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ABSTRACT Genetic mapping is a primary tool of genetics in model organisms; however, many quantitative
trait loci (QTL) contain tens or hundreds of positional candidate genes. Prioritizing these genes for validation
is often ad hoc and biased by previous findings. Here we present a technique for computationally prioritizing
positional candidates based on computationally inferred gene function. Our method uses machine learning
with functional genomic networks, whose links encode functional associations among genes, to identify
network-based signatures of functional association to a trait of interest. We demonstrate the method by
functionally ranking positional candidates in a large locus on mouse Chr 6 (45.9 Mb to 127.8 Mb) associated
with histamine hypersensitivity (Hhs). Hhs is characterized by systemic vascular leakage and edema in
response to histamine challenge, which can lead to multiple organ failure and death. Although Hhs risk is
strongly influenced by genetics, little is known about its underlying molecular or genetic causes, due to genetic
and physiological complexity of the trait. To dissect this complexity, we ranked genes in the Hhs locus by
predicting functional association with multiple Hhs-related processes. We integrated these predictions with new
single nucleotide polymorphism (SNP) association data derived from a survey of 23 inbred mouse strains and
congenic mapping data. The top-ranked genes included Cxcl12, Ret, Cacna1c, and Cntn3, all of which had
strong functional associations and were proximal to SNPs segregating with Hhs. These results demonstrate
the power of network-based computational methods to nominate highly plausible quantitative trait genes even
in highly challenging cases involving large QTLs and extreme trait complexity.
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INTRODUCTION1

Identifying causal variants within quantitative trait loci (QTLs) is2

a central problem of genetics, but genetic linkage often prevents3

narrowing QTLs to less than several megabases (Mb). Thus, QTLs4

may contain hundreds of candidate genes. Instead of revealing the5

exact gene (or genes) responsible for trait variation, QTL mapping6
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produces positional candidate genes. Rigorously narrowing a QTL 7

by fine mapping with congenic strains can take years or decades, 8

particularly in organisms like mice that have long generation times. 9

Moreover, high-resolution congenic mapping often reveals that 10

the overall QTL effect is due to multiple linked genes within the 11

QTL rather than a single gene (Parker et al. 2013; Yazbek et al. 2011). 12

Thus, positional data alone are generally insufficient to nominate 13

candidate genes for subsequent biological follow up. To overcome 14

the limitations of mapping data, researchers look within a QTL for 15

plausible candidate genes. However, these selections are typically 16
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done by ad hoc criteria using prior knowledge or a literature search.1

