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Abstract

During development, gene regulatory networks allocate cell fates by par-
titioning tissues into spatially organised domains of gene expression. How
the sharp boundaries that delineate these gene expression patterns arise,
despite the stochasticity associated with gene regulation, is poorly un-
derstood. We show, in the vertebrate neural tube, using perturbations
of coding and regulatory regions, that the structure of the regulatory
network contributes to boundary precision. This is achieved, not by re-
ducing noise in individual genes, but by the configuration of the network
modulating the ability of stochastic fluctuations to initiate gene expres-
sion changes. We use a computational screen to identify the properties
of a network that influence boundary precision, revealing two dynamical
mechanisms by which small gene circuits attenuate the effect of noise
to increase patterning precision. These results establish design princi-
ples of gene regulatory networks that produce precise patterns of gene
expression.
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Introduction

Embryos are characterised by remarkably organised and reproducible patterns of cellular dif-
ferentiation. An illustration of this accuracy are the sharp boundaries of gene expression ob-
served in many developing tissues. These patterns are determined by gene regulatory networks
(GRNs), governed by secreted developmental signals [Davidson, 2010], raising the question of
how precision is achieved in spite of the biological noise and inherent stochastic fluctuations
associated with the regulation of gene expression [Raser and O’Shea, 2005]. For individual
genes, the activity of redundant regulatory elements (so-called shadow enhancers), the 3D
architecture of the genome, the presence of multiple alleles, and the effect of RNA processing
have all been proposed to buffer fluctuations and increase the robustness of gene expression
[Perry et al., 2010, Frankel et al., 2010, Lagha et al., 2012, Battich et al., 2015, Dickel et al.,
2018, Osterwalder et al., 2018, Paliou et al., 2019]. At the level of the tissue, mechanisms that
regulate the shape, steepness or variance of gradients have been explored and their effect on the
precision of gene expression detailed [Bollenbach et al., 2008, Sokolowski et al., 2012, Tkačik
et al., 2015, Zagorski et al., 2017, Lucas et al., 2018]. Moreover, several mechanisms, includ-
ing differential adhesion, mechanical barriers and juxtacrine signalling, have been proposed to
correct anomalies and enhance precision, once cellular patterning has been initiated [Xu et al.,
1999, Standley et al., 2001, Rudolf et al., 2015, Dahmann et al., 2011, Addison et al., 2018].
Finally, theoretical studies have suggested that the structure and activity of GRNs can also
affect precision [Lo et al., 2015, Perez-Carrasco et al., 2016]. However, experimental evidence
to support this remains elusive.

To explore the role of GRNs in the precision of patterning, the vertebrate neural tube
provides a well-characterised system. A gene regulatory network (GRN) partitions neural
progenitors into discrete domains of gene expression arrayed along the dorsal-ventral axis
[Sagner and Briscoe, 2017]. The boundaries between these domains are clearly delineated
and accurately positioned [Kicheva et al., 2014] resulting in sharp spatial transitions in gene
expression that produce characteristic stripes of molecularly distinct cells. In the ventral neural
tube, the secreted ligand Sonic Hedgehog (Shh), emanating from the notochord and floor
plate, located at the ventral pole, controls the pattern forming GRN (Fig. 1A). This network
includes the transcription factors (TFs) Pax6, Olig2, Irx3 and Nkx2.2. Irx3 represses Olig2
[Novitch et al., 2001], while Nkx2.2 is repressed by Pax6, Olig2 and Irx3 [Briscoe and Ericson,
1999, Briscoe et al., 2000, Novitch et al., 2001, Balaskas et al., 2012]. In the absence
of Shh signaling, progenitors express Pax6 and Irx3. Moderate levels of Shh signalling are
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sufficient to induce Olig2 expression and repress Irx3 to specify motor neuron progenitors
(pMN) [Ericson et al., 1997, Briscoe et al., 2000, Novitch et al., 2001, Balaskas et al., 2012].
In response to high and sustained levels of Shh signalling, Nkx2.2 is induced and inhibits the
expression of Pax6 and Olig2 and this generates p3 progenitors and delineates the p3/pMN
boundary (Fig. 1B). Thus the regulatory interactions between the TFs controlled by Shh
signaling explain the dynamics of gene expression in the ventral neural tube and produce the
genetic toggle switches that result in discrete transitions in gene expression in individual cells
[Balaskas et al., 2012]. However, stochastic fluctuations in gene expression in individual cells
would be expected to generate variations in the position and precision at which cells switch
from pMN to p3 identity [Lv et al., 2014, Perez-Carrasco et al., 2016] and would erode the
sharpness of the domain boundary. We therefore asked whether there were other features of
the GRN that counteract the effect of intrinsic noise in gene expression to enhance boundary
precision.

Results and Discussion

In mouse embryos lacking Pax6, the precision of the boundary between p3-pMN domains ap-
pears decreased, resulting in more intermixing of cells expressing Olig2 or Nkx2.2 (Fig. 1C)
[Ericson et al., 1997, Briscoe et al., 2000, Balaskas et al., 2012]. To quantify this change in
boundary precision, we compared the dorsal-ventral width of the region that contains both
Nkx2.2 and Olig2 expressing cells in WT and Pax6 mutant embryos (Supplemental Sec-
tion F.7). In Pax6−/− embryos, the boundary p3-pMN is shifted dorsally, expanding the
Nkx2.2 expressing p3 domain and shrinking the Olig2 domain (Fig. 1D) [Ericson et al., 1997].
In addition, between e9.0 and e10.5, the pMN-p3 boundary becomes progressively wider in
Pax6−/− embryos, indicating a loss of precision (Fig. 1E & S1). These observations show that
as well as determining the dorsal limit of Nkx2.2 expression, Pax6 contributes to the sharpness
of the p3-pMN boundary.

We hypothesised that the decreased precision of the Nkx2.2 boundary observed in the
Pax6−/− could be explained by intrinsic noise in gene expression in the GRN. Previously, we
established a model of the GRN, based on coupled Ordinary Differential Equations (ODEs),
that replicated the response of the network to Shh signalling and the shifts in boundary
position in mutant embryos, including Pax6−/− [Balaskas et al., 2012, Cohen et al., 2014].
However, the deterministic description of gene expression in this model meant that it did
not capture any stochastic effects. In order to explore the effect of gene expression noise, we
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constructed a stochastic differential equation (SDE) model that retained the parameters of the
ODE model but incorporated a description of intrinsic gene expression fluctuations, based on
experimental measurements (Supplemental Section B). In simulations of the Pax6−/−, not only
was the limit of Nkx2.2 displaced dorsally, as in the ODE simulations, but the precision of the
boundary was also decreased (Fig. 1F,G,H). Encouraged by these results, we tested the effect
of eliminating other components of the network. These simulations suggested that removal
of Nkx2.2 or Olig2 had the expected effect on the positions of gene expression boundaries
without a pronounced effect on boundary precision (Supplemental Section B). This agrees
with experimental observations [Briscoe and Ericson, 1999, Novitch et al., 2001, Balaskas
et al., 2012]. Thus, inclusion of intrinsic noise in the GRN dynamics accurately predicted the
known alterations in the precision of gene expression boundaries.

To understand the mechanism by which Pax6 contributes to the precision of the p3-pMN
boundary we explored the dynamical properties of the SDE model. The model didn’t predict
any difference in the magnitude of the fluctuations in the expression of individual genes between
the WT and the Pax6 mutant (Supplemental Section B). Consistent with this, experimental
measurements of the coefficient of variation (CV) of Olig2 from WT (CV: 0.42) and Pax6−/−

(CV: 0.44) embryos did not reveal significant differences (Mann-Whitney p=0.422). This
raised the possibility that, rather than the size of fluctuations in individual genes, the change in
precision was a consequence of the dynamical landscape specified by the regulatory interactions
of the network. The cross-repressive interactions between Nkx2.2, Pax6 and Olig2 predict a
bistable regime between the two steady states of Nkx2.2 (p3) and Olig2/Pax6 (pMN) (Fig. 1I).
In the absence of noise, the transition between the two steady states is determined solely by
the level of Shh signalling, and the system remains in the pMN state until the level of signalling
increases above the bistable region. However, in the presence of intrinsic noise, fluctuations
in gene expression can result in spontaneous transitions between pMN and p3 identity within
the bistable region [Perez-Carrasco et al., 2016]. Below a threshold of Shh signalling, the rate
of transitions is very low and cells remain in the pMN state. Conversely, above a certain level
of Shh signalling, transitions from the pMN to the p3 steady state take place so rapidly that
essentially all cells undergo this transition and become Nkx2.2 positive. In between these two
regimes, a region of heterogeneity is observed in which there is an intermediate probability for
each cell of a spontaneous transition on a developmentally relevant timescale (≤50 hours).
The size of this region of heterogeneity depends on how the probability of a noise induced
transition changes in response to alterations in the level of Shh signalling. We calculated the
characteristic time it would take for transitions between the pMN and p3 states at different
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dorsal-ventral positions of the neural tube. We termed this "fate jump time". For WT, fate
jump time changes rapidly in response to Shh signalling, implying that there is only a limited
region where the effective probability of transitions is not 0 or 1 (Fig. 1J; black line). By
contrast, the larger region of heterogeneity observed in the Pax6−/− mutant is due to the
weaker dependence of fate jump time on levels of Shh signalling (Fig. 1J; blue line). There
is a larger range of Shh levels for which noise driven transitions are possible and therefore a
larger boundary region where cells in both Nkx2.2 or Olig2/Pax6 states exist.

To investigate why there are differences in the rate at which fate jump time changes
with position, we analysed the gene expression dynamics during a transition between the
two steady states. Transitions between states involve the system passing through, or very
close to, a point in gene expression space - the saddle point in the dynamical landscape -
that is characterised by specific levels of the transcription factors (TFs), we refer to this as
the “transition point” (Fig. 1K; purple point). Simulations of the SDE model indicated that
intrinsic fluctuations around the pMN state are initially directed away from the transition point
in WT. By contrast, in the Pax6 mutant fluctuations are oriented directly towards the transition
point. To characterise this rigorously, we calculated the minimum action path (MAP) between
the pMN and p3 steady states: this predicts the most likely gene expression trajectory that
a stochastic transition resulting from a small fluctuation in gene expression will take, thereby
providing a portrait of the dynamical landscape that leads to a noise induced transition (Fig.1 K
& Supplemental Section B) [Perez-Carrasco et al., 2016, Kleinert, 1990, Bunin et al., 2012].
Consistent with the SDE simulations, in WT, the MAP from the pMN (Olig2/Pax6) to p3
steady state does not follow the shortest route leading to the transition point, instead the
levels of Pax6 drop rapidly and pitch away from the transition point, resulting in a curvature
of the gene expression path between steady states (Fig. 1K). By contrast, in the absence of
Pax6, the MAP is directly oriented towards the transition point (Fig. 1K). Taken together, the
analysis suggests that the GRN affects the precision of a domain boundary by determining the
dynamical landscape, without changing the level of noise in overall gene expression.

