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Abstract  

In this paper we present Graphmap2, a splice-aware mapper built on our previously developed DNA mapper                
Graphmap. Graphmap2 is tailored for long reads produced by Pacific Biosciences and Oxford Nanopore devices. It                
uses several newly developed algorithms which enable higher precision and recall of correctly detected transcripts               
and exon boundaries. We compared its performance with the state-of-the-art tools Minimap2 and Gmap. On both                
simulated and real datasets Graphmap2 achieves higher mappability and more correctly recognized exons and their               
ends. In addition we present an analysis of potential of splice aware mappers and long reads for the identification of                    
previously unknown isoforms and even genes. The Graphmap2 tool is publicly available at             
https://github.com/lbcb-sci/graphmap2​.  

Keywords ​-​ ​splice-aware alignment, long reads, isoforms, exons  

I. INTRODUCTION 
The advances in sequencing technology, achieved by companies such as Oxford Nanopore technologies (ONT)              

[1] and Pacific Biosciences (PacBio) [2] resulted in production of long reads with over 10 kbp in length. Initially,                   
such long reads had very high error rate which has steadily declined and the last generation of PacBio devices                   
produce reads comparable in accuracy to Illumina short reads [3]. In addition, ONT has recently announced new                 
R10 pores and their, in house, results are promising. Although in the field of RNA-seq short reads are still                   
predominantly used, there is a need for longer reads which help in detection and quantification of isoforms.                 
Algorithmically, mapping RNA-seq reads to known transcripts is equivalent to mapping DNA reads. Yet, mapping               
these reads to eukaryotic genomes is more complex due to RNA splicing. There are several RNA-seq splice-aware                 
mapping tools developed for long reads produced by third generation sequencing technologies. An evaluation of               
these tools was given in [4] and [5], with GMAP [6] and Minimap2 [7] being the best performing tools. However,                    
there is still room for improvement, especially in correctly aligning exon edges and finding all exons in transcripts -                   
especially shorter exons.  

In this work we present Graphmap2, an extended version of the Graphmap tool. Graphmap is a highly sensitive                  
tool for mapping DNA reads to a reference genome, and we have extended it with the ability to map RNA reads.                     
This extended version uses the same five-stage ‘read-funneling’ approach as the initial version [8] and adds                
upgrades specific for mapping RNA reads. The performance and accuracy of Graphmap2 was evaluated on               
simulated and real datasets and the results were compared to the state-of-the-art RNA mapping tools. In addition we                  
analysed identification of potentially new isoforms and genes using long reads. 
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II. METHODS 
Figure 1 shows the complete process of aligning RNA reads to a reference genome. We can divide the original                   

Graphmap mapping method into two stages; the first stage includes finding candidate positions on the reference                
genome using short seeds, and the second stage calculates the exact alignment of reads using Edlib - a fast                   
implementation of Myers’ bit-vector algorithm [9]. The first stage which includes steps: (i) ​region selection ​, (ii)                
graph mapping and (iii) ​longest common subsequence in k length substrings (LCSk) ​[10] is kept in Graphmap2. For                  
every read in the input dataset, this stage produces a set of approximate matches between parts of the read and parts                     
of the reference. These matches are represented by anchors, where every anchor consists of start and end locations                  
on the read, and start and end locations on the reference in that match. Graphmap2 then proceeds by extending the                    
workflow with the following stages: (iv) anchor filtering (knapsack), (v) anchor alignment, (vi) alignment tuning               
and (vii) exon grouping and adjustment. In the ​anchor filtering step ​, Graphmap2 then uses a variation of the                  
knapsack algorithm to find the optimal set of anchors and then uses KSW2 [11] aligner to perform piecewise affine                   
gapped alignment between these anchors producing ​first-phase ​alignments. These alignments are then processed in 

Figure 1. Graphmap2 read alignment process 
 

the ​Exon extending and ​Exon boundaries adjustment steps which improve the quality of the ​first-phase alignments.                
Improved alignments are then split into exons which are further grouped and modified in Exon grouping and                 
adjustment ​phase. Exons are grouped based on their position on the reference genome in order to group together                  
exons transcribed from the same transcript. Exon groups are analysed and modified in ​Exon offset calculation ​and                 
Exon adjustment steps. ​Exon offset calculation step calculates the correct start and end locations for all exons in the                   
same group, for every group of exons. In ​Exon adjustment step incorrect exon’s starting or ending locations are                  
adjusted to match previously calculated start and end locations of the whole group. ​Exon adjustment phase produces                 
final alignments which are the output of the Graphmap2 tool. 

