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ABSTRACT

Given the ever-increasing amount of high-dimensional and complex omics data becoming available,
it is increasingly important to discover simple but effective methods of analysis. Divergence analysis
transforms each entry of a high-dimensional omics profile into a digitized (binary or ternary) code
based on the deviation of the entry from a given baseline population. The divergence package,
available on the R platform through the bioconductor repository collection, provides easy-to-use
functions for carrying out this transformation.

Keywords divergence · omics · cancer

1 Introduction

The technologies that provide us with high-dimensional omics data continue to advance at a rapid rate. Particularly in
the last decade, the available modalities of omics data have considerably expanded and now include, among others,
coding and noncoding RNA expression, micro RNA expression, protein expression, epigenetic profiling related to
histones and CpG methylation, copy-number and mutation profiling. As a result, the analysis of multi-modal omics
data has become indispensable in many domains of biological and medical research.

Wheras the quantity and quality of available data has appreciably increased, the results of research based on such data
are often not reliable, robust and replicable. A key challenge has been to quantify the level of variability and diversity
in omics profiles in a given population, and to separate normal and technical variability from abnormal variability
indicative of a biological property such as disease.

Recently we have introduced divergence analysis as a method for simplyfing high-dimensional omics data for bioinfor-
matic analyses [1]. This method conceptually parallels the widespread use of deviation from normality as a disease
marker in clinical testing, such as a blood based prostate specific antigen (PSA) test [2, 3]. Given a high-dimensional
omics data profile, it can be converted to a binary or ternary string of the same length, where each value now indicates
how the original value diverges from a baseline or reference population. The features of interest may be univariate
such as a gene, a CpG site, or a protein, in which case the original profile is converted to one of three labels 0, -1 and 1
indicating whether the level of a feature is, respectively, within the reference range for that feature, or below or above
that range. Or, the features of interest may be multivariate, such as sets of genes representing pathways of interest. In
this case, divergence coding is binary, where a 0 or 1 for a multivariate feature indicates, respectively, that the set of
feature is inside or outside the support of the multivariate, baseline distribution.
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We have prepared the ’divergence’ R package[5] offered through the bioconductor package repository[4] which provides
functionality for divergence based computations. Here we present how to use this package and provide a few short
examples as to what types of analyses can be performed following the transformation of data to digitized divergence
coding. In the following we use a set of breast normal and tumor samples from the TCGA project [6] for which RNA-seq
expression profiles are provided to illustrate the workflow. A subet of this data is available with the R package.

2 Results

We may summarize the divergence method as follows. Before computing the baselin range (univariate) or support
(multivariate) and the resulting divergence coding, a rank-transformation is applied to all data. Consider an omics
sample respresented by a vector X = (Xj), j = 1..m, m being the dimensionality of the omics profiles. The following
transformation is applied which converts the data to a normalized rank, with the minimum being zero.

Qj(X) =
|i ∈ 1..m : 0 < Xi ≤ Xj |
|i ∈ 1..m : 0 < Xi|

Then Qj(X) ∈ [0, 1]. The zero minimum is particularly useful in preserving the zero valued mass usually observed in
many omics data modalities, such as RNA-Seq.

Now consider a multivariate feature indexed by S - i.e. a subset of the given m features (the univariate scenario is a
special case when |S| = 1). We will denote the corresponding subset of a given omics profile X following the quantile
transformation as Q(X)S . Suppose we have n such profiles that constitute the baseline group. We esimtate the baseline
support as follows: given a parameter γ ∈ [0, 1], we compute l which is the floor of nγ. Then from each baseline
sample k, if rk is the distance from Q(X)S to it’s lth nearest neighbor in the multivariate feature space. If we denote
the sphere around Q(X)S of radius rk as US

k then the support of the baseline is the union of the regions covered by
these speheres around each baseline sample, which we denote as ÛS :

ÛS =
n⋃

k=1

US
k

Following the baseline estimation in this manner, for any given omics profile X , the divergence coding Z(X)S can be
computed as:

Z(X)S =

{
1 if Q(X)S /∈ ÛS

0 otherwise
(1)

For the univariate scenario, the support is the union of a series of intervals. However, we apply a further simplification
by replacing these with a single interval spanning the lowest end to the highest end of these intervals. Accordingly the
divergence coding becomes ternary: Z(X)j ∈ {−1, 0, 1} with −1 indicating a value below the baseline interval for
feature j, 1 indicating a value above the baseline interval, and 0 indicating no divergence.