This strategy is strongly biased toward prior knowledge and is2

highly error prone due to missing annotations. There is a need for3

rigorous and systematic strategies to distinguish among positional4

candidate genes for mechanistic follow up.5

We developed a novel approach to rank positional candidates6

based on functional association with a trait. To avoid annotation7

or literature bias, we use functional genomic networks (FGNs),8

which encode predicted functional associations among all genes9

in the genome. FGNs such as the Functional Networks of Tissues10

in Mouse (FNTM) (Goya et al. 2015) and HumanBase (Greene et al.11

2015), are Bayesian integration networks that combine gene co-12

expression, protein-protein binding data, ontology annotation and13

other data to predict functional associations among genes. With14

these networks we can expand on known gene-trait associations to15

identify sub-networks of trait-associated genes that include novel16

genes, including in the QTL of interest.17

Recent studies with functional genomic networks, for example18

FNTM, have demonstrated their power to associate novel genes19

with specific phenotype terms (Guan et al. 2010) or biological pro-20

cesses (Ju et al. 2013). For example, Guan et al. (2010) used a support21

vector machine (SVM) classifier to identify a gene network associ-22

ated with bone mineralization and made validated predictions of23

novel genes that lay outside of all published QTLs for bone miner-24

alization phenotypes (Guan et al. 2010). Subsequent studies using25

similar network-based techniques have made novel predictions26

of hypertension- and autism-associated genes (Greene et al. 2015;27

Krishnan et al. 2016). We have expanded these methods to rank28

genes in a mapped QTL based on multiple putative functional29

terms and to integrate these rankings with genetic association p30

values from strain surveys. Our method produces a final ranked31

list for all genes in the QTL that incorporates both the functional32

and positional scores of each candidate gene.33

Our strategy first builds trait-associated gene lists from struc-34

tured biological ontologies (e.g., the Gene Ontology (Ashburner35

et al. 2000; Gene Ontology Consortium 2018) and the Mammalian36

Phenotype Ontology (Smith and Eppig 2012)) and public transcrip-37

tomic data from the Gene expression Omnibus (GEO) (Edgar et al.38

2002; Barrett et al. 2012). We then applied machine learning classi-39

fiers to the functional networks of tissues in mice (FNTM) (Goya40

et al. 2015) to identify network-based signatures of the trait-related41

gene lists. This strategy allows us to predict gene-trait associa-42

tions that are not currently annotated within a structured ontology,43

overcoming the missing annotation problem.44

We applied our approach to a large QTL associated with his-45

tamine hypersensitivity (Hhs) in mice. Hhs in mice is a lethal46

response to a histamine injection. In insensitive mice, a histamine47

injection produces an inflammatory response that resolves without48

further treatment. Mice with the Hhs response develop excitation49

and ear blanching, followed by progressive respiratory distress,50

vasodilation, anaphylactic shock, and death (Vaz et al. 1977; Wang51

et al. 2014). Hhs can be induced in a subset of mouse strains by52

sensitization with Complete Freund’s Adjuvant (CFA). Hhs also53

develops spontaneously in SJL/J animals older than six months of54

age.55

We previously mapped Hhs to a locus on Chr 6 (45.9 Mb to 127.856

Mb; the Hhs locus), which was confirmed using a congenic line57

(B10.S-HhsSJL) (Raza et al. Under Review). Because of the large size58

of this locus, additional information is required to identify causal59

variants. To narrow down candidates, we integrated novel genetic60

association data from interval-specific congenic recombinant lines61

(ISCRLs) and an inbred strain survey with our network-based func-62

tional predictions of Hhs-related genes. By augmenting positional 63

data with functional predictions, we dramatically reduced the can- 64

didate gene list to a tractable set of high-quality candidates that 65

are implicated in Hhs-related processes. 66

MATERIALS AND METHODS 67

As a supplement to the methods section, this paper includes an 68

executable workflow (Figure 4). For additional details about spe- 69

cific parameters and inputs, please see the workflow (Figure 4, 70

Data Availability; also available at https://github.com/MahoneyLab/ 71

HhsFunctionalRankings). 72

Animals 73

A total of 23 mouse strains (129X1/SvJ, A/J, AKR/J, B10.S- 74

H2s/SgMcdJ (B10.S), BALB/cJ, BPL/1J, BPN/3J, C3H/HeJ, 75

C57BL/6J, CBA/J, CZECHII/EiJ, DBA/1J, DBA/2J, FVB/NJ, 76

JF1/MsJ, MOLF/EiJ, MRL/MpJ, MSM/MsJ, NOD/ShiLtJ, NU/J, 77

PWD/PhJ, PWK/PhJ, SJL/J and SWR/J were purchased from the 78

Jackson Laboratory (Bar Harbor, ME). All mice, including B10.S- 79

HhsSJL and B10.S-HhsSJL ISRC lines, were generated and main- 80

tained under specific pathogen-free conditions in the vivarium of 81

the Given Medical Building at the University of Vermont according 82

to National Institutes of Health guidelines. All animal studies were 83

approved by the Institutional Animal Care and Use Committee of 84

the University of Vermont. 85

Hhs Phenotyping 86

On day (D) 0 mice were injected i.p. with complete Freund’s ad- 87

juvant (CFA) (Sigma-Aldrich, St. Louis, MO) supplemented with 88

200 µg of Mycobacterium tuberculosis H37Ra (Difco Laboratories, 89

Detroit, MI). On D30 histamine hypersensitivity was determined 90

by i.v. injection of histamine (mg/kg dry weight free base) in 91

phosphate buffered saline (PBS). Deaths were recorded at 30 min 92

post injection and the data are reported as the number of animals 93

dead over the number of animals studied. Significance of observed 94

differences was determined by Chi-square with p-values <0.05 95

significant. 96

DNA extraction and genotyping 97

DNA was isolated from mouse tail clippings as previously de- 98

scribed (Sudweeks et al. 1993). Briefly, individual tail clippings 99

were incubated with 300µL cell lysis buffer (125µ g/mL proteinase 100

K, 100 mM NaCl, 10mM Tris-HCl (pH 8.3), 10 mM EDTA, 100mM 101

KCl, 0.50% SDS) overnight at 55◦C. The next day, 150µL of 6M 102

NaCl were added followed by centrifugation for 10 min at 4◦C. The 103

supernatant layer was transferred to a fresh tube containing 300µL 104

of isopropanol. After centrifuging for two minutes, the super- 105

natant was discarded, and pellet washed with 70% ethanol. After 106

a final two min centrifugation, the supernatant was discarded, and 107

DNA was air dried and resuspended in 50µL TE. 108

Genotyping: Genotyping was performed using either mi- 109

crosatellite markers in a standard PCR reaction or sequence specific 110

SNP primers in a phototyping reaction. Polymorphic microsatel- 111

lites were selected to have a minimum polymorphism of 8bp for op- 112

timal identification by agarose gel electrophoresis. Briefly, primers 113

were synthesized by IDT-DNA (Coralville, IA) and diluted to a 114

concentration of 10µM. PCR amplification was performed using 115

Promega GoTaq. The cycling conditions included a two-minute 116

initial denaturation step at 94°C followed by 35 cycles of 94°C for 117

30 seconds, 55°C for 30 seconds and 72°C for 30 seconds followed 118

by a final extension step at 72°C for five minutes. Amplicons 119
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were subjected to 2% agarose gel electrophoresis and visualized1