Candidate positions selection 
Anchor filtering 

After completing the ​LCSk step of the Graphmap algorithm, produced anchors are then processed in order to                 
obtain the optimal set of resulting anchors that are used to construct the alignment. If we denote reference starting                   
and ending location in an anchor as and respectively, and query starting and ending location as and       xs  xe          ys   ye  
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respectively, we can consider every anchor as a two-dimensional line where the starting point of the line is                 (x , )T s s ys  
and ending point is . Also, every anchor has its fitness , which in the simplest form is the number of    (x , )T e e ye        f           
bases covered by the anchor. We can formalize the problem of finding the optimal set of anchors as follows: from d                     
the set  of anchors, , we want to find an optimal set of  anchorsC N T , T , d ) C i = ( si  ei  i ∈ C k   

 (T , T , d ), (T , T , d ), ..C ′ = { s1  e1  1  s2  e2  2 . T , T , d )}, C  , ( sk  ek  k  ′ ⊆ C   

where , ,..., ,T e1 ≤ T s2 T e2 ≤ T s3 T e(k−1) ≤ T sk           (1) 

and try to .aximisem ∑
k

i=1
di           (2) 

The problem defined in this way is equivalent to 0-1 knapsack problem and we can use the same algorithm to                    
solve it. 0-1 knapsack problem can be described as: for a given set of elements, where every element has its              E  N     e    
weight and fitness , and with a limit on maximum weight T, we need to find whose sum of weights is w   f              E′ ⊆ E       
not greater than T, and whose sum of fitnesses has maximum value, or formally: 

, with condition aximise xm ∑
N

i=1
f i i , x 0, }.∑

N

i=1
wi · xi < T  i ∈ { 1             (3) 

For the current set of anchors, the weight of the element is the length of query in the anchor , while the                   ||ye − ys    
fitness of the anchor is the number of covered bases . The total weight T is the total length of the processed read.          d              
By solving this optimisation problem and finding we find the resulting set of anchors that construct       0, }xi..N ∈ { 1          
the reads’ alignment. Since Graphmap maps reads to both the original reference sequence and its reverse                
complement, this algorithm finds the optimal set of anchors regardless of the strand of the alignment.  

With this algorithm we expect to find the optimal set of anchors which are used to generate the alignment of the                     
read, regardless of their distance on the reference i.e. the gap between the anchors. The process of alignment is                   
performed using the KSW2 aligner which aligns two adjacent anchors with a possible gap between them. For two                  
adjacent anchors and the  T (x , ), T (x , ))C i = ( si si ysi  ei ei yei   T (x , ), T (x , ))C i+1 = ( s(i+1) s(i+1) ys(i+1)  e(i+1) e(i+1) ye(i+1)   
alignment is generated with KSW2 for the subset of read and the subset of reference . ai           y , y ][ si  e(I+1)       x , x ][ si  e(I+1)  
The portion of the alignment that corresponds to the subset of read [ ] is then extracted and appended to     ai         , yysi  s(i+1)        
the resulting alignment. 

Because of high error rate generated by third generation sequencers, the optimal set of anchors can still fail to                   
cover all of the exons of the read or can often have errors at the ends of gaps in the alignment. This is why we                         
introduce several methods that try to improve alignments generated by the anchor alignment step. They are                
described in the following chapters.  

Alignment tuning 
Exon extending 

Because a different set of exons can identify different gene expression, it is important that alignment of RNA                  
reads contains all exons from that read correctly identified. Since some alignments tend to lose an exon because of                   
errors at edges of the read, we have implemented a tuning method that tries to align clipped ending of a read to the                       
reference. The clipped part of the read is aligned to reference and if the alignment of that clipped part of the read                      
contains no more than 15% of deletions, insertions or substitutions, it is considered as a new found exon and it is                     
appended to the alignment. Before aligning clipped parts of the reads, poly(A) tail identification is conducted first. If                  
the clipped part of the read is identified as a poly(A) sequence, it is not further analyzed. 