In practice we use two more parameters, α and β. The β parameter is used for allowing a certain number of outliers to
be exempted from the baseline. Given the radii of the spheres r1..rn, let r̄ be the (1− β)th percentile of these values.
Then we select only the spheres with rk ≤ r̄ to compose the baseline. Once the baseline is computed, we can compute
the divergence coding for the baseline samples; then α is the average proportion of divergent features (multivariate
or univariate) among the baseline cohort. As discussed in the following section, we specify α and β and then select
the γ value that fits these specified parameters. However the functionality for estimating a baseline for a specified γ
parameter is available in the package as well.

For a more detailed description of the method, see [1].

2.1 Univariate Workflow

To carry out an analysis based on divergence, the first step is to determine the case and control samples. The control
cohort here will be used for computing the baseline interval for each feature, and we will refer to it as the baseline
cohort or baseline group. Once the baseline is computed, the divergence values for the case cohort will be computed
with reference to the baseline.

What data should be used as the baseline cohort depends on the problem at hand and needs careful investigation based
on the biologocial or clinical questions of interest that are being investigated. In many scenarios of disease based data,
and in partciular cancer, normal samples would be a good choice. The more normal samples available, the more robust
the baseline will be.
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Figure 1: Number of divergent features as a measure of sample divergence. The size of the divergent set in each
sample - i.e. the set of features that are divergent in a given sample - can be uses as a measurement of the divergence of
a sample. This allows the comparison of sample level divergences between sample groups. When digitized with respect
to a normal breast basenline, the boxplots compare the number of divergent features per sample between ER+ and ER-
breast tumors. Given the higher risk associated with ER- breast tumors, we expect to observe higher divergence from
normality compared to ER+. The same trend is observed if the consideration is limited to the number of upper or lower
divergent features only.

Table 1: 10 Most differentially divergent genes between ER+ and ER- breast tumor samples.

gene divergent probability, ER+ divergent probability, ER- χ2 test statistic χ2 test p-value
ESR1 0.0184 0.7416 472.4381 P � 10−6

ACADSB 0.0686 0.7472 359.2727 P � 10−6

TBC1D9 0.0251 0.6236 356.8933 P � 10−6

PSAT1 0.6538 0.6685 344.7521 P � 10−6

RHOB 0.0635 0.7079 337.8027 P � 10−6

RABEP1 0.0435 0.6461 330.9501 P � 10−6

SCUBE2 0.0886 0.7416 318.5029 P � 10−6

C6orf97 0.1355 0.5393 310.8407 P � 10−6

A2ML1 0.0702 0.6685 294.9983 P � 10−6

SKP1 0.0552 0.6292 293.7114 P � 10−6

All samples, both in the case cohort and the baseline cohort should have the same featues - for example genes or
microarray probes, and be from the same platform (e.g. RNASeq or a specific microarray platform). Ideally the baseline
cohort should be from the same experiment to avoid study-specific batch effects as much as possible. In general we
suggest at least 20 samples be available to compute the baseline.

The divergence algorithm applies a scaled rank transformation to all samples before the digitization of the data. The
package provides functionality for the user to compute this rank transformation manually, or it can be set to compute
internally when the divergence computation is requested by the user. No other normalization procedures are applied,
and the user may apply any normalization procedures beforehand as necessary.
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Figure 2: Comparing sample divergence with clinical covariates. Sample divergence of breast tumor samples (as
measured by the size of the divergent set in each sample), with respect to a normal breast baseline, shows negative
correlation (spearman correlation = -0.398) with the normal cell percentage estimate of the sample, and positive
correlation (spearman correlation = 0.278) with the tumor cell percentage estimate of the sample, illustrating that
sample divergence is indicative of the sample level deviation from normality.

There are three parameters involved in the divergence computation: α, β and γ. All paramters are in the (0, 1) range.
The β parameter adjusts the support to account for a certain percentage of outliers included in the baseline data, and
the γ parameter provides a way to widen or tighten the support around each baseline sample. The closer γ is to 1, the
further the support around each normal sample will extend. For a given support, the α value is simply the average
number of divergent features per sample for the baseline cohort.

