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Abstract

Copy number variations (CNV) are regional deviations from the normal autosomal bi-allelic DNA content.
While germline CNVs are a major contributor to genomic syndromes and inherited diseases, the majority of
cancers accumulate extensive ”somatic” CNV (sCNV or CNA) during the process of oncogenetic transfor-
mation and progression. While specific sCNV have closely been associated with tumorigenesis, intriguingly
many neoplasias exhibit recurrent sCNV patterns beyond the involvement of a few cancer driver genes.

Currently, CNV profiles of tumor samples are generated using genomic micro-arrays or high-throughput
DNA sequencing. Regardless of the underlying technology, genomic copy number data is derived from the
relative assessment and integration of multiple signals, with the data generation process being prone to
contamination from several sources. Estimated copy number values have no absolute and linear correlation
to their corresponding DNA levels, and the extent of deviation differs between sample profiles which poses
a great challenge for data integration and comparison in large scale genome analysis.

In this study, we present a novel method named Minimum Error Calibration and Normalization of Copy
Numbers Analysis (Mecan4CNA). For each sCNV profile, Mecan4CNA reduces the noise level, calculates
values representing the normal DNA copies (baseline) and the change of one copy (level distance), and
finally normalizes all values. Experiments of Mecan4CNA on simulated data showed an overall accuracy of
93% and 91% in determining the baseline and level distance, respectively. Comparison of baseline and level
distance estimation with existing methods and karyotyping data on the NCI-60 tumor cell line produced
coherent results. To estimate the method’s impact on downstream analyses we performed GISTIC analyses
on original and Mecan4CNA data from the Cancer Genome Atlas (TCGA) where the normalized data showed
prominent improvements of both sensitivity and specificity in detecting focal regions.

In general, Mecan4CNA provides an advanced method for CNA data normalization especially in research
involving data of high volume and heterogeneous quality. but with its informative output and visualization
can also facilitate analysis of individual CNA profiles. Mecan4CNA is freely available as a Python package
and through Github.

Introduction

Copy number aberrations (CNA1) represent the regional gain and loss of DNA copies of chromosome regions.
Somatic copy number aberrations are frequently observed in cancer tumors and they exhibit complex and
intrinsic connections to the development of cancer [3]. CNA data is widely used in both clinical practice
and research. The evaluation of a patient’s CNA profile has become a common procedure in treatment
for certain cancer types. By analyzing CNA datasets, researchers have been able to identify and verify
mutational patterns and genes associated with CNAs in various cancer types [25]. With the rapid advance
of technology and the explosion of data, more subtle driver genes and more comprehensive patterns are
expected to be revealed in the near future [10, 21]. Although CNA data has become a principal component

1Alternatively to ”Copy Number Aberrations” (CNA) the term ”Somatic Copy Number Variations” (sCNV) is being used
in the literature occasionally. We prefer the CNA term due to precedence and epistemic relation to the oncogenetic process.
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in cancer genome analysis, the interpretation of CNA data is still a challenging task. This is primarily due
to the noise contamination that is prevalent among CNA data.

Currently, CNA data is usually generated using either one of several micro-array technologies [19, 15, 26]
or increasingly utilising high-throughput sequencing methodologies [22, 24]. Independent of technology or
specific platform, CNA data often has a high noise level that can be attributed to three main sources. First,
the noise level is heavily influenced by the purity of the tumor sample. Ideally, a copy number should always
be an integer value and correspond to a DNA level of the measured tumor cells. In practice, the tumor sample
is often a mixture of normal cells, main tumor cells, and minor tumor clones with partially diverging mutation
profiles, resulting in overall and possibly regional divergences from the copy number levels expected from
a homogeneous tumor sample with the measured DNA levels potentially representing averages of different
CN states. Second, the CN value is derived from the relative measurement of DNA content, with non-linear
correlation between the true regional CN and the measured - intensity or count based - signal. Third,
systematic errors accumulate in each experiment step throughout the pipeline, e.g. in sample preparation or
labelling procedures. In theory, the sources of experimental noise can be alleviated by performing additional
experiments, increasing source material use or sequencing depth or fine tuning experimental and analytical
protocols. However, such efforts are counteracted by scarce or inherently limited (e.g. archival tissue)
source material, high cost (e.g. technical replicates or increased read depth) or analytical overhead. Most
importantly, experimental improvements cannot be pursued in meta-analyses which rely on pre-existing data,
usually derived from a variety of sources.

