periodic genes shared between pairs of 393 

species (defined by their presence in the same orthogroup). Overall, all species 394 
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share a small number of periodic genes (Fig. 6—source data 3, Fig. 6—source 395 

data 4), with the number of genes being highest for Capsaspora with H. sapiens 396 

cell lines (167, 81 and 99 periodic orthogroups with HeLa cells, U2OS cells, and 397 

fibroblasts, respectively) rather than yeasts or A. thaliana (Fig. 6D, 398 

Supplementary File 11, Supplementary File 12). Still, the periodic expression of 399 

the majority of the genes is not shared between species, consistent with former 400 

findings of 2% to 5% of periodic genes shared between different organisms [51]. 401 

This indicates that the periodic transcriptional program is divergent both between 402 

species and even between different cell types within an organism. 403 

Despite the low numbers of periodically expressed genes in common, we 404 

wondered whether the periodic transcriptional program in each species indeed 405 

evolved independently, meaning that the pairs of genes that share the periodic 406 

expression between species are observed only by chance. To that end, we 407 

calculated the expected number of shared periodic orthogroups by chance as the 408 

product of ratios of periodic orthogroups from each species within their 409 

orthogroups in common (Fig. 6C). We detected that, for most species, the number 410 

of shared periodic genes is higher than by chance, especially for Capsaspora and 411 

the core cell cycle gene set of H. sapiens (defined in [32] ) (Fig. 6D, 412 

Supplementary File 11, Supplementary File 12). We found the same when 413 

comparing periodic one-to-one orthologs [61] (Fig. 6D) or when defining periodic 414 

genes on every species using the same method that we applied to Capsaspora 415 

(Supplementary Fig. S9, Supplementary Files 10-12). Therefore, these findings 416 

are robust with respect to the methods used to identify periodically expressed 417 

genes and to assign orthology relationships. Thus, although the cell cycle 418 

periodic expression program largely evolves fast and independently, our data 419 

suggest there is a core set of genes of conserved oscillatory expression during 420 

the cell cycle (Fig. 6B).  421 

Overall, our cross-species comparison of the periodic gene expression 422 

programs revealed that the Capsaspora periodic gene expression program is 423 

more similar to human cells that to current unicellular model systems for the cell 424 

cycle. Furthermore, including a new species in the global analysis, we discovered 425 

a previously unappreciated core set of genes for which periodic expression is 426 

deeply conserved.   427 
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Discussion 428 

In this study, we have used synchronized Capsaspora adherent cells to gain 429 

insight into key aspects of the cell cycle, such as cell division and periodic gene 430 

expression, in a unicellular relative of animals. Previously, the cell cycle has been 431 

studied in only a handful of species due to the inability to obtain synchronous cell 432 

cultures. With this synchronization protocol, the cell cycle of a closer relative of 433 

animals can be studied in cultures that can be synchronized from DNA replication 434 

to cell division. 435 

Our experimental setup made possible to characterize mitotic cell division 436 

in Capsaspora, which we found relies on microtubule-based structures, as 437 

previously described in other eukaryote species (Forth and Kapoor, 2017). Our 438 

observations suggest the presence of a putative non-centrosomal microtubule 439 

organizing center (MTOC) in Capsaspora, which raises new questions about the 440 

mechanisms of cell division in this species. As non-centrosomal MTOCs have 441 

independently evolved in many different species [107], it may well be that 442 

Capsaspora has a non-centrosomal, independently evolved MTOC, or that their 443 

microtubules are able to self-arrange, as previously shown in other systems 444 

[108]. 445 

Synchronization of Capsaspora cell cultures allowed us to study 446 

transcription during the cell cycle using RNA sequencing. We identified five 447 

waves of gene expression across time, with most genes being expressed in the 448 

G1/S transition and in mitosis. As in previously studied organisms, these waves 449 

of transcription can be grouped in clusters containing genes related to the main 450 

events of the phases of the cell cycle. The periodic transcriptional program of 451 

Capsaspora is enriched in genes that emerged at the onset of eukaryotes, 452 

showing that the cell cycle relies in numerous genes, such as DNA replication 453 

proteins and cytoskeleton components, which are common to all eukaryotes due 454 

to their roles in fundamental cellular processes. Although transcriptional activity 455 

during the cell cycle is present in numerous species and cell types [51], the genes 456 

affected by cell-cycle-regulated transcription are divergent between distantly 457 

related species, likely due to the fact that transcriptional regulation adapts to the 458 

environment and lifestyle of each particular cell type. Our observations suggest 459 
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that this occurs largely by old genes gaining and losing periodic regulation, rather 460 

than new species-specific genes evolving to be regulated during the cell cycle. 461 

