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Abstract: Finding reliable discrete approximations of complex systems is a key prerequisite when applying 10 

many of the most popular modeling tools. Common discretization approaches (for example, the very popular K-

means clustering) are crucially limited in terms of quality and cost. We introduce a low-cost improved-quality 

Scalable Probabilistic Approximation (SPA) algorithm, allowing for simultaneous data-driven optimal 

discretization, feature selection and prediction. Cross-validated applications of SPA to a range of large realistic 

data classification and prediction problems reveal drastic cost and performance improvements. For example, 15 

SPA allows the unsupervised next-day surface temperature predictions for Europe with the mean cross-

validated one-day prediction error of  0.75°C on a common PC (being around 40% better in terms of errors and 

five to six orders-of-magnitude cheaper than the next-day surface temperature predictions calculated on 

supercomputers and provided by the weather services). 

 20 

One Sentence Summary: Introduced computational tool allows obtaining drastic cost and quality gains for a 

broad range of science applications. 
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Computers are finite discrete machines. Computational treatment and practical simulations of real world 

systems rely on the approximation of any given system’s state X(t) (where t=1,...,T) in terms of a finite number 5 

K of discrete states S={S1,…, SK}1,2. Of particular importance are discretization methods that allow the 

representation of the system’s states X(t) as a vector of K probabilities for the system to be in some particular 

state Si at the instance t. Components of such a vector - X(t)=(1
X

 (t), 2
X

 (t),…, K
X

 (t)) - sum-up to one and 

are particularly important since they are necessary for Bayesian and Markovian modeling of these systems3-5.  

Bayesian and Markovian models belong to the most popular tools for mathematical modeling and 10 

computational data analysis problems in science (with over one million literature references each, according to 

Google Scholar). They were applied to problems ranging from social and network sciences6 to a biomolecular 

dynamics and drug design7-9, fluid mechanics10 and climate11. These models dwell on the law of the total 

probability, saying that the exact relation between the given probabilistic representations Y(t) and X(t) of any 

two processes Y and X is given as a linear model:   15 

                                                             Y(t) = X(t),     [1] 

where  is a stochastic matrix of conditional probabilities between the discrete states of Y and X. This linear 

model is exact in a probabilistic sense – meaning that it does not impose a modeling error, even if the 

underlying dynamics of X and Y is arbitrarily complex and nonlinear. If  is known, then [1] provides the best 

relation between the two information sources Y(t) and X(t)2-4.  20 

A particular – and very important - case of the Bayesian models [1] emerges when choosing Y(t) as X(t+1), 

where t is a time index. The relation matrix  is then a left-stochastic square matrix of transition probabilities 

between two discrete states, formally known as transfer operator. A Bayesian model [1] in this particular case is 

called a Markov model2-4.  Besides of their direct relation to the exact law of total probability, another reason 

for their popularity - especially in the natural sciences - is the fact that these models automatically satisfy 25 

important physical conservation laws. They e.g. exactly conserve probability and herewith lead to stable 

simulations2,7,9.  Various efficient computational methods allow to estimate conditional probability matrices  

for real-world systems7-15.  

In practice, all these methods require a priori availability of  discrete probabilistic representations. Obtaining 

such representations/approximations X(t) by means of common methods from the original system’s states X(t), 30 

is subject to serious quality and cost limitations. For example, applicability of grid discretization methods - 

covering original system’s space with a regular mesh of boxes {S1,…, SK} is limited in terms of cost - since the 

required number of boxes K grows exponentially with the dimension n of X(t)1.  

Because of that, the most common approaches for tackling these kinds of problems are so-called meshless 

methods. They attempt to find a discretization by means of grouping the states X(t) into K clusters according to 35 

some similarity criteria. The computational costs for popular clustering algorithms16 as well as for most mixture 

models17 scale linearly with the dimensionality n of the problem and the amount of data, T. This cheap 

computation made clustering methods the most popular meshless discretization tools – even despite of the 

apparent quality limitations they entail. For example, K-means clustering (the most popular clustering method, 

with over 3 million Google Scholar citations) can only provide probabilistic approximations with binary 40 

(zero/one) X(t) elements, excluding any other approximations and not guaranteeing optimal approximation 

quality. Mixture models are subject to similar quality issues when the strong assumptions that they impose (like 

Gaussianity in Gaussian Mixture Models) are not fulfilled.   
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Closely related to clustering methods are various approaches for matrix factorization – like the non-negative 

matrix factorization methods (NMF) that attempt to find an optimal approximation of the given (non-negative) 

n-times-T data matrix X with a product of the n-times-K matrix S and the K-times-T matrix X18-24.  

In situations where K is smaller than T, such non-negative reduced approximations SX are computed by means 

of the fixed-point-iterations19,21 or by alternating least-squares algorithms and projected gradient methods22. 5 

However, due to the computational cost issues, probabilistic factorizations (i.e., such approximations SX that 

the columns of  are probability distributions) are either excluded explicitly22 or they are obtained by means of 

the spectral decomposition of the data similarity matrices (like the XTX matrix in the Euclidean space TxT). 

Such probabilistic NMF variants like the Left-Stochastic Decomposition (LSD)24 – as well as the closely-related 

spectral decomposition methods25 and the robust Perron cluster analysis8,12 – are subject to cost limitations.  10 

These cost limitations are induced by the fact that even the most efficient tools for eigenvalue problem 

computations (where all these methods rely on)  scale polynomial with the similarity matrix dimension T.  If the 

similarity matrix does not exhibit any particular structure (i.e., if it is not sparse), the overall numerical cost of 

the eigenvalue decomposition scales as O(T3). For example, considering twice as much data will lead to a two- 

to three-fold increase of cost.   15 

Similar scalability limitations are also characteristic for the density-based clustering methods (such as the mean 

shifts42, the DBSCAN43 and the algorithms based on t-SNE44), having an iteration complexity in the orders 

between O(Tlog(T)) and O(T2). Practical applicability of such methods is restricted to relatively-small systems - 

or relies on the ad hoc data reduction steps (i.e., T cannot routinely exceed 10,000 or 20,000 when working on 

commodity hardware, see for example the green surface in the Fig. 1a)9,44. 20 

Cost and quality comparison for the probabilistic approximation methods is shown in the Fig. 1. Cost factor 

becomes decisive when discretizing very large systems, for example in biology and geosciences, leading to the 

necessity of some ad hoc data pre-processing, by means of computationally-cheap methods like K-means, 

Principal Component Analysis (PCA) and other pre-reduction steps 26,27.  

In the following, we present a method not requiring such ad hoc reductional data pre-processing, having the 25 

same leading order computational iteration complexity O(nKT) as the cheap K-means algorithm, and allowing 

simultaneously finding discretizations that are optimal for models [1].   

 

Cost, quality and parallelizability in Scalable Probabilistic Approximation (SPA)  

Construction and derivation of many computational methods can be frequently approached by casting the 30 

problem into the optimization framework. For example, an approximation quality of a discretization can be 

expressed as a sum of all distances distS(X(t), X(t)) between the original state X(t) and its probabilistic discrete 

representation X(t) that is obtained for S={S1,…, SK}. For example, minimizing the sum of the squared 

Euclidean distances distS(𝑋(𝑡), Γ𝑋(𝑡)) = ‖𝑋(𝑡) − ∑ Γ𝑘
𝑋(𝑡)𝑆𝑘

𝐾
𝑘=1 ‖2

2 with respect to Γ and 𝑆 for a fixed given X 

would allow to find the optimal probabilistic approximations ∑ Γ𝑘
𝑋(𝑡)𝑆𝑘

𝐾
𝑘=1  of the original n-dimensional data 35 

points X(t) in the Euclidean space18-24. 𝑆𝑘is an n-dimensional vector with coordinates of the discrete state k and 

Γ𝑘
𝑋(𝑡) is the probability that X(t) belongs to this discrete state (referred to also as a “cluster k” or a “box k” in 

the following). 
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Fig. 1 | Comparing computational cost (a), discretization quality (b) and parallelizability (c) for SPA (blue 

surfaces) and for common discretization methods: K-means clustering16,17 (red), Nonnegative Matrix Factorisation19-24 

(in its probabilistic variant called Left-Stochastic Decomposition24 (LSD), green surfaces) and the Self-Organising Maps33 

(SOM, a special form of unsupervised neuronal networks used for discretization, orange surfaces). For every combination 5 
of data dimension n and the data statistics length T, methods are applied to 25 same randomly-generated data sets and the 

results in each of the curves represent averages over these 25 problems. Parallel speed-up in (c) is measured as the ratio of 

the average times time(GPU)/time(CPU) needed to reach the same relative tolerance threshold of 10-5 on a single 

Graphics Processing Unit (GPU, ASUS TURBO-GTX1080TI-11G, with 3584 CUDA cores) for time (GPU) versus a 

single CPU core (Intel Core i9-7900X CPU) for time(CPU). Further comparisons can be found in the Fig. S2 from the 10 
Supplement. MATLAB script Fig1_reproduce.m reproducing these results is available in the repository SPA at 

https://github.com/SusanneGerber. 

 

To the resulting expression measuring the approximation error we can add another quality measure, for example 

the S(S) (that measures a quality of discrete states S) and the (X), measuring the quality of X. For 15 

example, persistence of the obtained discretization can be controlled by Γ(Γ𝑋) =
1

𝑇
∑ ||Γ𝑋(t + 1) − Γ𝑋(t)||𝑡

30-

32, whereas S(S) can be chosen as a discrepancy between the actual S and some a priori available knowledge 

about it28,29.Then, the best possible probabilistic approximation can be approached by a minimization of the 

following quality function L with respect to the variables S and  X: 

   𝐿(𝑆, Γ𝑋) = ∑ distS(𝑋(𝑡), Γ𝑋(𝑡)) + 𝜖𝑆𝑆(S) + 𝜖ΓΓ(Γ𝑋)𝑇
𝑡=1 ,                        [2] 20 

subject to the constraints that enforce that the approximation X is probabilistic 

                                 ∑ Γ𝑘
𝑋(𝑡) = 1,  and  Γ𝑘

𝑋(𝑡) ≥ 0 for all k and t,𝐾
𝑘=1                                        [3]  

 

where ϵS, ϵ0 regulate the relative importance of the quality criteria S and  with respect to the 

approximation quality.  25 
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As proven in the Theorem 1 in the Supplement, minima of problem [2-3] can be found in linear time by means 

of an iterative algorithm alternating optimization for variables X (with fixed  S) and for variables S (with fixed 

X ). In the following we provide a summary of the most important properties of this algorithm. Detailed 

mathematical proofs of these properties can be found in the Theorems 1-3 (as well as in the Lemma 1-15 and in 

the Corollaries 1-11) from the Supplement.  5 

 

In terms of cost, it can be shown that the computational time of the average iteration for the proposed algorithm 

grows linearly with the size T of the available data statistics in X – if (X) is an additively separable function 

(meaning that it can be represented as Γ(Γ𝑋) = ∑ φΓ(Γ𝑋(𝑡))𝑇
𝑡=1 ). We will refer to the iterative methods for 

minimization of [2-3] - satisfying this property - as Scalable Probabilistic Approximations (SPA). Further, if the 10 

distance metrics distS(X(t), X(t)) is either an Euclidean distance or a Kullback-Leibler divergence, then the 

overall iteration cost of SPA grows as O(nKT) (where n is system’s original dimension and K is the number of 

discrete states). In another words, computational cost scaling of SPA is the same as the cost scaling of the 

computationally-cheap K-means clustering16(please see a Corollary 6 in the Supplement for a proof).  