The frequently high noise level in CNA data leads to two common problems in downstream analysis
procedures. First, the value of the copy number level in a genomic region usually reflects a log2 normalised
relative deviation instead of the actual integer DNA level of the main tumor cell clone. Second, the extent
of the deviation differs between profiles of samples with the same underlying CNA value. To accommodate
for these problems, CNA data needs to be calibrated (i.e. value adjusted) in single profile analysis, and to
be normalized for the analysis of multiple profiles. Currently, there is no ”Gold Standard” methodology,
for neither the calibration nor the normalization of CNA data. The most common approach is manual
assessment, it works well for a single profile with a simple aberration pattern, but becomes incompetent
when facing a complicated pattern or a dataset. Another widely used approach is median centering, it is
intuitive and easy to implement, but it has been shown that this method also struggles when dealing with
complex profiles [7, 6]. In clinical evaluation, contextual information and additional data are usually used
to make a good assessment. But this approach depends on expert knowledge and extra data, it is not
applicable for most research settings. Finally, several computational methods were developed in the last
decade to detect tumor purity or actual DNA levels [1, 2, 5, 6, 7, 8, 13, 14, 23]. Typically, ABSOLUTE
[6] uses allele specific copy number ratio and pre-computed models to estimate purity and ploidy, and from
that computes potential models of absolute copy numbers. BACOM [7] exploits allele specific copy number
signals with a Bayesian model to differentiate homozygous and heterozygous deletions and estimate normal
cell fraction. AbsCN-seq [13] uses a statistical method to infer purity, ploidy and absolute copy number.
These methods can provide more reliable calibrations in complex scenarios. Unlike in calibration, where
methods are usually generic, normalized methods are often study specific [4, 9, 16]. In some copy number
studies, where a large number of CNA data were compared for analysis, the data was even not normalized
but merely calibrated. To our knowledge, there exist no generic normalization methods for CNA data at the
moment. Although the computational methods for calibration can be extended to perform normalization,
they bear a few drawbacks. First, most of these methods are platform specific, which limits the scope of their
application. Second, they often require the original raw file, or a control sample, or both. These files are
not always available. Third, they do not provide direct functions for normalization. Therefore, additional
works are needed, which often involves complex scripting and sometimes manual tuning. Last, these methods
usually are based on complicated models that invoke heavy computational demand. It makes them both
time and resource consuming when processing high volume datasets.

In this study, we present Minimum Error Calibration and Normalization for Copy Numbers Analysis
(Mecan4CNA), a generic computational method aimed to address the aforementioned issues. Instead of
estimating the exactly purity or DNA levels, Mecan4CNA transforms the problem to the estimation of the
baseline (the level of normal DNA copies) and the value distance between DNA levels. Then Mecan4CNA
computes these two values for each profile and uses them to normalize data uniformly. All CNA profiles
will be normalized to the same scale, where copy number values actually correspond to their true DNA

2

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 31, 2019. ; https://doi.org/10.1101/720854doi: bioRxiv preprint 

https://doi.org/10.1101/720854
http://creativecommons.org/licenses/by/4.0/


levels. Mecan4CNA can be used on CNA data generated from any platform and pipeline. It only requires
segmentation files, which is the final product of all copy number pipelines. Mecan4CNA is based on an
algebraic model, which makes it efficient both in speed and resource. Although Mecan4CNA is primarily
designed for data normalization, it can also be used for quick calibration. It provides detailed information
and visualization on estimation results, which can be used for a more in-depth analysis of each profile.
Mecan4CNA is freely available as a Python package and through Github.