by ethidium bromide and UV light.2

Phototyping: Genotyping was performed using sequence-3

specific primers that differ only at the 3’ nucleotide corresponding4

to each allele of the identified SNP (Bunce et al. 1995). Each primer5

set was designed using Primer3 to have a Tm of 58-60◦C, synthe-6

sized by IDT-DNA (Coralville, IA), and used at a concentration7

of 100µM (primer sequences are available in Supplemental File8

1). PCR reactions were subjected to multistage (high, medium9

and low stringency) cycling conditions as described and if found10

to be necessary, the cycle conditions at each stage were adjusted11

to accommodate the optimal annealing temperature. Amplicons12

were electrophoresed with 10µL Orange G loading buffer on a 1.5%13

agarose gel stained with ethidium bromide and visualized by UV14

light. The presence of a SNP specific allele was scored by observ-15

ing an amplicon of the expected size in either reaction. Cycling16

conditions are available in Supplemental File 6.17

Generation of Hhs congenic lines and GigaMUGA18

B10.S-HhsSJL ISRC lines were generated by identifying recombi-19

nant haplotypes across the Hhs interval among (B10.S-HhsSJL ×20

B10.S) × B10.S BC1 mice and then fixed as homozygous lines (Fig-21

ure 2). To identify potential contaminating background loci segre-22

gating among the strains and to further refine the recombination23

break points of each line, the lines were further genotyped using24

GigaMUGA arrays (143,259 markers) by the commercial service of25

Neogen/Geneseek (Lincoln, NE).26

Targeted genetic association testing27

We retrieved genotype data (both coding and non-coding) of28

the 23 mouse strains from the databases at the Sanger Institute29

(https://www.sanger.ac.uk/science/data/mouse-genomes-project) and30

The Jackson Laboratory (https://phenome.jax.org/). The lack of rep-31

resentation of wild-derived strains e.g., MOLF and others, in32

these databases were compensated by genotyping using high-33

throughout Nimblegen sequence capture (®SeqCap EZ Target En-34

richment www.sequencing.roche.com). All these data sources were35

collated to generate genotype information for a total of 13,598 SNPs36

across the Hhs locus (45-128 Mbp, Additional File 8). To calculate37

associations between genetic polymorphisms and Hhs, we used38

efficient mixed-model association (EMMA) (Kang et al. 2008). This39

method treats genetic relatedness as a random variable in a linear40

mixed model to account for population structure, thereby reduc-41

ing false associations between SNPs and the measured trait. We42

used the likelihood ratio test function (emma.ML.LRT) to generate43

p values. Significance was defined with a Bonferroni correction44

(p = 0.05/13, 598). Genomic coordinates included for each SNP45

using the latest mouse genome build GRCm38.p5/mm10.46

Trait-related gene sets47

The positional candidate genes were ranked based on their pre-48

dicted association with seven functional terms related to the Hhs49

phenotype: “aging", “mycobacterium tuberculosis", “cardiac", “G-50

protein coupled receptor", “histamine", “inflammation", “type51

I hypersensitivity", and “vascular permeability." We used Gene52

Weaver (Baker et al. 2012) to identify genes associated with each53

term. We entered each term into the Gene Weaver homepage54

(https://geneweaver.org). We restricted the search to human, rat,55

and mouse genes, and to curated lists only. Mouse homologs56

for each gene were retrieved using batch query tool in MGI57

(http://www.informatics.jax.org/batch_data.shtml). In addition, we58

used Gene Expression Omnibus (GEO) and PubMed to retrieve59

expression data sets for each phenotype term. The data sets used 60

are listed in Supplemental File 7. Final gene lists consisted of the 61

unique set of genes associated with each process term. 62

FNTM network 63

We trained support vector machines (SVMs) to classify genes in 64

each gene list using features derived from the Functional Network 65

of Tissues in Mouse (FNTM) (Goya et al. 2015). In this network, 66

genes are nodes, and the edge weights between them are continu- 67

ous values between 0 and 1 predicting the degree to which each 68

pair of genes is functionally related. Larger values indicate higher 69

predicted functional relatedness. Functional relatedness in this 70

network was predicted through Bayesian integration of data sets 71

from multiple sources, including gene expression, protein-protein 72

interaction data, and annotation to GO terms (Goya et al. 2015). We 73

downloaded the top edges of the mouse network on January 15, 74

2018 from https://http://fntm.princeton.edu. 75

Clustering gene sets 76

Guan et al. (2010) noted that support vector machines trained on 77

200 to 300 genes yielded the best classification accuracy. Two of our 78

gene lists had fewer than 100 genes. For all lists over 400 genes, we 79

reduced the size of our training sets by clustering each term gene 80

set into modules using the fast greedy (Newman 2004) algorithm 81

in the R/igraph package (Csardi 2006). We applied the fast greedy 82

algorithm iteratively until all modules comprised fewer than 400 83

genes (Supplemental Table 2). Using a maximum modules size of 84

300 overly fragmented the networks yielding many modules with 85

fewer than 100 genes. 86

Machine learning 87

To classify novel genes as belonging to a functional module, we 88

trained SVMs using the connection weights in the FNTM network 89

as features, as described in Guan et al. (2010). Briefly, an annotated 90

set of genes (Figure 1A, blue nodes) is used as a set of known 91

positives for the corresponding functional module. Other genes 92

in this module are expected to be strongly functionally connected 93

to these known positives, i.e. have high probability of function- 94

ally interacting with known positives. Each gene, therefore, is 95

represented as a feature vector of connection weights to the known 96

positives, which can be visualized as a sub-matrix of the adjacency 97

matrix of the network (Figure 1B). Correspondingly, the rows of 98

this matrix are labeled as either known positive or not (Figure 1B, 99

blue dots vs. gray dots). We used the e1071 package in R (Meyer 100

et al. 2018) to train SVMs to distinguish the known positive genes 101

from an equal-sized set of genes selected at random from outside 102

the known positive list using the network-based feature vectors 103

(Figure 1C). The trained model can then annotate novel genes as 104

belonging to the functional module by classifying all gene in the 105

genome (Figure 1C, green bordered nodes). 106

We trained 100 SVMs on each module selecting a new set of 107

random genes for each run. We used a linear kernel and 10-fold 108

cross-validation for each SVM. We trained each SVM over a series 109

of cost parameters. We started with the sequence 1 × 10−5 to 110

1 × 102 by factors of 10, and iteratively narrowed the range of cost 111

parameters until we found a series of eight cost parameters that 112

maximized the accuracy of the SVM (see Workflow). 113

We calculated the area under the ROC curves (AUC) over all 114

runs in the following way: For a sequence ranging from the min- 115

imum SVM score to the maximum SVM score, we quantified all 116

true positives (TP), true negative (TN), false positives (FP) and 117

false negatives (FN). The TP genes in this case were those genes 118
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from the known positives that were correctly classified as being in1