Algorithm 1 shows the process of improving an alignment by aligning edges of reads that have been marked as                   
clipped after ​Anchor alignment ​step. The unaligned portions at the beginning or the end of a read are denoted as                    
unaligned edges ​. If an ​unaligned edge is at the end of the read, we first check if the unaligned edge contains a poly                       
A tail, and if so, the edge is not processed any further. After that, the reference region, with length ​windowLength ​,                    
whose one end corresponds to the end of the edge of the read is found. The ​windowLength was experimentally set to                     
8000. The edge of the read is then aligned to the reference region and the resulting alignment, denoted as ​edge                    
alignment is processed further. The first occurred exon (its alignment) found in the edge alignment is extracted, and                  
if its length is greater than the kmer length (original Graphmap parameter) and its alignment identity is at least 85%,                    
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it is appended to the original alignment. If the found exon is not on the starting position of the edge alignment, a gap,                       
of length equal to the starting position of the exon in the edge alignment, is added to the original alignment. 

Exon boundaries adjustment 

Because single base precision is important for RNA mapping, we have implemented an algorithm the improves                
exon boundaries using the information about donor-acceptor splice sites. Introns usually have two distinct              
nucleotides at either end: GT at the 5' end (CT for reversed strand) and AG at the 3' end (AC for reversed strand).                       
These nucleotides are a part of splicing sites. Since there is a high probability that introns should begin and end with                     
these bases, for every read with spliced alignment, every two neighbouring exons in the alignment are             and eei (i+1)      
analysed. If bases GT (CT) are found somewhere around the end of exon , up to 5 bases left or right on the             ei           
reference, and if bases AG (AC) are found somewhere around the start of the exon , up to 5 bases left or right              e (i+1)         
on the reference, the alignment is modified so that exon ends exactly next to AG (AC) and exon starts          ei        e (i+1)  
exactly after GT (CT) splice sites. This procedure is presented in Algorithm 2. 
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Exon grouping and adjustment 
Exon grouping 

As already mentioned, ​first-phase ​alignments are created from anchors using KSW2. The most common errors               
that occur in alignments produced by the ​anchor alignment step are: (1) false exon, (2) missed exon and (3)                   
incorrect intron ends. False exon error occurs when two parts of a read that belong to a single exon and should be                      
aligned together are aligned separately. Missed exon error is an error where two parts of a read that belong to                    
separate exons and should be aligned separately, are aligned together. Wrong intron ends error occurs when a part of                   
a read belonging to one exon is aligned as the edge of another exon. These errors usually occur due to sequencing                     

errors. 

The ​exon grouping and adjustment ​phase of the Graphmap2 tries to overcome these errors by improving on                 
already calculated alignments. Since it is expected that a number of reads is transcribed from the same region on the                    
reference, some of them might have previously described errors, while others might be correctly aligned. ​Exon                
grouping​ step starts by identifying groups of reads that cover the same transcript location in the reference. 

Reads are placed in the same group if they mutually overlap. Ideally, all the reads in the group should belong to the                      
same transcription region, but this is not always the case. This is why every group is analysed using coverage                   
information for the reads in the group. The coverage information of the group is calculated from their alignments.                  
For every group of alignments we denote the coverage of a single base in the reference as the number of alignments                     
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that contain that reference base. The average coverage of the group is the total number of coverage values of all                    
bases in the reference that are contained in alignments of the group, divided by the number of those bases. If all the                      
alignments in the group are identical, then the average coverage of the group would be equal to the number of reads                     
in the group. The more alignments contain different reference bases, the lower the average coverage of the group.                  
The groups with the average coverage of the group greater than 50% of the number of reads in the group are chosen                      
for the ​Exon adjustment ​ phase. 