Methods

A copy number value in a CNA profile represents the number of DNA copies (alleles) in the corresponding
genomic region. As a general description, a CNA profile and the value of a specific position can be modelled
as the following:

X =


x1

x2

...
xn

 , xi = (aNi + bTi +
∑
n

cni S
n
i +

∑
m

Em
i )

∏
j

(1 + ej), for xi ∈ xn

where X represents a CNA profile of n positions, and xi represents the value at a specific position. Ni, Ti

and Si denote the actual DNA copy numbers of normal cells, tumor cells and sub-clone cells, respectively.
Likewise, a, b and c are the composition ratios of normal cells, tumor cells and sub-clone cells at this position,
respectively. Em

i represents an independent error of this position and ej represents a systematic error for
the entire sample. For each xi,

∑
m Em

i and
∏

j(1 + ej) are constants. If we also consider the summation of
sub-clones as a single pseudo-sub-clone, xi can be simplified as the following:

xi = (aNi + bTi + cSi + E′i)(1 + e)

= aNi + bTi + cSi + Ei

where a, b, c and e are constants in each sample. Ni, Ti, Si and Ei are variables of each xi. Here, Ei

represents the integral of all errors.
Ideally, the composition and noise level of a sample can be retrieved by solving matrix X. In practice,

all parameters except xi are unknown, thus making the solution of X a daunting task. In previous studies,
statistical models and information of controls were used to circumvent this problem. Here, we presents
an algebraic approach that requires no additional information. The fundamental principle is to cancel out
parameters through operations and aim for a partial solution. Let D(i, j) be the distance of xi and xj :

D(i, j) = |xi − xj |
= |(aNi + bTi + cSi + Ei)− (aNj + bTj + cSj + Ej)|

Because germline copy number changes are rare events and are usually filtered by most processing pipelines,
we can assume Ni to be a constant of 2. Therefore, D(i, j) can be simplified as:

D(i, j) = |b(Ti − Tj) + c(Si − cSj) + Ei,j |

Let R(i, j, k) represents the ratio of two distance D(i, j) and D(i, k)

R(i, j, k) =

{
(D(i,k)
D(i,j) , if D(i, k) ≥ D(i, j)
(D(i,j)
D(i,k) , otherwise

Here, we illustrate the deduction of one case, and the other scenario is the same.
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R(i, j, k) =
D(i, k)

D(i, j)

= |
b(Ti − Tk) + c(Si − cSk) + E|i,k

b(Ti − Tj) + c(Si − cSj) + Ei,j
|

= |Ti − Tk

Ti − Tj
|(1 + | c(Si − cSj) + Ei,j

b(Ti − Tj) + c(Si − cSj) + Ei,j
|) + | c(Si − cSk) + Ei,k

b(Ti − Tj) + c(Si − cSj) + Ei,j
|

Here, |Ti−Tk

Ti−Tj
| is the ratio of the distances between actual copy number levels. When b >> c, which means

a biopsy where the proportion of the main tumor is much higher than the proportion of sub-clones, we can
have:

c(Si − cSj) + Ei,j

b(Ti − Tj) + c(Si − cSj) + Ei,j
� 1 ,

c(Si − cSk) + Ei,k

b(Ti − Tj) + c(Si − cSj) + Ei,j
� 1

R(i, j, k) ≈ |Ti − Tk

Ti − Tj
|+ ei,j,k

= ri,j,K + ei,j,k

Because ei,j,k reflects the deviation from the actual copy number, it is smallest when xi, xj and xk are all
the corresponding values of actual DNA levels. If we can find a pair xi and xj that has the lowest overall
deviation, we can say that xi and xj represent two DNA levels in a solution of X. And that is to calculate
the following equation:

argmin f(i, j) = {
∑
k

ei,j,k|i, j, k ∈ X}

Furthermore, if Ti and Tj are two adjacent DNA levels, then |Ti − Tj | = 1 and ri,j,k becomes an integer. In
most cases, when the data is processed properly, the systematic error term ei,j,k is relatively small. Therefore,
we can evaluate ei,j,k as in the following:

ei,j,k = Ii,j,k −Ri,j,k, where Ii,j,k is the nearest integer to Ri,j,k

Interestingly, the systematic errors of a CNA profile are not uniformly distributed. Usually, positions that
are close to the normal level have lower errors and positions far away from the normal level tend to have
higher errors. Therefore, the xi and xj pair that has the lowest overall error sum are usually the normal
level and one of its adjacent level.

