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Abstract

Disease profiling, treatment development, and the identification of new cell populations are
some of the most relevant applications relying on differentially expressed genes (DEG) analysis. In
this context, three leading technologies emerged; namely, DNA microarrays, bulk RNA sequencing
(RNA-seq), and single-cell RNA sequencing (scRNA-seq), the main focus of this work. Although
scRNA-seq tends to offer more accurate data, it is still limited by many confounding factors. We
introduce two novel approaches to assess DEG: extended Bayesian zero-inflated negative binomial
factorization (ext-ZINBayes) and single-cell differential analysis (SIENA). In addition, we benchmark
the proposed methods with known DEG analysis tools for single-cell and bulk RNA data, using
two real public datasets. One contains house mouse cells of two different types, while the other
gathers human peripheral blood mononuclear cells divided into four types. The results show that
the two procedures can be very competitive with existing methods (scVI, SCDE, MAST, and
DEseq) in identifying relevant putative biomarkers. In terms of scalability and correctness, SIENA
stands out from ext-ZINBayes and some of the existing methods. As single-cell datasets become
increasingly larger, SIENA may emerge as a powerful tool to discover functional differences between
two conditions. Both methods are publicly available (https://github.com/JoanaGodinho/SIENA,
https://github.com/JoanaGodinho/ext-ZINBayes).
Keywords: differential expression, scRNA-seq, latent variable models, variational inference

1. Introduction

Gene expression is a fundamental biological process
that affects how each living organism operates. As
such, studying and understanding gene expression
leads to a broaden knowledge on how cells work
and how they evolve. With this knowledge, ground
breaking advances can be achieve in the fields of
genetics, molecular biology and medicine.

One of the most relevant tasks performed through
gene expression assessment is the identification
of differentially expressed genes (DEG). DEG are
genes that show different expression levels across
different types of cells. With DEG identification
we can deepen our understanding on cell differen-
tiation, study disease phenotypes and assess how
certain treatments perform [18].

Research has provided several computational
methods aiming to carry out such task. Initially,
differential expression (DE) analysis was only per-
formed using gene expression obtained from DNA

microarrays. Then, technological advances empow-
ered the emergence of RNA sequencing (RNA-seq)
protocols to profile gene expression. In a first ap-
proach, DE analysis over bulk RNA data was per-
formed using packages, such as limma [21], that
were initially designed to account for microarray in-
put. However, due to differences between microar-
ray and RNA-seq data, new methods, such as DE-
seq [1] and edgeR [20], were developed specifically
for the latter.

In more recent years, single-cell RNA sequencing
(scRNA-seq) has stood out from the previous two.
The appeal for this kind of data is the possibility to
perform detailed analysis with high-resolution data,
given that gene expression is described by mRNA
counts in individual cells. Nonetheless, the data is
still subject to the presence of noise, which unfolds
as extra variation and false zero counts, caused by
dropout events, batch effects, stochastic gene ex-
pression or variations in sequencing depth (or li-
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brary size).
In order to prevent wrong conclusions, one must

seek to disentangle correct biological information
from the noisy data. One suitable approach is
to use a latent variable model. Methods such as
SCDE [13], MAST [7] and scVI [17] take this ap-
proach to identify DEG. However, there is a need
for new techniques, since scRNA-seq datasets are
becoming increasingly larger, making some of the
existent methods inefficient.

In this work, we propose two new methods to
perform differential expression analysis (DEA), ext-
ZINBayes (extended Bayesian zero-inflated nega-
tive binomial) and SIENA (SIngle-cEll differeNtial
Analysis). Both rely on a latent variable model and
variational inference (VI). ext-ZINBayes adopts an
existing model developed for dimensionality reduc-
tion, ZINBayes [6]. SIENA operates under a new la-
tent variable model defined based on existing mod-
els. We benchmark their performances with other
methods, using two public datasets.

In the following section, we first review latent
variable models and inference concepts; then, we
detail the workings of our methods (Section 2). Fi-
nally, we conclude this work with a performance
analysis (Section 3) and outline some final remarks
(Section 4).

2. Methods
As we previously mentioned, to build a scRNA
method, one must account for the presence of con-
founding factors. Using a latent variable model has
shown to be a reliable approach to separate the ad-
ditional variability added by such factors.

In a latent variable model, variables are either ob-
served or unobserved (latent). The latent variables
are responsible for capturing and describing hidden
factors that influence the observed variables. So, in
the single cell RNA context, the observed variables
would be the RNA transcript counts, and the latent
would describe the confounding factors.

If we take a Bayesian perspective, i.e., if we as-
sume that each latent variable follows a given prob-
abilistic distribution, they can be inferred using
Bayesian inference.

Under this framework, we first define probabili-
ties that reflect a priori beliefs we may have about
the latent factors. Then, these beliefs are updated
using the observations which in turn generate a pos-
teriori assumptions. This iterative process is carried
out using the Bayes theorem where p(Z|X) reflects
the a posteriori beliefs and p(Z) the a priori,

p(Z|X) =
p(X|Z)p(Z)

p(X)
. (1)

Finally, the hidden variables are inferred using the
posterior, p(Z|X). One can set them as maximum

a posteriori (MAP) estimates or as expected values
of p(Z|X).

However, for complex models it may be impos-
sible to obtain the exact posterior, because the
marginal likelihood, p(X), can be intractable. In
these cases, approximate inference techniques, such
as variational inference (VI), are required.

The main idea behind VI [3] is to find a distri-
bution q(Z) that best approximates the posterior.
To do so, it assumes that q(Z) belongs to a family
of distributions, defined by parameters v. So, in a
deeper perspective, VI aims to find the parameters
v which make q(Z) closest to p(Z|X). To evaluate
the dissimilarity between the distributions, VI relies
on the Kullback-Leibler (KL) divergence, calculated
as follows:

Eq(Z)[log q(Z)− log p(Z|X)], (2)

where Eq(Z) is the expected value with respect to
q(Z). In this setting, finding the optimal v amounts
to finding v which minimize equation (2).

However, the KL divergence involves the un-
known posterior, thus, an alternative metric is re-
quired. This metric is known as the Evidence Lower
BOund (ELBO) and is derived from the KL diver-
gence. The ELBO is calculated using the equation
below:

Eq(Z)[log p(Z,X)− log q(Z)]. (3)

In this case, to find v one maximizes the ELBO.
As stated by Lopez and colleagues [17], the per-

formance of VI techniques, is greatly influenced by
the choice of the family Q. The most commonly
used is the mean field variational family, which as-
sumes independence between all latent variables.
As such, each unobserved variable follows a sepa-
rate variational distribution. Then, given a set of
N latent variables, q(Z) can be obtained through

q(Z) =

N∏
j=1

q(Zj). (4)

The following subsections, present two methods
we developed using the techniques formerly de-
scribed, with the goal to perform DE analysis.
Both were developed in Python and are freely avail-
able online, ext-ZINBayes at https://github.

com/JoanaGodinho/ext-ZINBayes and SIENA at
https://github.com/JoanaGodinho/SIENA.