This is consistent with Jensen et al.’s observations that periodicity in complex 462 

activity can evolve rapidly in different lineages by recruiting different partners of 463 

the same complex, which preserves the periodic regulation of the entire complex 464 

[51]. Still, in contrast to previous analysis with a more limited set of species, our 465 

analysis clearly revealed a core set of genes of which the periodic regulation is 466 

deeply conserved among eukaryotes.   467 

From the temporal order of gene expression of Capsaspora cyclins, we 468 

conclude that cyclins A, E, and B follow the same order and are associated with 469 

the same cell cycle stage as in H. sapiens cells. In contrast to human cells, where 470 

these cyclins bind their respective partner CDKs, Capsaspora only possesses 471 

one ancestral CDK1-3, which, although periodically expressed with a peak in M-472 

phase, exhibits high transcript levels throughout the cell cycle. Due to this, we 473 

propose that CDK1-3 might be the binding partner of cyclin A, B, and E in 474 

Capsaspora and that it might be involved in all phases of the cell cycle (Fig. 7). 475 

Nevertheless, in the absence of biochemical data, we cannot exclude the 476 

possibility that Capsaspora cyclins A and E bind other non-canonical CDKs.  477 

Interestingly, in knock-out mice where all CDKs except for CDK1 were deleted, 478 

all cyclins were also found to bind CDK1[109], which suggests that animal cyclins 479 

A, B and E are also able to bind CDK1. Given these data, we reconstruct a likely 480 

evolutionary scenario of the evolution of the cyclin-CDK system in opisthokonts. 481 

The ancestral opisthokont likely possessed a single CDK, with a role in multiple 482 

cell cycle phases, and B-type cyclins. Cyclins underwent duplication and 483 

subfunctionalization first, acquiring roles in regulating distinct phases of the cell 484 

cycle while binding to the single CDK. This evolutionary intermediate state is 485 

present in Capsaspora. During the emergence of animals, CDKs also underwent 486 

expansion and subfunctionalized to bind specific cyclins, forming discrete 487 

complexes active in a particular stage. This suggests that there was a gradual 488 

evolution of the cyclin-CDK control of the cell cycle during the emergence of 489 

animals.  490 
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Materials and methods 519 

Cell cultures and culture synchronization 520 

Capsaspora cells were incubated at 23ºC in ATCC medium 1034 (modified 521 

PYNFH medium). Two independent cultures of Capsaspora at 30-50% 522 

confluency were treated using 10mM Hydroxyurea (Sigma Aldrich, Saint Louis, 523 

MO, USA, #H8627) in culture medium, and left incubating for approximately 14 524 

hours. 525 

 526 

Cells were released from Hydroxyurea by washing prior to elution in fresh 527 

medium; samples were collected by scraping and washing two hours after 528 

release, and from there on every 45 minutes until thirteen hours. A total of sixteen 529 

time points were taken, constituting a time window comprising one event of 530 

genome duplication and one mitotic division. 531 

 532 

We also tested different concentrations and incubation times of 533 

hydroxyurea, nocodazole (Sigma-Aldrich, #M1404), and aphidicolin (Sigma-534 

Aldrich, #A0781). Only 10mM hydroxyurea for longer than thirteen hours showed 535 

arrest of the cell cycle, while Nocodazole had no observable effect by DNA 536 

content measurement, and the rest ruined the samples due to insolubility of the 537 

compound. 538 

DNA content measurement 539 

Cells were washed in PBS and fixed in 70% ethanol in PBS, then incubated 540 

in RNAse A (Sigma-Aldrich, #R6148) (one volume in three volumes of 1xPBS) 541 

for 24 hours at 37 ºC. Cells were then incubated in a final concentration of 542 

20µg/ml propidium iodide (Sigma-Aldrich, #P4170-25MG) for 72 hours at 4 ºC. 543 

 544 

Samples were analyzed by flow cytometry using a BD LSR Fortessa 545 

analyser (Becton Dickinson, Franklin Lakes, NJ, USA). SSC-A and FSC-A were 546 

used to detect populations of stained cells. Single cells were gated by FSC-H and 547 

FSC-A. An average of 10,000 events per sample were recorded. PI-positive cells 548 

were detected using a 561 nm laser with a 610/20 band pass filter (red 549 
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fluorescence). To estimate the cell count, Texas Red-A was plotted as 550 

histograms using FlowJo 9.9.3 (FlowJo LLC, Ashland, OR, USA). 551 

Cell microscopy and image analysis 552 

Microscopy pictures were taken using a Zeiss Axio Observer Z.1 553 

Epifluorescence inverted microscope equipped with Colibri LED illumination 554 

system and Axiocam 503 mono camera (Carl Zeiss microscopy, Oberkochen, 555 

Germany). A Plan-Apochromat 100X/1.4 oil objective (Nikon Corporation, Tokyo, 556 