the module (above the SVM score cutoff). TN genes in this case2

were those genes outside the module that were correctly classified3

as being outside the module (below the SVM score cutoff). We4

calculated the AUC across the average curve for all 100 SVMs for5

each module.6

Positional Candidate Scoring7

We used the trained SVMs to score each positional candidate gene8

in the Hhs locus. The score for each gene gave an estimate of9

how functionally related each gene was to each module based on10

its connection weights to the known module genes in the FNTM11

mouse network. Genes with large positive scores were predicted12

by the SVMs to interact functionally with the genes in the module,13

while genes with negative scores were predicted to not functionally14

interact with the module genes. To be able to compare SVM scores15

across different trained models, we calculated a false positive rate16

(FPR) for each gene and each SVM as follows: For each gene’s17

SVM score we calculated the number of true positives (TP), true18

negatives (TN), false positives (FP) and false negatives (FN) clas-19

sified by the SVM. The FPR for a given SVM score was calculated20

as FP/(FP + TN).21

The final functional score for each was the max(−log10(FPR))22

across all modules. This meant that genes with a high functional23

score for a single module, but low functional scores for other mod-24

ules received higher overall scores than genes with moderately25

high scores across all modules.26

Combined Gene Score27

High-quality candidate genes in the locus should not only be func-28

tionally related to the trait of interest, but should also segregate29

with the trait of interest. We thus defined a combined gene score30

(Scg) that combined these two aspects of the analysis:31

Scg =
−log10(pEMMA)

max
pos.cand.

−log10(pEMMA))
+

−log10(FPRSVM)

max
pos.cand.

