bioRxiv preprint doi: https://doi.org/10.1101/720458; this version posted July 30, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

Graphmap? - splice-aware RNA-seq mapper for
long reads

Josip Mari¢", Ivan Sovi¢*, Kresimir Krizanovi¢', Niranjan Nagarajan® and Mile Siki¢'>*
"University of Zagreb Faculty of Electrical Engineering and Computing, Unska 3, Zagreb, HR 10000, Croatia
’Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome, Singapore 138672, Singapore

"To whom correspondence should be addressed.

*These authors contributed equally to this work.

Abstract

In this paper we present Graphmap2, a splice-aware mapper built on our previously developed DNA mapper
Graphmap. Graphmap? is tailored for long reads produced by Pacific Biosciences and Oxford Nanopore devices. It
uses several newly developed algorithms which enable higher precision and recall of correctly detected transcripts
and exon boundaries. We compared its performance with the state-of-the-art tools Minimap2 and Gmap. On both
simulated and real datasets Graphmap2 achieves higher mappability and more correctly recognized exons and their
ends. In addition we present an analysis of potential of splice aware mappers and long reads for the identification of
previously unknown isoforms and even genes. The Graphmap2 tool 1is publicly available at
https://github.com/Ibcb-sci/graphmap?2.

Keywords - splice-aware alignment, long reads, isoforms, exons

I. INTRODUCTION

The advances in sequencing technology, achieved by companies such as Oxford Nanopore technologies (ONT)
[1] and Pacific Biosciences (PacBio) [2] resulted in production of long reads with over 10 kbp in length. Initially,
such long reads had very high error rate which has steadily declined and the last generation of PacBio devices
produce reads comparable in accuracy to Illumina short reads [3]. In addition, ONT has recently announced new
R10 pores and their, in house, results are promising. Although in the field of RNA-seq short reads are still
predominantly used, there is a need for longer reads which help in detection and quantification of isoforms.
Algorithmically, mapping RNA-seq reads to known transcripts is equivalent to mapping DNA reads. Yet, mapping
these reads to eukaryotic genomes is more complex due to RNA splicing. There are several RNA-seq splice-aware
mapping tools developed for long reads produced by third generation sequencing technologies. An evaluation of
these tools was given in [4] and [5], with GMAP [6] and Minimap2 [7] being the best performing tools. However,
there is still room for improvement, especially in correctly aligning exon edges and finding all exons in transcripts -
especially shorter exons.

In this work we present Graphmap2, an extended version of the Graphmap tool. Graphmap is a highly sensitive
tool for mapping DNA reads to a reference genome, and we have extended it with the ability to map RNA reads.
This extended version uses the same five-stage ‘read-funneling’ approach as the initial version [8] and adds
upgrades specific for mapping RNA reads. The performance and accuracy of Graphmap2 was evaluated on
simulated and real datasets and the results were compared to the state-of-the-art RNA mapping tools. In addition we
analysed identification of potentially new isoforms and genes using long reads.

https://github.com/lbcb-sci/graphmap2
https://doi.org/10.1101/720458
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/720458; this version posted July 30, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

II. METHODS

Figure 1 shows the complete process of aligning RNA reads to a reference genome. We can divide the original
Graphmap mapping method into two stages; the first stage includes finding candidate positions on the reference
genome using short seeds, and the second stage calculates the exact alignment of reads using Edlib - a fast
implementation of Myers’ bit-vector algorithm [9]. The first stage which includes steps: (i) region selection, (ii)
graph mapping and (iii) longest common subsequence in k length substrings (LCSk) [10] is kept in Graphmap?2. For
every read in the input dataset, this stage produces a set of approximate matches between parts of the read and parts
of the reference. These matches are represented by anchors, where every anchor consists of start and end locations
on the read, and start and end locations on the reference in that match. Graphmap?2 then proceeds by extending the
workflow with the following stages: (iv) anchor filtering (knapsack), (v) anchor alignment, (vi) alignment tuning
and (vii) exon grouping and adjustment. In the anchor filtering step, Graphmap2 then uses a variation of the
knapsack algorithm to find the optimal set of anchors and then uses KSW2 [11] aligner to perform piecewise affine
gapped alignment between these anchors producing first-phase alignments. These alignments are then processed in

Candidate positions (anchors) selection

RNA
reads

Fragments

—> Region selection Graph mapping —29MeMS . | cek Anchors , Anchor filtering

(knapsack)

y

Alignment tuning

Filtered
anchors

Alignments Alignments

Anchor
alignment

Exon boundaries
adjustment

Exon extending

_ Alignments
P
Exon grouping and adjustment
Groups of Groups of
" Exon grouping exons g?:u(l)aftfiiﬁ exons Exon adjustment
h-

Figure 1. Graphmap?2 read alignment process

the Exon extending and Exon boundaries adjustment steps which improve the quality of the first-phase alignments.
Improved alignments are then split into exons which are further grouped and modified in Exon grouping and
adjustment phase. Exons are grouped based on their position on the reference genome in order to group together
exons transcribed from the same transcript. Exon groups are analysed and modified in Exon offset calculation and
Exon adjustment steps. Exon offset calculation step calculates the correct start and end locations for all exons in the
same group, for every group of exons. In Exon adjustment step incorrect exon’s starting or ending locations are
adjusted to match previously calculated start and end locations of the whole group. Exon adjustment phase produces
final alignments which are the output of the Graphmap2 tool.