Japan) was used for imaging fixed cells. For the live imaging, we used an EC 557 

Plan-Neofluar 40x/0.75 air objective (Carl Zeiss microscopy).  558 

 559 

Image analysis was done using ImageJ software [110]. For fixed cells, we 560 

used the oval selection tool to draw the contour of each cell and measured cell 561 

perimeter. As cells are spherical, we computed cell area using ImageJ. We 562 

estimated the relative cell area of every pair of daughter cells by dividing each 563 

measurement by the sum of the two daughter cells areas. All the calculation and 564 

data plotting was done in R Software ver. 3.4.4[111]. 565 

RNA isolation and sequencing 566 

Time point samples were washed in 1xPBS, poured in Trizol, and frozen at 567 

-80ºC. Total RNA was purified using Zymo RNA miniprep kit (Zymo Research, 568 

Irvine, CA, USA, #R2050). mRNA libraries were prepared using the TruSeq 569 

Stranded mRNA Sample Prep kit (Illumina, San Diego, CA, USA, Cat. No. RS-570 

122-2101). Paired-end 50bp read length sequencing was carried out at the CRG 571 

genomics core unit on an Illumina HiSeq v4 sequencer, with all samples from the 572 

same replicate being pooled in the same lane. 573 

 574 

Capsaspora adherent cultures cDNA was obtained by RT-PCR using 575 

SuperScript® III Reverse Transcriptase (Invitrogen, Carlsbad, CA, USA, 576 

#18080044) following the manufacturer’s instructions. PCR was performed using 577 

Phusion® High-Fidelity DNA Polymerase (New England Biolabs, Ipswich, MA, 578 

USA, #M0530L) following the manufacturer’s instructions.  579 
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Transcriptomic analysis 580 

RNA reads were mapped using Kallisto v0.43.1[88] using default 581 

parameters onto a set of the largest isoforms of the Capsaspora 582 

transcriptome[62]. The resulting time-series transcriptome in transcript-per-583 

million (tpm) units is available in Supplementary File 1. We retrieved only the 584 

transcripts whose average expression level is above 1 tpm in the whole time 585 

series. 586 

 587 

Gene expression level was normalized by subtracting the mean over time 588 

and dividing by the standard deviation. Normalized datasets were clustered 589 

according to their Spearman correlation values using hierarchical clustering (R 590 

gplots library[111,112]).  591 

Identification of periodically expressed genes 592 

Periodic genes were detected in Capsaspora by ranking using JTK_CYCLE 593 

[89] and RAIN [90] on the time-series transcriptomes and an average of the two 594 

replicates. We set JTK_CYCLE parameters to periods=14:16 and sampling 595 

interval=0.75, and ranked every gene by their BH.Q value. We set RAIN 596 

parameters to period=16 and delta=0.75, and ranked every gene by their 597 

Benjamini-Hochberg corrected p-value. We set a cutoff of the genes ranked 598 

below 2000 on each separate replicate and simultaneously ranked below 800 in 599 

the average dataset (see Supplementary Fig S1, Supplementary File 2). 600 

Clustering analysis  601 

Periodic genes were hierarchically clustered according to similarity of gene 602 

expression over time (averaged between two replicates), and clustered by k-603 

means clustering[111] using standard parameters and k=5. Agreement between 604 

clustering methods was calculated as the number of genes belonging to the same 605 

pair of clusters divided by the size of the smallest cluster in the pair.  606 
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Calculation of Gene ontology enrichment 607 

Gene ontology enrichment was calculated using Ontologizer[92] using the 608 

–c “Parent-Child-Union” –m “Bonferroni” options. Bonferroni-corrected p-values 609 

were taken as significant when below 0.05.  610 

Phylogenetic classification of CDKs and Cyclins from early-holozoa 611 
taxa 612 

Annotated sequences of cyclins and CDKs from H. sapiens and S. 613 

cerevisiae were retrieved from Cao et al.[4] and Swissprot[113], and A. thaliana 614 

sequences were taken from[113–115]. These sequences were used as queries 615 

to detect potential CDKs and cyclins orthologues in our dataset (Supplementary 616 

