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Cancer is a genetic disease fueled by somatic evolution. Hierarchi-
cal tissue organization can slow somatic evolution by two qualita-
tively different mechanisms: by cell differentiation along the hierar-
chy “washing out” harmful mutations (Nowak et al. 2003, Werner et
al. 2013) and by limiting the number of cell divisions required to main-
tain a tissue (Derényi and Szöllősi 2017). Here we explore the effects
of compartment size on somatic evolution in hierarchical tissues by
considering cell number regulation that acts on cell division rates
such that the number of cells in the tissue has the tendency to return
to its desired homeostatic value. Introducing mutants with a prolifer-
ative advantage we demonstrate the existence of a third fundamen-
tal mechanism by which hierarchically organized tissues are able to
slow down somatic evolution. We show that tissue size regulation
leads to the emergence of a threshold proliferative advantage, below
which mutants cannot persist. We find that the most significant de-
terminant of the threshold selective advantage is compartment size,
with the threshold being higher the smaller the compartment. Our re-
sults demonstrate that in sufficiently small compartments even mu-
tations that confer substantial proliferative advantage cannot persist,
but are expelled from the tissue by differentiation along the hierarchy.
The resulting selective barrier can significantly slow down somatic
evolution and reduce the risk of cancer by limiting the accumulation
of mutations that increase the proliferation of cells.
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umors develop as genetic and epigenetic alterations spread1

through a population of premalignant cells and some cells2

accumulate changes over time that enable them and their de-3

scendants to persist within tissues (1, 2). From an evolutionary4

perspective each tumor is an independent realization of a com-5

mon reproducible evolutionary process involving “adaptive”6

mutations that are preferentially selected by the tumor envi-7

ronment. This process is clonal, which means that a subset8

of mutations termed “drivers” confer clonal growth advantage9

and they are causally implicated in cancer development.10

A large body of work (2–5) has focused on understanding11

clonal evolution of an initially homogeneous populations of12

identical cells, a subset of which progress toward cancer as they13

accrue driver mutations. Beerenwinkel et al. (6), for instance,14

considered the Wright-Fisher process (a homogeneous popula-15

tion of initially identical cells) to explore the basic parameters16

of this evolutionary process and derive an analytical approxi-17

mation for the expected waiting time to the cancer phenotype18

and highlighted the relative importance of selection over both19

the size of the cell population at risk and the mutation rate.20

Self-renewing tissues, which must generate a large number21

of cells during an individual’s lifetime and in which tumors 22

typically arise, are comprised of a hierarchy of progressively 23

di�erentiated cells and, as a result, are not homogeneous pop- 24

ulations of identical cells. There is empirical evidence (7–9) 25

and theoretical rationale (10–12) that such hierarchical tissue 26

architecture has profound e�ect on neoplastic progression. The- 27

oretical work has demonstrated that hierarchically organized 28

tissues suppress tumor evolution by limiting the accumulation 29

of somatic mutations in two fundamentally di�erent ways, as 30

follows: 31

As described in a seminal paper by Nowak et al. (11) the 32

linear flow from stem cells to di�erentiated cells to apoptosis 33

in a spatially explicit, strictly linear organization has the 34

property of canceling out selective di�erences. Nowak et al. 35

considered a system, where only asymmetric cell divisions are 36

allowed, i.e., after each cell division one of the daughter cells 37

di�erentiates to the next level of the hierarchy pushing all cells 38

at higher levels further along the hierarchy (see Fig. 1a). In 39

this idealized construction mutations, irrespective of how much 40

they increase division rate, are invariably “washed out” unless 41

they occur in the stem cell at the root of the hierarchy. In a 42

more general setting, where symmetric divisions are allowed, 43

the strength of this “washing out” e�ect can be quantified by 44

introducing the self-renewal potential of cells. The self-renewal 45

potential is defined as the logarithm of the ratio between the 46
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2. Discussion247