In usage, we usually provide the α and β values and a range of possible γ values and let the package find the most
appropriate γ value out of these for the given α and β values. By default, the package uses α = 0.01, β = 0.95, and
γ ∈ {0.01, 0.02, ..., 0.09, 0.1, 0.2, ..., 0.9} as a list of candidate γ values. Thus if you use these default values, the
package will consider 95% of the baseline cohort to be included in the support and find the smallest possible γ value
from the given list that will provide the average number of divergent features per sample in the baseline cohort to be 1%
or less. For more details, see [1].

We use RNA-Seq data spanning 20531 genes from the TCGA Breast Cancer dataset [6] for the following analysis. This
data cosists of 776 tumor samples and 111 normal samples, the latter which we will use as our baseline cohort.

Using the default parameters available, we compute the digitized ternary divergence format for the tumor samples with
respect to the normal baseline of 111 samples. The algorithm selects a γ value of 0.2, which yields an α value of 0.0091
which is below the α threshold of 1% which was specified as the default.

The tumor data contains 598 ER+ and 178 ER- samples. We can see whether the number of divergent genes per sample
are similar between the two ER groups or not (Figure 1).

As another example of using the size of the divergent feature set as an indicator of the divergence of the sample, we can
compare it against cilinically obtained covariates such as the percentage of normal and tumor cells found in the sample.
We see that these percentages track with sample level divergence (Figure 2).

To perform a differential expression analysis at the feature level for digitized divergence data, the package provides a χ2

test functionality, which we can use to perform a χ2 test for each gene between ER+ and ER- samples. Even simpler,
we can merely compute the divergent probability of each gene over the ER+ and ER- samples respectively. Note that
the divergent probability of a feature over a group of samples is simply the number of samples for which the feature is
non-zero in the divergence space divided by the number of samples.

Figure 3 shows the divergent probability of each gene for ER+ and ER- samples. The samples in blue are genes that are
significant under a bonferroni-adjusted P ≤ 0.05 threshold from the χ2 test. The ESR1 gene, which can be considered
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Figure 3: Differentially divergent features between two phenotypes. The probability of divergence for each feature
is plotted for two sub-groups of breast tumors, ER+ and ER-. Genes far from the diagonal are likely to have highly
different divergence patterns between the two groups (e.g. ESR1). Alternatively, a χ2 test can be performed for each
feature between the two groups, and points in blue indicate genes that are χ2 test p-value significiant at a bonferroni
adjusted P ≤ 0.05 threshold.

a marker for ER status, is highly significant and is colored in red. Table 1 shows the top ten genes by rank of χ2 test
p-value.

We can observe how these genes track with the ER level by comparing the expression level to that of ESR1 expression,
both in the regular expression value space and in the divergence space. Figures 4 and 5 show the values of ESR1
expression among ER+ and ER- breast tumor samples against two of the genes highly differentially expressed between
the two sample groups, ACADSB and PSAT1, in the regular expression space (log2 transcripts per million) and in the
divergence space.
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Figure 4: Comparing two genes in expression space and divergence space. Comparison of ACADSB and ESR1
gene expression for ER+ and ER- breast tumor samples in regular expression space (log2 TPM) and the digitized
divergence space. ESR1 is an indicator of ER status and ACADSB shows to be highly differentiated between the two
groups as well.
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Figure 5: Comparing two genes in expression space and divergence space. Comparison of PSAT1 and ESR1 gene
expression for ER+ and ER- breast tumor samples in regular expression space (log2 TPM) and the digitized divergence
space.

We can also examine which genes are highly divergent for at least one out of multiple phenotypes. For example, figure
6 shows 50 genes that are highly significantly differentially divergent from a χ2 test performed among the PAM50
subtypes of breast cancer. For each of these genes, we compute the average divergence (which will be in the interval
[0, 1]) for each subype. The genes in the plot are color-coded by which subtype contains the highest or lowest average.
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Figure 6: Features with differring divergent patterns among PAM50 subtypes. Genes with the largest variances
between the average divergences among the PAM50 subtypes of breast tumor samples. For many of these genes, the
Basal-like subtype, which is one of the most malignant of the PAM50 subtypes, corresponds to an extreme upper or
lower divergence with respect to a normal breast baseline.

Given that the univariate divergence values are in the {−1, 0, 1} set, another way to visualize divergence coded values
is by proportion of samples in each one of the three states among different phenotypes. Figure 7 show this for 5 of
the PAM50 genes. The size of each point is the percentage of samples in the −1, or 0, or 1 state, with the average
divergence shown in the dotted lines. Alternatively, they can simply be viewed as barplots showing the proportion of
values in each divergence state, as we show in the following section.
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Figure 7: An alternative representation of average divergences for a given feature. Alternatively, we can plot the
percentage of samples in a given group in each possible divergence state: -1, 0, or 1. We show this by PAM50 subtypes
for a few PAM50 genes with breast tumor samples. The size of each point indicates the percentage of samples of each
subtype in a given state.