File 4) using BLAST+ v2.3.0[116,117]. Those sequences that aligned were 617 

BLASTed against a database including all proteins from H. sapiens, S. cerevisiae 618 

and A. thaliana. We only included in our phylogeny those sequences whose best 619 

hit against this database matched the original sequences used in the detection 620 

step.  Proteins were aligned with MAFFT v7.123b.[118], using the -einsi option, 621 

and alignments were trimmed using trimAl v1.4.rev15[119] with the -gappyout 622 

option. Trimmed alignments were manually inspected and cleaned of poorly 623 

informative sequences except if that sequences corresponded to early-branching 624 

holozoa (ebH) taxa. Cleaned alignment were used as inputs for phylogenetic 625 

inference with IQ-TREE v1.6.7[120], using the -bb 1000 and -mset LG options. 626 

For CDKs, since the tree topology did not show any ebH sequences belonging to 627 

CDK families without orthologues in Metazoa, we performed a second 628 

phylogenetic inference using only the ebH and metazoan proteins to reduce the 629 

potential phylogenetic noise that may be introduced with the addition of non-630 

informative divergence. 631 

  632 

Sequences were classified into CDK/Cyclins families taking into account the 633 

tree topology and the UFBoot nodal support values[121]. Families were named 634 

according to the orthology relationship between the ebH protein and the H. 635 

sapiens sequence. For example, Sarc_g11690T was classified as CDK10 636 

because its position in the tree suggests an orthology relationship to this H. 637 

sapiens protein (Supplementary Fig. S7), whereas Cowc_CAOG_08444T0 was 638 

classified as CDK11-CDK11B because it is orthologue to both H. sapiens 639 
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proteins (Supplementary Fig. S7). We found three ebH cyclin subfamilies without 640 

orthologues in Metazoa, which were named accordingly to the corresponding 641 

orthologue in Saccharomyces cerevisiae (PCL1, PCL2, PCL9; PCL5, CLG1; and 642 

PCL6-PCL7). Those ebH sequences showing ambiguous or poorly supported 643 

branching patterns were classified as uncertain. 644 

 645 

We found that the current Capsaspora sequence reported by[59] as a CDK1 646 

orthologue (CAOG_07905) is considerably shorter in length than other CDK 647 

orthologues. This could explain why it was not detected in the work by Cao et 648 

al.[4], if an e-value constraint was taken into consideration. By inspection of the 649 

genomic sequence from[122], we detected an assembly gap of 1kb neighboring 650 

the 3’ end of the predicted annotation of CAOG_07905 (Supplementary Fig. 651 

S8A). In silico translation of the surroundings of this gap revealed protein 652 

domains conserved in H. sapiens and S. cerevisiae CDK1 proteins 653 

(Supplementary Fig. S8A-8C). Upon realization that the gene annotation of 654 

Capsaspora CDK1-3 was incomplete, we designed forward (5’-655 

GCTCAAGGAGGTCATCCACC-3’) and reverse (5’-656 

CTCTCTGCCCGATTACAAGC-3’) primers to PCR-amplify the unknown 657 

sequence from both genomic DNA and cDNA (Supplementary Fig. S8A-8B). 658 

Sanger sequencing of the amplified products revealed one more intron and one 659 

more exon, which were used to reconstruct the missing sequence in the 660 

assembly. We mapped the transcriptome of Replicate 2 – timepoint 9 against this 661 

reconstructed sequence using tophat2[123] with standard parameters. 662 

Identification of paired-end overlapping reads in the reconstructed exons using 663 

Tablet [124] verified the results of Sanger sequencing (Supplementary Fig. S8A). 664 

The updated cDNA and protein sequence of Capsaspora CDK1-3, which aligns 665 

much better with human and yeast sequences (Supplementary Fig. S8C), can be 666 

found in Supplementary File 6.  667 
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Identification of orthologous genes 668 

Groups of orthologs were generated using OrthoFinder v2.1.2 [99] using 669 

default parameters (evalue 10e-3, MCL clustering) on a dataset of proteomes 670 

found in Supplementary File 5[113,125–127].  671 

 672 

One-to-one orthologues were taken from a phylome of 6598 genes of 673 

Capsaspora reconstructed in [61] using the algorithm by [128] 674 

(http://phylomedb.org/phylome_100). 675 

Determining cell cycle-regulated genes in H. sapiens, S. cerevisiae, 676 
S. pombe and A. thaliana 677 