Candidate positions selection
Anchor filtering

After completing the LCSk step of the Graphmap algorithm, produced anchors are then processed in order to
obtain the optimal set of resulting anchors that are used to construct the alignment. If we denote reference starting
and ending location in an anchor as x;and x, respectively, and query starting and ending location as y, and y,

https://doi.org/10.1101/720458
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/720458; this version posted July 30, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

respectively, we can consider every anchor as a two-dimensional line where the starting point of the line is 7'5(xy, y,)
and ending point is T.(x.,y,). Also, every anchor has its fitness f, which in the simplest form is the number of
bases d covered by the anchor. We can formalize the problem of finding the optimal set of anchors as follows: from
the set C of N anchors, C, = (T, T, d) € C, we want to find an optimal set of £ anchors

C' = {(Tslﬂ Tel’ dl)a (TSZ’ Te2’ dz);u. n(Tsk’ Tek’ dk)}’ ¢ ec
where 7, < T, Ty S T Ty < T 1)
k

and try to maximise . d, . 2)

i=1
The problem defined in this way is equivalent to 0-1 knapsack problem and we can use the same algorithm to
solve it. 0-1 knapsack problem can be described as: for a given set £ of N elements, where every element e has its
weight wand fitness f, and with a limit on maximum weight T, we need to find £’ & E whose sum of weights is

not greater than T, and whose sum of fitnesses has maximum value, or formally:

N N
maximise Y. f;x,, with condition Y w,-x, <T, x; € {0,1}. 3)

i=1 i=1
For the current set of anchors, the weight of the element is the length of query in the anchor |y, —y,|, while the
fitness of the anchor is the number of covered bases d. The total weight T is the total length of the processed read.
By solving this optimisation problem and finding x; ,, € {0, 1} we find the resulting set of anchors that construct
the reads’ alignment. Since Graphmap maps reads to both the original reference sequence and its reverse
complement, this algorithm finds the optimal set of anchors regardless of the strand of the alignment.

With this algorithm we expect to find the optimal set of anchors which are used to generate the alignment of the
read, regardless of their distance on the reference i.e. the gap between the anchors. The process of alignment is
performed using the KSW2 aligner which aligns two adjacent anchors with a possible gap between them. For two
adjacent anchors C; = (T';(xy;, v)> Toi%gs o)) and Copy = (T)iy Viirny)s Teginn)Xeirys Yeien))) the
alignment g, is generated with KSW2 for the subset of read [y, y,,)] and the subset of reference [x;, X1
The portion of the alignment a; that corresponds to the subset of read [y;, vy] is then extracted and appended to
the resulting alignment.

Because of high error rate generated by third generation sequencers, the optimal set of anchors can still fail to
cover all of the exons of the read or can often have errors at the ends of gaps in the alignment. This is why we
introduce several methods that try to improve alignments generated by the anchor alignment step. They are
described in the following chapters.

Alignment tuning
Exon extending

Because a different set of exons can identify different gene expression, it is important that alignment of RNA
reads contains all exons from that read correctly identified. Since some alignments tend to lose an exon because of
errors at edges of the read, we have implemented a tuning method that tries to align clipped ending of a read to the
reference. The clipped part of the read is aligned to reference and if the alignment of that clipped part of the read
contains no more than 15% of deletions, insertions or substitutions, it is considered as a new found exon and it is
appended to the alignment. Before aligning clipped parts of the reads, poly(A) tail identification is conducted first. If
the clipped part of the read is identified as a poly(A) sequence, it is not further analyzed.

Algorithm 1 shows the process of improving an alignment by aligning edges of reads that have been marked as
clipped after Anchor alignment step. The unaligned portions at the beginning or the end of a read are denoted as
unaligned edges. If an unaligned edge is at the end of the read, we first check if the unaligned edge contains a poly
A tail, and if so, the edge is not processed any further. After that, the reference region, with length windowLength,
whose one end corresponds to the end of the edge of the read is found. The windowLength was experimentally set to
8000. The edge of the read is then aligned to the reference region and the resulting alignment, denoted as edge
alignment is processed further. The first occurred exon (its alignment) found in the edge alignment is extracted, and
if its length is greater than the kmer length (original Graphmap parameter) and its alignment identity is at least 85%,

https://doi.org/10.1101/720458
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/720458; this version posted July 30, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

it is appended to the original alignment. If the found exon is not on the starting position of the edge alignment, a gap,
of length equal to the starting position of the exon in the edge alignment, is added to the original alignment.

Algorithm 1 Extend alignment

1: function EXTENDALIGNMENT(alignment, read, reference)
2 readEdgeTypes = {start,end}
3 for read EdgeType in readEdgesTypes do
4: unaligned EdgeQ f Read = getUnaligned Read Edge(alignment, read, read EdgeType)
5: if readEdge== end & isPolyATail(unalignedEdgeO f Read) then
6: return alignment
7 end if
8 window Length = 8000
9: referenceRegion = refRegionFor Read Edge(alignment, re ference, read Edge, windowLength)
10: edgeAlignment = align(unaligned EdgeO f Read, reference Region)
11: exonAlignmet = extractEdge Ezon(edge Alignment)
12: if length(ezonAlignmet) >= kmerLength & hasEnoughMatches(exonAlignmet) then
13: if readEdge== start then
14: alignment = exonAlignmet + alignment
15: else
16: alignment = alignment + exonAlignmet
17 end if
18: end if
19: end for
20: return alignment

21: end function

Exon boundaries adjustment

Because single base precision is important for RNA mapping, we have implemented an algorithm the improves
exon boundaries using the information about donor-acceptor splice sites. Introns usually have two distinct
nucleotides at either end: GT at the 5' end (CT for reversed strand) and AG at the 3' end (AC for reversed strand).
These nucleotides are a part of splicing sites. Since there is a high probability that introns should begin and end with
these bases, for every read with spliced alignment, every two neighbouring exons ¢, and e;,,, in the alignment are
analysed. If bases GT (CT) are found somewhere around the end of exon e,, up to 5 bases left or right on the
reference, and if bases AG (AC) are found somewhere around the start of the exon e;,), up to 5 bases left or right
on the reference, the alignment is modified so that exon e;ends exactly next to AG (AC) and exon e, ,, starts

exactly after GT (CT) splice sites. This procedure is presented in Algorithm 2.