2.1. ext-ZINBayes
The first method we present is an extension of an
existing model, ZINBayes, developed to perform di-
mensionality reduction. With an additional feature
we enable it to detect DEG.

When designing ZINBayes, the aim was to create
an approach able to discover a true biological repre-
sentation of the data, without the distortion caused
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by noise factors. Thus, ZINBayes takes into consid-
eration batch effects, dropout events and stochastic
gene expression.

The model is build upon a Gamma-Poisson mix-
ture, so that each count follows a Negative Binomial
(NB) distribution. As research has shown, the NB
is highly adequate to describe RNA-seq data due
to its ability to account for overdispersion. How-
ever, it may not be sufficient to account for the ex-
cessive amount of zeros caused by dropout events.
Therefore, the authors added zero inflation to the
generative process.

For a given set of G genes and N cells, the count
of each gene g in cell i is defined by variable Xig,
where g = 1 . . . G and i = 1 . . . N . Xig is either gov-
erned by the NB component or, in case of a dropout,
is modelled as a constant zero. These conditional
assignment is devised as follows,

λig ∼ Gamma

(
θg,

θg
ρigLi

)
Yig ∼ Poisson(λig)

Dig ∼ Bernoulli(πig)

Xig =

{
Yig if Dig = 0

0 otherwise
,

where Yig generates the count’s magnitude, if Dig

indicates that Xig is not a dropout. λig parameter-
izes Yig and thus, corresponds to the mean expres-
sion of g in i.

The latent variable Li is a scale factor linked to
the library size of cell i, i.e., the total amount of
transcripts detected in cell i, while θg illustrates a
dispersion factor associated with gene g. Both seen
as random variables,

Li ∼ Lognormal(µi, σi)

θg ∼ Gamma(2, 1).

The formulations ρig and πi, correspond respec-
tively to the percentage of transcripts of gene g
present in cell i and to the probability of Xig be-
ing a dropout. These yield both cell-specific and
gene-specific features:

Ci = [Zi, Si]

ρig =
CiW0,g∑
g CiW0,g

logit(πig) = CiW1,g.

The cell-related features are the batch and the K-
dimensional biological signature of the cell (Si and
Zi). The gene related are the factor loadings W0,g

and W1,g. While Si is a B-sized one-hot representa-
tion, with B being the number of batches, Zi, W0,g

and W1,g are multivariate random variables, whose

components are modelled as follows,

W0,gk′ ∼ Gamma(0.1, 0.3)

W1,gk′ ∼ Normal(0, 1)

Zik ∼ Gamma(2, 1),

where k = 0, . . . , K and k′ = 0, . . . , K+B. See [6]
for more details about the hyperparameters choice.

Several of the variables above are also used in
scVI and have the same purpose however, scVI au-
thors use very different parameterizations for some
of them.

Given the models definition, exact inference can
not be performed due to the intractability of the
posteriors. In addition, the model is not condi-
tionally conjugated, making it impossible to use
coordinate ascent variational inference (CAVI). As
a result, the authors resorted to reparameteriza-
tion gradients (RG), a technique used in Vari-
ational Auto-Encoders (VAE) [14] and extended
in Automatic Differentiation Variational Inference
(ADVI) [16].

To identify DEG between two cell subpopulations
we adopted the procedure developed in [17]. For
each gene g, we define two hypotheses given a pair
of cells from different populations. Yet, both cells
are from the same batch and have counts x1 and
x2:

Hg
a = ρ1g > ρ2g and Hg

b = ρ1g ≤ ρ2g. (5)

The first hypothesis states that the percentage of
transcripts of gene g in cell 1 is higher than in cell
2, while the second hypothesis translates into the
opposite. Then, a Bayes factor, B, is calculated as
follows:

B =
p(Hg

a |x1, x2) p(Hg
b )

p(Hg
b |x1, x2) p(Hg

a)
. (6)

Its value quantifies the difference between the like-
lihood probabilities given each hypothesis. High
factors reflect stronger beliefs over Hg

a , while fac-
tors closer to zero reflect more support over Hg

b .
To simplify the assessment of the probability differ-
ence, we consider the factor’s logarithm and not its
raw value. If the logarithm is negative it means Hg

b

is more prone to be true, if it is positive it means
the opposite: Hg

a is more likely correct. This im-
plies that higher positive values yield higher sup-
ports over Hg

a , whereas lower negative values yield
higher supports over the alternative hypothesis.
Given that Hg

a and Hg
b are mutually exclusive and

have equal prior probabilities, i.e., p(Hg
a) = p(Hg

b ),
log(B) is calculated as follows:

log(B) = log
p(Hg

a |x1, x2)

1− p(Hg
a |x1, x2)

(7)

= log(p(Hg
a |x1, x2))− log(1− p(Hg

a |x1, x2)).
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To compute the posterior p(Hg
a |x1, x2), the proba-

bilities of all ρ1 and ρ2 pairs, which make Hg
a true

need to be summed. Given that the ρ values depend
on variables Z1, Z2 and W0,g, we need to integrate
all possible combinations of those three variables
that yield Hg

a true,

p(Hg
a |x1, x2) =

∫∫∫
(W0,g,z1,z2)

I[ρ1g > ρ2g] q(·),

q(·) = q(z1) q(z2) q(W0,g).

(8)

In the equation above, q(z1) and q(z2) correspond
to the probabilities of cell 1 having a z1 representa-
tion and cell 2 having a z2 representation. q(W0,g)
corresponds to the probability of gene g havingW0,g

has its loading factors. Each of these probabilities
is obtained through the corresponding variational
distribution shaped during inference.

Since calculating the exact value of the integral is
very computationally demanding, we used Monte-
Carlo approximation. Thus, p(Hg

a |x1, x2) is an em-
pirical average of ρ1g > ρ2g over a random set of
triplets (z1, z2,W0) sampled from the variational
distributions:

p(Hg
a |x1, x2) ≈ 1

|S|
∑

(W0,p,z1,z2)

I[ρ1g > ρ2g], (9)

where |S| is the total number of samples assessed.
This process is performed over all possible cell

pairs, that contain one cell from each of the two
subpopulations under study. However, the ρ values
are affected by variable S, which is responsible for
specifying the batches and thus, this process is only
viable if all cells come from the same batch. When
the counts come from two or more batches, each
cell must be paired with another cell from the same
batch but with different type/population. If inter-
batch pairs were allowed, the differences between
the cell’s ρ could be biased by batch effects, leading
to erroneous Bayes factors.