We downloaded the lists of cell cycle regulated genes which can be found 678 

at [32,41,43,44,50,91]. We translated the gene and probe names of their datasets 679 

using BioMart[129] and Uniprot[113] tools (see Supplementary File 10). 680 

Gene Age enrichment analysis 681 

We used Count software[105] to assign the emergence of every orthogroup 682 

–and therefore every Capsaspora gene- to a given ancestor in common between 683 

species by Dollo Parsimony. We defined six different ages for Capsaspora: 0 684 

“Capsaspora-specific”, 1 “Filozoa”, 2 “Holozoa”, 3 “Opisthokonta”, 4 “Unikonta”, 685 

and 5 “Paneukaryotic”. All Capsaspora genes unassigned to any orthogroup were 686 

defined as “Capsaspora-specific”. Gene age enrichment was calculated using 687 

contingency tables and significance by Fisher exact test using R software ver. 688 

3.4.4.[111], and was corrected for multi-test hypothesis using Bonferroni 689 

correction. 690 

Comparative analysis 691 

Every periodic and non-periodic gene of each of the seven datasets were 692 

assigned to their respective orthogroup, if any. We obtained seven lists of 693 

orthogroups containing periodic genes of each species or cell type, and also 694 

defined lists of orthogroups containing genes (regardless of periodic) of each of 695 

the five species.  A subset of periodic orthogroups (those containing at least one 696 

periodic gene from at least one of the seven datasets) was generated, and plotted 697 
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for periodicity, presence, or absence, in all the datasets using R gplots 698 

library[112]. 699 

 700 

Numbers and ratios of periodic shared orthogroups and one-to-one 701 

orthologues, as well as binomial test p-values (see Fig.6D, Supplementary Fig. 702 

S9, Supplementary File 11, Supplementary File 12), were calculated using R 703 

software ver. 3.4.4. [127]. For each pair-wise comparison of species, e.g. 704 

Capsaspora and Homo sapiens HeLa cells (Fig.6C), we took the number of 705 

orthogroups they have in common as a total population, C. Then we looked at 706 

the number of periodic orthogroups from each species that are within this total 707 

population, p1 and p2, and calculated the null expectation (Aexp) as a product of 708 

the ratios of these two subpopulations within the population of orthogroups in 709 

common. 710 

Reanalysis of cell cycle datasets using JTK_CYCLE and RAIN 711 

We reanalyzed the datasets of gene expression of [44] (HU treatment 712 

dataset), [91] (three replicates of elutriation), [43] (two replicates of wildtype 713 

synchronous yeast cultures) , [41] (one replicate, thymidine block), [32] (four 714 

replicates of double thymidine block), and [50] (a dataset of ~8000 genes 715 

matching filtering criteria by the authors) using the same pipeline used in our 716 

Capsaspora datasets. For those with replicates, periodicity ranks were calculated 717 

for each replicate independently and summed at the end. 718 

 719 

As every experiment comprised different numbers of cell cycles of different 720 

length, we set up JTK and RAIN parameters to look for periodicity in time lapses 721 

according to the author’s reports (see Supplementary File 10). We corrected for 722 