Algorithm 2 Exon boundaries adjustments
1: function ADJUSTEXONBOUNDARIES (alignment, read, reference)
2 gaps = getGapsFromAlignment(alignment)

3 for gap in gaps do
4: for sign in {1,—-1} do

5: for i in [0...5] do

6¢

7

8

9

of fset = sign * i

spliceSiteStart = reference[gap.start + of fset, gap.start + of f set + 2]
spliceSiteEnd = reference[gap.end + of fset — 2, gap.end + of fset]

if isTargetedSpliceSite(siteStart + siteEnd) then

10: alignment = adjust Alignment(alignment, gap, of fset)
11: end if

12: end for

13: end for

14: end for

15: return alignment

16: end function

https://doi.org/10.1101/720458
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/720458; this version posted July 30, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

Exon grouping and adjustment
Exon grouping

As already mentioned, first-phase alignments are created from anchors using KSW2. The most common errors
that occur in alignments produced by the anchor alignment step are: (1) false exon, (2) missed exon and (3)
incorrect intron ends. False exon error occurs when two parts of a read that belong to a single exon and should be
aligned together are aligned separately. Missed exon error is an error where two parts of a read that belong to
separate exons and should be aligned separately, are aligned together. Wrong intron ends error occurs when a part of
a read belonging to one exon is aligned as the edge of another exon. These errors usually occur due to sequencing

Algorithm 3 Group exons

1: function GROUPEXONS(reads, reference, alignments)
2 erons = ||
3 for alignment in alignments do
4 read = readFor Alignment(reads)
5: readErons = splitIntoExons(read, re ference, alignment)
6 exons.append(readExons)
7 end for
8 listO f EzonGroups = [|
9: groupsO fOverlaping Exons = groupOuverlaping Erxons(exons)
10: for exonGroup in groupsO fOverlapingFExons do
11: equiM atriz = initEquiM atriz()
12: classes = [[[]
13: classes|[0] = {0}
14: visited = {0}
15: FindEquiClasses(classes, equiMatriz, visited, 0, ezonGroup.size())
16: for i in [1..ezonGroup.size()] do
17: if visited[i] == 0 then
18: class = {i}
19: classes.append(class)
20: FindEquiClasses(classes, equiM atriz, visited, i, exonGroup.size())
21 end if
29 end for
23: for class in classes do
24: exonGroup = ||
25: for index in class do
26: ezonGroup.append(exonGrouplindex])
27: end for
28: listO f ExonGroups.append(exonGroup)
29: end for
30: end for

31: return listO f ExonGroups
32: end function

CITOrS.

The exon grouping and adjustment phase of the Graphmap2 tries to overcome these errors by improving on
already calculated alignments. Since it is expected that a number of reads is transcribed from the same region on the
reference, some of them might have previously described errors, while others might be correctly aligned. Exon
grouping step starts by identifying groups of reads that cover the same transcript location in the reference.

Reads are placed in the same group if they mutually overlap. Ideally, all the reads in the group should belong to the
same transcription region, but this is not always the case. This is why every group is analysed using coverage
information for the reads in the group. The coverage information of the group is calculated from their alignments.
For every group of alignments we denote the coverage of a single base in the reference as the number of alignments

https://doi.org/10.1101/720458
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/720458; this version posted July 30, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

that contain that reference base. The average coverage of the group is the total number of coverage values of all
bases in the reference that are contained in alignments of the group, divided by the number of those bases. If all the
alignments in the group are identical, then the average coverage of the group would be equal to the number of reads
in the group. The more alignments contain different reference bases, the lower the average coverage of the group.
The groups with the average coverage of the group greater than 50% of the number of reads in the group are chosen
for the Exon adjustment phase.

For every group of reads their alignments are split into exons by splitting cigar strings by gapped components.
Every exon is modeled with: (1) start and stop location on the reference, (2) read id, (3) index of exon in the
alignment, (4) cigar string of the exon, (5) start offset by which the start location of the exon should be modified and
(6) end offset by which the end location of the exon should be modified. These exons are then grouped as shown in
algorithm 3.

We define the relation:
EqualTranscriptExons (e, e,) =
abs(start(e,) — start(e,)) < maxEdgeDiff & abs(end(e,) — end(e,)) < maxEdgeDiff 4)

e,y € Eguoup Where Eg.oy,is set of exons for one group of reads and e, and e, are two exons from the same
group.

Algorithm 4 Initilize Equivalency Matrix

1: function INITTEQUIMATRIX (ezonGroup)

2 equiM atriz : [exonGroup.size()|[exonGroup.size()]
3 for ¢ in [0..exonGroup.size() — 1] do

4 el = exonGroupi|

5: for i in [i + 1..exonGroup.size()| do

6.

7

8

9

e2 = exonGroup|j]
if abs(el.start — e2.start) <=40 & abs(el.stop — e2.stop) <= 40 then
equiMatriz[i] =1

: end if
10: end for
11: end for
12: return equiM atriz

13: end function

Two exons whose start and end location don’t differ more than maxEdgeDiff number of bases are in
EqualTranscriptExons relation and we consider them to be transcribed from the same transcript region. The
algorithm 3 finds all equivalence classes of relation EqualTranscriptExons thus finding all equivalence groups of
Egroup €xons. It uses equivalence matrix which is a EqualTranscriptExons relation matrix and is initialized as
shown in algorithm 4. Parameter maxEdgeDiff was experimentally set to 40.