For every group of reads their alignments are split into exons by splitting cigar strings by gapped components.                  
Every exon is modeled with: (1) start and stop location on the reference, (2) read id, (3) index of exon in the                      
alignment, (4) cigar string of the exon, (5) ​start offset by which the start location of the exon should be modified and                      
(6) ​end offset by which the end location of the exon should be modified. These exons are then grouped as shown in                      
algorithm 3.  

We define the relation: 

qualT ranscriptExons (e , ) E 1 e2 =  

   bs(start(e ) start(e )) axEdgeDif f  & abs(end(e ) end(e )) maxEdgeDif fa 1 −  2 < m 1 −  2 <            (4) 

where is set of exons for one group of reads and and are two exons from the samee , 1 e2 ∈ Egroup  Egroup           e 1  e 2        
group. 

Two exons whose start and end location don’t differ more than number of bases are in           axEdgeDif fm       
relation and we consider them to be transcribed from the same transcript region. ThequalT ranscriptExonsE                

algorithm 3 finds all equivalence classes of relation thus finding all equivalence groups of        qualT ranscriptExonsE       
exons. It uses equivalence matrix which is a relation matrix and is initialized asEgroup         qualT ranscriptExonsE       

shown in algorithm 4. Parameter ​maxEdgeDiff ​ was experimentally set to 40.  

Using equivalency matrix, we recursively find all groups of exons for current group of reads using algorithm 5.                  
Every group of exons is then analysed in the ​Exon edge offsets calculation ​step. 
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Exon edge offsets calculation 

Because we assume that the exons in the same group are transcribed from the same region in the reference, we                    
can also assume that all of the exons in the group should have identical start and end locations. Correctly aligned                    
exons in a group facilitate correct identification of start and end location for the whole group. Exons from the group                    
that have alignment errors and do not have start or end location identical to group’s start or end location are then                     
corrected by modifying their start or end locations in the ​Exon adjustment ​ step.  

The process of determining group’s start and end location is shown in algorithms 6 and 7. For every group of                    
exons that contains exons from at least 10% of reads in the analysed group of reads, the candidate start and end                     
locations for whole group are determined. As shown in algorithm 7, for some exon group two coverage arrays are                   
constructed using the following procedure: 
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for every exon in the group of exons of group of reads R where and , and   ei ∈ E       gk ∈ G       1... m}i ∈ {   E|| = m   
 we denoteR|| = l  

   ,(start)) valStart(ei = 1           (5) 

    ,(end)) valEnd(ei = 1           (6) 

for every location in the reference genome, where is the start location on the reference of the left   s, .. e}j ∈ { .       s            
most exon in the group, and  is the end location on the reference of the most right exon in the group.e   

The start and end coverage of the location  in the group of exons is defined as:j  

overageStart(j) , ∀j S, .. E}c = ∑
m

i=1
valStart(start(e ))i   ∈ { .          (7) 

   overageEnd(j) , ∀j S, .. E}c = ∑
m

i=1
valEnd(end(e ))i   ∈ { .          (8) 

From these values start and end coverage arrays are constructed and used to determine candidates for start and                  
end locations of all exons in the group. All locations in these coverage arrays that satisfy  

  overageStart(j)/l .2 c > 0 r o overageEnd(j)/l .2c > 0          (9) 

are chosen as exon start and end location candidates. Multiple candidates are chosen because certain groups can                 
contain exons that are transcribed from more than one transcript with similar, but not identical start and end                  
locations on the reference. This is why every group is assigned a set of possible candidates of start and end locations                     
for the whole group.  

Finally, as shown in algorithm 6, using start and end location candidates, start and end offsets are calculated for                   
every exon in the group. These offsets represent the number of bases that need to be added or removed from the                     
start/end of the exon so that its start/end is equal to one of the start/end candidate locations previously found for the                     
whole exon group. A start/end candidate location, with the shortest distance to the current exon’s start/end location,                 
is chosen as the desired start/end location for that exon and is used to calculate start/end offset for that exon which is                      
then used in ​Exon adjustment ​ step to modify exons start and end location. 
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Exon adjustment 