Moreover, in such a case it can be shown that the amount of communication between the processors in the case 15 

of the Euclidean distance distS(X(t), X(t)) during one iteration in a parallel implementation of SPA will be 

independent of the size T of system’s output – and will change proportionally to O(nK) and to the number of the 

used computational cores. Fig. 2 illustrates these properties and shows a principal scheme of the SPA 

parallelization. 

 20 

 
Fig. 2 | Parallelization of the Scalable Probabilistic Approximation (SPA) algorithm: communication cost of SPA 

for every channel is independent of the data size T and is linear with respect to the data dimension n. 

 

In terms of quality, it is straightforward to validate that several of the common methods are guaranteed to be 25 

sub-optimal when compared to SPA – meaning that they cannot provide approximations better than SPA on the 

same system’s data X. This can be shown rigorously for example for different forms of K-means16 (please see 

Corollary 1 from the Supplement) and for the different variants of Finite Element clustering Methods on 
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multivariate Autoregressive Processes with external factors (FEM-VARX, in the Corollary 2 from the 

Supplement)30-32.   

 

Fig. 1 shows a comparison of SPA (blue surfaces) to the most common discretization methods, for a set of 

artificial benchmark problems of different dimensionality n and size T (please see the Supplement for a detailed 5 

description of the benchmarks).  In comparison with K-means, these numerical experiments illustrate that SPA 

has the same overall cost scaling (Fig.1b), combined with the significantly better approximation quality and 

parallelizability scalings (Fig.1a and Fig.1c). 

 

Computing optimal discretization for Bayesian and Markovian models  10 

 

Common fitting of Bayesian or Markovian models [1] relies on the availability of discrete probabilistic 

representations Y(t) and X(t) – and requires prior separate discretization of X and Y. There is no guarantee 

that providing any two of such discretization Y(t) and X(t) as an input for any of the common computational 

methods7-15 for  identification would result in an optimal model [1]. In another words, Bayesian and 15 

Markovian models obtained with common methods7-15 are only optimal for a particular choice of the underlying 

discrete representations Y(t) and X(t) (that are assumed to be given and fixed for these methods) – and are not 

generally optimal with respect to the change of these discretization.  

 

As proven in the Theorem 2 from the Supplement, optimal discretization of the continuous variables X and Y 20 

for the model [1] can be obtained jointly, from the family of SPA solutions by minimizing the function 𝐿 [2-3] 

for the transformed variable �̂�𝜖 = {𝑌, 𝜖𝑋}. This variable is built as a concatenation (a merge) of the original 

variables 𝑌 and 𝜖𝑋 (where 𝑋 is multiplied with a tunable scalar parameter 𝜖 > 0). For any combination of 

parameter 𝜖 and the discrete dimension K in some pre-defined range, this SPA-optimization [2-3] is performed 

with respect to the transformed variables 𝑆𝜖,𝐾 = {𝑆𝜖,𝐾
𝑌 𝜖,𝐾 , 𝜖𝑆𝜖,𝐾

𝑋 } and Γ𝜖
�̂�𝜖

= {Γ𝜖,𝐾
𝑌 , 𝜖Γ𝜖,𝐾

𝑋 }.  25 

 

Then, the optimal combination of 𝜖 and K – and the optimal discretization for the models [1] - can be found 

applying standard model selection criteria34 (for example, using information criteria or approaches like multiple 

cross-validation) to the obtained set of solutions 𝑆𝜖,𝐾, Γ𝜖
�̂�𝜖

.  

 30 

 

 

 

Fig. 3. | Classification problems: comparing approximation and classification performances of SPA (blue curves) to 

the common methods on biomedical applications36,37.Common methods include K-means clustering (dotted lines), Self-35 
Organising Maps (SOM, brown), pattern recognition Neuronal Networks (NNs, dashed), Gaussian Mixture Models 

(GMMs, cyan), density-based DBSCAN clustering (dotted with circles)  and Bayesian models [1] (Bayes, dotted lines). 
Approximation error is measured as the multiply cross-validated average squared Euclidean norm of difference between 

the true and the discretized representations for validation data, classification error is measured as the multiply cross-

validated  average Total Variation norm (TV) between the true and the predicted classifications for validation data. 40 
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Fig. 4. | Prediction problems in time series analysis: comparing approximation and prediction performances of 

SPA (blue curves) to the common methods on open-source data sets38,39,15,40: common methods include K-means 

clustering (dark green) in combinations with pattern recognition Neuronal Networks (yellow and light green) and Markov 

models [1] (dark green). Approximation and the prediction errors are measured in the average squared Euclidean norm of 5 
deviations between the true and the predicted system states for the validation data not used in the model fitting. 

 

Sensitivity analysis and feature selection with SPA 

 

After the discretization problem is solved, an optimal discrete representation X(t) can be computed for any 10 

continuous point X(t). Obtained vector  Γ𝑋(𝑡) contains K probabilities Γ𝑘
𝑋(𝑡)

 for a point X(t) to belong to each 

particular discrete state Sk – and allows to compute the reconstruction Xrec(t) of the point X(t) as  Xrec(t)=SX(t). 

In this sense, procedure [2-3] can be understood as the process of finding an optimal discrete probabilistic data 

compression, such that the average data reconstruction error (measured as a distance between X(t) and  Xrec(t)) 

is minimized.   15 

 

In the following, we will refer to the particular dimensions of X as features – and consider a problem of 

identifying sets of features that are most relevant for the discretization.  Importance of any feature/dimension j 

of X for the fixed discrete states S can be measured as an average sensitivity of the obtained continuous data  

reconstructions Xrec(t) with respect to variations of the original data X(t) along this dimension j. For example, it 20 

can be measured by means of the average derivative norm 𝐼(𝑗) =
1

𝑇
∑ ‖𝜕𝑋𝑟𝑒𝑐(𝑡)/𝜕𝑋𝑗(𝑡)‖

2

2
𝑡 . For every 

dimension j of X(t), this quantity 𝐼(𝑗) probes an average impact of changes in the dimension j of X(t) on the 

resulting data reconstructions Xrec(t). Dimensions j that have the highest impact on discretization will have the 
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highest values of 𝐼(𝑗), whereas the dimensions j that are irrelevant for assigning to discrete states will have 𝐼(𝑗) 

close to zero. 

 

At a first glance, direct computation of the sensitivities 𝐼(𝑗) could seem to be too expensive for realistic 

applications with large data statistics size T and in high problem dimensions, also due to the a priori unknown 5 

smoothness of the derivates 
𝜕𝑋𝑟𝑒𝑐(𝑡)

𝜕𝑋𝑗(𝑡)
 in the multidimensional space of features. However, as proven in the 

Theorem 3 from the Supplement,  in the case of discretizations obtained by solving the problem [2-3] for the 

Euclidean distance measure 𝑑𝑖𝑠𝑡, respective derivatives 
𝜕𝑋𝑟𝑒𝑐(𝑡)

𝜕𝑋𝑗(𝑡)
 are always piecewise-constant functions of 

𝑋𝑗(𝑡) if the statistics size T is sufficiently large. This nice property of derivatives allows a straightforward 

numerical computation of 𝐼(𝑗) for 𝐾 > 2 – and an exact analytical computation of 𝐼 for  𝐾 = 2. It turns out that 10 

for 𝐾 = 2 the importance of every original data dimension j can be directly measured as  (𝑆2,𝑗 − 𝑆1,𝑗)2/‖𝑆2 −

𝑆1‖2
2. In another words, discretization sensitivity 𝐼(𝑗) for the feature 𝑗 is proportional to the squared difference 

between the discretization box coordinates 𝑆1,𝑗 and  𝑆2,𝑗 in this dimension 𝑗. The smaller the difference between 

the cluster coordinates in this dimension – the less is the impact of this particular feature j on the overall 

discretization. 15 

 

It is straightforward to verify (please see Corollary 9 and Theorem 3 in the Supplement for a proof) that the 

feature sensitivity function 𝐼 = ∑ 𝐼(𝑗)𝑗   has a quadratic upper bound 𝐼 ≤  ∑ (𝑆𝑘1
(𝑗) − 𝑆𝑘2

(𝑗))2
𝑗,𝑘1,𝑘2

. Setting  

𝑆(S) in [2]  as 𝑆(S) = ∑ (𝑆𝑘1
(𝑗) − 𝑆𝑘2

(𝑗))2
𝑗,𝑘1,𝑘2

, for any given combination of integer K and scalar 𝜖𝑆 ≥ 0, 

minimizing [2-3]  would then result in a joint simultaneous and scalable solution of the optimal discretization 20 

and feature selection problems. Overall numerical cost of this procedure will be again O(nKT). Changing 𝜖𝑆 

will control the number of features: the larger is 𝜖𝑆 the fewer features (i.e., particular dimensions of the original 

data vector X) will be remaining relevant in the obtained discretization. Optimal value of 𝜖𝑆 can again be 

determined by means of standard model validation criteria34. In the SPA results from Fig. 3 and Fig. 4 (blue 

curves) we use this form of 𝑆(S)  and deploy the multiple cross-validation – a standard model selection 25 

approach from machine learning – to determine the optimal 𝜖𝑆 and an optimal subset of relevant features for any 

given number K of discrete states (clusters).       

 

Applications to classification and prediction problems from natural sciences 

 30 

Next, we compare the discretization performance of SPA by comparing its approximation errors to the 

approximation errors of the common methods, including such hard-clustering methods as K-means16, soft 

clustering methods based on Bayesian mixture models17 (like Gaussian Mixture Models), density-based 

clustering43 (DBSCAN) and neuronal network discretization methods (Self-Organising Maps)33. To compare 

the performances of these methods, obtained discretizations are used in parametrization of the 35 

Bayesian/Markovian models [1] – as well as in parametrization of neuronal networks33 - on several 

classification and time series analysis problems from different areas. To prevent overfitting, we deploy the same 

multiple-cross validation protocol34,35 adopted in machine learning for all of the tested methods. Hereby, the 

data is randomly subdivided into the training set (75% of the data) where the discretization and 

classification/prediction models are trained – and performance quality measures (approximation, classification 40 

and prediction errors) are then measured on the remaining 25% of validation data (not used in the training). For 

each of the methods this procedure of random data subdivision, training and validation is repeated 100 times, 

Fig. 3 and Fig. 4 provide the resulting average performance curves for each of the tested methods. MATLAB 

scripts reproducing these results are available in a repository SPA at https://github.com/SusanneGerber. Fig. 3 

shows a comparison of approximation and classification performances for two problems of labelled data 45 

analysis from biomedicine and bioinformatics: (a) for a problem of breast cancer diagnostics based on X-ray 

image analysis36, and (b) for a problem of single cell human mRNA classification37. In these problems variable 
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X(t) is continuous (and real-valued) set of collected features that have to be brought in relation to the discrete 

set of labels Y(t). In the case of the breast cancer diagnostics example36 (a), index t denotes patients and goes 

from 1 to 569, X(t) contains 32 image features and Y(t) can take two values ‘benign’ or ‘malignant’. In the case 

of the single cell human mRNA classification37 (b), index t goes from 1 to 300 (there are 300 single cell 

probes), X(t) contains genetic expression levels for 25’000 genes and Y(t) is a label denoting one of the 11 cell 5 

types (e.g., ‘blood cell’, ‘glia cell’, etc.).  