Using equivalency matrix, we recursively find all groups of exons for current group of reads using algorithm 5.
Every group of exons is then analysed in the Exon edge offsets calculation step.

https://doi.org/10.1101/720458
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/720458; this version posted July 30, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

Algorithm 5 Find Equivalent Classes
1: function FINDEQUICLASSES(classes, equiM atriz, visited, k, n)
2 for i in [k + 1..n] do
3 if equiMatriz[k][i] == 1 then
4 if visited[i]! = 1 then
5: xclasses[classes.size() — 1].append(i)
6
7
8
9

visited[i] = 1
FindEquiClasses(classes, equiMatriz, visited, i,n)
end if
end if
10: end for
11: end function

Exon edge offsets calculation

Because we assume that the exons in the same group are transcribed from the same region in the reference, we
can also assume that all of the exons in the group should have identical start and end locations. Correctly aligned
exons in a group facilitate correct identification of start and end location for the whole group. Exons from the group
that have alignment errors and do not have start or end location identical to group’s start or end location are then
corrected by modifying their start or end locations in the Exon adjustment step.

Algorithm 6 Find Exons Offsets

1: function FINDEXONOFFSETS(readGroups, reference, alignments)
2 for readGroup in readGroups do
3 exons = [|
4 listOf ExonGroups = groupEzons(readGroup, reference, alignments)
5: for exonGroup in listOf ExonGroups do
6 if listO f ExonGroups.size() /readGroup.size() < 0.1 then
7 continue
8 end if
9: (startCandidates, endCandidates) = find EdgeCandidates(exonGroup)
10: for exon in exonGroup do
11: startDistance = coverageSize
12: startOf fset =0
13: for candidate in startCandidates do
14: distance = abs(candidate — exon.start)
15: if distance < startDistance then
16: startDistance = distance
Ly startOf fset = candidate
18: end if
19: end for
20: endOf fset = > Same for end Offset
21: exon.startOf fst = startOf fset
22: exon.endOf fset = endO f fset
23: end for
24: exons.add(exonGroup)
25: end for
26: end for
T return (exons)

28: end function

The process of determining group’s start and end location is shown in algorithms 6 and 7. For every group of
exons that contains exons from at least 10% of reads in the analysed group of reads, the candidate start and end
locations for whole group are determined. As shown in algorithm 7, for some exon group two coverage arrays are
constructed using the following procedure:

https://doi.org/10.1101/720458
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/720458; this version posted July 30, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

Algorithm 7 Find Exon Edges Candidates

1: function FINDEQUICLASSES(ezonGroup)

2 coverageSize = maxzLocation(exonGroup) — minLocation(exonGroup)
3 coverageStart Array = [coverageSize]

4 coverageEndArray = [coverageSize]

5: for exon in exonGroup do
6

7
8
9

coverageStart Arraylexon.start]+ =1
coverageEndArraylezon.stop|+ = 1

end for
: startCandidates = ||
10: endCandidates = ||
11: for ¢ in [0..coverageSize| do
12: if coverageStart[i| > 0.2 then
13: startCandidates.append(i)
14: end if
15: if coverageEnd[i] > 0.2 then
16: endCandidates.append (i)
17: end if
18: end for
19: return (startCandidates, endCandidates)

20: end function

for every exon e; € E in the group of exons g, € G of group of reads R where i € {1... m} and |E|=m, and
|R| =1 we denote

valStart(e,(start)) =1, (5)
valEnd(e(end)) =1, (6)

for every location j € {s,... e} in the reference genome, where s is the start location on the reference of the left
most exon in the group, and e is the end location on the reference of the most right exon in the group.

The start and end coverage of the location ; in the group of exons is defined as:

m
coverageStart(j) = Y valStart(start(e;)), Vj € {S,... E} @)
i=1

m
coverageEnd(j) = Y valEnd(end(e,)), Vj € {S,... E} ®)
i=1
From these values start and end coverage arrays are constructed and used to determine candidates for start and
end locations of all exons in the group. All locations in these coverage arrays that satisfy

coverageStart(j)/l > 0.2 or coverageEnd(j)/l > 0.2)

are chosen as exon start and end location candidates. Multiple candidates are chosen because certain groups can
contain exons that are transcribed from more than one transcript with similar, but not identical start and end
locations on the reference. This is why every group is assigned a set of possible candidates of start and end locations
for the whole group.

Finally, as shown in algorithm 6, using start and end location candidates, start and end offsets are calculated for
every exon in the group. These offsets represent the number of bases that need to be added or removed from the
start/end of the exon so that its start/end is equal to one of the start/end candidate locations previously found for the
whole exon group. A start/end candidate location, with the shortest distance to the current exon’s start/end location,
is chosen as the desired start/end location for that exon and is used to calculate start/end offset for that exon which is
then used in Exon adjustment step to modify exons start and end location.

https://doi.org/10.1101/720458
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/720458; this version posted July 30, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

Exon adjustment

right exon

left exon read <\ left exon

|
|
T
I
I
1

left exon desired reference length

/9 right exon read
:
! left offset é/:/ - \I

right offset _ reference

merged reference @ alignment

merged read | left exon desired reference length |
left part of the alignment is cut and
used as left exon alignment

Figure 2. Exon edges adjustment

Figure 2 shows the simplified process of adjusting the alignments of two neighbouring exons using /left offset
value and right offset value calculated in the previous exon edge offsets calculation step. More specifically, right
edge of the left observed exon and left edge of the right observed exon are adjusted. Reference components of the
two observed exons are merged omitting the gap between the exons. Left exon’s reference component is trimmed or

Algorithm 8 Adjust Read Exons

1: function ADJUSTREADSEXONS(reads, reference, alignments)
2 exons = findExzonO f fsets(reads, reference, alignments)
3 alignment = (|

4 for read in reads do

5: exonsForRead = getExonsFor Read(exons, read)

6

i

8

9

sort Ascending(exons)

previousEzon = exonFor Read|0]

refCut = reference.substr(previous Exon.start, previousEzxon.of fsetedStop)
ref Len = refCut.size()