Now, we have acquired a partial solution: a pair of xi and xj from D(i, j) which represents the distance
between the normal DNA level and an adjacent level. We do not know which value actually corresponds to
the normal level, and which corresponds to the adjacent level. By using a weighting function, we consider
the strength of signal, the distance to the center and the validness of models comprehensively. One with a
higher Bscore is determined as the baseline:

Bscore =
Ssignal + Sdistance + Smodel

3

Theoretically, we have to evaluate f(i, j) for all pairwise combinations in X, which is a huge amount
of computation. In practice, copy number signals are not randomly distributed. Most signals are normally
distributed with a mean that corresponds to an actual copy number value. We only need to compute f(i, j)
for these mean values, as they carry the lowest noise and are closest to the actual value. Furthermore, to
reduce the complication of noise and small sub-clones, we choose a peak value only if it is covered by a
minimum of p probes. For quick estimation, we assume 1% of the data is noise and xi distribute uniformly
in an interval. When using a resolution of n bins in this interval, the probability density of each bin is 1

n .
When there is a total of m noisy probes, p′ = m

n , which is the expectation of a binomial distribution B(m, 1
n ).

For an Affymetrix SNP6 array with approximately 2 ∗ 106 probes, if we take a resolution of n = 100, then
p′ = 200. We want to choose a p that is greater than p′, so it can filter out noisy data and improve calculation
speed. Empirically, we used p = 2000 as the threshold in our experiments.
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Results

In order to validate the usefulness of Mecan4CNA, first we compared the estimation results of our method
with results from karyotyping and ABSOLUTE on cell line data. Additionally we evaluated the method on
a series of simulated data, explored the baseline deviation situation of copy number data from TCGA, and
finally used Mecan4CNA-normalized TCGA data as input for a GISTIC [12] analysis, to evaluate a possible
improvement compared to using the unprocessed original data.

Performance on real data

The NCI-60 tumor cell lines were selected by the National Cancer Institute of the United States (NCI) as a
reference panel for drug screening experiments. It comprises 60 human cancer cell lines from 9 different cancer
types. Their molecular characteristics have been well studied in the past two decades. Particularly, 58 cell
lines have been karyotyped using the spectral karyotyping protocol [17], and the copy number variations of all
cell lines have been profiled using microarray experiments [18]. DNA copy number changes on chromosome
13 were explored in detail in the karyotyping study. Among all karyotyped cell lines, 30 have either no
changes or only chromosome level changes on chromosome 13. They represent ideal examples to validate the
performance of our method, because we can match the karyotyping data with the microarray data to identify
the copy number values (from microarrays) that correspond to the actual normal and abnormal DNA levels
(from karyotyping). If we compare these values with the estimation results of Mecan4CNA on chromosome
13, we can evaluate the performance of the method.

When comparing data from microarrays with the karyotyped standard, 6 cell lines showed contradicting
results and were excluded from further analysis (5 karyotyped as one copy loss but microarray showed normal;
1 karyotyped as one copy loss but microarray showed copy gain). These differences may be explained by a
possible clonal evolution between the reference analysis and the cell line batches from which the microarray
data was prepared. The remaining 24 cell lines were used for further analysis. In order to compare the
performance of Mecan4CNA with existing methods, we also used ABSOLUTE, a widely used method to
estimate purity and ploidy from copy number data, to infer the corresponding copy number levels of each
cell line. Figure 1 shows the comparison results of Mecan4CNA and ABSOLUTE, respectively. On both
graphs, the estimated values were plotted against the actual value of a DNA level. Mecan4CNA achieved
0.987 for spearman correlation coefficient and 0.033 for root mean square error (RMSE). Both scores indicate
strong and confident correlation between the estimation and actual values. ABSOLUTE achieved 0.988 for
spearman correlation coefficient and 0.049 for root mean square error (RMSE). This high concordance
confirmed the solid performance of both methods on estimating copy number levels.