After calculating the factor’s logarithm of each
pair, the obtained values are averaged and the re-
sulting mean is used as a score of differential ex-
pression. If the absolute value of the average is
higher than a certain threshold, gene g is classified
as a DEG. The threshold used is customizable, but
we recommend setting between 2 and 3 [12], since
it translates into having one of the hypotheses ap-
proximately 7 to 20 times more probable than the
opposite one.

To scale this procedure to very large datasets,
the method enables the use of a cell pairs subset.
To do so, the user needs to instruct the number of
pairs to be selected. If the dataset contains cells
from only one batch, we simply randomly peek the
specified number of pairs. On the other hand, if the

dataset gathers multiple batches, the proportion in
the subset of cell pairs from each batch is equal to
the proportion of each batch in the original dataset.
For instance, a given dataset contains a thousand
cells and 300 are from batch 1 and 700 are from
batch 2. If the user specifies a subset of 100 pairs,
this means that 30 of those pairs are from batch 1
whereas the other 70 are from batch 2, thus keeping
the original proportions.

2.2. SIENA
For our second proposed method we designed a new
latent variable model, where each count follows a
zero-inflated NB distribution. As we mentioned be-
fore, with a ZINB distribution, one can depict the
overdispersion and the excess of zero entries typical
of scRNA data. Like in ZINBayes, the NB is built
through a Gamma-Poisson mixture.

We decided to adopt several variables used both
in ZINBayes and in scVI, making our model able
to account for noise factors such as different library
sizes, dropouts and stochastic gene expression. The
major difference is the removal of variables s and Z,
which specify the batches and the low dimensional
representations of each cells biological features. Be-
low we present the model, where Xig reports the
number of reads mapped to gene g in cell i:

Li ∼ Lognormal(µi, σi)

βig ∼ Gamma(
1

3
, 1)

ρig =
βig∑
g βig

λig ∼ Gamma(θgLiρig, θg)

Yig ∼ Poisson(λig)

Dig ∼ Bernoulli(πig)

Xig =

{
Yig if Dig = 0

0 otherwise
.

On one hand random variables Li, ρig, Dig and
λig, encode the same as in ZINBayes. Li encodes a
scaling factor, ρig is the percentage of gene g tran-
scripts in cell i, λig is the expression mean and Dig

indicates if count Xig is a dropout.
On the other hand, πig, the probability of a

dropout event and θg, the gene’s dispersion factor
are not seen as random variables; πig is a hyperpa-
rameter and θg is a non-negative model parameter.
Nonetheless, these are not the only differences be-
tween this model and ZINBayes.

Similarly to what was done in [17], Li is drawn
from a log-normal where the mean and variance
of the underlying Normal, µi and σi, are set re-
spectively as the mean and the variance of the log
scaled sequencing depths/library sizes considering
only cells from the same batch as cell i. In ZIN-
Bayes, µi and σi are the mean and variance of the

4

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 2, 2019. ; https://doi.org/10.1101/719856doi: bioRxiv preprint 

https://doi.org/10.1101/719856
http://creativecommons.org/licenses/by/4.0/


log library sizes considering all cells. The choice to
model Li as a log-normal is to restrict its domain
to be positive since its a scaling factor. Note that
Li encodes a factor proportionally related to the log
sequencing depth, it is not the actual logarithm of
the sequencing depth, as pointed out in [17].

As an alternative, we also tested Li as a Gamma,
where its mean and variance are equal to the mean
and variance of the library sizes in i’s batch. In this
case, Li is directly related with the actual library
size, and not with its logarithm.

In regards to ρig, they are set as the ratio be-
tween a factor related to gene g and cell i, βig, and
the sum of cell i factors with each gene. We take
this formulation to not only restrict ρ values to be
between 0 and 1, but also to constraint the sum of
all ρig of a given cell to be 1, i.e.,

∑
g ρig = 1. Both

of these conditions need to be imposed because ρig
reflects a percentage, which translates into a rela-
tive frequency. An alternative approach would be
to model ρ as a Beta distribution. However, using
a Beta doesnt fit ρ properly since it only complies
with the domain constraint. Moreover, given that
no biological representation is defined for each cell,
the biological variability is implicitly described di-
rectly by variable ρ. Notwithstanding, as it will be
explained further, each ρ is also affected by the cells
batch, since no batch-specific variable is modelled.

For the latent factors βig, we chose to posit a
Gamma with α = 1

3 and β = 1 because it leads to
a distribution where most of its probability density
is placed near zero, yet its expected value is 1

3 . Due
do its tail, this Gamma generates, in each cell, very
low factors for most genes, but higher factors for a
restricted set. In theory, this set is composed by
cell i highly expressed genes.

As mentioned before, the NB is attained through
a Gamma-Poisson mixture determined by variables
λig and Yig, according to the following:

If X ∼ Poisson(λ)

and λ ∼ Gamma(r,
1− p
p

)

then X ∼ NB(r, p).

(10)

In this formulation, the NB output is defined as the
number of successes until r failures occur, given a p
probability of success. As a result its expected value
is rp

1−p . This is the NB formulation taken in our
model. When deciding the parameters of the λig’s
Gamma, we aimed to fix the NB expected value as
Liρig. By defining the Gamma’s shape as θgLiρig
and rate as θg we achieve that.

Finally, zero inflation is employed by variable
Dig, which determines if Xig is necessarily zero.
Dig is drawn from a Bernoulli distribution, since
Dig only needs to take two values, one indicating

dropout occurrence and another one stating non oc-
currence. The probability of the Bernoulli, πig, is
set as the proportion of zero entries of gene g over
all cells from the same type and batch as cell’s i.
For instance, if 60% of gene g counts in type A and
batch 1 cells are zero, then πig is set as 60% for all
type A and batch 1 cells.

Regarding inference, we use reparameterization
gradients. We resort to VI because the counts
marginal likelihood is intractable, so exact infer-
ence can not be applied. In addition, the model
is not conditionally conjugated, so CAVI can not
be implemented. However, to use RG, variable Dig

needs to be discarded since it is not differentiable.
As such, instead of defining Xig with a conditional
assignment, we set it as mixture of two compo-
nents: one is the NB while the other models the
zero-inflation, thus replacing Dig. The ZI part is
determined by a deterministic distribution, which
takes only the value zero, and the mixture propor-
tion is set as πig,

Xig ∼ πig × 0 + (1− πig)×NB. (11)

Given Equation (10), we manage to also integrate
out variables λig and Yig, thus, the RG mechanism
merely has to find a distribution q which approx-
imates p(βig, Li|Xig). The variational distribution
q(βig, Li) is considered mean-field, as such it can
be factorized in q(βig) and q(Li). Both variational
distributions are assumed to be log-normal, since
βig and Li are positive variables and VI with repa-
rameterization gradients performs exceedingly bet-
ter when it has to optimize Normal distributions,
due to the reparameterization trick.