To identify alternative genetic perturbations that might affect the precision of patterning,
we turned our attention to the cis-regulatory elements controlling the TFs. Several predicted
regulatory regions are located in the vicinity of Olig2; these include a prominent candidate
region 33kb upstream of the Olig2 gene [Oosterveen et al., 2012, Peterson et al., 2012], which
we termed O2e33. This region binds (i) the repressor Nkx2.2, (ii) Sox2, which activates Olig2,
and (iii) the Gli proteins, the transcriptional effectors of the Shh pathway (Fig. 2A) [Oosterveen
et al., 2012, Peterson et al., 2012, Nishi et al., 2015, Kutejova et al., 2016]. To test the role of
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O2e33 in the network we first analysed its function in vitro in neural progenitors differentiated
from mouse embryonic stem (ES) cells [Gouti et al., 2014]. Using CRISPR/Cas9, the ∼1kb
enhancer region was excised in ES cells harbouring an Olig2 fluorescent reporter [Sagner et al.,
2018]. Unlike WT cells, which express high levels of Olig2 at Day 5 of differentiation [Gouti
et al., 2014, Sagner et al., 2018], cells lacking the O2e33 enhancer had a marked reduction
in levels of Olig2. By Day 6, Olig2 expression had increased in O2e33 mutant cells, but the
percentage of cells and the level of expression never reached that of WT (Fig. 2B,C).

We used the observed decrease in the levels of Olig2 and the delay in its induction to
identify changes in model parameters that mimic the effect of deleting the O2e33 enhancer
(Supplemental Section D). Of the parameter sets that gave reduced and delayed Olig2 induc-
tion in silico, most predicted the generation of a smaller pMN domain, resulting from a ventral
shift in the dorsal boundary. Strikingly, many of the parameter sets also predicted a loss of
boundary sharpness (Supplemental Section D). To test whether deletion of the O2e33 region
resulted in these changes in vivo, we generated a mouse line lacking the Olig2 enhancer (see
Methods). Assaying the neural tube of embryos from these mice revealed lower Olig2 expres-
sion levels in pMN cells and a delay in the induction of Olig2 in O2e33−/− embryos compared
to WT, in agreement with the in vitro results (S2). Moreover, as predicted by the in silico
analysis, the pMN domain was decreased in size in O2e33−/− embryos, with its dorsal limit
of expression noticeably more ventrally positioned, compared to WT. Strikingly, the boundary
between the pMN and p3 domain was less precise than WT (Fig. 2D). Quantification con-
firmed the decreased size of the pMN domain and loss of precision of the p3-pMN boundary
(Fig. 2E,F). The decrease in the precision of the boundary, despite continued expression of
Olig2 and Pax6 in pMN cells, suggests that secondary correction mechanisms do not play a
major role in determining the precision of the boundary between these two domains.

Using the in vivo observations we further limited the parameter space of the dynamical
model by restricting our analysis to those parameter sets that generate an imprecise boundary
and alter the position of the pMN-p2 boundary (Supplemental Section D). This produced
simulations in which the loss of boundary precision in the O2e33 is not as severe as the
Pax6−/− phenotype, consistent with the experimental data (Fig. 2G). Boundary width and
pMN domain size from simulations were consistent with the in vivo analysis (Fig. 2H & I).
Calculating the pMN to p3 fate jump times revealed that for the O2e33−/−, fate jump times
changed more slowly than for WT (Fig. 1J), in line with the decreased boundary precision
of O2e33−/−. Analysis in vivo of the magnitude of the combined fluctuations in Pax6 and
Olig2 indicated that it was similar in WT and O2e33−/− (Fig. 2J; Supp. F.7). Consistent
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with this, the combined magnitude of fluctuations of Pax6 and Olig2 in simulations were
similar in WT and O2e33 mutants, suggesting the decreased precision was not the result of
an increase in the overall size of the noise driven fluctuations (Fig. S5)(Fig. 2K). However,
the simulations predicted that variability in Olig2 should increase while the variability of Pax6
should decrease. In agreement with this prediction, the coefficients of variation of Olig2
and Pax6 gene expression between WT and O2e33 in vivo were increased and decreased,
respectively (Fig. 2L).

To investigate why this led to a decrease in boundary precision, we analysed the MAP of
the O2e33−/− at a fixed neural tube position. The model indicated that the transition path
from pMN to p3 curved away from the shortest path to a lesser extent than for the WT;
stochastic simulations further confirm this behaviour (Fig. 3A,B). Thus, in the absence of the
O2e33 enhancer, stochastic fluctuations around the Olig2/Pax6 steady state tended to take
the system closer to the transition point than similar magnitude fluctuations in WT, making a
noise driven switch in fate more likely in the mutant. Nevertheless, the curvature in the path in
O2e33 was greater than in the Pax6−/−, providing an explanation for the greater imprecision
in Pax6−/− compared to O2e33 mutant (Fig. 3B cf. Fig. 1J & K). We calculated the action
along the path for each genotype [de la Cruz et al., 2018](Fig. 3C & Supplemental Section B).
This represents the effective energy required to reach a point along the MAP and is a measure
of the extent of the barrier that has to be overcome for a fate transition. Consistent with
the results of the simulations, the effective energy necessary for a noise induced transition
was greatest for WT, less for O2e33, and lowest for the Pax6 mutant. Moreover, the analysis
indicated that the initial part of the trajectory presented a more significant barrier to noise
induced transitions in the WT than O2e33 and Pax6 mutants (Fig. S3A), corresponding to
the relative divergences of their transition trajectories from the shortest route to the transition
point.

The model predicted that the deletion of O2e33 alters the relative expression levels of
Olig2 and Pax6 in individual cells, resulting in cells close to the pMN-p3 boundary expressing
higher levels of Pax6 and lower levels of Olig2 in O2e33 mutants than in WT (Fig. 3D, E). We
used single cell immunofluorescence quantifications to compare cells in the boundary region
of WT and O2e33 embryos (Fig. 3F, G & Supplemental Section F.7). Consistent with the
predictions, this revealed higher levels of Pax6 and lower levels of Olig2 in O2e33 mutants
compared to WT. Thus the experimental evidence supports the idea that the strength of
regulatory interactions encoded in the GRN contributes to the precision of domain boundaries
by configuring the dynamics of stochastic fluctuations to reduce the probability of a noise
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driven change in cell identity.
The finding that the dynamics produced by the regulatory interactions between Pax6-Olig2-

Nkx2.2 influences the pMN-p3 boundary precision prompted us to ask whether this is is the
only way in which precision can be enhanced by the GRN or whether other mechanisms can
increase the fidelity of gene expression boundaries. We performed a computational screen to
identify three node networks capable of generating a sharp boundary in response to a graded
input (Fig. 4A & Supplemental Section E). For the networks recovered from the screen,
we compared the boundary precision with the extent its MAP deviates from the shortest
path to the transition (we informally refer to this quantity as "curvature") (Supplemental
Section E). This showed a positive correlation, consistent with our observations in the WT
network, of high curvature and low boundary width. This supported the idea that the shape
of the transition pathway contributes to boundary precision (Fig. 4C). Nevertheless, within
the screen, for any given level of boundary sharpness, there were a range of MAP curvature
values. We therefore investigated additional features that might affect boundary precision.
We found that a subset of the networks do not rely on path curvature to achieve precision
and instead functioned effectively as two node networks (Fig. 4D). For these networks, the
major contributor to boundary precision was the rate at which the steady state and transition
point separated in response to changes in level of the input signal: the higher the rate of
separation, the sharper the boundary (Fig. 4B). We termed this “separation speed”. Plotting
both curvature and separation speed for the networks recovered from the screen indicated that
both features contribute to precision (Fig. 4E). Moreover the most precise boundaries were
generated by networks that exploited both separation speed and curvature, which includes the
Pax6-Olig2-Nkx2.2 network (Fig. 4E-F).

An important corollary, for networks in which separation speed dominates, is that within the
region in which gene 2 (x2, analogous to Olig2 in WT) is expressed, the level of its expression
changes markedly. This produces a graded expression domain rather than a uniform domain
and precludes the generation of blocks of progenitors with constant levels of gene expression
(Fig. S10). By contrast, networks that rely on curvature to achieve a sharp boundary allow
uniform gene expression levels within the gene expression domain (Fig. S10).

Finally, we assessed whether particular network topologies favoured boundary sharpness.
Many topologies were able to generate sharp boundaries (Fig. 4G,H & Supplemental Sec-
tion E), consistent with the expression dynamics produced by the network being key to deter-
mining behaviour. Nevertheless, four topologies appeared to be most effective at preventing
very imprecise boundaries (numbered 1-4 in Fig. 4H). These tended to have similar separation
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speeds but much higher curvature than the networks with other topologies (Fig. S12). Crucial
for this behaviour was the inhibition of gene 3 by gene 2, and the absence of repression of gene
2 by gene 3 (Fig. 4G & S11). This regulatory configuration generates curvature by allowing
a steep decrease in x3, the concentration of gene 3, while sustaining high levels of x2 prior to
the transition. Notably, the WT neural tube network conforms to this configuration, raising
the possibility that it was adopted in the developing vertebrate neural tube for its capacity to
generate precise patterns in the presence of intrinsic noise. Moreover, the graded expression
within the domain associated with the use of separation speed (Fig. S12) is represented by
Pax6 (x3) and this allows constant levels of Olig2 (x2; the gene necessary for defining neuronal
subtype identity) within the progenitor domain. Hence, an understanding of the dynamical
properties of the GRN offers an explanation for its structure and the resulting gene expression
behaviour.