 

Fig. 4 summarizes results for five benchmark problems from time series analysis and prediction: for the Lorenz-

96 benchmark system38 modeling turbulent behavior in 1D, in a weakly-chaotic (a) and in the strongly-chaotic 

(b) regimes; (c) for the dynamics of historical surface temperatures over Europe39, provided by the European 10 

Centre for Medium-Range Weather Forecasts (ECMWF); for the biomolecular dynamics of a 10-alanine 

peptide molecule in water15; and for the electrical activity of the brain measured in various Brain-Computer 

Interaction (BCI) regimes obtained with the 64 channel Electroencephalograph and provided for open access by 

the BCI2000-consortium40. 

 15 

As can be seen from the Fig. 3 and 4, application of popular discretization methods achieve quality plateaus for 

all of the considered applications. In another words, increasing the number K of discrete states (clusters) – and 

increasing the overall computational cost - does not improve the resulting performance accordingly. In contrast, 

application of methods involving SPA results in drastically improved performances – with a performance 

improvement factor ranging from two to four (for breast cancer diagnostics example, for single cell mRNA 20 

classification, for the temperature data over Europe and for the molecular dynamics application). For the 

Lorenz-96 turbulence applications38 and for the brain activity application40, discretization obtained by SPA are 

ten to hundred times better than the discretization from common methods – being at the same level of 

computational cost as the popular K-means clustering. 

 25 

Evaluating a prediction performance of different models for a particular system, it is important to compare it 

with the trivial prediction strategies called mean-value prediction and persistent prediction. The mean-value 

prediction strategy predicts the next state of the system to be an expectation value over the previous already 

observed states – and is an optimal prediction strategy for stationary independent and identically distributed 

processes like the Gaussian process. The persistent prediction strategy is predicting the next state of the system 30 

to be the same as its current state: this strategy is particularly successful and is difficult to be beaten for the 

systems with more smooth observational time series, like for example for the intraday surface temperature 

dynamics. As it can be seen from the Fig. S3 from the Supplement, among all other considered methods (K-

means, neuronal networks, SOM, mixture models) only the  SPA discretization combined with the Markov 

models [1] allow outperforming both the mean-value and the persistent predictions for all of the considered 35 

systems.       

 

Summary 

 

Computational cost becomes a limiting factor when dealing with big systems. An exponential growth in the 40 

hardware performance observed over the last 60 years (the Moore’s law) is expected to come to an end in the 

early 2020’s41. More advanced machine learning approaches (e.g., neuronal networks) exhibit the cost scaling 

that grows polynomial with the dimension and with the size of the statistics – making some form of ad hoc pre-

processing and pre-reduction with more simple approaches (e.g., clustering methods) unavoidable for the big 

data situations. However, such ad hoc pre-processing steps might impose a significant bias that is not easy to 45 

quantify. At the same time, lover cost of the method typically goes hand-in-hand with the lover quality of the 

obtained data representations (see Fig.1).    Since the amounts of collected data in most of the natural sciences 

are expected to continue their exponential growth in the foreseeable future, a pressure on a computational 

performance (quality) and a scaling (cost) of algorithms will increase.  
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Instead of solving discretization, feature selection and prediction problems separately, the introduced 

computational procedure (a Scalable Probabilistic Approximation, or SPA) solves them simultaneously. The 

iteration complexity of SPA scales linearly with data size. The amount of communication between processors in 

the parallel implementation is independent of the data size and is linear with the data dimension – making it 

appropriate for big data applications. Hence, SPA did not require any form of data pre-reduction for any of the 5 

considered applications. As demonstrated in the Fig. 1, having essentially the same computational cost scaling 

as the very popular and computationally very cheap K-means algorithm16-17, SPA allows achieving significantly 

higher approximation quality and a much higher parallel speed-up with the growing size T of the data. 

 

Applications to large benchmark systems from natural sciences (Fig. 3 and 4) reveal that these features of SPA 10 

allow a drastic improvement of approximation and prediction qualities – combined with a massive reduction of 

computational cost.  For example, computing the next-day surface temperature predictions for Europe (e.g., at 

the European Centre for Medium-Range Weather Forecasts, ECMWF) currently relies on solving equations of 

atmosphere motion numerically - performed on the supercomputers39.  Discretization and prediction results for 

the same online daily temperature data provided in the Fig. 4c were obtained on a standard Mac PC, exhibiting 15 

a cross-validated mean error of  0.75 degree Celsius for the one-day-ahead surface air temperature predictions 

(approximately 40% smaller than the current next-day temperature prediction errors by weather services).  

 

Such probability-preserving and stable predictions Y(t) can be done very cheaply with the Bayesian or 

Markovian model [1] from the available SPA discretization [2,3] – just by computing the product of the 20 

obtained Bayesian matrix  with the discretization vector X(t). The cost of this whole prediction operation 

scales linearly – resulting in orders of magnitude speed-up as compared to the predictions based on the whole 

system’s simulations. These results indicate a potential to pave the ways to massively-parallel data-driven and 

error-controlled descriptive models for a robust automated classification and prediction in complex systems.   
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Description of the synthetic data problems (used in the Figure
1 of the main manuscript)

This section provides the description of the benchmark, whose results are presented in Manuscript

in the Figure 1. For a given number of data points T > 0 and a data dimension (number of fea-

tures) n ≥ 2, we generate the random data X = [x1, . . . , xT ] ∈ Rn,T from multivariate normal

distribution with different parameters based on a predefined cluster affiliation.

We choose the cluster affiliation in such a way, that the number of points affiliated to cluters

2
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Tk is approximately the same along the clusters, i.e.,

Tk :=

{
(k − 1)

⌊
T

K

⌋
+ 1, . . . ,min

{
k

⌊
T

K

⌋
, T

}}
denotes the set of point indexes affiliated to k-th cluster. Please, notice that these sets are disjoint

and union of them forms the set of all point indexes {1, . . . , T}. Using this decomposition, we

generate corresponding data points for every cluster k = 1, . . . , K as random realisations from

the multivariate normal distributions

∀t ∈ Tk : xt ∼ N (µk,Σk),

where µk ∈ Rn denotes the mean value and Σk ∈ Rn,n a covariance matrix.

In our benchmark, we choose K = 4 with parameters

µ1 := 0, Σ1 =

 0.1 0.05
0.05 0.1

0.2
n−2

In−2

 , µ2 :=


0.8
1.6
0
...
0

 , Σ2 =

 0.1 −0.05
−0.05 0.1

0.2
n−2

In−2

 ,

µ3 :=


1.6
0
0
...
0

 , Σ3 =

 1 0
0 1

0.2
n−2

In−2

 , µ4 :=


0.8
0.8
0
...
0

 , Σ3 = Σ4,

where In−2 ∈ Rn−2,n−2 is identity matrix.

General Scalable Probabilistic Approximation (SPA) formula-
tion

The SPA optimization problem is given by

[S∗,Γ∗] := arg min
Γ∈ΩΓ

L(S,Γ), (SPA)

3
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where

L(S,Γ) :=
T∑
t=1

distS(X(t),Γ(t)) + ε2
SΦS(S) + ε2

ΓΦΓ(Γ), (1)

ΩΓ := {Γ ∈ RK×T | ∀k = 1, . . . , K :
K∑
k=1

Γk(t) = 1,Γk(t) ≥ 0, t = 1, . . . , T}, (2)

T denotes the number of data points, X = {X(t), t = 1, . . . , T} ⊂ X are given data from

space X deployed with the norm ‖ · ‖, K > 1 denotes the number of discrete states (clusters),

Γ = {Γk(t), k = 1, . . . , K, t = 1, . . . , T} ⊂ ΩΓ ⊂ RK×T are unknown cluster affiliation prob-

ability vectors, and S : RK → X are unknown data representation vectors. We include the

possibility of Tikhonov-based regularization of original ill-posed problem using the regulariza-

tion functions ΦS , ΦΓ with corresponding regularization parameters εS, εΓ ≥ 0.

Set a feasible initial approximation Γ0 ∈ ΩΓ

while ‖L(Sk,Γk)− L(Sk−1,Γk−1)‖ ≥ ε

solve Sk = arg min
S

L(S,Γk−1) (with fixed Γk−1)

solve Γk = arg min
Γ∈ΩΓ

L(Sk,Γ) (with fixed Sk)

k = k + 1
endwhile

Return an approximation of the data representation vectors Sk and an approximation of cluster
affiliation probability vectors Γk.

Algorithm 1: General SPA algorithm.

The problem (SPA) can be solved using the Algorithm 1. The idea is based on the construc-

tion of the sequence of split optimization problems. The iteration computational complexity

of this algorithm is given by the complexity of the computation of inner optimization prob-

lems with fixed variables. The algorithm of this type is well-known as coordinate descent

method (10) or alternating least-squares method (1). The following Lemma presents the basic
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convergence properties of the algorithm.

Lemma 1. If the solutions of inner optimization problems in Algorithm 1 exist, then algorithm

generates a sequence of approximations for the optimization problem (SPA) with nonincreasing

objective function values, i.e.,

L(Sk+1,Γk+1) ≤ L(Sk,Γk) for k = 1, 2, . . . (3)

Proof. If the solutions of inner optimization problems exist, then the solution process of inner

optimization problems provides the approximation with smaller (or the same) function value

with respect to non-fixed variable, i.e. (see the Definition 1 in APPENDIX),

∀S : L(Sk,Γk−1) ≤ L(S,Γk−1), in the case of fixed Γk−1, (4)

Γ ∈ ΩΓ : L(Sk,Γk) ≤ L(Sk,Γ), in the case of fixed Sk. (5)

Choosing S = Sk−1 in (4) and Γ = Γk−1 in (5) we get

L(Sk−1,Γk−1) ≥ L(Sk,Γk−1) ≥ L(Sk,Γk).

Since the objective function (1) is generally non-convex (but bounded from bellow - each

distance function is non-negative), the sequence (3) can possibly converge only to the local

optimum. To deal with this non-globality, one has to run the algorithm for several random

initial Γ0 and choose the solution with the lowest function value. Such a Monte-Carlo-based

approach is commonly used for solving the optimization problem with multiple local optimality

points and it can be found in literature as annealing steps (10).

However, the convergence of the whole process still highly depends on the solvability of

inner optimization problems. Following lemmas present the elementary and the most common

situations when the solution exists.
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Lemma 2. If the distance function distS and the regularization function ΦS in (SPA) are convex,

bounded from below and continuously differentiable with respect to the variable S, then the

solution with respect to S exists and can be found using the necessary optimality conditions for

unconstrained problems.

Proof. The Lemma is a consequence of optimization theory fundamental results, see for exam-

ple (3).

Lemma 3. If the distance function distS and the regularization function ΦΓ in (SPA) are con-

tinuous in variable Γ, then the solution of the problem with respect to Γ exists.

Proof. Please notice that feasible set ΩΓ is compact (i.e., closed and bounded) and convex,

therefore if L is continuous, then the existence of the solution is a consequence of Weierstrass

Extreme Value Theorem (3).

Typically, the largest dimension parameter of the whole problem (SPA) is the number of data

points T and the classification data-discretization process (SPA) does not reduce this number.