−log10(FPRSVM)
,

where the denominators of the two terms on the right hand side32

are the maximum values of −log10(pEMMA) and −log10(FPRSVM)33

over all positional candidates in Hhs, respectively, which normal-34

izes the functional and positional scores to be comparable to each35

other. EMMA p values for SNPs were assigned to the nearest gene36

within 1 megabase using the R package biomaRt (Durinck et al.37

2005, 2009) (Supplemental Table 3). Genes for which more than38

one SNP was assigned were given the maximum −log10(pEMMA)39

across all SNPs associated with that gene. The full matrix of com-40

bined scores across all gene sets is in Supplemental Table 5. The41

rows of this matrix are sorted by the maximum gene score across42

all gene lists.43

RESULTS44

Generation of Interval Specific Recombinant Congenic Lines (IS-45

RCL) across the Hhs locus46

In prior work, we mapped the genetic locus regulating suscepti-47

bility to age- and/or inflammation (CFA)-dependent sensitivity to48

histamine on Chr 6 in SJL mice (Raza et al. Under Review). The49

B10.S-HhsSJL congenic mice exhibit Hhs and carry a large ≈ 83 Mb50

region of SJL between 45.9 Mb to 127.8 Mb on the resistant B10.S51

background (Raza et al. Under Review). This large QTL includes52

628 protein coding genes. To narrow this region, we generated five53

ISRCLs using B10.S-HhsSJL x B10.S backcross mice and assessed54

their susceptibility to Hhs (Figure 2). Under an additive model, 55

these data suggest that Hhs is composed of four sub-QTL which 56

we have designated Hhs1, Hhs2, Hhs3, and Hhs4, each contributing 57

17%, 19%, 14% and 10%, respectively, to the overall penetrance. Im- 58

portantly, for each sub-QTL this makes positional candidate gene 59

identification using interactive high resolution congenic mapping 60

impractical. 61

Inbred strain survey of Hhs 62

To investigate whether the Hhs phenotype is unique to SJL, we as- 63

sessed histamine responses for 23 inbred mouse strains (including 64

SJL and B10.S; Table 1). These strains were chosen using haplo- 65

type structure across the Hhs interval to identify additional mouse 66

strains that are likely to share a susceptible Hhs allele (data not 67

shown). 129X1/SvJ, ALR/LtJ, BPN/3J, FVB/NJ, NOD/ShiLtJ, 68

NU/J, SJL/BmJ and SWR/J mice were identified as having similar 69

haplotype structure as SJL at the Hhs locus. ALR/LtJ and SJL/BmJ 70

mice required embryo recovery and were therefore not included. 71

Hhs phenotyping identified FVB/NJ, SWR/J, and NU/J mice as 72

Hhs-susceptible, whereas 129/X1/SvJ, NOD/ShiLtJ, and BPN/3J 73

were resistant. Taken together with our earlier data, these results 74

indicate that Hhs susceptibility segregates among a unique subset 75

of SJL/J-related strains (Petkov et al. 2004). 76

Targeted genetic association analysis for Hhs 77

Our result from previous linkage analysis (Raza et al. Under Re- 78

view) and congenic mapping localized Hhs to an ≈ 83 Mb re- 79

gion on Chr 6 between 45.9 Mb to 127.8 Mb. Given that Hhs- 80

susceptibility is restricted to a unique subset of inbred strains, 81

particularly the closely related SJL/J, FVB/NJ, and SWR/J, we 82

performed a targeted association analysis between SNPs in the Hhs 83

locus across all 23 inbred strains (cf. Benson et al. (2017)). 84

We tested the association of 13,598 SNPs across the Hhs locus 85

using efficient mixed-model association (EMMA) (Kang et al. 2008). 86

A total of 84 SNPs in 23 genes showed significant associations 87

(p ≤ 3.68× 10−6) (Figure 3, Table 4). The majority of the significant 88

hits were intronic (71%), non-coding (12%), intergenic (4%) or 89

regulatory (5%) variants. Interestingly, there was overlap between 90

three of the four Hhs sub-QTLs (Figure 2) and SNP-association 91

peaks. 92

Network-based prediction of Hhs-associated genes 93

To predict functional candidates among the positional candidates 94

in the Hhs locus, we delineated a list of Hhs-associated biological 95

processes and trained machine learning classifiers to identify sub- 96

networks of functional genomic networks associated with each of 97

these processes. An overview of our workflow is in Figure 4. We 98

first defined gene sets that were related to seven terms that are 99

functionally related to the Hhs phenotype. 100

The terms and their justifications are as follows: 101

• Type I hypersensitivity/Anaphylaxis: The death response follow- 102

ing systemic histamine challenge exhibits symptoms of type I 103

hypersensitivity/anaphylaxis including respiratory distress, 104

vasodilation, and anaphylactic shock (Vaz et al. 1977). 105

• Cardiac: There is evidence suggesting that anaphylactic shock 106

in mice is associated with decreased cardiac output, rather 107

than solely a function of systemic vasodilation (Wang et al. 108

2014). 109

• Histamine: Hhs is elicited by a systemic histamine challenge 110

(Raza et al. Under Review). 111

• G-protein coupled receptor: Histamine receptor H1 (Hrh1) sig- 112

naling is required for the Hhs phenotype, and all histamine 113
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receptors belong to the family of G-protein coupled receptors1