Taken together, our studies provide insight into the collective cell decision making processes
that result in the generation of precise domains of gene expression in developing tissues. The
data reveal that the effects of stochastic gene expression on spatial heterogeneity can be
attenuated by the dynamics of the GRN. These mechanisms do not rely on suppressing the
stochasticity of individual genes, or on cell-to-cell communication, but instead take advantage
of dynamical properties of regulatory networks to increase the fidelity of decision making.
This “precision by design” highlights the capacity of transcriptional circuits to contribute to
robust tissue patterning and identifies a mechanism that might be exploited in other biological
settings requiring precise responses from groups of cells.
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Figure 1: Pax6 contributes to boundary precision. (A) A GRN comprising the tran-
scription factors Pax6, Olig2, Nkx2,2 and Irx3 is responsible for positioning the p3 and pMN
domains in the ventral neural tube. (B) Immunofluorescence assays of Pax6 (blue), Olig2 (red)
and Nkx2.2 (green) indicate dynamic expression in neural progenitors from e8.5 to e9.5. (C)
Transverse sections of e10.5 WT and Pax6−/− embryos assayed for Olig2, Pax6 and Nkx2.2
expression. (D) Position of the pMN-p3 boundary in WT (grey) and Pax6−/− (blue). (Box
plots in all figures show upper and lower quartile and mean; n = 7 (WT), n = 8 (Pax6−/−),
Mann-Whitney test p = 0.005). (E) Quantification of pMN-p3 boundary width in WT (grey)
and Pax6−/− (blue). Shows boundary is narrower and sharper in WT than Pax6−/− mutants
(Mann-Whitney test p = 0.0006). (F) Simulations of the stochastic dynamics of the GRN
account for the experimentally observed dorsal expansion of the p3 domain and loss of bound-
ary precision in Pax6−/− (right) compared to WT (middle). Diagram (left) illustrates the
pattern of gene expression in WT neural tube with progenitor domains (p2, pMN, p3) and
differentiated neuron populations (motor neurons, MNs). (G,H) Quantification of boundary
position and width from simulations: the boundary in Pax6−/− (blue) is wider (less sharp)
than WT (grey). Width is given as fraction of total neural tube size. n = 10 (WT), n = 10
(Pax6−/−), Mann-Whitney test p = 0.0001 for position, p = 0.0001 for boundary width. (I)
A 3D bifurcation diagram of the mathematical model illustrates a region of bistablity for pMN
(red; expressing Olig2 and Pax6) and p3 (green; expressing Nkx2.2) separated by a transition
point (unstable fixed point of dynamics, purple). The noise driven transition pathway from
pMN to p3 is indicated by black arrows (solid: pMN to transition point, dashed: transition
point to p3). (J) Fate jump times calculated from simulations: average time for noise driven
transitions from pMN to p3 in WT (black), Pax6−/− (blue) and O2e33 mutants (red). Rel-
ative position refers to distance from the bifurcation point. Grey shading indicates the time
regime where transitions can occur on relevant developmental timescales. In WT, jump times
change more rapidly as a function of position, leading to a narrower boundary than in Pax6−/−.
(K) Gene expression space view of the transition path from pMN (red point) to p3 (green
point) steady state via the transition point (purple point). Simulated trajectory (dots) shows
stochastic fluctuations from the pMN steady state remain close to the most likely transition
path (dotted line) and are not oriented directly towards the transition point in WT (left). Axes
show relative expression levels. In Pax6−/− (right) the loss of the Pax6 dimension means that
fluctuations are oriented towards the transition point. Hence, similar noise levels will result in
more fluctuation-induced jumps. Data are shown for neural tube position at 0.1 fraction of
total neural tube length dorsal to the bifurcation point and are representative of the behaviour
within the bistable region.
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Figure 2: An Olig2 enhancer affects precision of the pMN-p3 boundary. (A) Chromatin
accessibility (ATAC-seq) and predicted TF binding locations based on ChIP-seq data highlight
a putative regulatory element 33kb 5’ of Olig2. CRISPR target sites (orange triangles) indicate
the region excised to create the O2e33 deletion [Metzis et al., 2018, Kutejova et al., 2016,
Peterson et al., 2012, Oosterveen et al., 2012]. (B) Immunofluorescence for Sox2 (expressed
in all neural progenitors) and Olig2 at day 6 in neural progenitors differentiated from WT and
O2e33 ES cells exposed to 500nM SAG. Reduced levels of Olig2 are seen in O2e33 mutant
cells. (C) Flow cytometry (top) for mKate2 flourescence in Olig2-T2A-mKate2 ES cell derived
neural progenitors at day 6 of differentiation, exposed to 500nM SAG, indicating the decreased
proportion of O2e33 cells (red) expressing Olig2 and the lower levels of Olig2 expression
compared to WT cells (grey). Lower percentage of mKate2 flourescent cells between days 5-7
of differentiation in WT and O2e33 cells (bottom). (D) Immunofluorescence for Olig2, Pax6
and Nkx2.2 in transverse sections of e9.5 neural tube from WT and O2e33 embryos revealing
a change in the position of the pMN domain (red; Olig2 expressing) and the sharpness of its
boundary with p3 progenitors (green; Nkx2.2 expressed). (E, F) Quantification of domain
size and boundary width in WT (grey) and O2e33 mutants (red). The pMN domain in WT is
larger than in O2e33 embryos at e9.5 (Mann-Whitney test p = 0.004). The p3-pMN boundary
is wider, i.e. less sharp, in O2e33 mutants compared to WT (n = 6 (WT), n = 12 (O2e33),
Mann-Whitney test p = 0.009). (G) Stochastic simulations of the O2e33 model recapitulate in
vivo observations of a narrower pMN domain and decreased precision of the p3-pMN boundary.
(H, I) Quantification of boundary width (I) and position (H) from simulations demonstrates
loss of precision and change in pMN domain size in O2e33 simulations compared to WT,
consistent with in vivo observations (Box plot shows upper and lower quartile and mean;
n=10 (WT); n=10 (O2e33), Mann-Whitney test p=0.0001 for both). (J) Quantification of
total variance in gene expression per embryo (Olig2 and Pax6) within the pMN domain for
WT (grey) and O2e33 embryos (red). Relative root-mean-square variance of WT and O2e33
embryos captures total noise of the system (spread of points). A Mann-Whitney test indicates
no significant change in total noise levels between genotypes (p > 0.05). (K) Measurements
of noise at all positions in the pMN domain performed in silico. The magnitude of the relative
noise variance at all possible configurations of the system indicates similar levels of noise
in WT and O2e33, each grey point is an individual configuration (Supplemental Section B,
Mann-Whitney test p > 0.05). (L) Coefficient of variation values were calculated for Olig2
(left) and Pax6 (right) expression in both WT (grey) and O2e33 (red) from experimental data
(top) and in silico simulations (bottom). This showed an increase in the variation of Olig2 in
the O2e33 compared to the WT as well as a decrease in variation of Pax6.
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Figure 3: The Olig2 enhancer affects the configuration of gene expression fluctua-
tions. (A-B) Projection into Olig2-Pax6 gene expression space of the minimum action path
(red) predicted from the model and simulated trajectory (dots) in WT (A) and O2e33 (B).
Rather than follow a direct trajectory (dotted line) from the pMN steady state (red dot) to
the transition point (purple dot), gene expression initially curves away from it. However curva-
ture is less marked in O2e33 simulations than WT. Insets show projection onto Nkx2.2-Olig2
axes indicating that in this plane the paths lead almost directly to the transition point. (C)
Effective energy barrier (cumulative action) for noise-induced transitions, plotted along the
transition path (normalised to unit length) at the same neural tube positions as in Fig. 1K.
WT (grey) has a higher barrier than O2e33 (red), leading to longer jump times; O2e33 in turn
has a higher barrier than Pax6−/− (blue). (D-E) Simulated Pax6 and Olig2 expression levels
(black dots) for WT and O2e33 in regions proximal to the p3-pMN boundary. The simulations
predict an increase in Pax6 levels and a decrease in Olig2 levels for pMN cells near the bound-
ary in O2e33 mutants. (F-G) Corresponding to simulation results, a shift to higher levels of
Pax6 and reduced levels of Olig2 is observed in cells from O2e33 mutants in vivo compared
to controls. Axes show fluorescence intensity (arbitary units), see Supplemental Section F.7
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Figure 4: A computational screen identifies three-node networks that produce sharp
boundaries. (A) Three node networks, comprising all possible interactions and a morphogen
input into two nodes, were screened to identify those producing a sharp boundary. (B) Two
mechanisms for producing a rapid change in jump time, and consequently a precise boundary,
in response to signal changes. Close to the boundary (Position 1.0 a.u.; Signal 1.0 a.u.) the
steady state (red point) is near the transition point (purple point) in gene expression space.
Further away (increasing Position; decreasing Signal) curvature of the MAP (red line) with
respect to the shortest pathway (top row) or the rate at which the steady state separates from
the transition point (bottom row) can contribute to increasing boundary precision. (C) For
each of the networks recovered from the screen (points), the boundary width was compared
to the deviation of the MAP from the shortest path to the transition (curvature). The red line
indicates median value and illustrates that sharper boundaries (smaller width) tend to have
higher MAP curvature. The green star represents the WT neural tube network, highlighting
that this network performs as expected with respect to the screen. (D) A plot of curvature
compared to the effective contribution of the third node in the network indicates that net-
works with little contribution from third node can produce sharp boundaries (boundary width
indicated by colour of the point, colour is consistent throughout D & G). Green star repre-
sents the WT network. (E) Curvature compared to separation speed: the rate at which the
steady state and transition point separate in response to decreasing signal. Colour of points
by boundary width indicates both high curvature and high separation speed contribute to the
sharpest boundaries. Green star represents the WT network. (F) Histogram of boundary
width in 3D (red) and 2D (blue) networks. 3D networks have the potential to achieve greater
sharpness (lower boundary width). Green line represents the WT network. (G) The most
common topologies, arranged in order of fraction of networks with precise boundaries; each
column represents an individual topology. Dark blue indicates networks with a wider boundary.
Topologies are shown in Fig. S11. Green line represents the WT network (H) Four topologies
that favour the sharpest boundaries, according to the ordering of G; they all generate networks
with MAPs that have high curvature. These networks comprise inhibition from node 2 to node
3, and lack repression from node 3 to node 2. The WT neural tube network is represented in
topology 3.
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A Supplementary Figures

Figure S1: pMN-p3 boundary precision decreases over time in Pax6 mutants. Trans-
verse sections of wildtype and Pax6−/− embryos between e9.0 and e10.5 stained for Pax6
(blue), Olig2 (red) and Nkx2.2 (green). Scale bar = 100µm. The pMN-p3 boundary becomes
less well defined at later time points.
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Figure S2: Olig2 expression in O2e33 mutants is lower and delayed in onset. (A)
Transverse brachial sections of e9.5 WT and O2e33 embryos stained for Olig2. The O2e33
embryo has a smaller Olig2 domain with reduced expression levels. Scale bar = 50µm (B)
Normalised Olig2 expression for single cells in WT and O2e33 embryo sections. (C, D, E)
Wholemount images of WT (C) and O2e33 mutants (D, E) for DAPI (i) and Olig2 staining
(ii-iii). Expression of Olig2 in wildtype is observed at 5 somites but in O2e33 Olig2 onset
occurs later at 8 somites. Olig2 is not observed in O2e33 embryos at 7 somites. Scale bar =
100µm
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B Formulation and analysis of stochastic GRN dynamics