It provides the data representation vectors S, whose size is determined by the size of individual

data points (the dimension of vector space X ) and the number of them is equal to the number of

clusters K. We can conclude, that the optimization problem with respect to S is much smaller

in comparison to the optimization problem with respect to the second variable Γ. The unknown

Γ consists of cluster affiliation probability vector of each individual data points, i.e., its size

is determined by T and K. Fortunately, the objective function L (1) is composed as a sum of

local representation errors and therefore if the regularization function ΦΓ(Γ) is also additively

separable (the case when it consists of the sum of local regularization functions for individ-

ual representations) then the whole minimization problem (SPA) is separable. The following

Lemma presents the basic property of additively separable optimization problems.
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Lemma 4. If L in the optimization problem (SPA) is additively separable in t (except ΦS(S)),

i.e., there exist functions Lt(S,Γ(t)), t = 1, . . . , T such that

L(S,Γ) =

(
T∑
t=1

Lt(S,Γ(t))

)
+ ΦS(S), (6)

then the solution of an optimization problem (SPA) with fixed S can be composed from solutions

of individual problems

Γ∗(t) = arg min
Γ∈ΩΓt

Lt(S,Γ(t)), (7)

where

ΩΓt = {γ ∈ RK |
K∑
k=1

γk = 1, γ ≥ 0}

and ΩΓ1 × · · · × ΩΓT = ΩΓ is the decomposition of the feasible set of the original problem

(SPA).

Proof. The definition of optimality point of (7) reads as (see the Definition 1 in APPENDIX)

∀Γ(t) ∈ ΩΓt : Lt(S,Γ
∗(t)) ≤ Lt(S,Γ(t)).

Since this inequality can be formulated for all t = 1, . . . , T , we can sum these T inequalities to

obtain
T∑
t=1

Lt(S,Γ
∗(t)) ≤

T∑
t=1

Lt(S,Γ
∗(t)).

If we add term ΦS(S) (constant in Γ) to both sides of this inequality and use notation (6), we

obtain

∀Γ ∈ ΩΓ : L(S,Γ∗) ≤ L(S,Γ),

which is a definition of the optimality point of optimization problem (SPA) with respect to

Γ.

The separability plays crucial role in the embarassingly parallel computations; one can solve

the whole set of T optimization problems independently using modern multi-core architectures,
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see Figure S2. The Γ-problem can be splitted into smaller subsets and distributed onto sepa-

rated computational nodes, which is a commonly adopted approach when working on super-

computers. Each node solves the given subset of problems without any communication with

the other nodes. Moreover, if the node includes multi-core processors, then (again) each core

can solve independently the part of the node subproblem. This “embarrasingly-parallel” hierar-

chical computation of the large-scaled problem can be exploited even more when using modern

GPU architectures; in this case, the relativelly small Γ(t) problem (of size K) can be solved

using just one computational thread, i.e., one computational core (please see Fig. 2c in the main

manuscript).

It is necessary to mention that if the regularization function ΦΓ is not separable in T (for

example when enforcing the persistency of regime/cluster in time, see FEM-H1 and FEM-BV

methods (9)), then the problem is not embarassingly parallel and computational nodes/cores/threads

have to communicate during the solution process. However, as was demonstrated in (12), one

can still utilize Projected Gradient methods since the projection onto separable simplexes ΩΓ is

still embarassingly parallel.

The following Theorem summarizes the general properties of the Algorithm (1).

Theorem 1 (Properties of the SPA algorithm). Let X = {x(t), t = 1, . . . , T} ⊂ X be given

data from space X , K > 1 is a given number of clusters. Let distS , ΦS , ΦΓ be such func-

tions that L(S,Γ) in (SPA) is convex, bounded from bellow and continuously differentiable with

respect to the variable S and continuous in the variable Γ.

Then the Algorithm 1

(a) is generating a monotonically non-increasing sequence.

Moreover, if L(S,Γ) is additively separable problem in Γ, then the Algorithm 1

(b) scales linearly in the size T of the data statistics X ,
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(c) requires the amount of communication independent of the data size.

Proof. (a) is a consequence of Lemma 2, Lemma 3, and Lemma 1. To prove (b) and (c), please

notice that the solution of optimization problem with respect to S is independent of the number

of provided data points T . If the assumption of separability is fullfilled, then in the case of

solving the problem with respect to Γ, we can using Lemma 4 reformulate the original problem

as a set of T independent problems, whose dimension is (again) independent of T .

Let us present the connection between SPA and some of the commonly used discretization

(clustering) methods in following Corollaries.

Corollary 1 (Suboptimality of K-means). Measured in terms of squared Euclidean distance,

discretisations providided by K-means are always suboptimal with respect to the discretisations

obtained with (SPA).

Proof. Let us consider data X ∈ Rn,T . The aim of the K-means clustering algorithm (?) is

to optimally partition given data into K disjoint clusters based on the Euclidean distance from

(unknown) optimal centroids of the clusters. The algorithm computes these cluster centroids

Sk ∈ Rn and binary affiliation Γ ∈ {0, 1}K,T , where Γk,t = 1 if xt belongs to k-th cluster and

Γk,t = 0 otherwise. The corresponding optimization problem is formulated as

[S∗,Γ∗] := arg min
Γ∈ΩΓ

Lkmeans(S,Γ), Lkmeans(S,Γ) :=
K∑
k=1

T∑
t=1

Γk,t‖X(t)− Sk‖2
2, (8)

where ΩΓ ⊂ {0, 1}K,T includes the condition for strict affiliation of a point into exactly one

cluster, i.e.,

ΩΓ := {Γ ∈ {0, 1}K,T |∀t = 1, . . . , T :
K∑
k=1

Γk,t = 1〉.

The problem (8) is solved iteratively; the feasible initial approximation of affiliations Γ is chosen

randomly (the points are randomly affiliated to clusters) and afterwards, the iterative procedure
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solves consecutively the problems with one fixed variable. In the case of K-means, both of the

subproblems have analytical solutions

S∗k =
1

T∑
t=1

Γk,t

T∑
t=1

Γk,tX(t), Γ∗k̄,t =

{
1 if k̄ = arg min

k
‖X(t)− Sk‖,

0 otherwise.
(9)

In fact, the scheme of the algorithm is the same as in the Algorithm 1 and one can easily check

that if Γ is binary variable and we choose distS(X(t),Γ(t)) :=
K∑
k=1

‖X(t)− SΓk(t)‖2
2 in (SPA)

(in following text denoted as (SPA2)) then

L(S,Γ) =
T∑
t=1

K∑
k=1

‖X(t)− SΓk(t)‖2
2 =

K∑
k=1

T∑
t=1

Γk,t‖X(t)− Sk‖2
2 = Lkmeans(S,Γ) (10)

and therefore K-means algorithm is equivalent to (SPA2).

The variant of K-means algorithm with relaxed binary condition is well-known as soft K-

means algorithm (?). In this case, Γk,t represents the probability thatX(t) is affiliated to the k-th

cluster. The feasible set ΩΓ enforces the rows of Γ to be a corresponding discrete probability

density vector, i.e., each element is continuous variable from [0, 1] and because of the law of the

total probability, the sum of the elements of this vector has to be equal to one. One can easily

check that ΩΓ defined by (2) represents these conditions. However in the case of continuous Γ,

the equality (10) does not hold. Using the Jensen’s inequality (10) we get

L(S,Γ) =
T∑
t=1

K∑
k=1

‖X(t)− SΓk(t)‖2
2 ≤

K∑
k=1

T∑
t=1

Γk,t‖X(t)− Sk‖2
2 = Lkmeans(S,Γ)

and therefore soft K-means algorithm produces only the upper estimation of the (SPA2) opti-

mization problem.

Corollary 2 (Suboptimality of FEM-BV and FEM-H1.). Measured in terms of a squared Eu-

clidean distance, discretisations providided by FEM-BV and FEM-H1 methods are always sub-

optimal with respect to the discretisations obtained with (SPA).
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Proof. The family of FEM-BV and FEM-H1 methods consists of methods used for time series

analysis (9), (12). The idea is to extend stationary models with clustering and additional time

regularization for enforcing the model time persistency.

In time series modelling, we suppose that the measured data x1, x2, . . . , xT ∈ Rn are de-

scribed by the parametric model ψ and include the additive noise, i.e.,

xt = ψ(t,Θ) + εt. (11)

For instance one can consider autoregessive models, e.g., the Var-X model defined as

ψ(t,Θ) = µ+

p∑
i=0

Aixt−iτ +

q∑
j=0

Bjut−jτ , (12)

where Θ = (µ,A0, . . . , Ap, B0, . . . , Bq) includes all model parameters, τ > 0 is a discretisation

time step, p, q ≥ 0 represent the size of memory, and ut denote the external factors or controls.

The aim of the analysis is to find parameters of the model which fit the given data xt, ut in an

optimal way, for example, one can utilize minimum least square error to formulate optimization

problem

Θ∗ := arg min
Θ

T∑
t=1

‖xt − ψ(t,Θ)‖2
2. (13)

In the case of Var-X model (12) the optimization problem (13) is unconstrained quadratic pro-

gramming problem and the necessary optimality conditions formulate the corresponding system

of linear equations which has to be solved.

FEM-BV and FEM-H1 belong to the non-stationary models; here we suppose that the pa-

rameters of model Θ are non-stationary, i.e., they are changing (can change) in time. In general,

non-stationary model without any additional assumptions, e.g., restriction of the set of permis-

sible parameters, lead to ill-posed and biased results. In the case of FEM-BV and FEM-H1,

we include the assumption of the time persistency of model parameters introducing the finite

number of regimes (i.e., clusters) in which the model parameters are stationary. The switching

11

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 31, 2019. ; https://doi.org/10.1101/720441doi: bioRxiv preprint 

https://doi.org/10.1101/720441
http://creativecommons.org/licenses/by-nc-nd/4.0/


between those regimes is realized by a hidden regime-switching process, which describes the

activity of each regime in a given time. For example, if we consider stationary Var-X model

(12) on each of the K regimes, then the corresponding optimization problem is formulated as

[Θ∗,Γ∗] := arg min
Θ,Γ∈ΩΓ

T∑
t=1

K∑
k=1

Γk,t‖xt − ψ(t,Θk)‖2
2 + ε2ΦΓ(Γ), (14)

where Θ = [Θ1, . . . ,ΘK ] includes (unknown) parameters of local models on regimes and Γk,:

are model indicator functions defined in similar as in the case of K-means, i.e., Γk,t = 1 if

the time series in time t is in k-th regime and and Γk,t = 0 otherwise. Regularization function

ΦΓ(Γ) with regularization parameter ε2 ≥ 0 enforces the time persistency of a regime-switching

process. In the case of FEM-BV, we consider Bounded variation (BV) norm defined as

ΦΓ(Γ) :=
K∑
k=1

T−1∑
t=1

|Γk,t+1 − Γk,t|.

If we consider binary Γ then this value is equal to the number of switches between regimes and

the regularization by this function decreases the global number of switches in the solution. The

optimization problem (14) is solved using Algorithm 1, however, in this case the Γ subproblem

is not separable due to non-separable regularization term and this problem of dimensionKT has

to be solved using linear programming algorithm. For extended details on the method see (9).

It is straightforward to verify that the formulation of FEM-BV corresponds to (SPA) with

distance function defined as a local Euclidean distance between given data X(t) and the local

value of model ψ

distΘ(X(t),Γ(t)) := ‖X(t)− ψ(t,ΘΓ(t))‖2, ΘΓ(t) =
K∑
k=1

Γk,tΘk. (15)

Similarly to the soft K-means clustering case considered in the Corollary 1 above, we can

relax the hard clustering property (i.e., the property that each data point is exclusively affiliated

to exactly one regime) considering Γk,t to be probability of affiliation of X(t) to k-th regime.
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Each Γ:,t forms the discrete probability density vector of affiliation of X(t) to regimes and a

corresponding feasible set is given by (2). To include the assumption of time persistency, one

can adopt the H1 half-norm

ΦΓ(Γ) :=
K∑
k=1

T−1∑
t=1

(Γk,t+1 − Γk,t)
2

to get the FEM-H1 method, see (9). The problem is solved by an Algorithm 1, the corresponding

Γ subproblem is non-separable convex quadratic programming problem of size KT , see (12).