2.2 Multivariate Workflow

In the multivariate scenario, the features of interest are composite - that is, they are sets of univariate features, for
example a gene set indicating a disease specific signature or a pathway. The workflow is similar to that of the univariate
case, with the exception that the divergence coding will be either 0 or 1 - that is, it indicates whether the feature is
divergent or not, whereas for the univariate case it provided a direction of divergence as well.

With the same breast gene expression data from TCGA which we have used so far, in the following we examine the
divergence coding obtained for the KEGG pathways from MSIGDB gene set collection[7]. Computing the divergence
coding is similar to the univariate case, except that the multivariate features need to be specified. As with the univariate
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Figure 8: Visualizing multivariate divergence by feature. Given that multivariate divergence results in a binary
digitization, for each feature we can observe how many samples are in a given state. Multivariate features (which are
sets of genes, in this case) NOTCH signaling pathway and GNRH signaling pathway, for example, are much more
likely to be divergent compared to the other features shown.
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Figure 9: Visualizing multivariate divergence by sample. For a given set of multivariate features, we can see how
likely they are to be divergent in a given sample. Here five selected breast tumor samples are ordered by how many
gene sets in the KEGG gene set collection are divergent in each sample, with respect to a normal breast baseline.

case, the reference sample data and the samples for which the divergence coding need to be computed are provided in
matrix form, along with a range of γ values to choose from, a β value, and the required α threshold. The multivariate
features are provided as a list, where each element of the list is a vector of univariate features which are available in the
data matrices provided. In the example we present, the same TCGA sourced RNA-Seq expression data used previously
are used. The KEGG pathway list has 186 gene sets, where each set ranges from 10 to 389 gene symbols. These
gene symbols are available in the RNA-Seq expression data and will be used to estimate the baseline support from
the matched normal samples and the placement of the tumor samples either within or outside the support in the high
dimensional space representing each KEGG gene set. The output will be a matrix comprising of the binary divergence
coding for each KEGG pathway and each tumor sample.

Given that the divergence coding is a highly simplified representation, we can simply observe it in terms of either
the features or the samples and observe the proportion of values in each divergence state. Figure 8 shows the sample
proportions for some of the KEGG pathways, and similarly at the sample level in figure 9.

As before, we can apply a χ2 test to each pathway between the ER+ and ER- sample groups to identify which pathways
are highly differentially divergent between the two groups (Figure 10). The pathways that meet a P ≤ 0.05 cutoff after
bonferroni adjustment for multiple testing are shown in blue.

Figure 11 shows principal component analysis (PCA) applied to the KEGG pathway divergence coding. We simply take
the binary matrix of breast tumor samples with the divergence coding for each KEGG pathway and apply PCA analysis
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Figure 10: Differentially divergent gene sets between phenotypes. Similar to the univariate scenario, we can compare
the divergence probability of multivariate features between groups of samples. The divergent probabilites among the
ER+ and ER- breast tumor samples are shown here for KEGG gene sets, which the points in blue indicating meeting a
bonferroni adjusted P ≤ 0.05 threshold from a χ2 test.

as we would with any other data matrix. The second princiapl component separates a large number of the Luminal A
samples from the rest.

3 Conclusion

In the above results we have showcased a variety of analyses that can be performed with divergence at the univariate
and multivariate level. While we have used RNA-seq data here, the software is applicable to many other modalities
of high dimensional omics data, such as microarray data, CpG level methylation data, protein data, and microRNA
expression data, some of which we have showed in [1].
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Figure 11: Principal component analysis of multivariate divergence. Digitized data can be analyzed with regular
statistical tools such a principal component analysis (PCA). Here the first two PCs are shown for multivariate divergence
values of the KEGG geneset collection for breast tumor samples with respect to a normal baseline.

Once the data has been processed as necessary and the baseline cohort identified, the R package can be used to compute
the divergence coding quite easily. A full outline of the functions that can be used and the workflows possible are
provided in the package vignette[5]. Here we have presented some of the many different ways that the digitized
divergence coding can be visualized and analyzed by the user.
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