10: readCut = read.substr(previousExon.readStart, previousEzon.of fseted ReadStop)

11: for i in [1..exonsFor Read.size()] do

12: current Ezon = exonF or Read]i]

13: if current Exon.invalid then

14: readCut+ = read.substr(current Exon.readStart, current Ezon.readStop)

15: else

16: refCut+ = reference.substr(current Exon.of fsetedStart, current Exont.of fsetedStop)
17: readCut+ = read.substr(currentExon.of f seted ReadStart, currentEzon.of f seted ReadStop)
18: tmpAlignment = Align(refCut, readCut)

19: (left,right) = Split Alignment(tmpAlignment,ref Len)

20: alignment.add(le ft)

21: previousEzxon = current Exon

22: refCut = reference.substr(previousEzon.of f setedStart, previousEzon.of fsetedStop)
23: refLen = refCut.size()

24: readCut = read.substr(previousEzon.of fsetedStart, previous Exon.of f seted ReadStop)
25: end if

26: end for

27: end for

28: return adjusted Alignment

20: end function

https://doi.org/10.1101/720458
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/720458; this version posted July 30, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

extended on it’s right edge by right offset number of bases, and right exon’s reference component is trimmed or
extended on it’s left edge by /left offset number of bases. The resulting merged reference component is then aligned
with the read component, created by simply merging both read components of the two observed exons. The resulting
alignment is then split into two parts using left exon desired reference length which is the previous length of left
exon’s reference component subtracted by that exon’s right offset value. The left part of the alignment is cut so that
it’s reference component has left exon desired reference length and it is used as the left exon alignment.

Algorithm 8 shows the general outline of the exon adjustment implementation. With complete exon grouping
and adjustment procedure, a great number of reads is improved by using the fact that high number of previously
generated alignments is correctly aligned and can be used to improve same-transcript reads with alignment errors.

Alignment scoring

When making alignment modifications in Alignment tuning phase or Exon grouping and modification phase, the
resulting alignments are compared to the alignments from the previous phase. When comparing two alignments, for
both alignments, the E-value is calculated with parameters used in [7]: match =5, mismatch = -4, gapopen = -8 and
gapextend = -6, and, if the difference between two E-values is greater than 0.05, or if the read is not spliced, the
alignment with the greater E-value is chosen as the final alignment. If the absolute difference between E-values of
two spliced alignments is less than 0.05, which means that two alignments are of almost equal quality, the quality of
the edges of the exons in the alignments is further analysed. Because in most cases alignments’ errors are located at
the edges of exons, the alignments’ exon edges are scored by calculating matches values with parameters: match =
5, any other error = -4. The edge of an exon has experimentally been set to length 10. The higher scored alignment is
chosen as the final alignment of the read.

All the improvements described in this chapter affect alignments of reads that are usually close to being fully
correct or miss one or two exons. By applying these improvements we achieve high precision and sensitivity of the
Graphmap?2 tool, which outperforms other existing RNA mapping tools on majority of datasets. The evaluation of
the Graphmap2 performance is given in the next chapter.

m. RESULTS

Graphmap2 was compared to two best performing RNA seq mappers evaluated in [3], Minimap2 and GMAP.
Minimap2 was downloaded from https://github.com/lh3/minimap2 (v2.17), while GMAP (version 2019-06-10) was
downloaded from http://research-pub.gene.com/gmap/. All three tools were evaluated on 7 different datasets which
contain reads sequenced by third generation sequencers. Four datasets are synthetic, created from the following
organisms: (1) Saccharomyces cerevisiac S288 (baker’s yeast), (2) Drosophila melanogaster r6 (fruit fly) and (3)
Homo Sapiens GRCh38.p7 (human). Three synthetic datasets simulate reads generated by PacBio sequencers, while
the fourth dataset simulates reads generated by ONT sequencers. Synthetic datasets are the ones used in [4].
Remaining three datasets are real datasets of Drosophila melanogaster, with two of them being produced by PacBio
sequencers and one produced by ONT sequencers.

When finding the origin of transcription of RNA reads by aligning them to a reference genome, there are two
main goals that need to be achieved: (1) generated alignment needs to be precise up to a single nucleotide base, (2)
all of the exons of the RNA read need to be found. The first goal is important because a miss of a single nucleotide
can implicate a completely different protein coded from that RNA molecule, while not meeting the second goal can
lead to misinterpretation of the gene expressed by mapped RNA molecule. To measure the quality of achieving
these goals the alignments generated by all three tools were compared to annotations used in [3] where the starting
and ending positions of each exon in the alignment were compared to starting and ending positions of exons in the
annotation. The reads whose alignment has the same number of exons as the corresponding annotation and has all of
its exons overlapped with the corresponding exons in the annotation by at least one nucleotide, were denoted as
hit-all reads. Furthermore, the reads that are denoted as hit-all read, but also satisfied next condition:

|startahgn —start,,, | <val and |endahgn —end,, |<val, Ve(startalign, endahgn, start,, .. end,)€ E (10)
were denoted as correct reads, where the E is the set of exons in the alignment, start ., and endalign are the

starting and ending reference positions of the exon e in the alignment and start,,, . and end,, . are the starting and

ending reference positions of the exon e in the corresponding annotation. The specific correct measure depends on

10

https://github.com/lh3/minimap2
http://research-pub.gene.com/gmap/
https://doi.org/10.1101/720458
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/720458; this version posted July 30, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

the chosen value val. In this paper we present the evaluation of the tools using two correct measures: (1) correct-0
for val =0, and (2) correct-5 for val = 5. The first, correct-0 measure is used to evaluate how well tools find reads
that are fully correct, up to a single nucleotide, while the second measure, correct-3, is used to evaluate if the tools
align reads correctly but are not completely precise, with a few bases off. For three measures defined previously:
hit-all, correct-0 and correct-5, the precision is calculated as the number of reads satisfying the measure divided by
the number of aligned reads and recall is calculated as the number of reads satisfying the measure divided by the
total number of reads. Finally, the F-value is calculated as