Please notice that Θ depends linearly on variable Γ, the Var-X model depends linearly on

parameters Θ, and the distance function distΘ is convex in variable ψ. Summarizing these

properties we can state that distance function is convex in Γ (see (3) for the list of operations

which preserve convexity). Using the Jensen’s inequality we get

L(S,Γ) =
T∑
t=1

K∑
k=1

‖X(t)− ψ(t,ΘΓ(t))‖2
2 ≤

T∑
t=1

K∑
k=1

Γk,t‖X(t)− ψ(t,Θk)‖2
2 = LFEM(S,Γ).

This inequality holds also when we add any regularization ΦΓ(Γ) to the both sides. Hence,

FEM-BV and FEM-H1 algorithms produce only the upper estimation of the (SPA) optimization

problem with a corresponding choice of distance function and regularization.

SPA in the Euclidean space

We consider the data from real n-dimensional vector space X := Rn and Euclidean distance

measure on X defined by

distS(X(t),Γ(t)) :=
K∑
k=1

‖X(t)− SΓk(t)‖2
2.

For simplicity, we compose the vectors into matrices

X := [X(1), . . . , X(T )] ∈ Rn,T , Γ := [Γ(t), . . . ,Γ(T )] ∈ RK,T , S ∈ Rn,K
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and afterwards, the corresponding optimization problem (SPA) without regularization can be

written in a form

[S∗,Γ∗] := arg min
Γ∈ΩΓ

‖X − SΓ‖2
F , (SPA2)

where F denotes Frobenius norm and the feasible set is defined by

ΩΓ := {Γ ∈ RK,T | ∀t = 1, . . . , T ∀k = 1, . . . , K :
K∑
k=1

Γk,t = 1,Γk,t ≥ 0}. (16)

Lemma 5. The solutions of problem (SPA2) are always non-unique for any K > 1.

Proof. Let us consider an arbitrary solution [S∗,Γ∗] and nonsingular matrix R ∈ RK,K , R 6=

IK,K such that RΓ ∈ ΩΓ. Such a matrix always exists, e.g., we can consider a permutation

matrix which permutes the rows of Γ, i.e., the indexes of clusters. Since we can write

L(S∗,Γ∗) = ‖X − S∗Γ∗‖2
F = ‖X − S∗R−1R︸ ︷︷ ︸

=I

Γ∗‖2
F = L(S∗R−1, RΓ∗),

we can state that feasible [S∗R−1, RΓ∗] 6= [S∗,Γ∗] has the same (minimal) function value and

therefore it also solves the problem.

Optimality conditions

We define the Lagrange function (10) corresponding to the optimization problem (SPA2) by

L(S,Γ, λE, λI) := ‖X − SΓ‖2
F +

T∑
t=1

λEt

(
K∑
k=1

Γk,t − 1

)
−

T∑
t=1

K∑
k=1

λIk,tΓk,t.

Here λE ∈ RT are Lagrange multipliers corresponding to equality constraints defined by the

feasible set (16) and λI ∈ RK,T denotes the Lagrange multipliers corresponding to the non-

negativity bound constraints in (16).

The full system of Karush-Kuhn-Tucker (KKT) optimality conditions for this system will
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be:

∇SL(S,Γ, λE, λI) = − 2XΓT + 2SΓΓT = 0, (17)

∇ΓL(S,Γ, λE, λI) = − 2STX + 2STSΓ + (λE)T ⊗ 1K − λI = 0, (18)

∇λEL(S,Γ, λE, λI) = ΓT1K − 1T = 0, (19)

∇λIL(S,Γ, λE, λI) = − Γ ≤ 0, (20)

λI ≥ 0, (21)

∀k, t : λIk,tΓk,t = 0, (22)

where 1K ∈ RK ,1T ∈ RT denotes the vectors of ones. Equations (17) and (18) are first-order

optimality conditions, equation (19) and inequality (20) are constraints given by the definition of

the feasible set (16), inequality (21) preserves the non-negativity of inequality Lagrange mul-

tipliers, and equations (22) represent the so-called complementarity conditions for inequality

constraints.

The solution of S subproblem

Lemma 6 (The solution of S-problem). Let Γ ∈ ΩΓ in problem (SPA2) be fixed. Then the

system of all solutions of optimization problem (SPA2) with respect to S is given by

S∗ = XΓT
(
ΓΓT

)+
+ αTRT , with parameter α ∈ Rr,n, (23)

where
(
ΓΓT

)+ ∈ RK,K denotes a pseudoinverse1 of the matrix ΓΓT , R ∈ RK,r is a matrix

whose columns form the basis of the null space of ΓT , i.e.

ImR = Ker ΓT , (24)

and r = dim Ker ΓT denotes the nullity of matrix ΓT .
1i.e. the matrix such that AA+A = A, A+AA+ = A+, (AA+)T = AA+, and (A+A)T = A+A
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Proof. Please notice that the objective function of (SPA2) in terms of variable S is continuously

differentiable convex matrix quadratic function. The necessary optimality condition of given

unconstrained optimization problem is given by (17). This system of linear equations with

multiple right-hand side vectors with symmetric positive semi-definite system matrix always

has a solution. If the system matrix is non-singular, then the unique solution is given by

S∗ = XΓT (ΓΓT )−1.

However, the non-singularity of system matrix ΓΓT ∈ RK,K (and consequently, the existence

of inverse matrix) is not guaranteed2, the system of all solutions is given by (23) where all

solutions differ by the vector from Ker ΓΓT , see (8) or (7).

Next we deal with the eventual ill-posedness of the optimization problem (SPA2) in variable

S, or equivalently, with the ill-posedness of the system of linear equations (17). Deploying

Tykhonov-regularization, we reformulate the original (SPA) problem choosing the regulariza-

tion function

ΦS(S) :=
1

nK(K − 1)

n∑
i=1

K∑
k1=1

K∑
k2=1

(Si,k1 − Si,k2)2 (25)

and consider regularization parameter ε2
S > 0. Please notice that the solution of the optimization

problem in term of variable S is independent on the choice of regularization function ΦΓ. The

following Lemma proves that (25) guarantees the unique solvability of S-problem.

Lemma 7. The computational complexity of solving S subproblem in (SPA2) isO(K3 +KnT ),

with the memory complexity of O(K2 + nK).

Proof. The first step in solving the S subproblem is the assembly of the matrix ΓΓT and of the

matrix of the right-hand side vectorsXΓT in an equation (17). Let us remind that the complexity

2Since Ker ΓΓT = Ker ΓT (see (8)) we can see that if and only if Γ has linearly independent rows, then matrix
ΓΓT is non-singular (invertible).

16

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 31, 2019. ; https://doi.org/10.1101/720441doi: bioRxiv preprint 

https://doi.org/10.1101/720441
http://creativecommons.org/licenses/by-nc-nd/4.0/


of computing matrix-matrix multiplication of general (non-sparse) matrices A ∈ Rn,m and

B ∈ Rm,p isO(nmp), therefore in our case, the overall complexity of assembling the problem is

O(TK2)+O(nTK). The memory required to store these two new matrices isO(K2)+O(nK).

In general, the direct methods for solving a system of linear equation Ax = b, A ∈ Rm,m

have the complexity of order O(m3). Iterative methods, like Krylov subspace algorithms, are

based on the iterations where the computational complexity scaling in the leading order is dom-

inated by the multiplication with a system matrix A, which is of order O(m2). Number of

iterations needed for the convergence, when using a suitable preconditioner, is usually much

less than O(n). Therefore, the overall work for solving the system of linear equations is less

than O(m3). In general, numerical linear algebra algorithms for this purpose are using the aux-

iliary vectors of dimension Rm, whose number is independent on the dimension of the problem.

Therefore, the amount of additional memory used for solving the system of linear equations is

of the order O(m).

Applying these general results to S subproblem which consists of T linear systems of di-

mension K, we obtain the total computational complexity O(TK3) and a memory complexity

O(TK). Since the system matrix is the same for all subsystems, therefore one can compute

pseudoinverse and use (23) directly, which will lead to the total computational complexity of

O(n3) +O(K2T ). In practial applications the computation of pseudoinverse is typically much

slower than solving the system of linear equations.

Corollary 3. In the case of K-means algorithm, evaluation of an analytical solution S∗ (9)

consists of computing two sums with the computational complexity O((n + K)T ). To compute

the sums, one has to use an additional auxiliary vector of dimension O(K).

Lemma 8 (S-problem with regularization). Let Γ ∈ ΩΓ in a problem (SPA2) with an additional

regularization function (25) be fixed. Then, for any ε2
S > 0 the problem with respect to S has a
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unique solution given by

S∗ = XΓTH−1
ε , Hε := ΓΓT +

2ε2

nK(K − 1)
(KIK,K − 1K,K), (26)

where IK,K ∈ RK,K is an identity matrix and 1K,K ∈ RK,K is a matrix full of ones. Moreover

the spectrum of regularized Hessian matrix Hε can be estimated by

λmin(Hε) ≥ min
{
T
K
, 2ε2

n(K−1)

}
,

λmax(Hε) ≤ ‖ΓΓT‖2 + 2ε2

n(K−1)
.

(27)

Proof. The gradient of the original objective function L in (SPA2) without regularization is

given by the left-hand side of (17). Let us focus on the gradient of regularization function

whose components are given by (for every i ∈ {1, . . . , n}, k ∈ {1, . . . , K})

[∇ΦS(S)]i,k = 1
nK(K−1)

(
K∑

k2=1

2(Si,k − Si,k2)−
K∑

k1=1

2(Si,k1 − Si,k)
)

= 2
nK(K−1)

(
2KSi,k − 2

K∑
k1=1

Si,k1

)
= 4

nK(K−1)
(KSi,k − Si,:1K)

where 1K ∈ RK is a column vector of ones. It is easy to see that the whole gradient can be

written as

∇ΦS(S) =
4

nK(K − 1)
(KS − S1K,K)

and therefore the necessary optimality condition of the regularized problem is given by the

solution of a regularized linear system of equations

− 2XΓT + 2S

(
ΓΓT +

2ε2
S

nK(K − 1)
(KIK,K − 1K,K)

)
= 0. (28)

It remains to show that the system matrix is non-singular for any ε2
S > 0 and therefore we will

be able to multiply the whole equation with the matrix inverse to obtain a unique solution.

Please notice that the matrix GK := KIK,K − 1K,K is a Laplacian matrix of a complete

graph on K nodes, therefore it is symmetric positive semidefinite and KerGK = span{1K},

see (5).