Formulation of stochastic dynamics

In order to investigate heterogeneity of gene expression in the neural tube we make use of
stochastic differential equations that describe the GRN and the concentration xj of each TF
j. We start with a thermodynamic-like model as detailed in [Cohen et al., 2014], which
captures the macroscopic behaviour by a system of ODEs; these contain terms for production
and decay of each TF. The ODE description corresponds to the limit of a reaction volume
Ω that is large enough for the copy numbers Ωxj of all protein species to be large, allowing
fluctuations to be neglected; formally one takes Ω → ∞. When Ω is finite stochastic effects
occur, these can be described by the chemical Langevin equation, a system of SDEs, see e.g.
[Van Kampen, 1992, Gillespie, 2000]. The drift, i.e. the systematic variation with time in the
SDEs coincides directly with the deterministic limit. The diffusion (stochastic) term arises
from the stochastic nature of the individual protein production and decay reactions; it is a
Gaussian white noise [Gillespie, 2000] whose covariance structure is determined by the mean
reaction rates. In our case the chemical Langevin equation for the protein levels xj within the
GRN takes the form:

d

dt
xj =

∑
n

p(j,n)α(j,n) − xjβj + Ω−1/2ϵj(t) (B.1a)

p(j,n) =
k(j,n)

∏
i x

ni
i∑

n′ k(j,n′)
∏

i x
n′

i
i

Dij = δij

[∑
n

p(j,n)α(j,n) + xjβj

]
(B.1b)

⟨ϵi(t)ϵj(t′)⟩ = δ(t− t′)Dij (B.1c)

The deterministic part of these equations is equivalent to those used in [Cohen et al., 2014].
The covariance (B.1b,B.1c) of the zero mean Gaussian white noise ϵj(t) arises from the decay
and production of each protein being independent and random, given the concentration of the
regulators of the relevant gene. In the equations above, α represents protein production rate
and β degradation rate, while the w provide the weights of the respective DNA conformations
(j,n) when multiplied by the respective concentration. The conformations are labelled by
the protein j being produced and the numbers n = {ni} of TF molecules bound. The δ in
(B.1b) and (B.1c) are the Kronecker and Dirac delta respectively. As explained above, Ω is
the volume of the system in which all reactions take place.
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When looking at the chemical Langevin equation (B.1a), one notices that the rate ∑
n p(j,n)α(j,n)

for producing protein j, has a nonlinear dependence on the TF concentrations xi. One might
be concerned that with such a nonlinear dependence, modelling production of protein j as
a single reaction is too simplistic. However, (B.1a) can be obtained from a larger system
of simple unary and binary mass action reactions, in which the concentration of each DNA
conformation is tracked individually. We only sketch this construction here and explain its
implications for the stochastic terms in (B.1a); for further details see [Herrera-Delgado et al.,
2018]. The deterministic part of the time evolution of the DNA concentrations is given as
follows:

d

dt
x(j,n) = γ

∑
p

(
kp+

(j,n−ep)x(j,n−ep)xp − kp+
(j,n)x(j,n)xp + kp−

(j,n+ep)x(j,n+ep) − kp−
(j,n)x(j,n)

)
(B.2)

Here x(j,n) = x̃(j,n)/γ
′ tracks the concentration of each DNA conformation and is scaled

down by a large factor γ′ to account for the low quantity of binding sites in relation to protein
numbers. Correspondingly the protein production rate constants α(j,n) = γ′α̃(j,n) have to be
large in order to give an appreciable overall rate of protein production nonetheless.

To derive the correct stochastic equations for the protein species, the large γ-limit of
(B.2) is taken: the concentration of each DNA conformation then changes sufficiently quickly
that it constantly tracks the instantaneous protein concentrations. For appropriately chosen
binding and unbinding rate constants kp+

(j,n) and kp−
(j,n) this leads back to the thermodynamic-

like form of the deterministic part of the protein dynamics in (B.1a) [Herrera-Delgado et al.,
2018]. As shown in [Thomas et al., 2012] the existence of fast species (in our case, DNA
conformations) can lead to additional terms arising in the noise acting on the slow species
(protein production), as a consequence of reactions between slow and fast species. In our
case it turns out that these extra noise terms scale with γ′/γ. We then make use of the
biological meaning of the terms: 1/γ represents the timescale of reaction rates for TF binding
to DNA and 1/γ′ represents the characteristic time for the process of going from active DNA
to producing a protein. We find it biologically reasonable to choose a 1/γ that is substantially
smaller than 1/γ′, given the many biological processes necessary for the production of a fully
functional protein. The ratio γ′/γ is hence small, so that the additional noise terms that
arise from the general calculation in [Thomas et al., 2012] become negligible, leaving exactly
the noise terms in (B.1c). The intuition is that because protein production is slow compared
to binding and unbinding of factors to DNA, noise from the many binding and unbinding
events during production averages out; the overall noise then arises only from the stochasticity
of the production processes, at the relevant average DNA concentrations. We note that in

S5

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 31, 2019. ; https://doi.org/10.1101/721043doi: bioRxiv preprint 

https://doi.org/10.1101/721043
http://creativecommons.org/licenses/by/4.0/


accordance with this conclusion, explicit calculations show that when γ′ is of the order of γ,
or larger, then additional noise terms from the stochasticity in DNA concentrations do enter
the dynamics of the protein concentrations. Moreover, these additional terms are dependent
on the precise choices of binding and unbinding rates, which are only partially constrained by
the requirement that the thermodynamic-like deterministic equations (B.1a) are retrieved for
large γ [Herrera-Delgado et al., 2018].

Amount of noise

The above model is a coarse-grained description that does not explicitly describe the many
possible sources of noise within a living cell. These include spatial heterogeneity and effects
from the bursty, multi-step nature of protein production, which includes processes such as
transcription, translation, post-translational modification, protein folding and protein shuttling
[McAdams and Arkin, 1997].

The noise level in our model is set by Ω−1, the inverse reaction volume. This determines
the scale of the stochastic fluctuations in protein production and decay, both of which the
model represents as single step processes. A larger Ω thus leads to smaller stochastic effects.
In equation (B.1a), multiplying Ω by the concentration of a protein species gives the total
number of molecules for that protein. In our calculations we measure volumes in units that
make typical protein concentrations of order unity, so that Ω can be directly interpreted as a
copy number. In accordance with our observations in (Supp. C), a value for Ω can be read as
a copy number for Pax6, Nkx2.2 and Irx3; the corresponding typical copy numbers for Olig2
are ten times higher (Supp. C).

We estimate a lower bound on the noise level Ω−1, i.e. the lowest amount of noise that
makes sense within our description. It is given by the typical number of proteins of each
species in a cell: these numbers determine the minimum amount of noise that must arise from
the stochastic nature of protein production and decay. From protein quantifications (Supp. C)
we obtain Ωmax ∼ 10, 000 for the protein counts of Nkx2.2 and Pax6 per cell at saturation
levels (which in our model correspond to concentrations close to unity). Olig2 has a higher
estimated count of ∼100,000 and in accordance a 10 times higher concentration in the model
(the maximum concentration for Olig2 is 10, and 1 for the other TFs). Because of the many
neglected sources of additional noise, we expect 1/Ωmax to be a considerable underestimate;
indeed, simulations with this noise level show almost deterministic behaviour. However for a
slightly increased noise level (Ω = 2000), we find that the relationships between jump-rate
differences across WT and mutant phenotypes discussed in the main text hold already (see
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A B

WT WTPax6-/- Pax6-/-

Pax6

Olig2

Nkx2.2

Ω = 100 Ω = 2000

Figure S3: Simulations of the WT and Pax6−/− stochastic models for (A) Ω = 100,
(B) Ω = 2000. For this range for Ω the simulations recapitulate the observed relationship of
boundary sharpness and position in WT and Pax6−/− mutants.

Fig. S3). This means that the WT presents a small amount of heterogeneity (as observed in
vivo) and the mutants have a more heterogeneous boundary than the WT.

To obtain a lower bound for Ω, we measure the coefficient of variation at steady state for
all 3 TF values across embryos, to estimate the total amount of noise in the system (Fig. 1A).
We then decrease Ω in our numerical simulations until we see coefficients of variation similar to
those observed in vivo, giving Ωmin = 20. This assumes that all observed differences in protein
levels arise solely from the stochasticity in our model. We reason that there are other sources
of noise that make the coefficients of variation higher in vivo, such as protein transport within
the cell, antibody specificity and measurement error, so that the amount of noise contributed
by the stochasticity in our dynamical model will be smaller than 1/Ωmin = 1/20. On that basis
we find a reasonable smallest value of Ω of ∼ 100. The value we use for all results throughout
this study is Ω = 250, which is within the broad bounds of Ωmin = 20 and Ωmax = 20, 000.
Importantly, the results we observe remain qualitatively unchanged across the entire range of
Ω that we assess as reasonable, 100 ≤ Ω ≤ 2000 (Fig. S3).

Minimum action path

Much of the theoretical analysis in the main text concentrates on the stochastic transitions
between fixed points of the deterministic GRN dynamics, which are long-lived metastable
states of the stochastic dynamics. The minimum action path (MAP) is the most likely path
the system takes in such a transition (for large enough values of Ω), from a steady state to
a transition point (which is the saddle point of the dynamical system) and then onwards to
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a new steady state. The second piece of the path always follows the deterministic dynamics
and has a negligible effect on the transition times, so we focus on the first part of the path.

The negative log probability for any path is proportional to what is called the action, which
for our Langevin dynamics is of so-called Onsager-Machlup form [Kleinert, 1990]. The action
is an integral over time of the Lagrangian, which in turn depends only on the current state
(vector of concentrations) and velocity of the system. The time integral can be discretised and
the action then minimised as described in e.g. [Bunin et al., 2012]. We analyse the resulting
MAP in gene expression space in order to understand how its shape affects the jump times
between steady states and thus eventually the boundary width.