Performance on simulated data

To further evaluate the performance of Mecan4CNA, we applied the method to 10 simulated datasets of
different cell composition and noise levels. Every dataset comprises 100 samples, which are copy number
segment profiles generated based on our modeling equation introduced in the method section. The cell com-
position was generated using a Dirichlet distribution. In high tumor composition samples, the composition
ratio of normal and sub-clones are capped at 0.2. For both high tumor composition datasets and low tumor
composition datasets, the independent errors were generated using a normal distribution with the standard
deviation increasing from 0.001 to 0.009 with a step size of 0.002; the global errors were generated using a
normal distribution with the standard deviation increasing from 0.1 to 0.18 with a step size of 0.02. The
ploidy of normal cells was assumed to always be two. A total of 1000 samples were generated in this manner,
and both the actual cell composition and tumor ploidy were known.

The five datasets containing samples with high contribution of the main (virtual) tumor clone show a
gradual increase of noise levels from dataset to dataset. A similar observation can be made inthe other five
datasets with low tumor composition (high sub-clone or normal).

As shown in Figure 2, the estimation accuracy of Mecan4CNA drops when the noise level increases or when
the tumor composition decreases. Under the same noise level, for both the baseline and level distance, the
estimation accuracy decreases significantly between high and low tumor composition. Under the same tumor
composition, the estimation accuracy only shows slight declines when the noise level increases. The baseline
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estimation performed reasonably well even with low tumor composition and high noise level. However, the
decrease of tumor composition has a greater impact on the estimation accuracy of level distance. Because
even in low tumor composition, as long as the genome is not in complete chaos, which occasionally happens
in cancer, the signal of normal DNA level (baseline) is often still detectable. But when the biopsy has a high
composition of normal and sub-clone cells, the signal of the main tumor will be significantly reduced, and the
signal of sub-clones becomes more influential at the same time. The combination of these two effects makes
it much more difficult to have accurate estimation of main tumor’s level distance in samples with low tumor
composition. Mecan4CNA provides conservative estimates of the level distance since overestimation can
lead to undesired information loss during normalization, and underestimation only introduces false-positive
information.

Overall Mecan4CNA performed with high accuracy and consistency in all scenarios. Specifically, for the
estimation of baseline, Mecan4CNA achieved 97% average accuracy in the combination of all high tumor
composition datasets; 89% average accuracy in the combination of all low tumor composition datasets; and
93% overall accuracy of all datasets. For the estimation of level distance, Mecan4CNA achieved 96% average
accuracy in the combination of all high tumor composition datasets; 86% average accuracy in the combination
of all low tumor composition datasets; and 91% overall accuracy of all datasets.

Applications of Mecan4CNA

Baseline deviation of TCGA data

The Cancer Genome Atlas (TCGA) provides a large collection of copy number data of from 33 cancer
projects. The copy number data was generated using Affymatrix SNP6 microarrays and a uniform processing
pipeline. We used Mecan4CNA to estimate the baseline value of all TCGA copy number data, summarized
by project. As shown in Figure 3, baseline deviation is widespread with varying contributions related to
individual projects. In general, the deviation level is strongly correlated with the difficulty of acquiring
pure biopsies. In projects such as LAML (Acute Myeloid Leukemia) and CESC (Cervical Squamous Cell
Carcinoma and Endocervical Adenocarcinoma), where biopsies are usually pure, the original baseline levels
are often accurate and the deviation is often low. In projects such a LUSC (Lung Squamous Cell Carcinoma)
and OV (Ovarian Serous Cystadenocarcinoma), where biopsy are difficult to acquire and frequently contain
heterogeneous cellular populations, the original baseline levels often have high deviation.

Although great efforts went into limiting errors and noise in TCGA copy number data, they originated
from projects addressing diverse diseases and where data generation were different in time, space and exper-
imental conditions. The variation in the results does not directly reflect on the accuracy of the results since
the determination of an underlying ”Gold Standard” is beyond the scope of our methodology. The generally
good quality of these datasets allowed us to show that baseline variation is a common and recurring problem
among copy number data.