F= Z*Erecision*recall) (1 1)

precisiontrecall

Table 1. Results of evaluation of three best performing RNA-seq mapping tools

No.of Number Precision Recall F-value Hit all Hit all Hit all
reads of aligned correct-0 correct- correct- precision recall F-value
reads 0 0

Dataset 1
Gmap 185021 143405 47.71% 36.98% 41.67% 97.19% 75.33% 84.88%
Minimap2 185021 174682 52.17% 49.25% 50.67% 97.41% 91.96% 94.61%
Graphmap2 | 185021 181507 51.33% 50.35% 50.83% 97.56% 95.71% 96.63%
Dataset 2
Gmap 411920 331224 40.52% 32.59% 36.12% 88.71% 71.33% 79.07%
Minimap2 411920 399449 31.06% 30.12% 30.59% 88.75% 86.07% 87.39%
Graphmap2 | 411920 408372 43.54% 43.16% 43.35% 91.12% 90.33% 90.72%
Dataset 3
Gmap 84007 63321 37.67% 28.39% 32.38% 83.52% 62.96% 71.80%
Minimap2 84007 77968 28.48% 2643% 27.42% 78.83% 73.17% 75.89%
Graphmap2 | 84007 82248 35.14% 3440% 34.77% 7897% 77.32% 78.14%
Dataset 4
Gmap 342566 325080 13.17% 12.49% 12.82% 84.82% 80.49% 82.60%
Minimap2 342566 336549 22.30% 2191% 22.11% 88.95% 87.39% 88.16%
Graphmap?2 | 342566 341236 33.54% 33.41% 33.47% 92.87% 92.51% 92.69%
Dataset 5
Gmap 192450 148576 34.91% 26.95% 30.42% - - -
Minimap2 192450 181186 23.08% 21.73% 22.39% - - -
Graphmap2 | 192450 186885 34.20% 33.22% 33.70% - - -
Dataset 6
Gmap 243499 198281 21.17% 17.24% 19.00% - - -
Minimap2 243499 232116 23.52% 2242% 22.95% - - -
Graphmap?2 | 243499 238891 36.97% 36.27% 36.61% - - -
Dataset 7
Gmap 40318 37249 19.02% 17.57% 18.27% - - -
Minimap2 40318 39819 18.63% 18.40% 18.51% - - -
Graphmap2 | 40318 39767 26.52% 26.16% 26.34% - - -

Table 1 shows the result of the evaluation on all seven datasets with their F-value for correct-0 measure and
hit-all measure results. Hit-all measure was calculated only for synthetic datasets because for real datasets we cannot
know the exact origin of the read and cannot determine the exons from the associated annotation that need to be hit
by the read’s alignment. We can see that Graphmap?2 is the most sensitive tool and has the best results in both
correct-0 measure across four simulated datasets. Because of the strict condition for an alignment to be correct-0
(0-bp distance from the expected location) the values of correct-0 measure are low across all datasets, but
Graphmap?2 is the only tool that has recall for correct-0 measure above 30% for 6 out of 7 datasets. Supplementary

11

https://doi.org/10.1101/720458
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/720458; this version posted July 30, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

Table 1 shows that Graphmap2 also achieves the best results for correct-5 measure, having the highest number of
reads aligned with almost fully correct alignments. Except for the GMAP results for dataset2, all the tools have
hit-all measure higher than 70%. This is why there are no great differences between #if-all measure results. Still,
Graphmap has the best precision and recall results for hit-all measure across all datasets, finding the highest number
of alignments with all exons hit. We can see that the Graphmap?2 is the only tool that consistently achieves good
results in correct-0 and hit-all measures at the same time, thus the most consistently maps reads correctly and with
all exons hit at the same time.

Table 2 shows the execution time in seconds for the three tools for every tested dataset. The testing was done by
executing tools using 12 threads on a computer with 12 processor cores. It is clear that Minimap2 is the fastest tool
(9 to 40x faster than Graphmap2). GMAP shows to be the slowest tool being 3-7 times slower than Graphmap?2.
Since Graphmap2 achieves high sensitivity by mapping reads in three phases and executes Exon extending and Exon
adjustment steps which also calculates exact alignment of read parts, it is expected not to be as fast as Minimap2.
Graphmap2s’ speed greatly suffers because of its’ high sensitivity which was the main focus of Graphmap2
development. However, there is always room for further research in how to improve Graphmap2s’ speed while
retaining the sensitivity. As correctness of sequenced reads improves, a stricter anchor filtering could potentially
lead to faster execution time.

Table 2 - Execution time in seconds

Tools Dataset1 Dataset2 Dataset3 Dataset4 Dataset5 Dataset6 Dataset7
GMAP 6675 11093 1334 13535 11615 15945 2012
Minimap2 24 142 45 140 186 146 28

Graphmap2 904 3242 488 3411 1946 1783 262

Iv. PREVIOUSLY UNKNOWN GENE IDENTIFICATION

In this chapter we present the analysis of Graphmap2’s ability to find mappings of yet unidentified genes. To
confirm the existence of new found genes, we analysed alignments produced by the three tools used in the
evaluation. In this analysis we used the three real datasets and the alignments that didn’t match any known
annotation. To remove as much coincidence as possible, this analysis was done highly conservatively and the
alignments that did not overlap along at least 50% of their length with any other alignment were also left out of the
analysis. This was done because the mapping of at least two reads onto the same region on the reference suggests
that that region could be a new gene and not a coincidence. The alignments used in this analysis are denoted as
gene-candidate alignments. Supplementary Table 2 shows the statistics of these alignments for three tools and three
real datasets: (1) total number of reads with gene-candidate alignments, (2) number of spliced alignments, (3)
number of spliced alignments containing at least one pair of two neighbouring exons e; and e, denoted as

gene-identifying exons where e, exon ends right next to GT (CT) splice site and €41y ©Xon starts right after AG