Figure 2. Exon edges adjustment  
 

Figure 2 shows the simplified process of adjusting the alignments of two neighbouring exons using ​left offset                 
value and ​right offset value calculated in the previous ​exon edge offsets calculation step. More specifically, right                 
edge of the left observed exon and left edge of the right observed exon are adjusted. Reference components of the                    
two observed exons are merged omitting the gap between the exons. Left exon’s reference component is trimmed or                  
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extended on it’s right edge by ​right offset number of bases, and right exon’s reference component is trimmed or                   
extended on it’s left edge by ​left offset number of bases. The resulting merged reference component is then aligned                   
with the read component, created by simply merging both read components of the two observed exons. The resulting                  
alignment is then split into two parts using ​left exon desired reference length which is the previous length of left                    
exon’s reference component subtracted by that exon’s ​right offset value. The left part of the alignment is cut so that                    
it’s reference component has ​left exon desired reference length ​and it is used as the left exon alignment.  

Algorithm 8 shows the general outline of the exon adjustment implementation. With complete ​exon grouping               
and adjustment procedure, a great number of reads is improved by using the fact that high number of previously                   
generated alignments is correctly aligned and can be used to improve same-transcript reads with alignment errors. 

Alignment scoring 

When making alignment modifications in ​Alignment tuning phase or ​Exon grouping and modification phase, the               
resulting alignments are compared to the alignments from the previous phase. When comparing two alignments, for                
both alignments, the E-value is calculated with parameters used in [7]: match = 5, mismatch = -4, gapopen = -8 and                     
gapextend = -6, and, if the difference between two E-values is greater than 0.05, or if the read is not spliced, the                      
alignment with the greater E-value is chosen as the final alignment. If the absolute difference between E-values of                  
two spliced alignments is less than 0.05, which means that two alignments are of almost equal quality, the quality of                    
the edges of the exons in the alignments is further analysed. Because in most cases alignments’ errors are located at                    
the edges of exons, the alignments’ exon edges are scored by calculating matches values with parameters: match =                  
5, any other error = -4. The edge of an exon has experimentally been set to length 10. The higher scored alignment is                       
chosen as the final alignment of the read.  

All the improvements described in this chapter affect alignments of reads that are usually close to being fully                  
correct or miss one or two exons. By applying these improvements we achieve high precision and sensitivity of the                   
Graphmap2 tool, which outperforms other existing RNA mapping tools on majority of datasets. The evaluation of                
the Graphmap2 performance is given in the next chapter. 

III. RESULTS 
Graphmap2 was compared to two best performing RNA seq mappers evaluated in [3], Minimap2 and GMAP.                 

Minimap2 was downloaded from ​https://github.com/lh3/minimap2 (v2.17), while GMAP (version 2019-06-10) was           
downloaded from ​http://research-pub.gene.com/gmap/​. All three tools were evaluated on 7 different datasets which             
contain reads sequenced by third generation sequencers. Four datasets are synthetic, created from the following               
organisms: (1) Saccharomyces cerevisiae S288 (baker’s yeast), (2) Drosophila melanogaster r6 (fruit fly) and (3)               
Homo Sapiens GRCh38.p7 (human). Three synthetic datasets simulate reads generated by PacBio sequencers, while              
the fourth dataset simulates reads generated by ONT sequencers. Synthetic datasets are the ones used in [4].                 
Remaining three datasets are real datasets of Drosophila melanogaster, with two of them being produced by PacBio                 
sequencers and one produced by ONT sequencers. 

When finding the origin of transcription of RNA reads by aligning them to a reference genome, there are two                   
main goals that need to be achieved: (1) generated alignment needs to be precise up to a single nucleotide base, (2)                     
all of the exons of the RNA read need to be found. The first goal is important because a miss of a single nucleotide                        
can implicate a completely different protein coded from that RNA molecule, while not meeting the second goal can                  
lead to misinterpretation of the gene expressed by mapped RNA molecule. To measure the quality of achieving                 
these goals the alignments generated by all three tools were compared to annotations used in [3] where the starting                   
and ending positions of each exon in the alignment were compared to starting and ending positions of exons in the                    
annotation. The reads whose alignment has the same number of exons as the corresponding annotation and has all of                   
its exons overlapped with the corresponding exons in the annotation by at least one nucleotide, were denoted as                  
hit-all ​ reads. Furthermore, the reads that are denoted as ​hit-all ​ read, but also satisfied next condition: 