In classical population genetics models of finite populations, a248

mutation is either fixed in the population or lost from it within249

a finite length of time. A fundamental result of population250

genetics theory is that in constant populations mutations with251

a given selective advantage will avoid early stochastic extinc-252

tion and fix with a probability independent of population size253

and proportional to the selective advantage (14–16). As a254

corollary, in the context of somatic evolution Michor et al. (19)255

demonstrated that the accumulation of oncogene-activating256

mutations (i.e., mutations that provide a proliferative ad-257

vantage) that occur at a constant rate per cell division is258

faster in large than in small compartments. Consequently,259

as pointed out by Michor et al. the classical theory of finite260

populations of constant size implies that the organization of261

self-renewing tissues into many small compartments, such as262

the stem cell pools in colonic crypts, from which the tissue is263

derived, protects against cancer initiation (5). Further work by264

Beerenwinkel et al. using qualitatively similar models with a265

single compartment without di�erentiation from below, found266

that the average waiting time for the appearance of the tumor267

is strongly a�ected by the selective advantage, with the aver-268

age waiting time decreasing roughly inversely proportional to269

the selective advantage. The mutation rate and the size of the270

population at risk in contrast were found to contribute only271

logarithmically to the waiting time and hence have a weaker272

impact (6).273

In hierarchically organized tissues with finite compartment274

size the situation is more complicated. A mutant that avoids275

early stochastic extinction and achieves a sizable seemingly276

stable population can go extinct as a result of di�erentia-277

tion from below. This results in a qualitatively di�erent and278

more profound ability of smaller compartment size to limit the279

accumulation of mutations. Similarly to classical population280

genetics models, the initial spreading probability of a mutation281

in a compartment of a hierarchical tissue is proportional to the282

proliferative advantage Sm and independent of the compart-283

ment size. However, as can be seen in Fig. 3a, the probability284

of the mutation to persist in the tissue exhibits a threshold285

that is strongly dependent on compartment size. For small286

compartments even mutants with a very large selective advan-287

tage will only persist for a very short time, e.g., a mutant with288

a selective advantage of 10%, i.e., Sm ¥ 0.1, the largest value289

considered by Beerenwinkel et al., will rapidly go extinct in290

compartments with up to several hundred cells.291

An important exception is constituted by tissue specific292

stem cell compartments residing at the bottom of the hierarchy,293

such as the stem cells at the bottom of colonic crypts. As294

these compartments do not receive an influx of cells from295

lower levels, their dynamics can be described by the classical296

population genetics models discussed above, i.e., mutations297

can accumulate more easily.298

The derivation of the results presented above relies on the299

existence of the potential defined in Eq. (9). In our model this300

is ensured by the assumptions that (i) the transition rates for301

cells of each type depend only on the number of cells of that302

type; and (ii) cell number regulation acts as a multiplicative303

rate modifier and depends only on the total number of cells.304

There are several biologically relevant violations that must305

be considered. In real tissues the first assumption, the inde-306

pendence in the absence regulation, is in general violated by307

mutation of wild type cells into mutant cells (and vice versa), 308

as this increases the number of mutant cells at a rate depen- 309

dent on the number of wild type cells (and vice versa). In the 310

context of most, if not all, somatic tissues the rate of mutations 311

that confer significant selective advantage is su�ciently low 312

that the waiting time between successive mutations is much 313

longer than the relevant time scale of the dynamics considered 314

here, thus, it has a negligible e�ects on the persistence time 315

and, as a result, it does not e�ect our conclusions. This is 316

even more so the case for back mutations from mutants to the 317

wild type. The second assumption, the postulation of a simple 318

form of cell number regulation that acts as a multiplicative 319

modifier and depends only on the total number of cells, is 320

clearly a simplification. It neglects, for instance, explicit spa- 321

tial organization and any potential long term memory, such 322

as hysteresis of the homeostatic compartment size dependent 323

on either intrinsic or extrinsic parameters. Such a simplified 324

form of regulation, however is consistent with more detailed 325

models of homeostatic tissue size regulation, such as recent 326

work on the stability of regulation (20–22) and its optimality 327

in terms of reducing mutation accumulation (23). 328

In order to quantitatively discuss the biological relevance of 329

our results we must consider relevant values of two parameters: 330