(Hill et al. 1997).2

• Aging: Spontaneous Hhs develops after six months of age in3

sensitive mouse strains (Raza et al. Under Review).4

• Inflammation: Treatment with pro-inflammatory CFA induces5

Hhs in sensitive mouse strains.6

• Tuberculosis: Hhs is induced in some mouse strains by CFA,7

which contains inactivated Mycobacterium tuberculosis (Raza8

et al. Under Review).9

• Vascular permeability: The Hhs response includes vascular10

leakage in skin and skeletal muscles as assessed by Miles’11

assay (Raza et al. Under Review).12

We used Gene Weaver, the Gene Expression Omnibus (GEO),13

and PubMed to retrieve gene sets associated with each of these14

terms (see Materials and Methods). The gene sets ranged in size15

from 651 to 1466 genes. Because Guan et al. (2010) found that16

SVMs trained on gene sets with around 300 genes performed best17

for network-based functional prediction, we clustered large gene18

sets into modules of approximately 300 genes and analyzed each19

module separately (see Materials and Methods). Supplementary20

Table 2 shows the number of genes in each module, as well as the21

top five enrichment terms for each using the R package gProfileR22

(Reimand et al. 2018). Multiple members of these gene sets are23

encoded in the Hhs locus. For example, e.g. Hrh1 was a member24

of the Anaphylaxis gene set. To reduce bias in classification, we25

removed all such genes from each gene set before SVM training.26

We then trained an ensemble of 100 SVMs on each module gene set.27

We calculated ROC curves for each model to quantify the ability of28

each set of SVMs to distinguish genes inside the module gene set29

from all genes outside the module gene set. AUCs ranged from 0.930

to 0.975 indicating that the SVMs were able to classify the genes in31

each list robustly. In other words, each gene set used to define a32

putative Hhs-related process forms a distinct subnetwork of the33

full functional genomic network.34

We then applied the trained SVM models to the positional can-35

didate genes in the Hhs locus. By classifying each positional can-36

didate, we can identify genes that are likely to be functionally37

associated with each module gene set. For example, for the Ana-38

phylaxis module gene set, the histamine receptor Hrh1 received39

a positive score indicating that the SVMs predicted it belonging40

to the Anaphylaxis gene set despite its absence from the training41

set. This example provides a positive control and shows that the42

SVMs identify biologically relevant patterns in the functional ge-43

nomic network. In addition to the SVM score, we calculated a44

false positive rate (FPR) for each gene (see Materials and Meth-45

ods). Low FPRs indicate high confidence in the classification. The46

details of this analysis are described in an executable workflow as47

a companion to this paper (see Data Availability).48

Integration of functional enrichment with genetic association49

Genes that are predicted to be highly functionally related to the50

trait may not have functionally variant alleles in the study popula-51

tion, and may therefore be unlikely to drive the observed strain dif-52

ferences in Hhs. To identify genes that were likely to have function-53

ally relevant polymorphisms, we integrated functional scores with54

SNP association p values to focus only on those candidates that sat-55

isfied both criteria. By plotting the maximum functional score for56

a gene, −log10(FPRSVM) versus the −log10(pEMMA) (normalized57

to the max values; see Materials and Methods), we can identify58

genes that were predicted to be both highly functionally related59

to Hhs phenotype and likely to have functional polymorphisms60

that segregated with Hhs susceptibility (Figure 5). The blue line in61

Figure 5 traces along the Pareto front of the gene set in this space. 62

For any gene on this line, finding a gene with a stronger functional 63

association means finding a gene with lower SNP p value, and 64

vice versa. The genes near the Pareto front have either segregat- 65

ing polymorphisms or are predicted to be functionally related to 66

Hhs, or both. All such genes are potentially good candidates for 67

experimental follow-up. 68

To rank the candidates with a single score, we defined a final 69

gene score (Scg) for each gene, which is the sum of the (normal- 70

ized) −log10(FPR) and the −log10(pEMMA) (Figure 6). This score 71

prioritizes candidates in the upper right quadrant with simultane- 72

ously high positional and functional scores. The genes in the up- 73

per right quadrant—Cxcl12, Ret and Cacna1c—had near-maximal 74

scores along both axes and were therefore ranked as the best can- 75

didates for follow-up. The full table of gene scores by module can 76

be seen in Table 5. 77

In addition to identifying the top-ranked gene over the full Hhs 78

locus, we identified a top-ranked gene for each sub-QTL identified 79

through congenic mapping. Figure 6A shows the functional associ- 80

ations across all modules of the top 20 genes ordered by final gene 81

score (Scg). The full matrix of scores for all ranked genes can be 82

found in Supplemental Table 5. 83

DISCUSSION 84

In this analysis, we identified a small set of positional candidate 85

genes in a large locus by combining computational predictions of 86

functional association with Hhs and SNP associations. The final 87

list of genes is highly plausible and can be followed up relatively 88

easily with modern genetic editing techniques. 89

High-quality candidates for Hhs 90

Three genes in the final ranked list deserve particular attention: 91

Cxcl12, Ret, and Cacna1c. Of all genes in the locus, these three 92

lie on the Pareto front with both low genetic association p val- 93

ues and high functional scores (Figure 5). The top-ranked gene, 94

Cxcl12 (a.k.a. stromal cell-derived factor 1), is chemotactic for mast 95

cells via the chemokine receptor Cxcr4 (Ghannadan et al. 2002). 96

Mast cells are major drivers of pathological events in anaphylaxis 97

(Lieberman and Garvey 2016), demonstrating that the final pre- 98

dictions are highly relevant to Hhs. The second-ranked gene Ret 99

encodes a pleiotropic tyrosine protein kinase involved in cell dif- 100

ferentiation, growth, migration, and survival (Motenko et al. 2015), 101

inflammation (Rusmini et al. 2013) and the development of the car- 102

diovascular system (Hiltunen et al. 2000). Alleles of this gene could 103

conceivably modify multiple processes underlying Hhs, includ- 104

ing the both the anatomical background susceptible to Hhs and 105

the acute response to histamine. Ret was significantly associated 106

with multiple functional gene sets (Figure 6A). The third-ranked 107

gene, Cacna1c, encodes the voltage-dependent calcium channel 108

Cav1.2, which is expressed in the heart, muscle, and endocrine 109

glands (Mouse Genome Informatics Mouse Genome Informatics 110

Web Site). Mutations in Cacna1c are associated with electrophysio- 111

logical alterations in the heart (Napolitano et al. 2015; Hedley et al. 112

2009) suggesting a possible role for Cacna1c in impaired cardiac 113

function in Hhs. Interestingly, SNPs in human CACNA1C were 114

recently associated with chronic spontaneous urticaria (i.e., spon- 115

taneous episodes of hives and/or angioedema) and antihistamine 116

drug response (Yan et al. 2018)(paper in Chinese). These results 117

suggest a direct connection between Cacna1c and anaphylactic or 118

hypovolemic shock. 119

All of the above genes lie in the Hhs4 locus, which accounts for 120

only a portion of the total variation in the Hhs phenotype. In the 121
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Hhs3 locus, the highest-ranked candidate gene was Cntn3, which1