   and ,     (10)start | al| align − startannot < v end | al| align − endannot < v e(start , end , start , end )∀ align  align  annot  annot ∈ E  

were denoted as ​correct reads, where the is the set of exons in the alignment, and are the       E          startalign  endalign   
starting and ending reference positions of the exon in the alignment and and are the starting and        e      startannot  endannot     
ending reference positions of the exon in the corresponding annotation. The specific ​correct measure depends on      e            
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the chosen value ​val ​. In this paper we present the evaluation of the tools using two ​correct measures: (1) ​correct-0                    
for , and (2) ​correct-5 for . The first, correct-0 measure is used to evaluate how well tools find reads alv = 0      alv = 5               
that are fully correct, up to a single nucleotide, while the second measure, ​correct-5 ​, is used to evaluate if the tools                     
align reads correctly but are not completely precise, with a few bases off. For three measures defined previously:                  
hit-all ​, ​correct-0 and ​correct-5 ​, the precision is calculated as the number of reads satisfying the measure divided by                  
the number of aligned reads and recall is calculated as the number of reads satisfying the measure divided by the                    
total number of reads. Finally, the F-value is calculated as  

     .F = precision+recall
(2 precision recall)* *         (11) 

 

Table 1. Results of evaluation of three best performing RNA-seq mapping tools 

 
 

Table 1 shows the result of the evaluation on all seven datasets with their F-value for ​correct-0 measure and                   
hit-all measure results. Hit-all measure was calculated only for synthetic datasets because for real datasets we cannot                 
know the exact origin of the read and cannot determine the exons from the associated annotation that need to be hit                     
by the read’s alignment. We can see that Graphmap2 is the most sensitive tool and has the best results in both                     
correct-0 measure across four simulated datasets. Because of the strict condition for an alignment to be ​correct-0                 
(0-bp distance from the expected location) the values of ​correct-0 measure are low across all datasets, but                 
Graphmap2 is the only tool that has recall for ​correct-0 measure above 30% for 6 out of 7 datasets. Supplementary                    
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Table 1 shows that Graphmap2 also achieves the best results for correct-5 measure, having the highest number of                  
reads aligned with almost fully correct alignments. Except for the GMAP results for dataset2, all the tools have                  
hit-all measure higher than 70%. This is why there are no great differences between ​hit-all ​measure results. Still,                  
Graphmap has the best precision and recall results for ​hit-all measure across all datasets, finding the highest number                  
of alignments with all exons hit. We can see that the Graphmap2 is the only tool that consistently achieves good                    
results in ​correct-0 and ​hit-all measures at the same time, thus the most consistently maps reads correctly and with                   
all exons hit at the same time. 

Table 2 shows the execution time in seconds for the three tools for every tested dataset. The testing was done by                     
executing tools using 12 threads on a computer with 12 processor cores. It is clear that Minimap2 is the fastest tool                     
(9 to 40x faster than Graphmap2). GMAP shows to be the slowest tool being 3-7 times slower than Graphmap2.                   
Since Graphmap2 achieves high sensitivity by mapping reads in three phases and executes ​Exon extending and ​Exon                 
adjustment steps which also calculates exact alignment of read parts, it is expected not to be as fast as Minimap2.                    
Graphmap2s’ speed greatly suffers because of its’ high sensitivity which was the main focus of Graphmap2                
development. However, there is always room for further research in how to improve Graphmap2s’ speed while                
retaining the sensitivity. As correctness of sequenced reads improves, a stricter anchor filtering could potentially               
lead to faster execution time. 