the number of genes by setting a threshold of less than 10% of genes to be 723 

periodic. Overlap between datasets of periodic genes was calculated using R 724 

Software ver. 3.4.4. [111].  725 
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 1105 
Fig. 1: Experimental setup for cell cycle synchronization in Capsaspora. A: Effect 1106 
of Hydroxyurea in Capsaspora cells. Control cells were treated with an equal volume of 1107 
distilled water. HU treated cells were sampled every 2 hours, and a major decrease in 1108 
2C cells is achieved after a minimum of 8 hours. B: Experimental layout used in this 1109 
study. Two cell cultures growing independently for several generations were grown in 1110 
fresh medium and kept in HU for a lapse of fifteen hours. After that, cells were released 1111 
from HU and harvested every 45 minutes for 11 hours. Three different samples were 1112 
taken from each culture at each time point. C: DNA content profile of synchronized 1113 
Capsaspora cultures at representative time points of the whole experiment. 1114 
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 1115 
Fig. 2: Cell division in Capsaspora. A: Time lapse of live imaging of a synchronous 1116 
culture. Numbers indicate minutes since round up. White arrows indicate a cell dividing 1117 
during the time lapse. Scale bar: 5µm. B: Fluorescence immunostaining of DNA (cyan) 1118 
and Tubulin alpha (green) in Capsaspora synchronous cultures at different stages of cell 1119 
division. White arrows indicate structures with a high concentration of tubulin. White 1120 
dashed outline indicates cell perimeter. Scale bar: 5µm. C: Histogram depicting the 1121 
number of cells at the moment of division in different times of the time lapse. Range goes 1122 
from 7h to 11h. D: Stacked barplot showing the normalized, relative cell area for each 1123 
daughter cell in a total of 101 events of cell division.  1124 
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 1125 
Fig. 3: Detection of periodic genes in Capsaspora. A: Pearson correlation for the 1126 
normalized expression level of every gene between replicates. Bright red indicates 1127 
positive correlation, and dark purple indicates negative correlation. B: Spearman 1128 
correlation between the two methods used to detect cell cycle regulated genes in 1129 
Capsaspora. Scatter plots depicting the rank assigned for every gene by the 1130 
JTK_CYCLE and RAIN on an average dataset of the two time-series replicates. These 1131 
two algorithms rely on different approaches to finally assign, for every gene, a p-value 1132 
interpreted as the probability that it can be considered periodic. For its proper functioning, 1133 
we set the two algorithms to look for periodic behavior in a lapse of 11 to 13 hours, with 1134 
time lapses of 0.75 hours. We assigned two ranks to every gene according to the p-1135 
values calculated by JTK_CYCLE and RAIN. Each dot represents a gene expressed in 1136 
the time series. Colored dots represent the 801 genes that were finally taken as periodic 1137 
according to our criteria. C: Pearson correlation for the top 801 cell cycle regulated 1138 
genes, also based on normalized gene expression level. See Fig. 4 for more details. D: 1139 
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Principal coordinate analysis on the set of 801 cell cycle regulated genes based on 1140 
normalized gene expression level. Every dot represents a time point in the experiment.  1141 
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 1142 
Fig. 4: The periodic transcriptional program of Capsaspora. A: heatmap of gene 1143 
expression level depicting seven main clusters detected by Euclidean distance 1144 
hierarchical clustering. Clusters were rearranged to visually represent their expression 1145 
peaks over time. Black arrow and dividing cell indicate time of cell division (see Fig. 2). 1146 
B: Top ten enriched gene ontology terms for every cluster shown in Fig. 4A. We 1147 
considered an enrichment as significant when Bonferroni corrected p-value was lower 1148 
than 0.05. For the full list of enriched GO terms, see Supplementary Table 4.1  1149 
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 1150 
Fig. 5: Dynamics of the cyclin-CDK system and other cell cycle regulators in in 1151 
Capsaspora. A: Normalized gene expression profile of the Cyclin A, B, and E genes 1152 
found in Capsaspora. Normal and dashed lines indicate replicates 1 and 2, respectively. 1153 
B: Normalized gene expression profile of the Capsaspora orthologue of CDK1/2/3 found 1154 
by phylogenetic analyses (see Supplementary Fig. S7). Normal and dashed lines 1155 
indicate replicates 1 and 2, respectively. C: Normalized gene expression level of 1156 
Capsaspora orthologues of several G1/S regulators in animals. D: Normalized gene 1157 
expression level of Capsaspora orthologues of several G2/M regulators in animals. 1158 
Genes in C and D as described by [32,39,40,100]. A full list is depicted in Supplementary 1159 
File 7.  1160 
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 1161 
Fig. 6: The Capsaspora periodic transcriptional program has more resemblances 1162 
to that of animal cells. (Left) Tree depicting gene ages considered in this study. 1163 
(Center) Gene age stratification profiles of the Capsaspora genome and the periodic 1164 
transcriptional program. (Right) Gene age enrichment/depletion on each cluster of 1165 
periodic genes in Capsaspora (see Fig. 4) compared to non-periodic genes. B: Heatmap 1166 
showing periodic orthogroups in common in the tree of species used in the comparative. 1167 
C: Venn diagrams indicating how the binomial tests were calculated for each pair-wise 1168 
comparison of species, e.g. Capsaspora and Homo sapiens HeLa cells. White circles 1169 
indicate orthogroups from each species. The intersection between these represents the 1170 
orthogroups in common, C. p1 and p2 areas represent periodic genes of each species 1171 
within C. Null expectation probability (Aexp) is calculated as the product of p1 and p2 1172 
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divided by C. P-values of all the binomial tests are provided in Supplementary File 9 and 1173 
Supplementary File 11.  D: Bar plots indicating the amount of shared periodic 1174 
orthogroups and/or periodic one-to-one orthologues between pairs of cell types or 1175 
species. P-values of all the binomial tests are provided in Supplementary File 9. E: Gene 1176 
age enrichment/depletion of Capsaspora periodic genes with a periodic co-orthologue in 1177 
H. sapiens HeLa cells. Comparison was done against the rest of the Capsaspora periodic 1178 
transcriptional program. Color code for bar plots as in Fig.6A.  1179 
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 1180 