The typical time the system takes to reach any point on the MAP scales exponentially
with the action up to that point, hence this quantity can be interpreted as an effective energy,
within the analogy of a particle making a transition from one local minimum in an energy
landscape across a barrier to another minimum. In Fig. 3C we plot this effective energy
along the (relative) length of the MAP, describing the effective energy landscape governing
the transition. Fig. S4 shows an alternative representation that gives further insight: we plot
the derivative of the action along the path, which is the effective force pushing the system
back towards the initial steady state.
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Figure S4: (A-B) Unnormalised and normalised space derivative of the action 3D(i) along the
MAP, plotted along the length of the path. This reflects the effective force driving the system
back towards its initial steady state. In the WT system (gray) the force is highest near the
beginning of the path, leading to a noticeably skewed plot, while the O2e33 (red) and Pax6−/−

(blue) more nearly symmetric force profiles. The high initial force in WT responsible for the
large typical jump times in the system, and is related to the significant curvature of the MAP
away from the straight line between initial steady state and transition point (Fig. 3A-B)

Calculating magnitude of fluctuations

To compare the magnitude of fluctuations between WT and mutants in silico we take two
separate approaches. The first is to consider fluctuations in expression levels around a steady
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state, before any transition to a new state occurs. For moderate noise levels such fluctuations
can be analysed using a linear expansion of the dynamics around the steady state (here: pMN),
leading to a local Gaussian distribution of expression levels. The corresponding covariance
matrix C can be calculated from the Jacobian matrix J of the linearized dynamics and the
noise covariance D as defined in (B.1b), both evaluated at the steady state. The required
link between the three matrices is the Lyapunov equation, which determines C via

D = JC + CJT

Once C has been found we normalise it by the corresponding pMN steady state values (X),
to obtain C̄ = diag(X)−1Cdiag(X)−1. We finally take the trace of C̄ and take the square
root. The end result is the typical standard deviation (root-mean-square fluctuation) of the
expression levels, relative to the mean expression levels, which is shown in Fig. S5A as a
function of neural tube position.
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Figure S5: Comparing total noise across genotypes (A) Comparison of noise levels as
defined by root-mean-square relative expression level fluctuations, calculated within a Gaussian
approximation near the steady state. Points represent different positions along the neural
tube (B) Noise levels defined as noise variance calculated at equidistant points along the
MAP, at fixed fractional neural tube length from the bifurcation point. Note that in both
definitions, noise levels are comparable across WT and both mutants, with slightly lower
values in Pax6−/−.

The second approach to quantifying noise levels is to use the noise variance, which is
the trace of the noise covariance matrix given in (B.1b). This noise variance depends on the
expression levels so we measure it at equidistant points along the MAP and take the square root
of this value to obtain the root-mean-square noise level. Example results at a specific position
along the neural tube are shown in Fig. S5B; results at other positions were qualitatively the
same (data not shown). Both approaches to quantifying noise show comparable total variance
across the different genotypes, with slightly lower noise in Pax6−/− than in WT and O2e33.
To make the comparison to in vivo observations we accounted for the fact that experimentally,
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noise levels are averaged across several neural tube positions throughout the pMN domain.
We therefore also performed an average in silico of neural tube positions to obtain comparable
data for Fig. 2K.
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C Protein Number Quantifications

Figure S6: (Caption on next page)
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Figure S6: Quantifying Protein Copy Number (A) Flow cytometry analysis to determine
percentage of Olig2 expressing cells in differentiated ES cells at the indicated days. Table shows
quantification of a gel for days 4 and 5. Olig2 has approximately a 10-fold higher protein copy
number compared to Nkx2.2 and Pax6. (B) Analysis of Nkx2.2 expressing cells on days 6
and 7 of differentiation. Nkx2.2 molecules per cell calculated using the measured percentage
of cells expressing Nkx2.2 and quantification of the Western blot analysis. (C) Analysis of
Pax6 expressing cells to determine protein copy number at days 5 and 6 of differentiation.
Pax6 molecules per cell calculated using the measured percentage of cells expressing Pax6 and
quantification of the Western blot analysis.
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D Simulating WT and mutant GRNs

We used the equations and parameters described in [Cohen et al., 2014] for the GRN that
patterns the neural tube; this parameter set was optimised to replicate the boundary positions
in wild-type and mutant embryos. Following the inclusion of the noise term as explained in
Supp. B we explored the effect of the initial conditions for the TFs (i.e. their initial expres-
sion levels xj). The aim was to find a consistent set of initial conditions that sustain the
boundary positions but also recapitulate the boundary sharpness of each mutant. The initial
conditions that satisfied these conditions were identified in a systematic scan as xPax6 = 0.1,
xOlig2 = 0, xNkx2.2 = 0, xIrx3 = 0.1. The p3-pMN boundaries in WT, Irx3−/−, Nkx2.2−/−

and Olig2−/− simulations remained sharp as is the case in vivo (Fig. S7). Only the loss of
Pax6 resulted in decreased boundary sharpness. Boundary positions remained consistent with
in vivo observations as was the case in the original deterministic model (Fig. S7) & [Cohen
et al., 2014].

Pax6 levels

Pax6-/-

Nkx2.2-/-

Olig2-/-

WT

Irx3 levels Nkx2.2 levels Olig2 levels

Figure S7: Patterning phenotypes produced by stochastic simulations for WT and
mutants. Predicted expression patterns for the four TFs in the indicated genotypes are
qualitatively similar to those in [Cohen et al., 2014]. Ventral to the left and dorsal to the
right. Although boundary positions change, boundary precision is largely unaffected except for
Pax6−/−, consistent with in vivo experimental observations.

Model parameters

We detail the parameters used throughout the paper to model neural tube development for
equation (B.1a), and adapted for the computational screen as explained in Supp. E.
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Name Meaning Value Source
αP Pax6 production rate 2 [Cohen et al., 2014]
αO Olig2 production rate 2*10 [Cohen et al., 2014] & Supp. B
αN Nkx2.2 production rate 2 [Cohen et al., 2014]
αI Irx3 production rate 2 [Cohen et al., 2014]
βP Pax6 degradation rate 2 [Cohen et al., 2014]
βO Olig2 degradation rate 2 [Cohen et al., 2014]
βN Nkx2.2 degradation rate 2 [Cohen et al., 2014]
βI Irx3 degradation rate 2 [Cohen et al., 2014]
kPO Olig2 binding to Pax6 DNA 1.9/10 [Cohen et al., 2014] & Supp. B
kPN Nkx2.2 binding to Pax6 DNA 26.7 [Cohen et al., 2014]
kON Nkx2.2 binding to Olig2 DNA 60.6 [Cohen et al., 2014]
kOI Irx3 binding to Olig2 DNA 28.4 [Cohen et al., 2014]
kNP Pax6 binding to Nkx2.2 DNA 4.8 [Cohen et al., 2014]
kNO Olig2 binding to Nkx2.2 DNA 27.1/10 [Cohen et al., 2014] & Supp. B
kNI Irx3 binding to Nkx2.2 DNA 47.1 [Cohen et al., 2014]
kIO Olig2 binding to Irx3 DNA 58.8/10 [Cohen et al., 2014] & Supp. B
kIN Nkx2.2 binding to Irx3 DNA 76.2 [Cohen et al., 2014]
wP,p Polymerase binding to Pax6 DNA 3.84 [Cohen et al., 2014]
wO,p Polymerase binding to Olig2 DNA 2.01263 Converted from [Cohen et al., 2014]
wN,p Polymerase binding to Nkx2.2 DNA 0.572324 Converted from [Cohen et al., 2014]
wI,p Polymerase binding to Irx3 DNA 18.72 [Cohen et al., 2014]
kO,in Gli (Shh signal) binding to Olig2 DNA 180 Converted from [Cohen et al., 2014]
kN,in Gli (Shh signal) binding to Nkx2.2 DNA 373 Converted from [Cohen et al., 2014]

Ω System volume 250 Supp. B
xP(0) Pax6 initial condition 0.1 Supp. D
xO(0) Olig2 initial condition 0 Supp. D
xN(0) Nkx2.2 initial condition 0 Supp. D
xI(0) Irx3 initial condition 0.1 Supp. D

Where factors of 10 have been written in the table, these arise because we have modified
the model of [Cohen et al., 2014] to represent explicitly the experimental observation that Olig2
has a concentration 10 times higher than the other TFs. While this difference is immaterial
for a deterministic description of the GRN dynamics, it affects the stochastic representation
because larger copy numbers have smaller relative fluctuations.

The above parameters are used in the general model (B.1a) for the dynamics of the
TFs j = P (Pax6), O (Olig2), N (Nkx2.2) and I (Irx3). DNA conformations are defined
by the numbers n = (np, nin, nP, nO, nN, nI) of bound molecules of polymerase, Gli signal
input, Pax6, Olig2, Nkx2.2, Irx3 in that order. The only allowed conformations are the empty
conformation, the conformations with polymerase and nin = 0 or 1 signal molecule bound;
and conformations with at least one molecule of the other TFs bound, with maximally two
molecules from each other TF. All other conformations are assigned affinity zero. The weights
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for the allowed conformations are multiplicative, with bound polymerase contributing a factor
wj,p (see below), bound signal a factor kj,inxin and each TF i bound to DNA producing
TF j a factor kjixi. Examples of the corresponding affinities are kO,(0,0,0,0,1,0) = kON and
kO,(0,0,0,0,0,2) = kOI

2. The polymerase binding parameters are directly stated as the weights
wj,p = kj,pxp including polymerase concentration (which is assumed constant). As detailed in
[Cohen et al., 2014], this weight describes all basal production inputs for each TF and thus
represents input from TFs such as Sox2. Finally, the protein production rates αj,n in the
general model (B.1a) are set to the value given in the table for the DNA conformations with
bound polymerase, and zero otherwise.

Explicitly, the production rate for Olig2 is then written as :

αOwO,p(1 + kO,inxin)
wO,p(1 + kO,inxin) + (1 + kOIxI)2(1 + kONxN)2 (D.1)

The signal input concentration xin is the gradient e−s/0.15, which depends on the dorsal-ventral
neural tube position s ranging from 0 to 1 as in [Cohen et al., 2014].

S15

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 31, 2019. ; https://doi.org/10.1101/721043doi: bioRxiv preprint 

https://doi.org/10.1101/721043
http://creativecommons.org/licenses/by/4.0/


O2e33 mutant

To find parameter sets that describe the behaviour of the O2e33 enhancer mutation, we first
identified those parameters that are related directly to the deletion of the respective enhancer.
Analysis of the sequence of the enhancer together with CHIP-seq and ATAC-seq [Oosterveen
et al., 2012, Peterson et al., 2012, Kutejova et al., 2016, Metzis et al., 2018] suggested that
Gli proteins, Nkx2.2, Irx3, and Sox2 all have a direct effect on this enhancer (Fig. 2A). We
therefore considered variations in the parameters that specify Nkx2.2 binding, Irx3 binding, Gli
binding and basal production (corresponding to Sox2 binding). We systematically explored how
reducing the parameters for each of these interactions, to a fraction f of their original value,
could explain the observed phenotype. We used a uniform distribution to perform this search
and represent the respective parameter reductions directly in terms of the ratio f between new
and original (WT) parameter values.
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Figure S8: Distribution of parameter changes to mimic in vitro O2e33 mutant. To
recapitulate the O2e33 dynamics in vitro, model parameters were systematically explored to
identify changes that could account for the delay in onset of Olig2 expression. The graphs
show the distributions of reduction factors f (x-axis) relative to WT parameter values, across
parameter sets that recapitulate the delay. The (y-axis) shows number of parameter combi-
nations that recapitulate the phenotype. The results show that what is needed to generate a
delayed induction of Olig2 is a substantial reduction in Sox2 input while maintaining input of
Irx3.