18

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 31, 2019. ; https://doi.org/10.1101/720441doi: bioRxiv preprint 

https://doi.org/10.1101/720441
http://creativecommons.org/licenses/by-nc-nd/4.0/


For the simplicity, let us denote ε̂ :=
2ε2S

nK(K−1)
> 0. For any non-zero y ∈ RK we can

differentiate two cases

• if y /∈ KerGK then yTGKy = KyTy (the spectrum of complete graph Laplace matrix is

composed from one zero eigenvalue and eigenvalues of value K with multiplicity K − 1,

see (5)) and

yT
(
ΓΓT + ε̂GK

)
y = yTΓΓTy︸ ︷︷ ︸

≥0

+ε̂ yTGKy︸ ︷︷ ︸
=KyT y

≥ ε̂KyTy > 0. (29)

• if y ∈ KerGK = span{1K} then there exists a non-zero α ∈ R such that non-zero y can

be written as y = α1K . Using the equality constraints of the feasible set ΩΓ (16) written

in a form ΓT1K = 1T we can state that

yTΓΓTy = α2
1
T
KΓΓT1K = α2

1
T
T1T = α2T =

T

K
α2
1
T
K1K =

T

K
yTy > 0

and consequently

yT
(
ΓΓT + ε̂GK

)
y = yTΓΓTy︸ ︷︷ ︸

= T
K
yT y

+ ε̂yTGKy︸ ︷︷ ︸
=0

=
T

K
yTy > 0. (30)

This proves that yT (ΓΓT + ε̂GK)y > 0 for any y 6= 0, i.e., that the system matrix in (28) is

symmetric positive definite and therefore there exists a unique solution of this system given by

(26). This also proves that the original objective function of a problem (SPA2) with regulariza-

tion (25) with respect to S is for any fixed ε2
S > 0 strictly convex and the optimization problem

with bounded closed convex feasible set (16) has a unique minimizer. Since for any symmetric

matrix and any non-zero y it holds yTAy ≥ λmin(A)yTy, we can combine (29) and (30) to

prove the lower estimation in (27). To prove upper estimation, one can use the property of norm

and eigenvalues of complete graph Laplace matrix

‖Hε‖2 = ‖ΓΓT + ε̂(KIK,K − 1K,K)‖2 ≤ ‖ΓΓT‖2 +
2ε2

n(K − 1)
.
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Lemma 9 (Uniqueness of a reconstruction with the fixed Γ). Let [S1∗,Γ1∗] and [S2∗,Γ2∗] be

two solutions of (SPA2) for given data X . Let us denote the appropriate reconstructions by

Xrec1 := S1∗Γ1∗ and Xrec2 := S2∗Γ2∗. If Γ1∗ = Γ2∗ then Xrec1 = Xrec2.

Proof. From the optimality conditions, S1∗ and S2∗ solves (SPA2) with fixed Γ := Γ1∗ = Γ2∗.

All solutions of corresponding QP differ by a vector from kernel of Hessian matrix (see (7), (12),

and (23)) and using Lemma 21 we get

Xrec1 −Xrec2 = (S1∗ − S2∗)︸ ︷︷ ︸
∈Ker ΓΓT=Ker ΓT

Γ = 0.

Lemma 10 (Derivative of solution with a fixed Γ). Let Γ ∈ ΩΓ in problem (SPA2) with addi-

tional regularization function (25) be fixed and let S∗(X) be solution (26) for any X . Then for

any j = 1, . . . , n and t = 1, . . . , T∥∥∥∥∂S∗(X)

∂Xj,t

∥∥∥∥
2

≤ 1

λmin(Hε)
≤ 1

min
{
T
K
, 2ε2

n(K−1)

} , (31)

where λmin(Hε) is the smallest eigenvalue of regularized Hessian matrix Hε given by (26) and

further estimated using (27).

Proof. We use the derivative definition

∂S∗(X)

∂Xj,t

= lim
δ→0

S∗(X + δej,t)− S∗(X)

δ‖ej,t‖2

,

where ej,t ∈ Rn,T is a standard basis vector with elements defined by

i = 1, . . . , n, τ = 1, . . . , T : [ej,t]i,τ :=

{
1, if i = j and τ = t,
0, elsewhere.

Using the solution (26), the norm can be estimated by∥∥∥∥∂S∗(X)

∂Xj,t

∥∥∥∥
2

= lim
δ→0

‖S∗(X + δej,t)− S∗(X)‖2

δ‖ej,t‖2

= lim
δ→0

δ
∥∥ej,tΓTH−1

ε

∥∥
2

δ‖ej,t‖2

=
∥∥ejγTt H−1

ε

∥∥
2
,
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where ej ∈ Rn is vector of standard basis and γt := Γ:,t. Using the property of the norm, we

can further estimate∥∥ejγTt H−1
ε

∥∥
2
≤ ‖ej‖2‖γt‖2

∥∥H−1
ε

∥∥
2
≤
∥∥H−1

ε

∥∥
2

=
1

λmin(Hε)
.

Corollary 4. In the case of K-means, the indicator functions Γ are binary and

H0 = ΓΓT =

 N1

. . .
NK

 ∈ RK,K , Nk :=
T∑
t=1

Γk,t,

where Nk ≥ 0 denotes the number of points affiliated to k-th cluster. The eigenvalues of diago-

nal matrix H0 are equal to the values on the diagonal, therefore upper estimation (31) depends

only on the inverse value of the smallest cluster size; it is independent on both of the data size

and number of clusters.

The solution of Γ subproblem

In this Section, we suppose that in the optimization problem (SPA2) the variable S is fixed

and it remains to solve the problem in a variable Γ only (the second optimization problem of

Algorithm 1). In this case, the objective function is additively separable and it can be written

in the form of separable Quadratic Programming (QP) problems with linear equality and bound

constraints.

Lemma 11. The solution of (SPA2) with fixed S is equivalent to the solution of T independent

QP problems

γ∗t := arg min
γ∈Ωγ

1

2
γTAγ − bTt γ, Ωγ := {γ ∈ RK | Bγ = c, γ ≥ 0}, (32)

where
A := 2STS, bt := STxt, B := 1

T
K , c := 1,

X = [x1, . . . , xT ] ∈ Rn,T ,
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and the original solution of (SPA2) can be composed as

Γ∗ := [γ∗1 , . . . , γ
∗
T ] ∈ RK,T .

Proof. From the definition of Frobenius norm and matrix-matrix multiplication we have

‖X − SΓ‖2
F =

T∑
t=1

‖xt − Sγt‖2
2 =

T∑
t=1

(
xTt xt − 2xTt Sγt + γTt S

TSγt
)

∝
T∑
t=1

1
2
γTt (2STS)γt − (STxt)

Tγt.

Moreover, it is easy to check that the composition of Ωγ for all γt, t = 1, . . . , T forms the

original feasible set ΩΓ. Then using Lemma 4 the problem can be rewritten as the solution of

the separated subproblems.

From the computational point of view, the Γ-problem is more challenging since one has

to deal with optimization problems on the fasible set described by the combination of linear

equality constraints and bound constraints. In the case of QP (32), the subproblems can be

solved by the Interior-Point methods or by the Augumented Lagrangian methods combined

with Active-set approach (10), (7). In our implementation we use the fact that the feasible set

Ωγ is the simplex of sizeK. Since the objective function is continuously differentiable, then one

can use Projected Gradient Descent methods, for example Spectral projected gradient method

for QP (2), (12).

Lemma 12. The computational complexity of decreasing the objective function in Γ for a fixed

A in (SPA2) is O(nK2 + nKT + TK2), with a memory complexity of O(K2 +KT ).

Proof. The complexity of assembling this QP problem is given by the complexity of a matrix-

matrix multiplications STS and STX , which is O(nK2 + nKT ). These objects require a

memory of the order O(K2 +KT ).

The number of iterations required for solving this QP problem on convex sets depends on the

spectral properties of its Hessian matrix (7). Let us focus on one iteration, which will decrease
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the value of an objective function (32). Such a decrease can be obtained using a projected

gradient descend step

γk+1 = PΩγ (γ
k − ᾱ∇f(γk)), (33)

with a step-length ᾱ ∈ (0, ‖A‖−1). Decrease of the function value for a convex QP on a general

closed convex set has been proven in (6), (11).

The computational complexity of computing the gradient in (33) is O(K2) because of the

Hessian matrix multiplication. Computational iteration complexity of the projection onto a

simplex is of order O(K2) (4), (12). Since the step has to be performed for all γt, the overal

complexity is O(TK2). The step for each γt requires auxiliary vectors of additional memory

O(K), therefore a computation of the whole Γ takes additional O(KT ) of memory.

Corollary 5. In the case of K-means algorithm, the evaluation of analytical solution Γ∗ (9) con-

sists of evaluation of local error and finding the maxima for all data points. The computational

complexity is O(nKT ) and the size of auxiliary vectors is O(KT ).

Lemma 13. The computational complexity of one iteration of (SPA2) isO(nKT+(n+T )K2+

K3), with a memory complexity of O(K2 + (n+ T )K).

Proof. The Lemma is a direct combination of Lemma 7 and Lemma 12.

Corollary 6. The complexity of one iteration of K-means algorithm can be obtained combining

Corollary 3 and Corollary 5. The computational complexity is O(nKT + (n + K)T ) and the

memory complexityO(KT+K+n). In practical big data applications the dimension n and the

statistics size T are much larger then the discretisation dimension K. It means that in such sit-

uations both K-means and SPA will have the same leading order of the computational iteration

complexityO(nkT ) and the same leading order of the required memory in T , beingO(KT ). In

contrast, spectral clustering methods (like LSD, PCCA+) and density-based clustering meth-
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ods (like DBSCAN and “mean shift”) will have the leading order in both the computational

complexity and in the required memory scaling ranging between O(T log(T )) and O(T 2).

Lemma 14. Let S ∈ Rn,K be fixed. Function γ∗ : Rn → Ωγ defined as

γ∗(x) := arg min
γ∈Ωγ
‖x− Sγ‖2

2

is a continuous piecewise linear function.

Proof. Let us consider arbitrary x1, x2 ∈ Rn and corresponding γ1 := γ∗(x1), γ2 := γ∗(x2).

Since both of these values solve the optimization problem, there exist appropriate Lagrange

multipliers λI1, λ
E
1 , λ

I
2, λ

E
2 such that the KKT optimality conditions (18), (19), (20), (21), (22)

are satisfied in the form

−2STxt + 2STSγt + λEt 1K − λIt = 0, (34)

γTt 1K = 1, (35)

γt, λ
I
t ≥ 0, (36)

∀k : {λIt}k{γt}k = 0 (37)

for both of the given t ∈ {1, 2}. Let us consider parameter α ∈ [0, 1], build a convex combina-

tion of equations (34) and get

− 2STxα + 2STSγα + λEα1K − λIα = 0, (38)

where we denoted
xα := (1− α)x1 + αx2,

γα := (1− α)γ1 + αγ2,

λEα := (1− α)λE1 + αλE2 ,

λIα := (1− α)λI1 + αλI2.

(39)
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It is easy to see that (38) can be considered as the first KKT optimality condition for any xα

which lies on the line connecting x1, x2. In this case, the solution γα = γ∗(xα) of the cor-

responding optimization problem can be built as a linear combination of γ1, γ2 with the same

coeficient. The conditions (35) and (36) for γα are also satisified since the feasible set Ωγ is

convex (and every convex combination of points inside the convex set is also in this set) and/or

one can directly check that for any α ∈ [0, 1]

γTα1K = (1− α) γT1 1K︸ ︷︷ ︸
=1

+α γT2 1K︸ ︷︷ ︸
=1

= 1,

γα = (1− α)γ1︸ ︷︷ ︸
≥0

+ αγ2︸︷︷︸
≥0

≥ 0,

λIα = (1− α)λI1︸ ︷︷ ︸
≥0

+ αλI2︸︷︷︸
≥0

≥ 0.

The reason why the function γ∗ is not linear for general x1, x2 is the complementarity con-

dition. If we substitute (39) into (37) for α, we obtain

∀k : {λIα}k{γα}k = α(1− α)
(
{λI1}k{γ2}k + {λI2}k{γ1}k

)
= 0.

Since (36) and (37) such a condition is satisfied for all α ∈ [0, 1] if and only if for all k

{λI1}k = {λI2}k = 0 and/or {γ1}k = {γ2}k = 0.