encodes for contactin 3, an activator protein of the small GTPase2

Arf. Cntn3 is a member of the contactin family of immunoglob-3

ulins. Genetic variants of human CNTN3 are associated with an4

enlargement of the aorta, acute heart rate recovery, and abdominal5

aortic aneurysm, suggesting a potential connection to impaired6

cardiac function during histamine challenge (Elmore et al. 2009).7

Intriguingly, CNTN3 is near a segregating SNP for Systemic Cap-8

illary Leak Syndrome (SCLS) from a human GWAS. SCLS is an9

extremely rare disease characterized by transient but potentially10

lethal episodes of diffuse vascular leakage of proteins and fluids11

into peripheral tissues, resulting in massive whole-body edema12

and hypotensive shock. The pathological mechanisms and genetic13

basis for SCLS remain elusive (Xie et al. 2013), but SCLS shares14

many phenotypic properties with Hhs in mice. In particular, SCLS15

attacks are diagnosed based on the clinical triad of hypotension,16

elevated hematocrit, and hypoalbuminemia, all of which naturally17

occur in the Hhs-sensitive SJL mouse strain (Raza et al. Under18

Review). The potential association between CNTN3 and SCLS,19

therefore, lends credence to its possible functional role in Hhs as20

well. Indeed, CNTN3 was not only a positional candidate in the21

SCLS GWAS, but was contained within functional terms that were22

enriched among the top positional candidate genes (cf. Table 5 of23

Xie et al. (2013)), indicating that CNTN3 functions in concert with24

other genetic risk factors for SCLS.25

In the Hhs1 locus, the top hits in were Creb5 and Tril. Creb5 codes26

for cyclic AMP-Responsive Element-Binding Protein 5. Creb5 has27

high expression in the heart (Fagerberg et al. 2014) and has been28

implicated in cardiac function and pathology (Schisler et al. 2015).29

Tril is Tlr4 interactor with leucine-rich repeats and is a functional30

component of Tlr4 complex involved with LPS signaling and is31

highly expressed in the kidney (Carpenter et al. 2009), indicating a32

potential role for Tril in blood pressure regulation. Tril(-/-) mice33

also produce lower levels of multiple proinflammatory cytokines34

and chemokines within the brain after E. coli and LPS challenge35

(Wochal et al. 2014), suggesting a potential role in immune modu-36

lation. There were no significant hits in the Hhs2 locus.37

Further experimental validation will be required to confirm38

the association between our any of the above candidates and Hhs.39

However, the above genes each have compelling functional associ-40

ations that can inform follow up studies.41

Computation and quantitative trait gene prediction42

Definitive functional validation of a quantitative trait gene (QTG)43

has traditionally required either congenic mapping to resolve an44

extremely narrow QTL, or ad hoc nomination of a candidate gene45

for direct experimentation. The advent of modern genetic tech-46

nologies, such as CRISPR/Cas9 (Hsu et al. 2014), allow relatively47

fast and inexpensive allelic manipulations, so the burden of QTG48

prediction is moving toward a regime in which a small handful of49

strong candidates can be followed up individually. Importantly,50

many QTLs, including Hhs, contain multiple causal variants, so51

fine-mapping alone cannot provide definitive validation. There-52

fore, computational tools that can identify a small number of rea-53

sonable candidates can be a significant aid in biological follow-up.54

We have presented an integrative strategy for ranking genes in a55

QTL by combining predicted functional associations to the trait56

with SNP associations. Our method produces a full ranked list57

of genes in the locus providing researchers with the potential to58

validate multiple targets. To this end, the Hhs QTL represents59

an extreme use case for QTG prediction–a large, polygenic QTL60

associated with a physiologically complex trait.61

One major limitation to our approach is the decision of which 62

functional terms to include for network-based prediction. The bet- 63

ter tailored this set is to the trait of interest, the greater confidence 64

we can have in the final predictions. In principle, the inclusion 65

of a spurious functional term could skew the rankings toward 66

genes that are functionally associated with the spurious term but 67

irrelevant to the trait of interest. One potential way around this 68

issue is to use functional data, such as transcriptomics, directly 69

from the mapping population. However, in some cases, includ- 70

ing Hhs, the relevant tissue in which to measure gene expression 71

may not be obvious. Alternatively, one could consider distinct 72

rankings for each functional term. In any case, the researcher will 73

have to exercise some measure of judgment in the prioritization 74

process. However, by transferring the judgments from a large 75

list of positional candidate genes to a smaller and more tractable 76

list of trait-related biological processes, we have shown that we 77

can arrive at a strong set of follow up candidates that would have 78

evaded naive p value filters and are relatively unbiased by findings 79

published in the literature. 80

The final output of our method, a ranked list of positional 81

candidate genes, is easy to interpret, and provides researchers with 82

a clear set of hypotheses to test in the lab. While this approach 83

cannot definitively identify the causal gene or genes in a locus, it 84

does provide a much-reduced set of plausible candidates to test. 85

DATA AVAILABILITY 86

A reproducible workflow in R markdown is available on GitHub 87

(https://github.com/MahoneyLab/HhsFunctionalRankings). This work- 88

flow contains all code required to reproduce the figures and results 89

presented in this manuscript. 90

The data used as input for the workflow, as well as intermediate 91

and final results are available on Figshare (https://figshare.com). 92
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Figures1