We first identified parameter sets that could replicate the observed in vitro delay in the
onset of Olig2 expression in the mutant, leading to a reduced parameter space (Fig. S8).
The delay in Olig2 activation was determined for networks positioned a fraction 0.3 along the
neural tube, and we retained those networks that took twice the amount of time to express
Olig2 than in the WT.

We next investigated what further phenotypical behaviour the retained parameter sets
predict, focussing on the domain size and boundary precision generated in response to a
graded Shh signal. We found that 68% of the parameter combinations reduced boundary
precision, 80% reduced the size of the pMN domain, with 83% presenting one or other of
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the phenotypes (data not shown). Here, the pMN domain size was calculated with respect
to the Shh gradient and we considered it reduced if it was below 70% of the WT size. For
determining boundary sharpness, we regarded as imprecise those systems that had a boundary
width at least twice the size of the WT; this width is calculated using the SDE system with
the thresholds described in Fig. 1J. The fact that a majority of the parameter sets identified
affected domain size and boundary precision encouraged us to generate the mouse lines.
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Figure S9: Distribution of parameter changes to mimic in vivo O2e33 mutant. Equiv-
alent histograms to Fig. S8 with the additional constraints from in vivo observations: ventral
shift of pMN-p2 boundary and broad p3-pMN boundary. The main results are: maintaining
WT levels of Irx3 input; substantial reduction in Sox2 input, some reduction in Gli input but
with a broad distribution, and a mild reduction in Nkx2.2 input.

Once the mouse lines were generated we noted two additional phenotypes to the delay
in onset of Olig2, as expected from the initial parameter screen: a loss of precision at the
p3-pMN boundary and a ventral shift of the pMN-p2 boundary. We made use of these two
additional observations to constrain our parameter space further, thus leading to the parameter
distributions shown in Fig. S9. We quantified sharpness as explained above. The targets set
for the boundary position were extracted from in vivo data, and were set as: pMN-p3 boundary
position to be between [0.17 0.25] (as the WT boundary position is at 0.17 and the in vivo
data show a small dorsal shift in the mutant) and p2-pMN position to be lower or equal to
0.5 (WT boundary is at 0.55, this means a reduction of the domain size of at least 15%
with respect to WT) but higher than the pMN-p3 boundary position, such that the pMN
domain does not disappear. From the parameter sets that met both criteria, we finally took
a representative point as our model for the O2e33 mutant; as expected this replicates the
observed experimental phenotypes.
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E Screening three node networks for precision

Defining a functional form

To perform a parameter screen we explored three node networks with all possible interactions
between the nodes, as this has provided useful insights in other systems (Fig. 1A) [Cotterell
and Sharpe, 2010, Leon et al., 2016]. For the purpose of exploring different dynamics, we
enumerated the different possible transcriptional/occupancy states of the promoter to model
the production rates of a given protein. These rates depend on polymerase availability, signal
input (morphogen) and regulating transcription factors, with concentrations xp, xin and xi

respectively. The transcription factors i can be activating (i ∈ P) or repressing (i ∈ N ), with
P and N denoting the sets of activating and repressing transcription factors, respectively.
While in the previous model, in its most general form (B.1a), different protein production rates
can be used for different DNA conformations, in the neural tube network we used the same the
production rate for all protein-producing input conformations (see Supp. D). We adopt the
same approach here and set the production rate to unity in appropriate units of time; thus the
model is specified only by the binding affinities of the various DNA conformations. Without
loss of generality we fixed the affinity (and hence the weight) of the unbound conformation to
1 as explained in [Sherman and Cohen, 2012]. We assign the weights of conformations with
only one bound molecule as kpxp, kinxin and kixi. In accordance with our previous model
(B.1a), we set the following constraints:

• All conformations with polymerase and without any repressor i ∈ N produce protein; it
does not matter whether signal or any activator i ∈ P are bound.

• Conformations that have one or more repressor i ∈ N bound together with either
signal, polymerase or any activator P are excluded, based on the assumption that these
molecules compete for the same binding site

• Binding of signal or any activator P enhances binding of polymerase

• No other cooperativity effects are present

Expressions for conformation states

The only states that can produce protein are those with polymerase bound. For brevity we
follow the convention in Supp. D and abbreviate

wp = kpxp (E.1)
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in the following, taking polymerase levels as constant throughout our dynamics. As specified
above, the only states that can bind polymerase are those that have no repressors bound. We
assume no cooperativity between signal xin and activators xi, i ∈ P , hence the total weight of
states that can potentially bind polymerase (assuming two binding sites per activator i ∈ P
but only one for the signal) is:

(1 + kinxin)
∏
i∈P

(1 + kixi)2 (E.2)

Given that repressors N can only bind by themselves, and that there is no other cooperativity
between the inputs, the total weight for conformations with at least one repressor N bound
while assuming two binding sites per repressor i ∈ N is:

−1 +
∏
i∈N

(1 + kixi)2 (E.3)

In accordance with biological intuition, polymerase is recruited by activators P or signal.
The simplest way to implement this is to increase the weight of conformations having both
polymerase and at least one activator i ∈ P or signal by a cooperativity factor c, giving a total
weight of:

cwp[−1 + (1 + kinxin)
∏
i∈P

(1 + kixi)2] (E.4)

Finally, the weight for the unbound (empty) conformation is taken as 1, as explained above,
and for the conformation with one polymerase bound it is wp as defined in (E.1). The total
weight, i.e. the denominator of the protein production rate, is then

wp+cwp[−1+(1+kinxin)
∏
i∈P

(1+kixi)2]+(1+kinxin)
∏
i∈P

(1+kixi)2−1+
∏
i∈N

(1+kixi)2 (E.5)

while the numerator is the total weight of conformations with polymerase, either on its own
(E.1) or together with activators or signal (E.4), giving overall for the production rate (which
with protein production set to unity is also the probability of being in a DNA conformation
that produces protein)

wp + cwp[−1 + (1 + kinxin)ϕ]
wp + cwp[−1 + (1 + kinxin)ϕ] + (1 + kinxin)ϕ+ ψ − 1

(E.6)

with the abbreviations

ϕ =
∏
i∈P

(1 + kixi)2, ψ =
∏
i∈N

(1 + kixi)2 (E.7)
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General strong cooperativity limit

It will be convenient in the following to write the effective affinities of signal and activating
TFs in combination with polymerase in a form that includes the cooperativity effect from the
factor c, i.e. in terms of k̃in = c kin and k̃i = c ki for i ∈ P . The protein production rate is
then expressed as

wp + cwp[−1 + (1 + k̃inxin/c)ϕ]
wp + cwp[−1 + (1 + k̃inxin/c)ϕ] + (1 + k̃inxin/c)ϕ+ ψ − 1

(E.8)

with now
ϕ =

∏
i∈P

(1 + k̃ixi/c)2 (E.9)

We can now compare with the analogous expression (D.1) in the neural tube network. There
all interactions are repressive so that P is the empty set and hence ϕ = 1, which simplifies
(E.8) to

wp(1 + k̃inxin)
wp(1 + k̃inxin) + k̃inxin/c+ ψ

(E.10)

This agrees with (D.1) except for the middle term in the denominator, which represents the
weight of DNA conformations with only signal but no polymerase bound. Its absence in
the neural tube network formally corresponds to the strong cooperativity limit c → ∞. In
our screen we use a finite cooperativity c = 100 to avoid the extreme case of excluding
conformations with only signal bound completely; this value of c is still large enough, however,
to replicate the dynamics of the neural tube network. We thus take (E.8) with c = 100 as the
form of protein production rates in our screen; compared to the neural tube case this allows
us to include both activating and repressive interactions.

Adding a protein decay term (with unit decay rate) and stochastic fluctuations, the dy-
namics of the three-node networks in our screen, with protein levels x1, x2 and x3, is thus
described by

d

dt
xj = wj,p + cwj,p [−1 + (1 + kj,inxin/c)ϕj]

wj,p + cwj,p [−1 + (1 + kj,inxin/c)ϕj] + (1 + kj,inxin/c)ϕj + ψj − 1
− xj (E.11)

ϕj =
∏
i̸=j

(1 + [kji]+xi/c)2

ψj =
∏
i̸=j

(1 + [kji]−xi)2

for j = 1, 2, 3; compared to (E.8) we have dropped all tildes to unclutter the notation. We
have also allowed the sets P and N of activating and repressing transcription factors to be
determined implicitly by the system parameters. This is done by generalizing the affinities kji
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so that a positive sign indicates an activation of j by i and a negative sign a repression. The
corresponding switching of species i between the products over activators and repressors is
achieved mathematically by setting [k]+ = max(k, 0) and [k]− = max(−k, 0).

To mimic the structure of the neural tube network, we assume that only proteins 1 and
2 have direct signal inputs, while 3 does not, so that k3.in = 0. This leaves 11 network
parameters: 2 for the signal (gradient) inputs from the gradient (k1,in into node 1 and k2,in

into node 2), 6 from the interactions between TFs (k12, k13, k21, k23, k31 and k32) and 3 for
polymerase binding weights (w1,p, w2,p and w3,p).

Parameter exploration

We explored the 11 dimensional parameter space specified above using a uniform log distribu-
tion (log10), where the ranges are set differently depending on the parameter. Specifically we
chose the ranges as: range(kin) = [10 : 400], range(wp) = [0.1 : 10], range(kji) = [−100 :
−1] ∪ [1 : 100] with the sign of each regulation kji being chosen randomly.

We explored parameter combinations for a three node network defined in the form (E.11).
The main criterion for choosing a viable set of parameters was that they must produce a
patterned steady state, i.e. a saddle-node bifurcation on the same gradient as in the neural
tube: defined as xin = e−s/0.15 where s defines dorsal-ventral neural tube position and ranges
from 0 to 1. To avoid trivial effects from shifts in the boundary position we set a further
constraint that the bifurcation must occur at a position s in the same range as in the neural
tube network, 0.165 ≤ s ≤ 0.17. More specifically networks were required to be monostable
below s = 0.165, with high levels of x1; and bistable beyond s = 0.17, with one state having
high x2 and the other high x1 (with “high” being a concentration value above 0.6). For each
network meeting these criteria, we then proceeded to calculate the MAPs, as for the neural
tube network (as explained in Supp. B), and the jump time. We selected networks that have
boundaries sharper than a certain threshold, set by requiring the boundary to be no wider
than 0.2 fractional neural tube units; boundaries were calculated based on their transition
time obtained from simulating the SDEs. To simulate the neural tube network from (D.1)
in the screen we used the standard parameters from that network, reverting to the original
version [Cohen et al., 2014] with maximal concentrations of unity for all TFs in order to ensure
comparability with the networks produced by the screen. We removed all terms relating to
Irx3, as these do not contribute substantially to the dynamics of transitioning from a pMN to
a p3 steady state. We further set production and degradation rates to be equal to unity in
the screen as these simply scale the jump time and do not affect the results.
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In analysing the results of the network screen we quantified the curvature of the MAP as
the largest perpendicular distance of any point on the MAP from the straight line between
steady state and transition point, normalised by the total length of this line. We refer to this
value throughout the text by the shorthand “curvature” as it gives a quantitative indication of
how much the MAP deviates from the shortest path. The curvature was measured at s = 0.25
and the robustness of the results with respect to this choice of neural tube position was tested
by comparing with multiple other locations, with qualitatively similar results in all cases (data
not shown).