The line connecting x1, x2 can be splitted into the segments which satisfied these conditions and

therefore the function γ∗ is piecewise linear.

Corollary 7. Let S be fixed and let us define a function

Xrec(X) := SΓ∗(X), where Γ∗(X) := arg min
Γ∈ΩΓ

‖X − SΓ‖F .

It is easy to see that this function linearly depends on Γ∗(X) and since this separable function

is composed from linear functions (see Lemma 14) the derivative

∂Xrec

∂X

is a piecewise constant function.
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Lemma 15. Let K = 2, S ∈ Rn,2, x ∈ Rn be given. Then the optimization problem

γ∗ := arg min
γ∈Ωγ

L(γ), L(γ) := ‖x− Sγ‖2
2,

Ωγ := {γ ∈ R2 | γ1 + γ2 = 1, γ1, γ2 ≥ 0}

has a solution

γ∗ = [P[0,1](α1), P[0,1](α2)]T , α1 =
〈x− S2, S1 − S2〉
‖S1 − S2‖2

2

, α2 = −〈x− S1, S1 − S2〉
‖S1 − S2‖2

2

, (40)

where P[0,1](α) is a projection of α ∈ R onto interval [0, 1] given by

P[0,1](α) := arg min
β∈[0,1]

(α− β)2 = max{0,min{1, α}}. (41)

Proof. Let us denote the columns of matrix S = [S1, S2]. The KKT optimality conditions (18),

(19), (20), (21), (22) form the system

− 2

[
ST1
ST2

]
x+ 2

[
〈S1, S1〉 〈S1, S2〉
〈S2, S1〉 〈S2, S2〉

]
γ +

[
λE
λE

]
−
[
λI1
λI2

]
= 0, (42)

γ1 + γ2 = 1, (43)

γ1, γ2, λI1 , λI2 ≥ 0, (44)

λI1γ1 = λI2γ2 = 0, (45)

Using the equality (43), we can eliminate variable γ2 = 1 − γ1 in (42). Additionally, we can

substract the equations and after some manipulations we obtain

−〈x− S2, S1 − S2〉+ γ1〈S1 − S2, S1 − S2〉 −
λI1 − λI2

2
= 0.

Using the notation (40) for α1 and including the remaining KKT conditions (44) and (45), we

end up with the equivalent system

γ∗1 = α1 +
λI1 − λI2

2
, 0 ≤ γ∗1 ≤ 1, λI1 , λI2 ≥ 0, λI1γ

∗
1 = λI2(1− γ∗1) = 0. (46)
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The same system of equations and inequalities can be obtained as KKT system of projection

optimization problem (41); here the Lagrange function is given by

L(β, λI) := α2 − 2αβ + β2 − λI2β − λI1(1− β)

and the KKT optimality conditions can be derived and modified as

∂L
∂β

= −2α + 2β − λI2 + λI1 = 0 ⇒ β∗ = α− λI1−λI2
2

,

0 ≤ β∗ ≤ 1, λI1 , λI2 ≥ 0, λI1β
∗ = λI2(1− β∗) = 0.

(47)

We see that if we denote the output of projection as γ∗1 = β∗ = P[0,1](α1) (like in the presented

solution (40)) then systems (47) and (46) are the same.

The similar process can be performed to obtain γ∗2 , however, in this case, we use γ1 = 1−γ2

to eliminate variable in (42).

Lemma 16 (Uniqueness of reconstruction with fixed S). Let [S1∗,Γ1∗] and [S2∗,Γ2∗] be two

solutions of (SPA2) for given dataX . Let us denote the appropriate reconstructions byXrec1 :=

S1∗Γ1∗ and Xrec2 := S2∗Γ2∗. If S1∗ = S2∗ then Xrec1 = Xrec2.

Proof. From the optimality conditions, Γ1∗ and Γ2∗ solves (SPA2) with fixed S := S1∗ = S2∗.

All solutions of corresponding QP for every t = 1, . . . , T differ by a vector from kernel of

Hessian matrix (see (7), (12)) and using Lemma 21 we get

Xrec1 −Xrec2 = S (γ1∗
t − γ2∗

t )︸ ︷︷ ︸
∈KerSTS=KerS

= 0.
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Computing optimal discretisations for Bayesian and Marko-
vian models

Theorem 2. Let xt ∈ Rn and yt ∈ Rm be two time series of length T , X = [x1, . . . , xT ] ∈

Rn,T , Y = [y1, . . . , yT ] ∈ Rm,T . The solution of (SPA2) in the form

[S∗ε ,Γ
∗
x] = arg min

Γx∈ΩΓ

‖Xε − SεΓx‖2
F (48)

with

Xε :=

[
Y
εX

]
, Sε :=

[
SyΛ
εSx

]
, (49)

and ε ≥ 0 is equivalent to the solution of (SPA2) problems

[S∗x,Γ
∗
x] := arg min

Γx∈ΩΓ

‖X − SxΓx‖2
F , (50)

[S∗y ,Γ
∗
y] := arg min

Γy∈ΩΓ

‖Y − SyΓy‖2
F , (51)

in Tikhonov-sense with regularization parameter ε and Λ ∈ RK,T is left-stochastic matrix of

conditional probabilities such that the discrete Bayesian and Markovian model equations

Γy = ΛΓx, (52)

are satisfied.

Proof. The combination of problems (50) and (51) into one optimization problem using Tikhonov-

based approach is given by

[S∗x,Γ
∗
x, S

∗
y ,Γ

∗
y] = arg min

Γx,Γy∈ΩΓ

‖Y − SyΓy‖2
F + ε‖X − SxΓx‖2

F , (53)

where ε ≥ 0 is a Tykhonov-regularisation parameter, controlling the relative importance of the

X-discretisation problem with respect to the Y-discretisation problem. Substituting (52) into

(53) and using the properties of Frobenius norm, we can write the objective function in form

‖Y − SyΓy‖2
F + ε‖X − SxΓx‖2

F =

∥∥∥∥[ Y
εX

]
−
[
SyΓy
εSxΓx

]∥∥∥∥2

F

=

∥∥∥∥[ Y
εX

]
−
[
SyΛ
εSx

]
Γx

∥∥∥∥2

F

.

Getting use of (49) we can reformulate optimization problem (53) into form (48).
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Feature selection with SPA in the Euclidean space

Lemma 17. Let S ∈ Rn,K be given. We consider x ∈ Rn and its small perturbation x+d ∈ Rn.

Let us denote γ∗x and γ∗x+d the optimal probabilistic discretisations of x and x + d with respect

to S, i.e.,

γ∗x := arg min
γ∈Ωγ

Lx(γ), Lx(γ) := ‖x− Sγ‖2
2,

γ∗x+d := arg min
γ∈Ωγ

Lx+d(γ), Lx+d(γ) := ‖(x+ d)− Sγ‖2
2,

(54)

and Ωγ = {γ ∈ RK :
K∑
k=1

γk = 1 ∧ γ ≥ 0} is a feasible set. Then

‖γ∗x+d − γ∗x‖2
STS ≤ 〈d, S(γ∗x+d − γ∗x)〉, (55)

where ‖γ‖STS =
√
〈STSγ, γ〉 is a seminorm on RK induced by the scalar product with a

symmetric positive semidefinite matrix STS.

Proof. Using Lemma 22 we state that the point γ∗ is a solution of optimization problem if and

only if

〈∇Lx(γ∗x), γ − γ∗x〉 ≥ 0 ∀γ ∈ Ωγ, (56)

〈∇Lx+d(γ
∗
x+d), γ − γ∗x+d〉 ≥ 0 ∀γ ∈ Ωγ. (57)

Since the feasible set is the same for both of optimization problems and consequently γ∗x, γ
∗
x+d ∈

Ωγ , we can choose γ = γ∗x+d in (56) and γ = γ∗x in (57). We get

〈∇Lx(γ∗x), γ∗x+d − γ∗x〉 ≥ 0,
〈∇Lx+d(γ

∗
x+d), γ

∗
x − γ∗x+d〉 ≥ 0.

and the sum of these inequalities gives us

〈∇Lx(γ∗x)−∇Lx+d(γ
∗
x+d), γ

∗
x+d − γ∗x〉 ≥ 0. (58)

The gradient of the continuously differentiable objective functions can be computed as

∇Lx(γ) = −2STx+ 2STSγ, ∇Lx+d(γ) = −2ST (x+ d) + 2STSγ,
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and substituted into (58) to get

〈STd− STS(γ∗x+d − γ∗x), γ∗x+d − γ∗x〉 ≥ 0.

Using the properties of a scalar product, we can rewrite this inequality as (55).

Corollary 8. Let us consider an arbitrary point x ∈ Rn and its perturbation in j-th feature

xh := x+ hej, {ej}i :=

{
1, if i = j,
0, if i 6= j.

Let us denote a so-called reconstruction of these points by xrec
x := Sγ∗x and xrec

xh
:= Sγ∗xh . Since

the seminorm on the left-hand side of (55) is non-negative, we get using simple subtitution

0 ≤ 〈hej, S(γ∗x+d − γ∗x)〉 = h
(
{xrec

xh
}j − {xrec

x }j
)

= ({xxh}j − {xx}j)
(
{xrec

xh
}j − {xrec

x }j
)

We can conclude that the sign of the feature change in the data is the same as the sign of the

feature change in corresponding reconstructions.

Corollary 9. Using Cauchy-Bunyakovsky-Schwarz inequality we can further estimate (55) to

form

‖γ∗x+d − γ∗x‖2
STS ≤ 〈d, S(γ∗x+d − γ∗x)〉 ≤ ‖d‖.‖γ∗x+d − γ∗x‖STS

and therefore

‖γ∗x+d − γ∗x‖STS ≤ ‖d‖

or using the notation for xrec

‖xrec
x1
− xrec

x2
‖ ≤ ‖x1 − x2‖ (59)

for any x1, x2 ∈ Rn.

The original optimization problem can be rewritten as a projection problem to the set con-

sisting the all possible reconstructed points Ωrec ⊂ Rn

γ∗ = arg min
γ∈Ωγ
‖x− Sγ‖, xrec = Sγ∗

m
xrec = PΩrec(x) := arg min

y∈Ωrec

‖x− y‖, Ωrec := {Sγ, γ ∈ Ωγ}
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and the projection is always non-expansive operator, i.e.,

∀x1, x2 ∈ Rn : ‖PΩrec(x1)− PΩrec(x2)‖ ≤ ‖x1 − x2‖.

Additionally, the distance between any xrec
1 , xrec

2 ∈ Ωrec can be bounded by the largest

distance in the feasible set. In the case of the polytope Ωrec, the largest distance is given by

the largest distance between the vertices stored in columns of matrix S, i.e.,

‖xrec
1 − xrec

2 ‖2 ≤ max
k1,k2

‖Sk1 − Sk2‖2. (60)

Theorem 3. For sufficiently large T , let [S∗,Γ∗] denote the solution of (SPA2) for X ∈ Rn,T .