Table 2 - Execution time in seconds 

 

IV. PREVIOUSLY UNKNOWN GENE IDENTIFICATION 
 

In this chapter we present the analysis of Graphmap2’s ability to find mappings of yet unidentified genes. To                  
confirm the existence of new found genes, we analysed alignments produced by the three tools used in the                  
evaluation. In this analysis we used the three real datasets and the alignments that didn’t match any known                  
annotation. To remove as much coincidence as possible, this analysis was done highly conservatively and the                
alignments that did not overlap along at least 50% of their length with any other alignment were also left out of the                      
analysis. This was done because the mapping of at least two reads onto the same region on the reference suggests                    
that that region could be a new gene and not a coincidence. The alignments used in this analysis are denoted as                     
gene-candidate alignments. Supplementary Table 2 shows the statistics of these alignments for three tools and three                
real datasets: (1) total number of reads with gene-candidate alignments, (2) number of spliced alignments, (3)                
number of spliced alignments containing at least one pair of two neighbouring exons , denoted as              and eei (i+1)    
gene-identifying exons where exon ends right next to GT (CT) splice site and exon starts right after AG   ei            e(i+1)       
(AC) splice site, (4) total number of neighbouring exons in the alignments and (5) total number of introns contained                   
among gene-candidate alignments. Around 1000 reads for datasets 5 and 6 and more than 5000 reads for dataset 7                   
were found to have gene-candidate alignments, with 25%-50% of those being spliced alignments. These spliced               
alignments are important because they can be used in analysis of donor and acceptor splice sites at intron ends.                   
Between 40% and 45% of spliced gene-candidate alignments have at least one pair of gene-identifying exons which                 
is important evidence supporting the claim that gene-candidate alignments are correctly mapped to reference regions               
representing new found genes. 
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Figure 3. Overlapping of reads whose alignments did not hit an annotation among tools 
 

Gene-candidate alignments were further analyzed. Since we presume that overlapping reads identify the same              
gene, we construct a gene-candidate region as a union of mutually overlapping alignments, grouped similarly as in                 
Graphmap2’s ​Exon grouping step. We analysed gene-candidate regions that contained at least two reads and had at                 
least one read whose alignment contained at least one pair of gene-identifying exons.  

Figure 3 shows the overlapping of gene-candidate regions with at least one pair of gene-identifying exons across                 
three real datasets for all three tools. Graphmap2 has the highest number of gene-identifying regions found in all                  
three datasets. These values show that even though datasets were sequenced with different sequencing technologies               
they contain reads whose alignments map on the same regions which are yet not found in annotations, furthermore                  
strengthening  the idea that newfound genes can be identified by Graphmap2. 

Figure 4 shows the number of these regions for three real datasets and the overlapping of regions found by three                    
tools used in analysis. We can see that tools identified between 59 to 71 gene-candidate regions for dataset 5, 74 to                     
116 regions for dataset 6 and 32 to 36 regions for dataset 7, with about 40% to 60% of regions found by at least two                         
tools. GMAP identified the most regions that don’t overlap with any of the regions produced by Minimap2 and                  
Graphmap2 which suggest that GMAP produces the highest number of false positive regions, especially on datasets                
6 and 7. Graphmap2 and Minimap2 have higher number of overlapping gene-candidate regions than either tool has                 
with GMAP for datasets 5 and 6 which suggest that these two tools might identify previously unknown genes with                   
higher accuracy than GMAP. High number of overlapping gene-candidate regions with gene-identifying exons             
confirms the hypothesis that previously unknown gene can be detected  using long reads and splice-aware mappers.  
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Figure 4. Overlapping of reads whose alignments did not hit an annotation among datasets 

 

V. PREVIOUSLY UNKNOWN ISOFORM IDENTIFICATION 
 

Aside from detecting new genes with no known annotations, we have also tried to discover new isoforms in                  
regions where annotations are already known. Isoform detection was done using newest version of our evaluation                
tool RNAseqEval (​https://github.com/lbcb-sci/RNAseqEval​). During the regular evaluation process, a set of           
candidate annotations is constructed for each alignment, consisting of all annotations that overlap the alignment.               
From the set of candidate annotations, a ​best_match_annotation is chosen based on the number of nucleotides from                 
the alignment that fall inside and outside of each candidate annotation. New isoforms are calculated only for those                  
alignments that do not perfectly match the ​best_match_annotation ​. New isoforms are created using two methods: by                
combining existing annotations and by skipping small introns. Both methods are explained in detail on the                
RNAseqEval GitHub page. After all new isoforms are determined, they are evaluated, collected and mutually               
compared. Only isoforms that result in completely correct alignment and are supported by a minimum number of                 
reads (currently set to 3) are reported. 