In the analysis we also characterised networks by the strength of the contribution of the
third node, which does not receive direct signal input. We quantified this by taking the value of
x3 at the steady state and transition point (saddle point) and multiplying each by parameters
for the repression or activation of nodes 1 and 2 by node 3, taking the maximum value. The
multiplication by representative concentration levels of the third node was motivated by the
fact that when those concentrations are small, even large interaction parameter values have
small net effects.

Networks with a low third node contribution are effectively two node networks, and turned
out to have low MAP curvature. This led us to explore other mechanisms for generating sharp
boundaries. Geometrically, in the space of expression levels, the speed at which the steady
state and saddle point separate as a function of neural tube position s is a plausible contributor
to boundary sharpness because even if the fluctuations around the initial steady state favour a
jump, such a jump will be inhibited by a large separation between steady state and transition
point. High separation speed should thus lead to rapidly increasing jump times and hence
to sharp boundaries. To measure separation speed we focussed on a fixed position (chosen
as s = 0.25) along the neural tube, beyond the saddle-node bifurcation, and calculate the
Euclidean distance between steady state and transition point. We then used this as a simple
quantitative indication of separation speed. We checked the robustness of this measure by
performing the measurement for different fixed positions along the neural tube, and also at
variable locations chosen as the centre of the boundary region for each network; we found
qualitatively similar results in every case (data not shown).

When a network had a high separation speed, this typically resulted in the steady state (the
expression profile) of x2 varying, i.e. changing within a domain of the steady state pattern.
We quantified this heterogeneity by the standard deviation of x2 within the region of high
x2 expression. This confirmed (see Fig. S10) that sharp 2D networks have a higher level of
heterogeneity than 3D networks, which use the curvature of the MAP to generate sharpness.
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Figure S10: Histogram of variation of the expression level of the second node within its domain
of expression for 3D (red) and 2D (blue) networks; inset shows example variation of expression
levels across a domain. 3D networks can generate domains of expression with more constant
levels of expression (lower domain variation) than 2D networks, which rely on separation speed
to create sharp boundaries. Green line represents the WT network.

Characterisation of topologies

Finally we analysed the topologies of the networks resulting from the screen. To sort networks
into topologies we used thresholds to identify whether nodes 1 and 2 receive significant signal
input, and for each of the TF nodes whether it significantly activates or represses the other
TFs. Starting with the former, within the input parameter range [10 : 400] for nodes 1 and
2, we took any parameter 30 < kin to be a positive input; lower values were classified as
lack of input. This cutoff was chosen by testing a range of different values and imposing the
constraints that we want to neither classify the majority of networks as having two inputs
(which would provide no information on the input topology, as could happen if the cutoff
was too low) nor assign any network to a topology with no inputs (which would not make
biological sense and would occur when the cutoff is too high). For interactions between nodes
we took into account not only the parameters kji but whether each parameter in conjunction
with the actual states of the system would have a noticeable effect. We evaluated interactions
by considering the contribution of an interaction given the highest level that the effector node
can take. Accordingly, we consider an interaction with 0.3 < |kji| max(xi) to be significant,
otherwise we classify it as negligible. The maximum was taken over all steady states for
all neural tube positions. The cutoff value of 0.3 was chosen by systematic inspection of a
representative number of networks, for which we compared the dynamics with and without
individual interactions and assessed whether these were qualitatively identical or not. To assess
the robustness of the cutoff value, we varied it within a range up to an order of magnitude larger
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and found that the results of our characterisation of network topologies remained qualitatively
the same (data not shown).

With this approach we classified all the 3D network parameter sets into topologies, de-
termined those that occurred most often (Fig. S11) and plotted the boundary precisions they
generate (Fig. 4H). The results indicated that although some topologies are more frequently
represented amongst networks producing a sharp boundary, there is no single topology that
ensures sharpness. Some networks (such as 1–4 in Fig. S11) prevented the boundary from
becoming very imprecise, but even within these network topologies the range of sharpness
was large (Fig. 4G,H & Fig. S11 & Fig. S12). This leads to the conclusion that the dynami-
cal properties generated by the network, rather than the structure of the network determines
boundary precision. Indeed, we confirmed by analysing each topology separately that the main
indicators of sharpness are the two mechanisms identified in the main text: curvature of tran-
sition path and separation speed (Fig. S12). Thus a network’s topology can substantially bias
the dynamics towards high MAP curvature, and hence towards sharpness.
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Figure S11: List of topologies that generate sharp boundaries, sorted in the same order as
Fig. 4H. Red arrows indicate activation, black lines with blunt ends represent repression.
Mutual repression between the first and second nodes (1 and 2) is a consistent feature, as well
as the input from the signal to the first node. For the sharpest networks, a mutual repression
between the first and third nodes is observed.
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Figure S12: MAP curvature plotted against separation speed with boundary width indicated by
colouring. The data are equivalent to those shown in Fig. 4D, but here each plot represents an
individual network topology and networks with wide boundaries have been included in the plots
(deep blue). Network topologiess are ordered as in Fig. S11. While separation speed does not
exhibit obvious differences between topologies, network topologies 1–4 have consistent high
curvature.
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F Materials and methods

F.1 Mouse Strains

Mouse strains containing the following alleles were used: Pax6(Sey) [Ericson et al., 1997] and
O2e33 in strain backgrounds C57BL/6Jax and F1(B6xCBA) respectively. The O2e33 allele
was derived using zygote injection of CRISPR gRNA and Cas9 plasmids (see below). Embryos
were transferred to psuedopregnant females and subsequent pups were genotyped. O2e33
mice were maintained as a heterozygous population; the line was sub-viable with less than
2/40 homozygous offspring surviving. Embryos for analyses were collected at the indicated
time points following a mating, with the day of plug detection designated e0.5. All animal
procedures were carried out in accordance with the Animal (Scientific Procedures) Act 1986
under the Home Office project licence PPL80/2528 and PD415DD17.

F.2 Embryonic Stem Cell Culture

For the enhancer deletion in vitro, mouse ES cells containing a fluorescent reporter cotranslated
with Olig2 (Olig2::T2A-mKate2) [Sagner et al., 2018] were used. Mouse embryonic stem cells
were maintained on mitotically inactivated fibroblasts (feeder cells) in ES medium with 1,000
U/ml LIF. Cells were differentiated to spinal cord neural progenitors as previously described
[Gouti et al., 2014]. To initiate differentiation, ES cells were dissociated using 0.05% Trypsin
(Gibco) and panned in ES medium on culture plates for 2x 15 minutes to remove feeder cells.
ES cells were collected, spun down and re-suspended in N2B27 medium. 50,000 cells were
plates on 35mm CellBIND dishes (Corning). Dishes had been coated with 0.1% gelatine in
PBS before addition of 1.5ml of N2B27 with 10 ng/ml bFGF. After 48 hours medium was
replaced with N2B27 + 10ng/ml bFGF + 5uM CHIR99021 (Axon). 24 hours later, at D3,
medium was replaced with N2B27 + 100nm RA (Sigma) and 500nm SAG (Calbiochem), this
was repeated every 24 hours.

F.3 CRISPR/Cas9 targeting

For CRISPR/Cas9-mediated excision of the -33 kb enhancer, two pairs of short guide RNA
(sgRNA) sequences were designed to target either side of the enhancer region. ZiFit on-
line tool (http://zifit.partners.org/) was used to select guides that had the lowest number of
potential off target sites. sgRNA sequences (ACTTTGTAAGCCGAGCC) and (GATAATCGC-
CTCCCTCC were cloned into pX459 v2.0 (Addgene, [Ran et al., 2013]) and transfected into
ES cells via nucleofection. This generated a cell line with a 995bp deletion (chr16: 91192464-
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91193458). Two separate clones were analysed to determine whether there was substantial
clonal variation. A second line was generated with a larger deletion of approximately 3.3kb
using sgRNA sequences (GTTTATGGCTCATCCCC and TCCAGGCTCCCATATCC). Cell lines
with this larger deletion yielded the same results as the smaller deletion (data not shown). To
generate the mouse line, plasmids encoding the sgRNAs for the 3.3kb deletion were injected
into zygotes before being transferred to pseudo-pregnant females. The mouse line generated
had a 3259 bp deletion (chr16: 91191295-91194570).

To assess Olig2 protein copy number, a transgenic cell line was constructed, Olig2-HA-
SnapTag. Sequencing encoding an HA tagged SnapTag was placed at the C-terminus of
the endogenous coding sequence for Olig2 via homologous recombination using CRISPR. The
SnapTag sequence was extracted from the pSNAPf vector (N9183S, NEB) and inserted into
a plasmid containing Olig2 [Sagner et al., 2018] and targeted as previously described.

F.4 Protein Copy Number Quantification

The concentration of recombinant proteins (used as standards) was calculated from Coomassie
staining (GelCode Blue Stain Reagent, Thermo scientific). Recombinant proteins used were
Pax6 (Bioclone, PI-0099) Nkx2.2 (MyBioSource, MBS717917) and SnapTag (NEB, P9312S).
A solution of 5 m SNAP-tag was labelled with Janelia Fluor JF549 (TOCRIS, 6147) SnapTag
Ligand at 10 m (assembled in house) for 30 mins at 37řC.

To determine Pax6 and Nkx2.2 average molecule number per cell, a WT HM1 mouse
embryonic stem cell line was used [Doetschman et al., 1987]. Cells were lysed in RIPA buffer
supplemented with protease inhibitors. The cell lysates were analysed by Western blot, with
lysate from a known number of cells loaded per lane. The following antibodies were used:
rabbit anti-Pax6 (Millipore AB2237, 1:2000), mouse anti-Nkx2.2 (DSHB 745A5, 1:50), donkey
anti-mouse IRDye 800CW (Licor) and donkey anti-rabbit IRDye 680RD (Licor). Blots were
scanned using an Odyssey Scanner (Licor).