Let Xrec(X) := S∗(X)Γ∗(X) denotes a reconstruction of the optimal discrete approximation

of data X . Then for any dimension j = 1, . . . , n and any t = 1, . . . , T

1.) if K = 2 then ∥∥∥∥∂Xrec
:,t

∂Xj,t

∥∥∥∥
2

≤
|S∗j,1 − S∗j,2|
‖S∗:,1 − S∗:,2‖2

, (61)

2.) if K ≥ 2 then ∥∥∥∥∂Xrec:,t

∂Xj,t

∥∥∥∥
2

≤ 1. (62)

Proof. Using the chain rule we get

∂Xrec
:,t

∂Xj,t

=
∂S∗(X)Γ∗:,t(X)

∂Xj,t

=
∂S∗Γ∗:,t(X)

∂S∗
∂S∗(X)

∂Xj,t

+
∂S∗(X)Γ∗:,t

∂Γ∗:,t

∂Γ∗:,t(X)

∂Xj,t

The first term represents the norm of derivate of the recontruction with fixed Γ∗. We already

proved in Lemma 10 that the upper estimation of the norm of this derivative depends on the

smallest eigenvalue of matrix ΓΓT . We will suppose that T is sufficiently large in a such way

that the smallest eigenvalue is sufficiently large and therefore this norm is sufficiently small. In

this case, the norm of derivative depends only on second term, i.e., we approximate∥∥∥∥∂Xrec
:,t

∂Xj,t

∥∥∥∥
2

≈
∥∥∥∥∂S∗(X)Γ∗:,t

∂Γ∗:,t

∂Γ∗:,t(X)

∂Xj,t

∥∥∥∥
2

=

∥∥∥∥S∗∂Γ∗:,t(X)

∂Xj,t

∥∥∥∥
2

.
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This value represents the norm of derivative of reconstruction with fixed S∗, therefore in the

following proof we will suppose that S∗ is fixed.

1.) In the case of K = 2, we can use an analytical solution of γ∗(xt) := Γ∗:,t(X) provided by

the Lemma 15. Since (for given S = [S:,1, S:,2] ∈ Rn,2 and for any xt ∈ Rn)

γ∗1(xt) =


0, if α1 < 0
1, if α1 > 1
α1, elsewhere

, γ∗2(xt) =


0, if α2 < 0
1, if α2 > 1
α2, elsewhere

the derivatives are given by

∂γ∗1(xt)

∂Xj,t

=

{
0, if α1 < 0 or α1 > 1,
∂α1

∂Xj,t
, elsewhere,

∂γ∗2(xt)

∂Xj,t

=

{
0, if α2 < 0 or α2 > 1,
∂α2

∂Xj,t
, elsewhere,

(63)

where
∂α1

∂Xj,t
= ∂

∂Xj,t

(
〈xt−S∗

:,2,S
∗
:,1−S∗

:,2〉
‖S∗

:,1−S∗
:,2‖22

)
=

S∗
j,1−S∗

j,2

‖S∗
:,1−S∗

:,2‖22
,

∂α2

∂Xj,t
= ∂

∂Xj,t

(
− 〈xt−S

∗
:,1,S

∗
:,1−S∗

:,2〉
‖S∗

:,1−S∗
:,2‖22

)
= − S∗

j,1−S∗
j,2

‖S∗
:,1−S∗

:,2‖22
.

(64)

From (63), (64), and since α1 + α2 = 1 we can easily conclude that

∂γ∗1(xt)

∂Xj,t

= −∂γ
∗
2(xt)

∂Xj,t

,

∣∣∣∣∂γ∗1(xt)

∂Xj,t

∣∣∣∣ ≤ ∣∣∣∣∂α∗1(xt)

∂Xj,t

∣∣∣∣ . (65)

Using the linearity of derivative, the partial derivative of reconstruction X rec
:,t can be com-

puted as

∂Xrec
:,t

∂Xj,t

=
∂(S∗γ∗(xt))

∂Xj,t︸ ︷︷ ︸
∈Rn

= S∗
∂γ∗(xt)

∂Xj,t︸ ︷︷ ︸
∈RK

=
∂γ∗1(xt)

∂Xj,t︸ ︷︷ ︸
∈R

S∗:,1︸︷︷︸
∈Rn

+
∂γ∗2(xt)

∂Xj,t︸ ︷︷ ︸
∈R

S∗:,2︸︷︷︸
∈Rn

and using (65) we get∥∥∥∂Xrec
:,t

∂Xj,t

∥∥∥2

2
=

n∑
i=1

(
∂γ∗1 (xt)

∂Xj,t
S∗i,1 +

∂γ∗2 (xt)

∂Xj,t
S∗i,2

)2

=
n∑
i=1

[(
S∗i,1 − S∗i,2

) ∣∣∣∂γ∗1 (xt)

∂Xj,t

∣∣∣]2

≤

[
n∑
i=1

(S∗i,1 − S∗i,2)2

]
︸ ︷︷ ︸

=‖S∗
:,1−S∗

:,2‖22

(
|S∗
j,1−S∗

j,2|
‖S∗

:,1−S∗
:,2‖22

)2

=
(S∗
j,1−S∗

j,2)2

‖S∗
:,1−S∗

:,2‖22
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2.) From a definition of the derivative we have

∂Xrec
:,t

∂Xj,t

:= lim
h→0

X rec
:,t,h −X rec

:,t

h
,

where Xrec
:,t,h is reconstruction of point X:,t,h defined as X:,t with perturbated j-th feature,

i.e.,

X:,t,h := X:,t + hej, {ej}i :=

{
1, if i = j,
0, if i 6= j.

Since the reconstruction Xrec
:,t is continuous function of X:,t, we can write∥∥∥∥∂Xrec

:,t

∂Xj,t

∥∥∥∥2

2

=

∥∥∥∥lim
h→0

X rec
:,t,h −X rec

:,t

h

∥∥∥∥2

2

= lim
h→0

1

h2
‖X rec

:,t,h −X rec
:,t ‖2

2

The inner norm can be estimated using (59) to get

lim
h→0

1

h2
‖X rec

:,t,h −X rec
:,t ‖2

2 ≤ lim
h→0

1

h2
‖X:,t,h −X:,t‖2

2 = 1

Corollary 10. The previous Lemma motivates for using the regularization of S-problem (25).

In the case of K = 2, such a regularization minimizes the norm of derivative (61). In the case

of general K, this regularization modifies the resulting polytope generated by S∗ in a such way

that this polytope is distinguishing between the features of reconstructed data, see (60).

Corollary 11. Please, notice that the dependence of reconstruction of Xrec on data X is linear

and the respective derivative is piecewise constant, see Corollary after Lemma 14. In practice,

we can estimate the norm in (62) using Euler method. Due to discontinuities in derivatives,

such a method is exact for sufficiently small step h.
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Figures

CPU GPU CPU GPU CPU GPU

t

node node node

Figure S1: Distributed solution of Γ-problem: If objective function in (SPA), (SPA2) is addi-
tively separable in t then the solution of optimization problem with fixed S can be composed
as a solution of individual problems (see Lemma 4 and Lemma 11). In such a case, we can dis-
tribute T independent problems into several computation nodes such that the each node solves
its own subset of problems. This local computation can be be performed by local CPU cores
and/or using GPU cores, where (again) each core solves its individual subset of local optimiza-
tion problems. Additionally, if we distribute the data of the problem in the same way, then
each computational resource will have an access to its own local part of memory, without any
additional communication.
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(a) approximation quality scaling (b) computational cost scaling

(c) parallelisability scaling

Figure S2: Comparing computational cost (a), discretization quality (b) and paralleliz-
ability (c): for (SPA2) (blue surfaces), K-means clustering (dark-green), Nonnegative Matrix
Factorisation (in its probabilistic variant called Left-Stochastic Decomposition (LSD), magenta
surfaces) and the Self-Organising Maps (SOM, a special form of unsupervised neuronal net-
works used for discretization, orange surfaces). For every combination of data dimension
n and the data statistics length T , methods are applied to 50 same randomly-generated data
sets and the results in each of the curves represent averages over these 50 problems. Parallel
speed-up in (c) is measured as the ratio of the average times time(GPU)/time(CPU) needed
to reach the same relative tolerance threshold of 10−5 on a single Graphics Processing Unit
(GPU, ASUS TURBO-GTX1080TI-11G, with 3584 CUDA cores) for time(GPU) versus a sin-
gle CPU core (Intel Core i9-7900X CPU) for time(CPU). MATLAB script Fig1 reproduce.m
reproducing these results is available for open access in the repository SPA at https:
//github.com/SusanneGerber.
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(b) Lorenz-96 1D turbulence model (strongly-
chaotic regime)
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(d) molecular dynamics simulation of 10-
Alanine in water
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(e) EG dynamics in a brain-computer interface
(BCI2000 data)

Figure S3: Comparison of one-time-step predictions for a combination of SPA with Markov
models (based on applications of the Theorem 2, blue lines) to the one-time-step predictions
obtained by the standard prediction methods. The combination of SPA with Markov models is
the only prediction scheme that outperforms the persistent prediction (i.e., when the next state
is predicted to be the same as the current one) for all of the considered systems.
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APPENDIX

Definition 1. We say that point x∗ is a minimizer of function f on given feasible set Ω, written

as

x∗ = arg min
x∈Ω

f(x),

if (and only if) all points from the feasible set have larger or equal function value than f(x∗),

i.e.,

∀x ∈ Ω : f(x∗) ≤ f(x).

Lemma 18. Let X ∈ Rn,T , a, x ∈ Rn, b ∈ Rn, A = AT ∈ Rn,n. Then

∂aTXb

∂X
= abT ,

∂bTXTXb

∂X
= 2XbbT ,

∂xTa

∂x
= a,

∂xTAx

∂x
= 2Ax.

Lemma 19. Let n,K, T ∈ N and A ∈ Rn,T , B ∈ RK,T . Then

T∑
t=1

A:,t(B:,t)
T = ABT ∈ Rn,K .

Proof. From the definition of matrix-vector multiplication, the components of the result on

left-hand side of the equation can be written in form (for every i ∈ {1, . . . , n}, j ∈ {1, . . . , K})[
T∑
t=1

A:,t(B:,t)
T

]
i,j

=
T∑
t=1

Ai,t(Bj,t)
T = 〈Ai,:, Bj,:〉 = Ai,:(Bj,:)

T ,

which is a value of the corresponding matrix component on right-hand side of the equation.

Lemma 20. (of four fundamental subspaces): for any B ∈ Rn,m it holds3

KerB ⊥ ImBT , ImB ⊥ KerBT .

KerB ∪ ImBT = Rm, ImB ∪KerBT = Rn.

3Let V,W be two subspaces of vector space F with scalar product 〈., .〉 : F × F → R. Then we say that
V ⊥ W if ∀v ∈ V∀w ∈ W : 〈v, w〉 = 0. Additionally we define V ∪W := {f ∈ F : f ∈ V ∨ f ∈ W}.
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Proof. See Laub (8).

Lemma 21. Let n,K, T ∈ N and A ∈ Rn,T , B ∈ RK,T . Then

KerAAT = KerAT ⊂ Rn, (66)

KerB ⊂ KerAB ⊂ RK . (67)

Proof. To prove (66), it is necessary to show that

∀x ∈ Rn : AATx = 0 ⇔ ATA = 0.

(⇐) Let us consider x ∈ Rm such that ATx = 0. Then AATx = AATx︸︷︷︸
=0

= 0 (this also proves

(67))

(⇒) Let us consider x ∈ Rm such that AATx = 0. Using smart zero, we can write

0 = xT0 = xTAATx = ‖ATx‖2.

The norm of the vector is equal to zero if and only if the vector is equal to zero, therefore

ATx = 0.

Lemma 22. Let f : Rn → R be a continuously differentiable convex function and let Ω ⊂ Rn

be closed convex set. Then x∗ ∈ Ω is a solution of optimization problem

x∗ := arg min
x∈Ω

f(x)

if and only if

∀x ∈ Ω : 〈∇f(x), x− x∗〉 ≥ 0.

Proof. See (3), (10).
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