Normalized data as GISTIC input

In order to demonstrate the effect of Mecan4CNA in copy number data analysis, we applied GISTIC with
both the original and the normalized copy number data from the TCGA project. GISTIC is a widely used
multi-sample tool to detect and score focal regions in copy number datasets. We chose data from 3 TCGA
projects with different baseline deviation levels to look for focal regions and potential driver genes using
GISTIC. GISTIC was run in gene-gistic mode with default parameters. Data was normalized using the
following formula:

x′i =
|xi + base− 2| − 2

thresh
+ 2

Where base is the estimated baseline value and thresh is level distance.
Table 1 illustrates the comparisons of called regions from GISTIC using the original and normalized data.

Overall, when using the normalized data, the number of detected regions is significantly reduced (Figure
4). At the same time, when mapping focal regions to Cancer Census Genes [20], the number the detected
drivers actually increases as shown in Figure 6. Some driver genes are only captured using the normalized
data, such as PDGFRA in GBM, XPC in SKCM and CASP3 in OV. For focal regions detected by both
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settings, the size of the region is usually reduced by the normalized data (Figure 5). A few new focal regions
containing driver genes, which were too weak in signal when using the original data, became significant and
were detected using the normalized data. For example, in the SKCM project region chr6:9090525-9120556 2

was detected by the original data with high significance but harbors no protein coding genes. When using
the normalized data, the signal strength of this region was reduced dramatically and it was not called
as a focal region. Region chr12:68834906-68893964 was called only when using the normalized data and
harbors two known oncogenes (CMP and MDM2). Region chr1:204403604-204437602 was narrowed and
shifted to chr1:204477206-204586780 by using the normalized data, this subtle change removed a passenger
gene PPP1R15B and included a oncogene MDM4. The Molecular Signatures Database (MSigDB) [11] is a
collection of annotated gene sets for use with GSEA software. The ”C6: oncogenic signatures” represent
signatures of cellular pathways which are often dis-regulated in cancer. We mapped the genes called by
GISTIC using the original and the normalized data to each pathway in C6. Table 2 shows pathways that
are covered by a high number of genes in both data settings. Pathways in bold are with known associations
to melanoma. Typically, Both KRAS and P53 are prevalent and key driver genes in melanoma. Although
these pathways stood out in both data settings, most of these pathways were covered with more genes when
using the normalized data. Table 3 shows pathways with significant coverage difference between the original
and the normalized data. The coverage of several pathways (KRAS, PTEN, MYC), which have strong
associations to tumorigenesis in melanoma, were significantly increased when using the normalized data. In
summary, when using the normalized data instead of the original data, the analysis result of GISTIC showed
a prominent improvement in both sensitivity and specificity.

Conclusion

In this study, we presented a novel method dubbed Minimum Error Normalization of Copy Numbers
(Mecan4CNA). When tested on simulation data and cell line data, it showed promising accuracy in es-
timating the baseline and the level distance of a copy number profile. When applied on the copy number
data from TCGA, it illustrates that baseline deviation widely exists among copy number profiles and is
primarily attributed to the purity of the sample. Finally, the comparison of results from GISTIC, when
using the original and the normalized data, showed that the normalized data can provide a significant im-
provement in both sensitivity and specificity. Mecan4CNA does not rely on any additional information nor
prior knowledge, and is also efficient in speed and resource. It is designed to analyze and normalize multiple
samples, but can also be used for single sample interpretation.
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2. Latest source code: https://github.com/baudisgroup/mecan4cna

3. Software license: MIT
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(a) MENCN and karyotyping on chromosome 13
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Figure 1: The comparison of estimated values and actual values on chromosome 13. The estimated values
were calculated from the CNA file; the actual values were derived from karyotyping results. (a) estimation of
Mecan4CNA; (b) estimation of ABSOLUTE. The estimation results of two methods showed high accuracy
and coherence.