 1181 
Fig. 7: a model of the dynamics of the Cyclin/CDK system in Capsaspora. Bold lines 1182 
indicate cyclin levels and dashed lines indicate CDK levels across the cell cycle. In 1183 
Capsaspora, several cell cycle cyclins may be binding to a single CDK that is not 1184 
transcriptionally stable, an intermediate system that falls between yeast and human 1185 
cyclin/CDKs. This suggests the expansions of cell cycle cyclins predate the expansion 1186 
of cell cycle CDKs, which later acquired specific binding to cell cycle cyclins in animals. 1187 
  1188 
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 1189 
Supplementary Fig. S1: Computational pipeline used to detect periodic genes in 1190 
Capsaspora. A: Pipeline for ranking the transcripts on each experiment. RNA reads were 1191 
processed using Kallisto, noise transcripts were filtered out, and JTK and RAIN were run 1192 
in parallel with the indicated setup. Bonferroni-corrected p-values were ranked, and the 1193 
sum of ranks was used as a final rank. B: Pipeline used to detect periodic transcripts in 1194 
Capsaspora. Samples were treated separately to detect periodic transcripts with a loose 1195 
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cutoff. This gene set was used to filter periodic genes ranked from an average dataset 1196 
of the two replicates, out of which the top 800 (10% of the number of genes in 1197 
Capsaspora) were selected.  1198 
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 1199 
Supplementary Fig. S2: clustering of time points of each replicate and the 1200 
unsynchronized culture sampled as a control, based on a dissimilarity matrix of Pearson 1201 
correlation. All the genes with an average expression level above 1 tpm in both replicates 1202 
were used.  1203 
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 1204 
Supplementary Fig. S3: A: Distributions of Pearson correlation between replicates of a 1205 
set of randomly chosen 801 genes and the 801 genes defined as periodic. B: Fraction 1206 
of variance explained by the different relative eigenvalues of the principal coordinate 1207 
analysis (see Fig. 3D).  1208 
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 1209 
Supplementary Fig. S4: A: Hierarchical clustering of the expression profiles of the 801 1210 
periodic genes found in Capsaspora, and the color equivalences with the final clusters 1211 
shown at Fig. 4A. B: Average expression level of Capsaspora periodic genes grouped 1212 
by hierarchical clustering. C: t-SNE plot of all 801 genes in the periodic transcriptional 1213 
program of Capsaspora, showing circle pattern as in Fig. 3D. Color code in both Fig.s 1214 
follows the color code in Fig. 4. 1215 