(AC) splice site, (4) total number of neighbouring exons in the alignments and (5) total number of introns contained
among gene-candidate alignments. Around 1000 reads for datasets 5 and 6 and more than 5000 reads for dataset 7
were found to have gene-candidate alignments, with 25%-50% of those being spliced alignments. These spliced
alignments are important because they can be used in analysis of donor and acceptor splice sites at intron ends.
Between 40% and 45% of spliced gene-candidate alignments have at least one pair of gene-identifying exons which
is important evidence supporting the claim that gene-candidate alignments are correctly mapped to reference regions
representing new found genes.

12

https://doi.org/10.1101/720458
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/720458; this version posted July 30, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

Graphmap?2
3 a Minimap2
35
38
46 46
57
52
18
o6 96 12
24 oo
a2
32

GMAP

130 I:I Dataset §

17 22

Figure 3. Overlapping of reads whose alignments did not hit an annotation among tools

Gene-candidate alignments were further analyzed. Since we presume that overlapping reads identify the same
gene, we construct a gene-candidate region as a union of mutually overlapping alignments, grouped similarly as in
Graphmap2’s Exon grouping step. We analysed gene-candidate regions that contained at least two reads and had at
least one read whose alignment contained at least one pair of gene-identifying exons.

Figure 3 shows the overlapping of gene-candidate regions with at least one pair of gene-identifying exons across
three real datasets for all three tools. Graphmap2 has the highest number of gene-identifying regions found in all
three datasets. These values show that even though datasets were sequenced with different sequencing technologies
they contain reads whose alignments map on the same regions which are yet not found in annotations, furthermore
strengthening the idea that newfound genes can be identified by Graphmap?2.

Figure 4 shows the number of these regions for three real datasets and the overlapping of regions found by three
tools used in analysis. We can see that tools identified between 59 to 71 gene-candidate regions for dataset 5, 74 to
116 regions for dataset 6 and 32 to 36 regions for dataset 7, with about 40% to 60% of regions found by at least two
tools. GMAP identified the most regions that don’t overlap with any of the regions produced by Minimap2 and
Graphmap2 which suggest that GMAP produces the highest number of false positive regions, especially on datasets
6 and 7. Graphmap2 and Minimap2 have higher number of overlapping gene-candidate regions than either tool has
with GMAP for datasets 5 and 6 which suggest that these two tools might identify previously unknown genes with
higher accuracy than GMAP. High number of overlapping gene-candidate regions with gene-identifying exons
confirms the hypothesis that previously unknown gene can be detected using long reads and splice-aware mappers.

13

https://doi.org/10.1101/720458
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/720458; this version posted July 30, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

Datasat &

Dataset 6
41
41
54 7T
63 74
24
23
32
31 31 33
71
116
Datassat ¥
20

Graphmap2

36 - |:| phmap
GMAP

" []

21

Figure 4. Overlapping of reads whose alignments did not hit an annotation among datasets

V. PREVIOUSLY UNKNOWN ISOFORM IDENTIFICATION

Aside from detecting new genes with no known annotations, we have also tried to discover new isoforms in
regions where annotations are already known. Isoform detection was done using newest version of our evaluation
tool RNAseqEval (https:/github.com/lIbcb-sci/RNAsegEval). During the regular evaluation process, a set of
candidate annotations is constructed for each alignment, consisting of all annotations that overlap the alignment.
From the set of candidate annotations, a best match_annotation is chosen based on the number of nucleotides from
the alignment that fall inside and outside of each candidate annotation. New isoforms are calculated only for those
alignments that do not perfectly match the best_match_annotation. New isoforms are created using two methods: by
combining existing annotations and by skipping small introns. Both methods are explained in detail on the
RNAseqEval GitHub page. After all new isoforms are determined, they are evaluated, collected and mutually
compared. Only isoforms that result in completely correct alignment and are supported by a minimum number of
reads (currently set to 3) are reported.

The number of new isoforms discovered from alignments for each tool and dataset can be seen in Figure 5. We
can see that Dataset 5, containing PacBio ROI reads with the lowest error rate, produces the highest number of new
isoforms. Dataset 6 contains PacBio subreads with slightly higher error rate, resulting in a slightly lower number of
new isoforms. Finally, Dataset 7 contains ONT reads with the highest error rate producing by far the smallest
number of new isoforms. We can see that the number of reported potentially new isoforms directly depends on the
error rate. Since potentially newfound isoforms were reported only if they produced completely correct alignments,
we can conclude that higher error rate in Dataset 7 prevented new isoforms perfectly matching the alignments and

14

https://github.com/lbcb-sci/RNAseqEval
https://doi.org/10.1101/720458
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/720458; this version posted July 30, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

resulting in a very small number of reported newfound isoforms. It could also be concluded that lowering the error
rate to suitable levels is very important for accurately determining new isoforms in this way.

Similar analysis can be made by looking at the results for each mapping tool. According to the results shown in
Table 2, Graphmap2 maps the most reads and with the highest precision, compared to Minimap2 and GMAP. From
Figure 5 we can also see that Graphmap2 produces the highest number of potentially new isoforms, with GMAP
having the lowest mappability and producing the least potentially new isoforms. We can also see that a relatively
small portion of determined transcripts is shared between mappers, suggesting a large number of false positives.
However, Graphmap2 and Minimap2 reports slightly more transcripts shared with other mappers than GMAP. This
is in accordance with the results for previously unknown gene identification.