Figure 1 Network-based machine learning for functionally an-
notating genes. A Known-positive genes annotated to a functional
term (blue nodes) are typically densely interconnected in a func-
tional network. B The adjacency matrix of a network is a tabular
representation of the connectivity structure of the network in which
each row/column corresponds to a node of the network, and con-
nected pairs of nodes have non-zero values in the corresponding
cell of the matrix. Note that in general the connections are weighted,
but for display we are only showing present/absent links (white/black
cells). The connections from every gene in the genome to the
known positives form a sub-matrix of the adjacency matrix called
the feature matrix (vertical red lines), whose rows are the feature
vectors for each gene. C Using the network-based feature vectors
for each gene, we train SVMs to distinguish known positives (blue
dots) from random genes in the genome (gray dots) to identify the
full sub-network corresponding to the true positive genes (green
bordered dots and dotted red lines in panels A,B).
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Figure 2 Interval specific recombinant congenic (ISRC) map-
ping places Hhs candidates in four genetic loci. ISRC lines were
injected (D0) with complete Freund’s adjuvant (CFA) and subse-
quently challenged (D30) with and i.v. injection of histamine to de-
termine histamine hypersensitivity. Deaths were recorded at 30 min
post injection and the data are reported as the number of animals
dead over the number of animals studied. Significance of observed
differences was determined by a χ2 test with p-values <0.05 consid-
ered significant.
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Figure 3 Targeted genetic association analysis for Hhs. Nega-
tive log-transformed p values of SNP associations with Hhs. Ge-
nomic coordinates (mm10 Mbp) of each SNP are shown along the
x-axis. Each circle denotes a single SNP. Gene names are included
for SNPs that crossed p-value threshold of 3.68 × 10−6 shown with a
red dotted line. The location of Hhs sub-QTLs are shown at the top
of the figure.
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Figure 4 Workflow Overview. The workflow is broken into blocks
by color, each with a bolded title. Each block shows how data (blue
rectangles) were operated on (gray rectangles) to achieve results
(green rectangles). Arrows show the general flow of work and de-
pendence (and independence) of individual analyses.
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Figure 5 Two axes of gene scoring. Gene names are plotted by
their −log10(pEMMA) on the x-axis and the −log10(FPRSVM) on
the y-axis. Both scores were scaled by their maximum value for
better comparison. Genes farther to the right were associated with
SNPs that segregated with Hhs. Genes higher up on the y-axis are
associated with stronger functional association with gene modules.
The blue line marks the Pareto front. Genes on this line maximize
the two scores and are the best candidates based on the combina-
tion of both scores.
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Figure 6 Final gene scores. Gene functional values were com-
bined with SNP associations to assign each gene a final gene score
(Scg). Higher gene scores indicate better candidates. A Heat map
showing the final score of each of the top 20-ranked genes for each
gene module. To aid visualization of the strongest candidates, aster-
isks in each cell indicate where candidate genes were associated
with a module with an FPRSVM ≤ 0.2. B The top panel shows in-
dividual SNPs plotted at their genomic location (x-axis) and their
log10(pEMMA) (y-axis). All SNPs with nominally significant p value
(p ≤ 0.05) are plotted. The horizontal line indicates the Bonferroni
corrected significance cutoff (p ≤ 0.05/13598). The four sub-QTLs
are demarcated by background color and are labeled at the top of
the figure. The bottom panel shows genes plotted at their genomic
location (x-axis) and their final gene score (Scg) (y-axis) to demon-
strate how the final ranked genes align with the SNP association
data.
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Tables1

n Table 1 A survey Hhs phenotypes across 23 inbred mouse strains.

Strain HA Strain HA Strain HA Strain HA

129X1/SvJ 0/8 C3H/HeJ 0/8 DBA/2J 0/8 PWK/PhJ 0/6

A/J 0/8 C57BL/10J 0/8 JF1/Ms 0/8

AKR/J 0/8 C57BL/6J 0/7 MOLF/EiJ 0/8 FVB/J 6/8

BALB/cJ 0/8 CBA/J 0/8 MRL/MpJ 0/8 NU/J 5/8

BPL/1J 0/8 CZECHII/EiJ 0/8 NOD/ShiLtJ 0/8 SJL/J 12/12

BPN/3J 0/8 DBA/1J 0/8 PWD/PhJ 0/12 SWR/J 6/8

Cohorts of CFA injected 8- to 10-week old mice were challenge 30 days later with 75 mg/kg HA
by i.v. injection, and deaths recorded at 30min. Results are expressed as the (number of animals
dead)/(number of animals studied).

2
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Supplemental Files1

Supplemental File 1 Table of PCR primers for genotyping. An2

Excel file listing the primers for genotyping microsattelite mark-3

ers.4

Supplemental File 2 Table of gene module enrichments. A tab-5

delimited file listing the top enrichment terms for each module.6

Columns are Term: the term name, Module: the number of the7

module within the term, N.Genes: the number of genes in the8

module, Enrichment.Terms: the significantly (p ≤ 0.05) enriched9

terms associated with the genes in the module.10

Supplemental File 3 A tab-delimited table listing SNPs that11

were assigned to genes. Each SNP was assigned to the nearest12

gene within 1Mb. The table contains six columns: SNP (the rs13

number of each SNP), Chr (the chromosome on which the SNP14

is located), Position (the genomic position in bp of each SNP),15

Nearest.Gene (the nearest protein coding gene), Distance_to_gene16

(the distance in bp to the listed gene), p.value (the pEMMA of each17

SNP).18

Supplemental File 4 Tab-delimited table containing the pEMMA19

for all SNPs in the Hhs locus. The table contains four columns:20

refsnp_id (the rs number for each SNP), chr_name (the chromo-21

some each SNP is found on, chrom_start (the genomic position of22

eacn SNP in bp), p.value (pEMMA).23

Supplemental File 5 Final gene scores (Scg) for genes in the Hhs24

locus. Tab-delimited table with four columns: gene.name (name25

of ranked gene), gene.position (genomic location of the gene in26

bp), EMMa.p (pEMMA), FP (false positive rate of SVM score),27

gene.final.score (the sum of pEMMA and FP).28

Supplemental File 6 Cycling conditions for PCR. A .docx file29

containing cycling conditions for SNP genotyping.30

Supplemental File 7 Gene lists used for training. Zipped file31

containing all gene lists used in the analysis.32

Supplemental File 8 Collated genotypes across Hhs locus for 2333

inbred strains. A comma-separated table indicating the genotypes34

of 23 inbred strains for 13,598 SNPs in the Hhs locus (45-128 Mbp).35

There are 28 columns in this table: chr (the chromosome the SNP36

is located on), bp38 (the genomic coordinates of the SNP in bp,37

genome build 38 (mm10)), rs (SNP rs number), observed (geno-38

types observed at the locus), dbsnp142annot (gene annotation of39

SNP), and the genotypes for each of the 23 strains.40
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