For each log-normal we build a neural network,
responsible for outputting its mean and variance,
turning both q(βig) and q(Li) into what are known
as inference networks. With this approach we are
able to scale inference to very large datasets, since
optimization is carried only over global variables,
the weights, instead of local variables, the means
and variances.

Each network has one hidden layer with 128
nodes and its output layer has two heads, one for
the mean and another one for the variance. A
sotfplus transformation is applied over the vari-
ance head, to restrict it to be positive. In the
hidden layer, a batch normalization step is em-
ployed before activation. In addition to the neural
networks, memory-wise scalability is improved via
batch training, where in each iteration we break the
full dataset into several subsets with equal size and
use each one to do an update step.

Regarding θig optimization, we iteratively set it
as a Maximum Likelihood Estimation (MLE), after
one update step over the networks weights. There-
fore, after optimization, θig will have a value that
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maximizes the counts likelihood, given the obtained
optimal variational parameters.

To assess if a given gene g is a DEG we apply the
same procedure as the one used in ext-ZINBayes.
Given a cell pair we define two exclusive hypotheses
like the ones in equation (5). Then, log scaled Bayes
factors are calculated for each cell pair and the ab-
solute value of their average is used as a metric to
classify g as a DEG or not DEG. The difference
from the ext-ZINBayes procedure is the calculation
of p(Hg

a |x1, x2), since in this approach ρig only de-
pends on βi. Consequently, it is only necessary to
integrate all possible combinations of β1 and β2 that
make Hg

a true:

p(Hg
a |x1, x2) =

∫∫
(β1,β2)

I[ρ1g > ρ2g]· q(β1) q(β2). (12)

This integrals result is also approximated through
Monte Carlo, where the samples are drawn from β1g
and β2g variational distributions.

Given that in our model we do not specify any
variable identifying each cells batch, the ρ values
will be tampered by batch effects. To overcome
this, we only pair cells that come from the same
batch, just like in ext-ZINBayes. This way, the dif-
ferential expression analysis is more truthful to bio-
logical differences. Furthermore, we scale the Bayes
factor calculation by providing the optional use of
a subset of pairs.

3. Results
To assess the performance of ZINBayes and SIENA
we used two known real scRNA-seq datasets: Islam
and PBMC (Peripheral Blood Mononuclear Cells),
and five synthetic datasets. Since none of the real
datasets has the genes identified as being DEG or
not, we considered as ground truth the ones de-
tected in the corresponding microarray dataset us-
ing limma. This is a similar procedure to the one
applied in [4, 10, 13].

The Islam dataset was gathered in the study [9]
and contains expression counts of 92 embryonic cells
of the house mouse: 48 Embryonic stem (ES) cells
and 44 Embryonic fibroblast (MEF) cells. The
PBMC is a droplet-based dataset that contains
count data of human peripheral blood mononuclear
cells, which were sequenced in two different batches.
The cells are divided in four different types, where
4996 are CD4+ T cells, 1448 are CD8+ T cells,
1621 are B cells and 339 are Dendritic cells, which
amount to a total of 8404 cells.

Regarding the gold standard results, we used
the microarray dataset Moliner [19] for the com-
parision between ES and MEF cells and two dif-
ferent microarray datasets of PBMC, one for the
CD4+T vs. CD8+T analysis and the other for

the B vs. Dendritic analysis. To obtain the Islam
and the two PBMC microarray datasets (CD4+T
vs. CD8+T and B vs. Dendritic) we used the GEO
database [5] using the codes GSE29087, GSE8835
and GSE29618, respectively. The single cell PBMC
dataset that we work with is a subset of the one
used in [17]. For Moliner we extracted the data
from the .CEL files1 used in [4].

As a preprocessing step, we filtered out the genes
in the single cell datasets that were not in the cor-
responding microarray datasets and vice-versa. In
addition, genes for which there was no information
about their length were also removed, since MAST,
one of the benchmarking methods, implements a
TPM (Transcripts per Million) normalization, that
requires the length. As such, DE analysis between
types ES and MEF was carried out over 6757 genes
while for the CD4+T vs. CD8+T and B vs. Den-
dritic analyses, only 3346 genes were evaluated.

The five synthetic datasets contain counts of 1000
genes over 1000 cells equally distributed by two con-
ditions. Out of the 1000 genes, 200 are set as dif-
ferentially expressed. To generate the datasets we
resorted to the R package scDD [15], which has been
already used in other studies [4] for the same pur-
pose. More specifically, the counts were generated
through scDD’s example dataset, using the simu-
lateSet method. With these package we were able
to devise five different gene expression scenarios ac-
cording to four types of DEG, described in [4, 15]:

• traditional (DE) - unimodal gene with different
expression modes in both conditions;

• DP - gene with two different expression modes
shared by both conditions. However, the per-
centage of counts over each mode is not equal in
both conditions. One has more counts closer to
the first mode while the other has more counts
around the second.

• DM - gene with one mode in one condition
and two modes in the other, where the counts
are not equally distributed. The least proba-
ble mode is equal to the unimodal condition’s
mode.

• DB - combination of DP and DM types, where
the cells are evenly distributed in the bimodal
condition and the two modes are different from
the other condition’s mode.

Using these clusters we defined four datasets corre-
sponding to extreme scenarios. The first (200-0-0-
0) has only traditional DEG, the second (0-200-0-0)
has only DP differential genes while in the third (0-
0-200-0) and fourth (0-0-0-200) all DEG are DM
and DB, respectively. The fifth dataset contains 50

1http://carlosibanezlab.se//Data/Moliner CELfiles.zip
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genes of each category. In all datasets, 400 of the
non-differential genes are unimodal while the other
400 are bimodal. Note that in both cases the modes
are the same for the two conditions. One important
feature in these five datasets is that the counts are
unaffected neither by dropouts (only about 10% of
the entries are zeros) nor batch effects. Moreover,
the differences regarding the library sizes are much
smaller than in the public datasets. This means
that the synthetic counts have very low noise.

In the following subsections, we first assess the
effects of using different settings of SIENA, and ext-
ZINBayes, then we benchmark their performances
with existing methods: SCDE, MAST, scVI and
DEseq. The first three were designed specifically for
scRNA data whereas DEseq is used for both bulk
and single-cell RNA data. To run MAST and DE-
seq we used the correspoding R packages available
on the Bioconductor project. For SCDE we used
the R implementation2 provided by the authors and
for scVI we used the Python release 0.3.03. Finally,
we compare the biological conclusions drawn from
each methods DE rank through a gene set enrich-
ment analysis (GSEA), where we compare the Gene
Ontology [2] (GO) and KEGG [11] (Kyoto Encyclo-
pedia of Genes and Genomes) pathway enrichments.