Dataset 5

Dataset 6
55 174
SMAP =
Graphmap2 G Graphmap?
247
33 192 217
45 <
50 34 32
GMAP
213 178
Dataset 7
13 5 13
Graphmap?2
7l
3 2
GMAP
10

Figure 5. Overlapping of potentially new transcripts among mappers for each dataset

Due to very small number of newly reported isoforms, Dataset 7 was not considered further, but for Datasets 5 and
6, overlapping of potentially new isoforms was determined for each mapper. The results are shown in Figure 6.
Graphmap?2 reports more newfound isoforms than Minimap2 and GMAP. Looking at datasets 5 and 6, each mapper
produces a relatively large number of potential new isoforms, but only 10-20% of those were produced by all three
mappers. We can conclude that analyzing new isoforms from mapping data shows interesting and promising results,
but requires more work to make the results more reliable. Reported isoforms that are produced by all three mappers
could be high confidence candidates suitable for further analysis.

15

https://doi.org/10.1101/720458
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/720458; this version posted July 30, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

Graphmap2 Minimap2
247 217 213 192
51 39
Dataset 5 Dataset 5
GMAP
174 178
Dataset 5 -

Figure 6. Overlapping of potentially new isoforms for each mapper

VI. CoNCLUSION

Graphmap2 is an extended version of Graphmap, a highly sensitive tool for mapping reads to a reference
genome, tailored for RNA reads. Graphmap2 creates read alignment from anchors filtered by the knapsack
algorithm. It implements several alignment improvement methods, specific to RNA reads. The collective coverage
information of read alignments is used to improve correctness of alignments with lower quality. Biological
properties such as AG-GT donor-acceptor splice sites as well as recognition of poly(A) tail, are used to further
improve the alignment.

All these improvements make Graphmap2 the very sensitive and accurate tool for RNA mapping. Evaluation on
seven third-generation sequencing datasets showed that Graphmap?2 has significantly higher correct measures than
Minimap2 and Gmap for all datasets. Results also show that Graphmap2 is faster than Gmap but slower than
Minimap2. Since Graphmap2 is based on original mapping algorithms from Graphmap optimized for earlier
generation of long reads that have much higher error rate. We deem that with a less sensitive mapper we can achieve
running times comparable with Minimap2 while keeping high accuracy of algorithms for the identification of exons
present in transcripts and their boundaries.

Finally, we have shown that both Graphmap2 and Minimap2 have high potential in identifying previously
unknown genes and isoforms. With high number of reads mapped to the same reference region by Graphmap2 and
Minimap2 for which no previous annotation exists, as well as high number of donor-acceptor splice sites in
alignments of these reads, Graphmap2 alignments provide indication that these alignments could belong to
previously unknown genes. Similarly, results show that long reads have high potential for identification of
previously unknown isoforms.

16

https://doi.org/10.1101/720458
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/720458; this version posted July 30, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

LITERATURE

[1] Jain, M., Olsen, H. E., Paten, B., & Akeson, M. (2016). The Oxford Nanopore MinION: delivery of nanopore sequencing to
the genomics community. Genome Biology, 17(1), 239. https://doi.org/10.1186/s13059-016-1103-0

[2] Rhoads, A., & Au, K. F. (2015). PacBio Sequencing and Its Applications. Genomics, Proteomics & Bioinformatics, 13(5),
278-289. bnps.zzdm.gtgﬂil.lﬂ_lﬁll.QBB..ZQLiD&DQZ

[3] Wenger, A. M., Peluso, P., Rowell, W. J., Chang, P.-C., Hall, R. J., Concepcion, G. T., ... Hunkapiller, M. W. (2019).
Highly-accurate long-read sequencing improves variant detection and assembly of a human genome. BioRxiv, 519025.
https://doi.org/10.1101/519025

[4] Krizanovi¢, K., Echchiki, A., Roux, J., & Siki¢, M. (2018). Evaluation of tools for long read RNA-seq splice-aware
allgnment Bzomformancv 34(5) 748-754. https://doi.org/10 (293[b]meh]:ma];]g:sszxﬁﬁﬁ

[5] -en/S6-gmap-vs-

[6] Wu, T. D., & Watanabe, C. K. (2005). GMAP: a genomic mapping and alignment program for nRNA and EST sequences.
Blomformatlcs 21(9), 1859-1875. https://doi.org/10.1093/bioinformatics/bti3 10

[71 Li, H. (2018). Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 34(18), 3094-3100.
https=//doi 0.109%/bioinf cs/biv]S

[8] Sovié, I, Siki¢, M., Wilm, A., Fenlon, S. N., Chen, S., & Nagarajan, N. (2016). Fast and sensitive mapping of nanopore
sequencing reads with GraphMap. Nature Communications, 7(1), 11307. https://doi.org/10.1038/ncomms11307

[9] Sosic, M., & Sikic, M. (2017). Edlib: a C/C ++ library for fast, exact sequence alignment using edit distance.
Bioinformatics (Oxford, England), 33(9), 1394—1395. https://doi.org/10.1093/bioinformatics/btw753

[10] Paveti¢, F., Katani¢, 1., Matula, G., Zuzi¢, G., & Siki¢, M. (2017). Fast and simple algorithms for computing both
$LCS {k}$ and SLCS_{k+}$. Retrieved from http://arxiv.org/abs/1705.07279

[11] https://github.com/Ih3/ksw2

17

https://doi.org/10.1186/s13059-016-1103-0
https://doi.org/10.1016/J.GPB.2015.08.002
https://doi.org/10.1093/bioinformatics/btx668
http://bioinfo.zesoi.fer.hr/index.php/en/blog-en/56-gmap-vs-minimap2
https://doi.org/10.1093/bioinformatics/bti310
https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.1038/ncomms11307
https://github.com/lh3/ksw2
https://doi.org/10.1101/720458
http://creativecommons.org/licenses/by-nc/4.0/