compartment size (N0) and the strength of the homeostatic 331

cell-number regulation (—). Consider for instance the intesti- 332

nal crypts. Our knowledge of intestinal crypt organization is 333

most extensive for murine tissues where crypts are believed 334

to consists of approximately 250 cells in total, out of which 335

160-180 are proliferative progenitor cells and 4-8 are stem cells 336

residing near the bottom of the crypt (24–27). Methods using 337

bromodeoxyuridine labeling (28), Ki-67 antibody staining (20), 338

and analysis of methylation patterns (29) conclude that the 339

crypts in humans contain around 2000 cells with the number 340

of progenitor cells being between 500 and 700. In the context 341

of our model, assuming that proliferative cells can be regarded 342

as belonging to between 1 ≠ 10 discrete levels of progressively 343

faster dividing cells corresponds to values of N0 ¥ 170 ≠ 17 344

cells in mice and N0 ¥ 600 ≠ 60 in humans. Experimental 345

evidence on the strength of cell number regulation is much 346

more limited. Bravo and Axelrod (20), however have measured 347

the variation in cell numbers across biopsies in 49 crypts from 348

human individuals and found a mean of 624 proliferative cells 349

with a standard deviation of 234. Assuming that (i) all the 350

proliferative cells belong to a single compartment and (ii) all 351

of the observed variation across crypts can be attributed to 352

cell-number fluctuations around a common homeostatic value, 353

i.e., ignoring completely variation in homeostatic size across 354

crypts and neglecting measurement error, provides a lower 355

bound on the strength of regulation of — ∫ 624/2342 ¥ 0.01. 356

The generally well-defined cylindrically symmetric morphol- 357

ogy of crypts, however, suggests that a standard deviation 358

corresponding to at most 10% of the mean cell number is more 359

realistic. Assuming between 1 ≠ 10 levels this corresponds to 360

1/(62.4 ◊ 0.12) ¥ 1.6 > — > 1/(624 ◊ 0.12) ¥ 0.16 in human 361

and 1/(17 ◊ 0.12) ¥ 6 > — > 1/(170 ◊ 0.12) ¥ 0.6 in mouse. 362

This, together with the above values for N0 places the thresh- 363

old selective advantage at between 0.1 and 0.5 in the human 364

colon and between 0.15 and 0.7 in mouse (cf. Fig. 3b). 365

At present systematic data on the selection advantage of 366

mutations in somatic tissues is not available. Vermeulen et 367

al. (7), however, measured the fixation probability of several 368
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known drivers of colorectal cancer in the mouse intestine,369

finding values between 0.4 (Kras +/≠) and 0.75 (Kras G12D),370

which are consistent with the above estimates. In the context371

of a di�erent epithelial tissue, the human esophagus, a survey372

by Martincorena et al. of clones persisting in normal tissue373

showed genomic evidence of strong selective advantage of374

mutations(30), again consistent with our predictions. Future375

data on tissue organization and the selection advantage of376

mutations that persist in normal tissue will o�er exciting377

opportunities to confront them with our results.378

3. Methods379

Detailed derivation of the results presented above are provided380

in the Supplementary Appendix. All data is contained in the381

manuscript text and Supplementary Appendix.382
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More generally, consider an evolutionary dynamics with an arbitrary number of cell types in a potential. Similarly to the
above derivation, it can be shown that if the cell number increasing and decreasing rates for any subset of cell types are
multiplied by, respectively, cell number increasing and decreasing rate modifiers that depend only on the total number of
cells of the given subset, then the resulting dynamics is also described by a potential. Moreover, the resulting potential is
the sum of the two potentials corresponding to the original dynamics and to the rate modifiers. This is because (i) along
any path in the state space the product of the equilibrium constants can be factored into the products of the equilibrium
constants corresponding to the original dynamics and to the rate modifiers; and (ii) along any elementary cycle both products
are unity. As a corollary, if the transition rates of an evolutionary dynamics are factorizable into functions such that each
function corresponds to the increase or decrease of the number of cells of a subset of cell types, and each function depends only
on that cell number, then the dynamics is conservative and described by a potential.

Derivation of the potential �(Nm, Nw)
For the transition rates considered in the main text, the potential �(N
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, N
w

) corresponding to the dynamics can be calculated
as the logarithm of the product of the equilibrium constants from point (N
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) to a reference point, e.g., to the lower left
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where � represents the gamma function and in the last step we use equations (1) and (5) of the main text. The logarithm of
the numerator (between the braces) results in the formula for �(N

m

, N
w

) given in Eq. (9) of the main text, while the logarithm
of the denominator is identical to �(1, 0).