3.1. Configurations assessment

Inspired by what the authors in [22] concluded,
we decided to evaluate how the zero-inflation af-
fected SIENA and ext-ZINBayes. They state that
to model droplet scRNA data the NB is sufficient,
as such we first discuss the performance of both
methods with the Islam dataset, using a simple NB
or the zero-inflated version. Simultaneously, we test
if the use of the gene dispersion factor improves the
results. Figure 1 summarizes this analysis.

The plots show the average area under the
ROC curve (AUC) for each method’s configuration:
ZINB with dispersion, NB with dispersion, ZINB
without dispersion and NB without dispersion. For
each configuration we conducted 30 runs of 1000
epochs and averaged the resulting AUC scores. For
SIENA the no zero inflation (ZI) plus gene dis-
persion combination yields the best average AUC,
however it has the highest variance. The configu-
rations ZI plus dispersion and ZI plus no disper-
sion have the lowest average. For ext-ZINBayes,
employing a simple NB combined with no disper-
sion leads to a higher average AUC and like for
SIENA, the ZI plus dispersion and ZI plus no dis-
persion configurations prompt the worst AUC. Yet,
in ext-ZINBayes, the difference between these two
configurations is more accentuated, with the former
standing out has the worst. We also checked how

2https://hms-dbmi.github.io/scde/package.html
3https://github.com/YosefLab/scVI/releases

(a) SIENA (b) ext-ZINBayes

Figure 1: Average AUC values for each configura-
tion with the Islam dataset. Black bars indicate the
maximum and the minimum AUC achieved.

each combination behaved with the B vs. Dendritic
test from the PBMC dataset and verified what we
partially concluded from Figure 1: SIENA achieves
a better mean AUC with the no ZI plus disper-
sion combination, while ext-ZINBayes has a bet-
ter mean without both ZI and dispersion. Apart
from the mean variation between SIENA’s ZI con-
figurations, all the contrasts between the plotted
mean AUC are statistically significant (Welch’s t-
tests with p-values ¡ 0.01). Therefore one can con-
clude that for real datasets both methods achieve
better mean AUC without zero inflation, however
SIENA requires the use of the gene dispersion fac-
tor whereas ext-ZINBayes does not.

For the SIENA configurations assessed, we
adopted a log-normal distribution to model library
scalings. However, as we mentioned in Section 2,
we employed two alternatives for the library scal-
ings, one using a log-normal distribution and an-
other using a Gamma. From Figure 2 we see that
the log-normal alternative is slightly more robust,
hence our choice.

(a) Islam (b) B vs Dendritic

Figure 2: AUC values for each SIENA library size
alternative. Each dot corresponds to one run.

The plots summarize the AUC values of 30 runs
with each SIENA alternative, leveraging the NB
plus gene dispersion configuration. Both options
have similar AUC results with the Islam dataset
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while in the B vs Dendritic analysis, the log-normal
leads to less dispersed AUC scores. In fact, the dif-
ference between the average AUC in the B vs Den-
dritic comparison is statistically significant (Welch’s
t-test with p-value=0.048), however, it does not
seem to be considerably high, since the resulting
confidence interval at 95% is between 0.016% and
1.3%.

Given that SIENA resorts to batch training, we
also used the PBMC dataset to assess how the
mini-batch size affects the performance. As such,
we gathered the average, minimum and maximum
AUC values obtained when setting different num-
bers of mini-batches The results are shown in Fig-
ure 3. Although larger number of batches translate
into less data used in each update step, the detec-
tion accuracy is practically unaffected by such vari-
ation.

Figure 3: Effect of the number of batches on
SIENA’s average, minimum and maximum AUC.
The dots encode the metrics obtained when using 1
(no mini-batches), 8, 18 and 44, which correspond
to defining mini samples of sizes 8404, 1051, 467
and 191, respectively. For each parameterization
SIENA was run 30 times. Results refer to the B
vs. Dendritic analysis.

3.2. Benchmark

To start our comparison analysis, we first contrast
our methods and the four mentioned DE procedures
ability to identify DEG using the Islam dataset.
Out of those four only MAST and DEseq are de-
terministic. Similarly to what was done in the pre-
vious section, we use as a benchmark measure the
average AUC. The results are shown in Figure 4.

To generate the bar plot, we ran and calcu-
lated the AUC of MAST and DEseq only one time,
whereas for the other methods we repeated the pro-
cess 50 times and averaged the AUC values. Both
scVI and SIENA were run with gene dispersion
and without zero-inflation, since this configuration
leverages better results, and each run had 1000
epochs. ext-ZINBayes was also operated without
zero-inflation and with 1000 epochs per run, but un-
like for SIENA and scVI, no dispersion factor was

adopted.

Figure 4: Average AUC values for each method
with the Islam dataset (ES vs. MEF analysis). Grey
bars indicate the maximum and the minimum AUC
obtained.

As seen in Figure 4, with the Islam dataset
SIENA yields better results showing an average
AUC close to 69%, while DEseq has the lowest av-
erage out of all the methods. SCDE has the second
best AUC score, followed by scVI, MAST and ext-
ZINBayes. Nonetheless, SIENA presents a higher
variation (around 5%), given that two runs gener-
ated an AUC of approximately 64%. The differ-
ences between the average AUC are actually statis-
tically significant, since all Welch’s t-tests between
two methods mean AUC show p-values smaller than
0.01. Note that in this assessment we did not con-
sider a t-test between MAST and DEseq since these
two methods are deterministic.

With the average AUC we can test classification
accuracy and robustness, however it is also pivotal
to assess how each method scores the genes, i.e.
how certain they are that a given gene is a DEG.
As such, in Figure 5, we compare for each gene in
the Islam dataset, the DE metrics of each method
with the p-values obtained by limma. Note that
the p-values are adjusted to the false discovery rate
(FDR). For SIENA, ext-ZINBayes, scVI and SCDE

Figure 5: Comparison between each methods DE
metrics and the adjusted p-values of limma. Each
blue dot corresponds to a gene.
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we plot the metrics median of each gene considering
the 50 runs conducted for the previous analysis. So,
for SCDE we show the absolute Z-score’s median
while for the other three we outline the median of
the Bayes factor’s logarithm. For MAST and DEseq
we only consider FDR adjusted p-values of one run.

In this comparison, MAST and DEseq present
the worst results since there is no visible relation
between their determined p-values with those ob-
tained with limma. Ideally, there should be a linear
correlation. The other four methods have a more
distinct correlation with limma, since at a certain
threshold the p-values tend to be lower as the ab-
solute Z-scores or log Bayes factors increase. For
instance, in SCDE, genes with absolute Z-scores
higher than ≈ 2.5, tend to show lower p-values as
the score increases. Same happens for scVI, ext-
ZINBayes and SIENA for genes with log Bayes fac-
tors higher than≈ 3.5, ≈ 12.5 and≈ 2, respectively.
Nevertheless, SIENA seems to show a better corre-
lation with limma than the others.