Data No. regions No. genes No. Census genes Gene density Driver density

GBM
Original 29/46 143/1722 19/45 4.93/37.43 0.13/0.03
Normalized 26/40 110/1953 19/50 4.23/48.83 0.17/0.03

SKCM
Original 33/37 1494/1721 58/43 45.27/46.51 0.04/0.02
Normalized 26/21 1860/2099 47/66 71.54/99.95 0.03/0.03

OV
Original 38/51 423/2515 13/64 11.13/49.31 0.03/0.03
Normalized 35/36 382/2240 13/54 10.91/62.22 0.03/0.02

Table 1: Summary of detected regions of GISTIC using original and normalized data. Numbers in column
represents the count of gain/loss.
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Figure 2: The comparisons of estimated values and actual values on simulated data with different settings.
The first row shows results of baseline estimation in low tumor composition; the second row shows results of
baseline estimation in high tumor composition, the third row shows results of level distance estimation in low
tumor composition, and the fourth row shows results of level distance estiation in high tumor composition.
The noise level increases gradually in each column from left to right. The dotted lines indicate a threshold
that can filter out problematic results.
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Figure 3: The distribution of baseline values estimated with Mecan4CNA in different TCGA projects.
Outliers are not shown.
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Figure 4: The number of significant bands detected by GISTIC using different datasets.
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Figure 5: The comparisons of GISTIC calling results using the original and normalized copy number data
from 3 TCGA projects. The green boxes highlight regions with reduced noise signal using normalized data.
The orange boxes highlight regions with improved significance using normalized data. Overall, normalized
data shows improvement in both sensitivity and specificity.
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Figure 6: Detected cancer census genes using the original and normalized data in GBM, SKCM and OV
datasets of TCGA. Numbers in circles represents the total of detected census genes. Gene symbols in boxes
show the known drivers for the disease.
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Pathway Original Hits Norm Hits Diff
NFE2L2.V2 13 19 6
KRAS.600 UP.V1 DN 10 19 9
IL21 UP.V1 UP 11 16 5
PRC2 EED UP.V1 DN 12 15 3
ERB2 UP.V1 UP 11 13 2
TBK1.DF UP 12 12 0
CSR EARLY UP.V1 UP 10 12 2
ESC V6.5 UP LATE.V1 UP 10 12 2
STK33 SKM UP 10 11 1
STK33 UP 13 10 -3
CYCLIN D1 KE .V1 UP 10 10 0
CYCLIN D1 UP.V1 UP 10 10 0
P53 DN.V1 DN 10 10 0
KRAS.600 UP.V1 UP 10 10 0

Table 2: MSigDB pathways with high coverage in both the original and normalized data of SKCM. Pathways
in bold have known associations with melanoma.

Pathway Original Hits Norm Hits Diff
PDGF ERK DN.V1 DN 3 15 12
NRL DN.V1 UP 1 11 10
KRAS.600 UP.V1 DN 10 19 9
IL2 UP.V1 UP 8 17 9
VEGF A UP.V1 UP 7 16 9
STK33 DN 3 12 9
CRX NRL DN.V1 UP 1 10 9
MTOR UP.V1 UP 5 13 8
PIGF UP.V1 DN 4 12 8
STK33 NOMO DN 2 10 8
TGFB UP.V1 UP 7 15 8
RPS14 DN.V1 DN 7 15 8
KRAS.300 UP.V1 DN 5 12 7
KRAS.AMP.LUNG UP.V1 DN 2 9 7
PDGF UP.V1 UP 6 13 7
RAPA EARLY UP.V1 UP 8 15 7
IL15 UP.V1 UP 4 11 7
MTOR UP.V1 DN 3 10 7
PTEN DN.V1 UP 9 16 7
MEK UP.V1 UP 7 14 7
MYC UP.V1 UP 5 12 7
CAHOY ASTROCYTIC 1 8 7
MEL18 DN.V1 DN 9 4 -5
PRC2 EZH2 UP.V1 DN 10 3 -7

Table 3: MSigDB pathways with significant changes of coverage between the original and normalized data
of SKCM. Pathways in bold have known associations with melanoma.
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