We used the cell line Olig2-HA-SnapTag to determine protein copy number for Olig2.
Cells for Olig2 and Nkx2.2 copy numbers were differentiated as described. For Pax6, cells
were exposed to 100nm RA only from day 4 to induce a more dorsal spinal cord cell fate.
One day prior to sample collection, the cells were incubated with Janelia Fluor JF549 SnapTag
Ligand (assembled in house) directly in the media at 1 µM overnight. Cells were lysed in RIPA
buffer supplemented with protease inhibitors. A known number of cells were loaded per lane.
Gels were scanned using Typhoon FLA 9500.

To determine the percentage of expressing cells, flow cytometry was carried out as described
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in the Flow Cytometry section.

F.5 Flow Cytometry Analysis

Cells were dissociated using 0.05% Trypsin and collected in ES media. Cells were then washed
in PBS and resuspensed in PBS containing live-cell Calcein Violet dye (Life Technologies).
Control and O2e33 cells were differentiated in parallel and analysed together. Control cells
differentiated without SAG from day 4 were used to set population gates for mKate positive
cells.

For protein quantifications, flow cytometry was used to determine percentage of cells
expressing Olig2, Pax6 and Nkx2.2. Cells were labelled with either PE Mouse anti-Nkx2.2
(BD Pharmingen 564730, 1:20); AlexaFluor 647 mouse anti-Human Pax6 (BD Pharmingen
562249, 1:50); goat anti-Olig2 (R&D Systems AF2418, 1:800) then donkey anti-goat 405
(Biotium 20398, 1:500). Flow analysis was performed using a Becton Dickinson LSRII flow
cytometer.

F.6 Immunohistochemistry and Microscopy

Embryos were collected at defined timepoints and fixed for 30 minutes for e8.5, 1 hour for e9.5
and 2 hours for e10.5 in 4% paraformaldehyde in PBS. Embryos for wholemount imaging were
washed in PBS containing 0.1% Triton X-100 (PBST) before addition of primary antibodies.
Embryos for sectioning were placed in cryopreservation 30% sucrose overnight at 4řC then
dissected into forelimb neural tube fragments. These were mounted in gelatine then frozen.
12m sections were collected on glass slides using Zeiss Hyrax C 60R cryostat. Gelatine was
removed from the slides by 4 x 5 min washes in PBS at 42řC and sections washed with PBST.
For in vitro stainings, cells were washed in PBS and fixed in 4% paraformaldehyde for 15 min
at 4řC then washed in PBS then PBST. For whole embryos, embryo sections and cells, primary
antibodies diluted in blocking solution (1% BSA in PBST) were applied overnight at 4řC. These
were then washed in 3 x PBST before secondary antibodies diluted in PBST were added for 1
hour at room temperature. Secondary antibodies were removed with 3 x washes with PBST
and one wash containing PBST and DAPI. Sections and cells were mounted using Prolong
Gold (Invitrogen). Embryos for wholemount were mounted using glycerol. Primary antibodies
used were guinea pig anti-Olig2 (gift from Bennett Novitch, 1:8000 [Novitch et al., 2001]);
mouse anti-Nkx2.2 (BD Pharmingen 564731, 1:500); rabbit anti-Pax6 (Millipore AB2237,
1:1000); goat anti-Sox2 (R&D Systems AF2018, 1:200). All secondary antibodies were raised
in donkey and conjugated to Alexa488, Alexa568, Alexa647 (Abcam).
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Cells were imaged on a Zeiss Imager.Z2 microscope using 20x objective. Z-stacks were taken
and presented as a maximum projection using FiJi imaging software. A Leica SP5 upright
confocal microscope was used to image embryo sections (40x oil objective) and whole embryos
(20x dry objective). For whole embryos, z-stacks were taken across a tile-scan then assembled
and maximally projected using FiJi imaging software.

F.7 Image quantification
Fluorescent intensity measurements

Single optical planes from confocal z-stack images were used for analysis. Each nucleus was
identified individually using the FiJi point tool. The DAPI channel was used as reference for
the position of the nuclei regardless of TF expression. A circle of 2 µm radius was taken
around each point, x and y position and mean fluorescence intensity values for Nkx2.2, Olig2
and Pax6 were recorded. Reference points at the ventral and dorsal pole of the neural tube in
each section were recorded in order to align all embryos along the dorso-ventral axis.

Pre-processing

We performed a set of normalisation steps in order to compare embryos from different batches
and across phenotypes:

1. The datasets were realigned vertically with respect to the reference points and the
ventral-most point was set to (0,0) in axes coordinates

2. Cells with DAPI levels below two SDs from the mean were removed to eliminate falsely
identified nuclei. This value was decided individually for each sample to account for
different background levels resulting from technical noise.

3. Points that were very low in intensity (below two SDs) were set to a minimum threshold
in each individual channel.

4. For Nkx2.2 and Olig2, the intensity values were re-scaled such that the minimum value
is at 0 and the 40% quantile is at the arbitrary value of 0.08. This was done individually
for each embryo with the assumption that most nuclei in a full neural tube cross-section
will not express these proteins.

5. For Pax6, most nuclei in the image express some level of Pax6; accordingly we set the
60% quantile at 0.6 across all datasets.
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Staging embryos with size

We used the dorsal-ventral length of the neural tube as a proxy for embryo age [Cohen et al.,
2015]. For e9.5 embryos, the neural tube size measured was between 250µm and 350µm and
for e10.5 embryos were larger than 350µm. In order to subgroup e9.5 embryos, neural tube size
was used. In total we have 46 WT, 29 O2e33 and 16 Pax6−/−. By sizes they are distributed
as:

WT O2e33 Pax6−/−

150 - 250 µm 17 5 5
250 - 350 µm 13 13 3

350 - µm 16 11 8

Classification into cell types

In order to analyse the heterogeneity at the boundary between domains, we classified all cells
into one of 5 specific cell types: floor plate, p3, pMN, Irx3 positive, other; this was done based
on the position and expression profile of each cell. We refrained from using the Pax6 channel in
our classifier to avoid any bias in the classification of Pax6−/− embryos. We therefore classified
based on three parameters: Nkx2.2 intensity, Olig2 intensity and dorsal-ventral position. The
thresholds we employed for Nkx2.2 and Olig2 concentrations are shown in Fig. S13A-B. There
was a further constraint on the dorsal-ventral position for each cell type, in order to avoid
anomalies from blood vessels and imaging artefacts and to be able to separate floor plate
cells from Irx3 positive cells, both of which lack expression of Nkx2.2 and Olig2 (Fig. S13B-
C). Manually bench-marking this method indicated that we were able to classify most cells
accurately for all three phenotypes. The classifier becomes less accurate for cells in dorsal
regions but this is of no concern as our subsequent analysis did not involve these cells. For the
specific task of quantifying the Olig2-Irx3 boundary position we employed the Pax6 channel as
a further parameter to aid classification. This was only performed for WT and O2e33 (data
not shown).

Defining boundary position and width

Once the cell types had been classified we assigned a quantitative measure of the width of
gene expression boundaries. For this we fit to the cell position data, for each embryo, a smooth
function indicating the probability of finding a cell of one type (the prevalent type on one side
of the boundary) at each location of the image. We focused on the boundary between p3 and
pMN domains. The classifier is then binary and gives the probability of finding a p3 cell at
each image location. We used a Gaussian process approach to fit this classifier as detailed
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Figure S13: Analysis of gene expression in embryos(A) Plot illustrating the concentrations
of Nkx2.2 and Olig2 for all cells analysed. This highlights that the majority of cells are negative
for both TFs and also that very few cells co-express both TFs. (B) Criteria to determine the
identity of each cell by using the levels of Nkx2.2 and Olig2; colours indicating cell assignment
as Olig2 (red), Nkx2.2 (green) and neither (blue) are consistent throughout the figure. The
concentration of Pax6 is not used for classification. (C) Positional limits along the neural tube
for each cell type. Cells that express neither Olig2 nor Nkx2.2 are classified based on their
position as they can be ventral floor plate cells (black) or more dorsal progenitors. Cells that
have mismatching values of concentration and position are classified as exceptions in Cyan
(D) Examples of classified embryos of increasing age, illustrating the accuracy of the approach
for determining cell type.

in [Rasmussen and Williams, 2004], using public MATLAB code (MATLAB version r2018b).
The Gaussian process was chosen to have a constant mean function and a squared exponential
covariance function. This choice of covariance function is relatively standard and allows us in
particular to assign separate covariance function lengthscales in the x and y image directions
by automatic relevance determination [Rasmussen and Williams, 2004]. We used a logistic
transfer function to convert Gaussian process values to probabilities, again a standard choice.
Once the classification probabilities have been obtained in this way, we define the boundary as
the region where the probability of p3 cells lies in the range 11% to 89%, i.e. where there is
significant mixing of cell types. We then determine the width of this region geometrically. This
method allowed us to calculate the boundary widths for all embryos in a consistent manner,
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and to compare WT with mutants. The boundary region is determined from the trained
classifier for each embryo as explained above; the position where the classification probability
is 50% for either cell type is used to define the position of the boundary (an average position
of the boundary along the left-right axis) (Fig. S14).
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Figure S14: Examples of boundaries determined by the Gaussian process classifier.
The red lines indicate the computed boundary position, and correspond to the image locations
where the probability of being a p3 or pMN cell is 0.5. Blue lines close to the p3-pMN boundary
delimit the area identified as the boundary region, where the probability of being a p3 cell is
in the range 11% to 89%. By measuring the area between the two blue curves and dividing
by the width of the embryo we are able to quantify the width of the boundaries. In turn by
obtaining the average position of the red line, we are able to calculate the boundary position.

Quantifying TF levels

We extracted Olig2 positive cells that were classified as being within the boundary region. The
model predicted that these cells were the most likely to transition to a Nkx2.2 positive state,
given sufficient time. We quantify the levels of Pax6 and Olig2 for these cells in WT and O2E33
mutants. The resulting measurements do not provide absolute numbers; but given that all
samples are normalised in the same way, as described (Sec. F.7), the resulting measurements
are comparable relative to each other. We use these measurements as equivalents to observing
fluctuations around a steady state over a series of dorso-ventral positions. In this way, we take
the corresponding equivalent in the simulations, where we also average fluctuations across
several neural tube positions (Supp. B).

Calculating variance levels

In order to calculate the total variance of Olig2 and Pax6 levels within the pMN domain we
extracted all Olig2 expressing cells, for both WT and O2e33, outside the boundary region.
The variances and covariances of the normalised fluorescence intensity values were calculated,
analogous to the theoretical approach (Supp. B). The square root of the trace of the resulting
covariance matrices were then used to obtain the typical root-mean-square relative variance.
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