We also used the PBMC dataset to evaluate the
methods average AUC, applying the same method-
ology. We also employed the same configurations
for SIENA, ext-ZINBayes and scVI, but we set only
500 epochs per run. We used less iterations, because
the PBMC dataset has more data entries (cells)
than the Islam dataset.

As seen in Figure 6a, all methods, except SCDE
and ext-ZINBayes, present a higher average AUC,
when conducting DE analysis between B and Den-
dritic cells, than between ES and MEF cells. SCDE
is the only that shows a great decrease in perfor-
mance, having an average AUC lower than 50%,
whereas SIENA stands out as the best with an av-
erage AUC of 77.3%. scVI and DEseq also perform
well, showing a mean AUC of 76.6% and 75.9%,
respectively. Unlike in the ES vs. MEF test, ext-
ZINBayes shows the highest variance. Regarding
the CD8 vs. CD4 comparison (Figure 6b), SIENA
obtains the best mean AUC (65%), while all the
other methods perform considerably worst, having
an average AUC lower than 60%. Once again,
SCDE shows the worst AUC. Following SIENA,
MAST and scVI show, respectively, the second and
third best average AUC, while ext-ZINBayes and
DEseq come in fourth with an average AUC of ap-
proximately 52%. Nonetheless, similarly to the B
vs. Dendritic test, ext-ZINBayes shows the highest
variance in the results. Note that for this compar-
ison, for both SIENA and ext-ZINBayes, the log
Bayes factors were calculated using a subset of valid
cell pairs. More specifically, 7.5 × 105 pairs were
used and for each of those pairs, 100 samples of ρ
values were computed. Furthermore, some SCDE
runs had to be re-executed because sometimes the
method could not fit a model for a specific cell.

(a) B vs Dendritic

(b) CD4 vs CD8

Figure 6: Average AUC values for each method
with the PBMC dataset. Grey bars indicate the
maximum and the minimum AUC achieved.

In both PBMC tests, the obtained AUC are more
divergent than the ones gathered in the ES vs. MEF
test. While in the latter the difference between the
average AUC of the best method and the worst is
slightly lower than 6%, in the B vs. Dendritic and
CD4 vs. CD8 tests, the difference is around 30%
and 20%, respectively.

Almost all mean AUC differences are statistically
significant for both PBMC comparisons, yielding
Welch’s t-tests with p-values lower than 0.01. The
only difference that has no statistical support is be-
tween ext-ZINBayes and DEseq in the CD4 vs CD8
test (p-value=0.075).

Similarly to the analyses plotted in Figures 4
and 6, we collected, for each synthetic dataset, AUC
results of one run for both MAST and DEseq and of
50 runs for the others methods, generating the bar
charts in Figure 7. SCDE was not considered in
this analysis due to the poor results achieved with
PBMC and the excessive time it takes to fit the
models. Unlike in the public datasets, the no zero
inflation and no dispersion configuration yield bet-
ter results for SIENA. As such, in Figure 7 the re-
sults regarding SIENA leverage such configuration.

From Figure 7, we can see that in nearly all five
synthetic datasets the methods yield better results,
achieving average AUC higher than 90%. In fact
MAST and DEseq are able to attain perfect classi-
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(a) 0-0-0-200 (b) 0-0-200-0 (c) 0-200-0-0

(d) 200-0-0-0 (e) 50-50-50-50

Figure 7: Average AUC values for SIENA, ext-ZINBayes, scVI, MAST and DEseq with each of the five
synthetic datasets.

Figure 8: Intersections of the top 1000 DEG regarding the CD4 vs. CD8 analysis. Matrix dots specify
the methods combinations and the bars encode the number of DEG in common of the corresponding
combination.

fications in the 0-0-200-0 and 200-0-0-0 datasets.
Nonetheless, DEseq has the best performance in
almost all five, leveraging AUC higher than 95%.
Only in the 0-200-0-0 dataset is DEseq outper-
formed by another method (MAST), but only by a
very small margin. Moreover, 0-200-0-0 is the sole
synthetic dataset where SIENA is better than ext-
ZINBayes. In all the others, SIENA is one of the
two worst methods, while ext-ZINBayes is always
among the top best. This contrasts with what we
verified in the real datasets, where SIENA is con-
sistently better than ext-ZINBayes.

Furthermore, with the 0-0-0-200 dataset, the
performances vary substantially, prompting a 40%
AUC gap between the best and the worst method.
In the other four, the difference is less than 10%.
Out of all methods scVI and ext-ZINBayes are
the ones that show higher variations in the AUC.
However, scVI stands out more due to the exten-
sive discrepancy (around 30%) between the mini-
mum and maximum AUC obtained with the 0-0-0-
200 dataset, whereas ext-ZINBayes has a variation

lower than 10% in all five.

Similarly to what we observed in the real
datasets, the differences between two methods av-
erage AUC are statistically significant for all five
synthetic datasets. For 50-50-50-50, 200-0-0-0 and
0-0-200-0, the differences yield welch’s t-tests with
p-values lower than 0.05, while for the other two
datasets the differences lead to p-values lower than
0.01.

Given the general poor results under the CD4
vs. CD8 test, we deepen our comparative analysis
over the test with an intersection graph in Figure 8,
without considering the microarray ground truth,
i.e., the results from limma. To generate the plot,
we considered the 50 runs of SIENA, SCDE, scVI
and ext-ZINbayes conducted for the AUC analysis
and for each method we calculated the median DE
score of each gene. Then, for each method, we gath-
ered the top 1000 genes with highest median. For
MAST and DEseq, we gathered the top 1000 genes
with the lowest FDR adjusted p-values considering
only one run.
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From the plot, we can see that ext-ZINBayes and
DEseq have a lot of genes in common, almost 750,
which was expected given that the two methods
have essentially the same average AUC. In fact, the
pair has the largest intersection set out of all duos.
DEseq has also more genes in common with SIENA
than any of the other methods. This is curious given
that MAST and scVI show average AUC closer to
SIENA’s. Furthermore, all two method combina-
tions considering SCDE have the lowest number of
genes in common, when compared with the other
two methods combinations. The same happens for
three, four and five method combinations. More-
over, if we consider all methods except SCDE the
number of genes in common goes from 92 to 361,
it increases almost four times, whereas if one of the
other methods is not considered, it only increases to
values between 97 and 116. The only method that
comes close to identify the same DEG as SCDE is
SIENA however, the number of genes in common
(287) is only a bit over 25%.