The number of new isoforms discovered from alignments for each tool and dataset can be seen in Figure 5. We                    
can see that Dataset 5, containing PacBio ROI reads with the lowest error rate, produces the highest number of new                    
isoforms. Dataset 6 contains PacBio subreads with slightly higher error rate, resulting in a slightly lower number of                  
new isoforms. Finally, Dataset 7 contains ONT reads with the highest error rate producing by far the smallest                  
number of new isoforms. We can see that the number of reported potentially new isoforms directly depends on the                   
error rate. Since potentially newfound isoforms were reported only if they produced completely correct alignments,               
we can conclude that higher error rate in Dataset 7 prevented new isoforms perfectly matching the alignments and                  
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resulting in a very small number of reported newfound isoforms. It could also be concluded that lowering the error                   
rate to suitable levels is very important for accurately determining new isoforms in this way. 

Similar analysis can be made by looking at the results for each mapping tool. According to the results shown in                    
Table 2, Graphmap2 maps the most reads and with the highest precision, compared to Minimap2 and GMAP. From                  
Figure 5 we can also see that Graphmap2 produces the highest number of potentially new isoforms, with GMAP                  
having the lowest mappability and producing the least potentially new isoforms. We can also see that a relatively                  
small portion of determined transcripts is shared between mappers, suggesting a large number of false positives.                
However, Graphmap2 and Minimap2 reports slightly more transcripts shared with other mappers than GMAP. This               
is in accordance with the results for previously unknown gene identification. 
 

 
Figure 5. Overlapping of potentially new transcripts among mappers for each dataset 

 
Due to very small number of newly reported isoforms, Dataset 7 was not considered further, but for Datasets 5 and                    
6, overlapping of potentially new isoforms was determined for each mapper. The results are shown in Figure 6.                  
Graphmap2 reports more newfound isoforms than Minimap2 and GMAP. Looking at datasets 5 and 6, each mapper                 
produces a relatively large number of potential new isoforms, but only 10-20% of those were produced by all three                   
mappers. We can conclude that analyzing new isoforms from mapping data shows interesting and promising results,                
but requires more work to make the results more reliable. Reported isoforms that are produced by all three mappers                   
could be high confidence candidates suitable for further analysis. 
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Figure 6. Overlapping of potentially new isoforms for each mapper 

 
 

VI. CONCLUSION 
Graphmap2 is an extended version of Graphmap, a highly sensitive tool for mapping reads to a reference                 

genome, tailored for RNA reads. Graphmap2 creates read alignment from anchors filtered by the knapsack               
algorithm. It implements several alignment improvement methods, specific to RNA reads. The collective coverage              
information of read alignments is used to improve correctness of alignments with lower quality. Biological               
properties such as AG-GT donor-acceptor splice sites as well as recognition of poly(A) tail, are used to further                  
improve the alignment.  

All these improvements make Graphmap2 the very sensitive and accurate tool for RNA mapping. Evaluation on                
seven third-generation sequencing datasets showed that Graphmap2 has significantly higher correct measures than             
Minimap2 and Gmap for all datasets. Results also show that Graphmap2 is faster than Gmap but slower than                  
Minimap2. Since Graphmap2 is based on original mapping algorithms from Graphmap optimized for earlier              
generation of long reads that have much higher error rate. We deem that with a less sensitive mapper we can achieve                     
running times comparable with Minimap2 while keeping high accuracy of algorithms for the identification of exons                
present in transcripts and their boundaries.  

Finally, we have shown that both Graphmap2 and Minimap2 have high potential in identifying previously               
unknown genes and isoforms. With high number of reads mapped to the same reference region by Graphmap2 and                  
Minimap2 for which no previous annotation exists, as well as high number of donor-acceptor splice sites in                 
alignments of these reads, Graphmap2 alignments provide indication that these alignments could belong to              
previously unknown genes. Similarly, results show that long reads have high potential for identification of               
previously unknown isoforms. 
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