1216 
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 1217 
Supplementary Fig. S5: K-means clustering of the periodic transcriptional program of 1218 
Capsaspora. A: Average expression level of Capsaspora periodic genes grouped by k-1219 
means clustering. B: Top ten enriched GO terms of each cluster of periodic genes 1220 
generated by k-means clustering. GO terms were considered significant when 1221 
Bonferroni-corrected p-value was lower than 0.05. Full list available at Supplementary 1222 
Fig. S3. C: Agreement between clustering methods. Heatmap showing the percentage 1223 
of overlap between clusters by two methods. Overlap is calculated as the number of 1224 
genes belonging to the same pair of clusters divided by the size of the smallest cluster 1225 
in the pair. 1226 
  1227 
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Fig. 4—source data 1: List of significant (Bonferroni p-value < 0.05) GeneOntology 1228 
enrichments of each hierarchical cluster of periodic genes in Capsaspora. Available on 1229 
Figshare: https://figshare.com/s/4d642c9854efe6d879a71230 
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Supplementary Fig. S6: Unrooted maximum likelihood phylogenetic tree (IQ-TREE) 1232 
inferred from cyclins sequences of 30 eukaryotic species (see methods). Nodal support 1233 
values (1000- bootstrap replicates by UFBoot) are shown in all nodes. Eukaryotic 1234 
sequence names are abbreviated with the four-letter code (see methods) and colored 1235 
according to their major taxonomic group (see panel). 1236 
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Supplementary Fig. S7: Maximum likelihood phylogenetic tree (IQ-TREE) inferred from 1238 
CDK sequences of early-branching holozoan species and animals (see methods). 1239 
Statistical support values (1000-replicates UFBoot) are shown in all nodes. Eukaryotic 1240 
sequence names are abbreviated with the four-letter code (see methods) and colored 1241 
according to their major taxonomic group (see panel).  1242 
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 1243 
Supplementary Fig. S8. A: Schematic representation of the genomic locus of 1244 
Capsaspora CDK1-3 gene showing exons, splicing sites, non-annotated regions of 1245 
predicted sequence, and mapping of mRNA reads. B: PCR amplifications of Capsaspora 1246 
CDK1 using primers detailed in Methods and A, using genomic DNA and cDNA as 1247 
templates. Arrows indicate size of the products sent for sequencing. C: Alignment of H. 1248 
sapiens and S. cerevisiae CDK1 genes, and the Capsaspora updated CDK1-3 1249 
sequence, using Geneious v8.1.9.  1250 
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 1251 
Supplementary Fig. S9: A Reanalysis of previous cell cycle datasets in model 1252 
organisms. A: Scatter plots of ranks by JTK and RAIN for each dataset of each species 1253 
used in the comparative analysis (see Fig. 6.D and Results section). Datasets were 1254 
processed as indicated in Supplementary File 10, and Material and methods. Depending 1255 
on the dataset, we could recover between one third and more than half of the originally 1256 
described periodic genes, except Arabidopsis where the agreement was very low. B: 1257 
Bar plots indicating the amount of shared periodic orthogroups and/or periodic one-to-1258 
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one orthologues between pairs of cell types or species, using our own lists of periodic 1259 
genes. P-values of all the binomial tests are provided in Supplementary File 9.   1260 
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Video 1: Synchronized cells of Capsaspora undergoing cell division. Time interval 1261 
between frames is 1 minute. The movie is played at 7fps. Scale bar = 5µm. Available on 1262 
Figshare: https://figshare.com/s/4d642c9854efe6d879a7 1263 
 1264 
Supplementary File 1: Tables of transcript per million of each replicate. Available on 1265 
Figshare: https://figshare.com/s/4d642c9854efe6d879a7 1266 
 1267 
Supplementary File 2: List of periodic genes in Capsaspora, containing information for 1268 
each gene about cluster membership, gene age, and orthologs in other species. 1269 
Available on Figshare: https://figshare.com/s/4d642c9854efe6d879a7 1270 
 1271 
Supplementary File 3: Gene Ontology enrichments for all the clusters in the periodic 1272 
transcriptional program of Capsaspora. Available on Figshare: 1273 
https://figshare.com/s/4d642c9854efe6d879a7 1274 
 1275 
Supplementary File 4: FASTA formatted sequences of cyclins and CDKs used in the 1276 
phylogenetic analyses (see Supplementary Fig. S6 and Supplementary Fig. S7). 1277 
Available on Figshare: https://figshare.com/s/4d642c9854efe6d879a7 1278 
 1279 
Supplementary File 5: List of species used in the phylogenetic analyses and in the 1280 
generation of groups of orthologues. Available on Figshare: 1281 
https://figshare.com/s/4d642c9854efe6d879a7 1282 
 1283 
Supplementary File 6: FASTA formatted sequences of newly annotated Capsaspora 1284 
CDK1-2-3 CDS and protein translation. Available on Figshare: 1285 
https://figshare.com/s/4d642c9854efe6d879a7 1286 
 1287 
Supplementary File 7: List of cell cycle regulators in humans (described in 1288 

[32,39,40,100]), and their respective orthologs in Capsaspora defined by OrthoFinder 1289 
and/or phylome data (see Results and Methods). Bold indicates genes that have been 1290 
plotted in Fig. 5C or 5D. Available on Figshare: 1291 
https://figshare.com/s/4d642c9854efe6d879a7 1292 
 1293 
Supplementary File 8: List of cell cycle regulators in humans (described in 1294 

[32,39,40,100]), that also have at least one periodic co-ortholog in Capsaspora, 1295 

defined by OrthoFinder (see Results and Methods). Available on Figshare: 1296 
https://figshare.com/s/4d642c9854efe6d879a7 1297 
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 1298 
Supplementary File 9: Metrics of gene age enrichment and depletion for the gene 1299 
clusters of the periodic transcriptional program of Capsaspora, and their corresponding 1300 
Fisher Test p-values. Available on Figshare: 1301 
https://figshare.com/s/4d642c9854efe6d879a7 1302 
 1303 
Supplementary File 10: Procedure used to retrieve identifiers for the datasets of H. 1304 
sapiens, S. cerevisiae, S. pombe, and A. thaliana, and parameters used to set up 1305 
JTK_CYCLE and RAIN in the reanalysis. Available on Figshare: 1306 
https://figshare.com/s/4d642c9854efe6d879a7 1307 
 1308 
Supplementary File 11: Metrics of shared periodic orthogroups (OG) and one-to-one 1309 
orthologues between Capsaspora and the rest of cell types and species. Available on 1310 
Figshare: https://figshare.com/s/4d642c9854efe6d879a7 1311 
 1312 
Supplementary File 12: Metrics of shared periodic orthogroups (OG) for all 1313 
comparisons between pairs of species, using periodic genes from the literature and 1314 
using our own sets of periodic genes. Available on Figshare: 1315 
https://figshare.com/s/4d642c9854efe6d879a7 1316 
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