3.2.1 Time

Beyond detection accuracy, it is also important to
evaluate how the methods perform in terms of time
usage and how that usage scales as the number of
cells increases. In Table 1, we show the time that
each method takes with two real data tests, MEF
vs. ES and CD4 vs. CD8, and with one of the syn-
thetic comparisons. In the first and third test the
methods consider all cells in both optimization and
differential expression tests, since the correspond-
ing dataset only contains cells from the types under
study. In the second, apart from SCDE, all methods
take into account all PBMC entries (8404 cells) dur-
ing optimization, but for the DE assessment only
the subset of CD4 and CD8 cells is considered. For
SCDE, the PBMC dataset could only contain CD4
and CD8 cells during the whole procedure, because
it is not equipped to deal with more than two cell
populations. Furthermore, in order to accurately
compare SIENA, ext-ZINBayes, and scVI’s perfor-
mances, only 20 Monte Carlo samples and 5 × 104

pairs were considered. We take this configuration
because scVI is unable to generate very large sets
of ρ samples, due to memory over-usage.

From the table, we can see that DEseq stands
out as the fastest method in the real data analyses,
taking less than 30 seconds. With the synthetic
dataset DEseq takes longer because we had to use
a different procedure to estimate a parameter (gene
dispersion), than the one used for the real datasets.
More specifically, a local fit had to be used instead
of a parametric fit. This was necessary because
the parametric fit leads to errors with the synthetic
datasets. Of the two proposed methods, SIENA is

Table 1: Times recorded for both proposed and
benchmark methods. Results taken in a machine
with a 16 core CPU and 94 GB of RAM. Synth
corresponds to the 50-50-50-50 dataset.

Islam CD4vsCD8 Synth

SIENA 1m55s 38m29s 1m45s

ext-ZINBayes 2m58s 1h58m 8m02s

scVI 1m27s 43m22s 5m27s

SCDE 5m25s 1h29m −

MAST 1m23s 5m54s 27s

DEseq 22s 27s 2m45s

the one that takes less time, yet it is still outrunned
by MAST and DEseq. Nonetheless, with the syn-
thetic dataset, SIENA is the second fastest method,
taking less than half of scVI’s time. This occurs
because we disabled the use of gene dispersion in
the synthetic comparison. By taking this configu-
ration, SIENA’s inference process is faster because
it has one less set of parameters to optimize. In
fact, if the dataset contains more cells than genes,
SIENA shows better times, since it has less disper-
sions to optimize. This can be confirmed with the
CD4 vs. CD8 comparison.

Despite fitting the model for the CD4 vs. CD8
test with only a subset of the PBMC entries,
SCDE is only faster than ext-ZINBayes, taking
more 50 minutes than SIENA. However, in the Is-
lam comparison, ext-ZINBayes outperforms SCDE.
This means that when SCDE considers the whole
dataset, it can take more time than our two ap-
proaches.

Like scVI, SIENA and ext-ZINBayes are suitable
to operate under GPUs, since both are compati-
ble with the tensorflow-gpu library. This helps in-
creasing their speed on machines with less process-
ing power. Table 2 shows how SIENA and ext-
ZINBayes behave in a computer with an 8 core CPU
and one GPU. From the table, we can verify that
the use of a GPU helps to reduce the impact of
having less processing power, thus providing a suit-
able mechanism to make SIENA, ext-ZINBayes and
scVI reach good performances in consumer-grade
machines.

3.3. Gene set enrichment analysis (GSEA)

After gathering a DEG rank list, the next step in
any differential expression analysis is to perform
gene set enrichment analysis (GSEA), so as to ex-
tract biological meaning from the list. As such, it
is important to compare the biological features out-
lined by each methods list. To do so we used the
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Table 2: SIENA, ext-ZINBayes and scVI Times ob-
tained in a machine with a 8 core CPU, 1 NVIDIA
GPU and 16 GB of RAM.

Islam Synth

SIENA 1m58s 1m36s

ext-ZINBayes 3m57s 6m05s

scVI 1m19s 4m17s

STRING [23] platform available online 4, to com-
pare the gene ontologies and KEGG pathways en-
riched by the top DEG of each method under the B
vs. Dendritic analysis. For SIENA, ext-ZINBayes,
scVI, and SCDE we calculated the median DE score
of each gene over the 50 runs considered for the
plots in Figure 2b, similarly to what was done for
the intersections plot. Then, we used the medians
to rank the genes in descending order. For MAST
and DEseq we used the rank list of one run.

Before feeding the lists to STRING, we first had
to map the gene’s Ensembl ids to STRING ids. As
a result, 5 genes were left out of the ranks because
they did not map to any STRING id. Moreover,
there were 6 duplicated STRING ids, thus instead
of gathering 3346 items, the lists had 3347. More-
over, for MAST and DEseq the p-values had to be
log-transformed, since STRING’s test is not sensi-
tive enough to scores with a very large magnitude
span. Due to this, 12 and 5 items were discarded re-
spectively for DEseq and MAST, because they had
a p-value of 0. Note that in the following analyses
the SCDE method was not considered, since it had
a very low average AUC with the B vs. Dendritic
test.

For the ground truth (limma’s) rank, 18 GO
terms were considered significantly enriched, i.e.,
had an enrichment FDR corrected p-value lower
than 0.05. SIENA’s rank led to 73 enriched terms,
ext-ZINBayes to 62, DEseq to 56, MAST to 41 and
scVI to 31. Figure 9 illustrates for each method the
enrichment score of a set of GO terms. The out-
lined set corresponds to the union of the 10 most
significantly enriched terms by each method’s rank-
ing.

From the heatmap, we can see that the top 10
GO terms for SIENA and ext-ZINBayes ranking
are the same as for the ground truth list. How-
ever, the scores related to ext-ZINBayes are greatly
higher. Even though DEseq has one different en-
riched term, it has a closer score signature to the
ground truth than ext-ZINBayes. Out of all meth-
ods, MAST shows the most divergent GO pattern.
Notwithstanding, all methods seem to detect a set

4https://string-db.org

Figure 9: Gene Ontology enrichment analysis for
each method under the B vs. Dendritic analysis.
Each term considered is one of the 10 most signifi-
cantly enriched terms of at least one method.

of DEG highly connected to biological terms such as
myeloid leukocyte activation and leukocyte/myeloid
cell activation involved in immune response, which
means that the differences between B and Dendritic
cells are probably associated with such processes.

Regarding the KEGG pathway analysis, limma
led to 8 significantly enriched pathways, ext-
ZINBayes to 14, DEseq also to 14, SIENA to 11,
scVI to 9 and MAST to 4. Similarly to what we
did for the GO analysis, we generated a heatmap
(see Figure 10) showing each method’s enrichment
scores for a given set of KEGG pathways. This
set is the union of the top 10 significantly enriched
pathways of each method.

Figure 10: KEGG pathway enrichment analysis for
each method under the B vs. Dendritic analysis.
Each pathway considered is one of the 10 most sig-
nificantly enriched terms of at least one method.