Mean exit time

The derivation of the mean exit time from the e�ective potential well near the quasi-stationary state (N̄
m

, N̄
w

) to the boundary
line corresponding to zero mutants (N

m

= 0) is outlined below. Exact analytical formula exists either for continuous systems of
arbitrary dimensions (subsections 5.2.7 and 9.3.2 of Gardiner (1)), or discrete systems in one dimension (section 7.4 of Gardiner
(1) and Derényi et al. (2)). One can, however, generalize the discrete one-dimensional formula to our discrete two-dimensional
system in a straightforward manner.

Let us first select any of the shortest paths (with only upward and leftward transitions) form (N̄
m

, N̄
w

) through (1, N0) to
(0, N0). The main contribution to the mean exit time (which, in one dimension, is often referred to as “mean first passage
time”) along this one-dimensional path comes from the product of all backward transition rates (except for the outermost one
from (0, N0) to (1, N0)) divided by the product of all forward transition rates (including the one from (1, N0) to (0, N0)). This
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contribution is independent of the selected path (because the rates correspond to an e�ective potential, �(N
m

, N
w

)):

·
main

= 1
k≠

m

(1, N0)
exp(��),

where
�� = �(1, N0) ≠ �(N̄

m

, N̄
w

)

is the height of the e�ective potential barrier against escape.
The mean exit time involves the sum of similar contributions between any pairs of states along the selected path (section 7.4 of

Gardiner (1) and Derényi et al. (2)). Only those contributions are significant for which the starting and ending positions are close
to the bottom and the top of the e�ective potential, respectively. The summation for these contributions leads to a correction
factor to the main contribution. This correction factor consists of two terms: a sum of the exp{≠[�(N

m

, N
w

) ≠ �(N̄
m

, N̄
w

)]}
Boltzmann weights of the states (N

m

, N
w

) along the path near the bottom; and a conceptually similar sum near the top (not
detailed here, because its terms cannot be readily expressed by the potential �, but rather only by the products of the ratios of
the corresponding transition rates).

Because a typical exit process follows the diagonally oriented potential valley of the state space (see Fig. 2 in the main text),
let us restrict the selected path to run along this valley. The correction factor for such a path will depend only on the local
“geometry” of the bottom and the top of the e�ective potential, parallel to the direction of the main valley. In particular, the
correction factor at the top (which is the e�ective width of the potential barrier) can be approximated as

C||
top

= 1
S

m

.

This one-dimensional result can be generalized to two (or any higher) dimensions in analogy to the generalization of
the one-dimensional continuous version of the mean exit time (see subsection 9.3.2 of Gardiner (1)): the sum of the above
Boltzmann weights should be extended to all states near the bottom of the e�ective potential:

C
bottom

=
ÿ

i

ÿ

j

exp{≠[�(i, j) ≠ �(N̄
m

, N̄
w

)]};

and the result should be divided by the sum of a di�erent type of Boltzmann weights for all the states along the exit line,
N

m

= 1 (which gives the e�ective width of the potential saddle at the barrier):

C‹
top

=
ÿ

j

exp{≠[�(1, j) ≠ �(1, N0)]}.

The resulting mean exit time

· = ·
main

C
bottom

C||
top

C‹
top

= 1
k≠

m

(1, N0)
C

bottom

C||
top

C‹
top

exp(��)

is proportional to exp(��) and its prefactor, denoted by ·
0

, is often referred to as the reciprocal of the attempt frequency.
The summations can be approximated by closed formulas using quadratic approximations for the e�ective potential near
the bottom and the top. However, to achieve higher accuracy we executed the summations numerically for displaying the
theoretical estimates in the figures of both the main text and the Supplementary Information.

Simulations

Two types of simulations were developed to study the cell dynamics and measure the persistence probability of mutants in
hierarchically organized tissues:

Explicit kinetics. We performed explicit kinetic Monte Carlo simulations (also known as the “Gillespie algorithm”), where
the number of mutants N

m

and wild type cells N
w

evolved according to the rates described in Eq. (8) of the main text. At
each iteration, rates were calculated based on the current value of N

m

and N
w

, one of the four possible events was chosen
proportional to its rate, and N

m

or N
w

was changed accordingly, while time was increased by the reciprocal of the sum of the
four rates. The simulations were started with N

m

= 0 and N
w

= N0. At time t = 20000, measured in units of 1/(2r≠N0), a
single mutant was introduced by setting N

m

= 1. The simulations were stopped after reaching time T = 109. Data used in
Fig. 2 of the main text were generated using the explicit kinetic simulation.
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