From the plot, we can draw similar conclusions as
the ones taken from the GO analysis. SIENA, DE-
seq and ext-ZINBayes top pathways are very sim-
ilar to limma’s top, however ext-ZINBayes enrich-
ment scores are greatly higher. Unlike in the GO
heatmap, scVI top pathways are also almost the
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same as limma. Moreover, all methods, with the ex-
ception of MAST, seem to be able to detect a subset
of DEG related to disease pathways (non-alcoholic
fatty liver and neurodegenerative diseases).

3.4. Discussion

In both SIENA and ext-ZINBayes, configurations
without zero-inflation lead to better results in the
two real datasets. This contrasts with what re-
search has assumed throughout the years. Nonethe-
less, as we stated before, the authors in [22] dis-
proved this assumption for droplet-based data,
thus supporting our findings regarding the PBMC
dataset. Even though the authors affirm that in
the case of plate-based counts zero-inflation mech-
anisms are necessary, our results with the Islam
counts may refute such conclusions, since that
dataset has probably a plate-based origin due to
its small number of cells (< 100).

Comparing to existing methods, SIENA was able
to detect more accurately the DEG in both PBMC
and Islam analysis. In addition, SIENA exhibited
the most consistent behaviour over the three real
data tests, showing average AUC ranging from 65%
to 78%. All the other methods presented more
fluctuating performances when dealing with differ-
ent types of datasets. This means that SIENA is
more adequate to deal with both small and large
datasets than some state-of-the-art methods. More-
over, SIENA is able to scale its memory usage dur-
ing both inference and DE test computation with-
out decreasing its overall accuracy. This is im-
portant given that, in the past years, single-cell
datasets have exponentially grown in size.

Contrary to SIENA, ext-ZINBayes is unable to
surpass the benchmarking methods over the real
data tests. In fact, in all three tests it yields the
second worst mean AUC. Out of all methods as-
sessed, ext-ZINBayes is the most unstable, reaching
the highest AUC variations (around 15%) in both
B vs. Dendritic and CD4 vs. CD8 tests. Given
the non convexity of the loss function (ELBO),
these high variations may be due to the meth-
ods inability to escape local minima when deal-
ing with large datasets, making the methods vari-
ational parameters converge to different results in
each iteration. Nonetheless with the Islam dataset,
ext-ZINBayes shows a consistent behavior, whereas
SIENA reaches its highest variation, which may also
be due to local minima. Regarding the optimal con-
figuration, ext-ZINBayes performs better without
considering the gene dispersion factor (θg). How-
ever, in both scVI and SIENA the dispersion factor
improves the results, as such, we believe that a dif-
ferent prior or even a different formulation over θg
can boost ext-ZINBayes results.

With the synthetic datasets, we observed the op-

posite: ext-ZINBayes identifies DEG more accu-
rately than SIENA. In fact, it is very competi-
tive with modern methods. Only when all the dif-
ferential expressed genes are bimodal with differ-
ent proportions (DP) does SIENA outperform ext-
ZINBayes. This means that in most extreme sce-
narios ext-ZINBayes is slightly more suitable than
SIENA. Nevertheless, ext-ZINBayes never yields
better results than existing methods. Comparing
our findings in both real and synthetic data, we can
conclude that SIENA is more robust to the intrin-
sic noise of scRNA counts than ext-ZINBayes and
other procedures. ext-ZINBayes, in turn, proves its
effectiveness only with accurate data, meaning that
the noise assumptions taken in its model may re-
quire adjustments.

In terms of time usage, only SIENA is able to
outrun current methods in certain settings, while
ext-ZINBayes is consistently one of the slowest two.
This confirms what we stated before that the use of
inference networks speeds up the inference process,
since only global variables are optimized. Nonethe-
less, in the context of scRNA-seq analysis, this gain
is not sufficient to make VI-based methods compet-
itive with some alternative probabilistic procedures
when it comes to time consumption.

Of the two proposed methods, SIENNA shows
overall rankings more correlated with the ground
truth rankings. This is not only supported by the
the enrichment analysis but also by the score corre-
lation analysis taken over the Islam dataset (Fig-
ure 5). Actually, comparing to other methods,
SIENA shows DE scores more in line with limmas p-
values. Moreover, in pair with DEseq, SIENA leads
to biological conclusions closer to the ones drawn
from the ground truth list.

Taking all this into account, we can conclude that
only SIENA is able to compete with state-of-the-
art procedures, managing to assemble more truth-
ful differential expression scores, in a more feasible
amount of time.

4. Conclusion
We proposed two new Bayesian probabilistic pro-
cedures to assess differential expression. Both are
built upon latent variable models and variational
inference mechanisms. ext-ZINBayes adopts an ex-
isting probabilistic model (ZINBayes) designed for
dimensionality reduction. It performs differential
analysis using some of the models latent variables.
SIENA devises a novel model, leveraging certain as-
sumptions taken in state-of-the-art methods.

Of the two procedures, SIENA yields the best
results both in terms of correctness and in resource
consumption. In fact, SIENA is very competitive
with existing differential analysis approaches.

Both methods could benefit from time improve-
ments. For instance, ext-ZINBayes can be upgraded
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with the use of inference networks whereas a new
gene dispersion optimization mechanism may speed
SIENA’s inference. Another potential future work,
would be to integrate SIENA with some batch re-
moval method designed specifically for scRNA data,
in order to compute the Bayes factors without con-
straining the cells pairs by batch. One option is to
employ batch correction by matching mutual near-
est neighbors [8]. Finally, both models can, in prin-
ciple, be used to devise some fold-change metric
which can, in turn, be combined with the Bayes
factor, possibly generating more accurate differen-
tial expression scores.
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M. Andäng. Mouse embryonic stem cell-
derived spheres with distinct neurogenic poten-
tials. Stem Cells and Development, 17(2):233–
243, apr 2008.

[20] M. D. Robinson, D. J. McCarthy, and G. K.
Smyth. edgeR: a bioconductor package for dif-
ferential expression analysis of digital gene ex-
pression data. Bioinformatics, 26(1):139–140,
nov 2009.

[21] G. K. Smyth. Linear models and empirical
bayes methods for assessing differential expres-
sion in microarray experiments. Statistical Ap-
plications in Genetics and Molecular Biology,
3(1):1–25, jan 2004.

[22] V. Svensson. Droplet scRNA-seq is not zero-
inflated. bioRxiv, 2019.

[23] D. Szklarczyk, A. L. Gable, D. Lyon, A. Junge,
S. Wyder, J. Huerta-Cepas, M. Simonovic,
N. T. Doncheva, J. H. Morris, P. Bork,
et al. String v11: protein–protein associa-
tion networks with increased coverage, sup-
porting functional discovery in genome-wide
experimental datasets. Nucleic acids research,
47(D1):D607–D613, 2018.

15

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 2, 2019. ; https://doi.org/10.1101/719856doi: bioRxiv preprint 

https://doi.org/10.1101/719856
http://creativecommons.org/licenses/by/4.0/

