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Abstract16

During development, gene regulatory networks allocate cell fates by par-17

titioning tissues into spatially organised domains of gene expression. How18

the sharp boundaries that delineate these gene expression patterns arise,19

despite the stochasticity associated with gene regulation, is poorly un-20

derstood. We show, in the vertebrate neural tube, using perturbations of21

coding and regulatory regions, that the structure of the regulatory net-22

work contributes to boundary precision. This is achieved, not by reducing23

noise in individual genes, but by the configuration of the network mod-24

ulating the ability of stochastic fluctuations to initiate gene expression25

changes. We use a computational screen to identify network properties26

that influence boundary precision, revealing two dynamical mechanisms27

by which small gene circuits attenuate the effect of noise in order to in-28

crease patterning precision. These results highlight design principles of29

gene regulatory networks that produce precise patterns of gene expres-30

sion.31
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Introduction32

Embryos are characterised by remarkably organised and reproducible patterns of cellular dif-33

ferentiation. An illustration of this accuracy are the sharp boundaries of gene expression ob-34

served in many developing tissues. These patterns are determined by gene regulatory networks35

(GRNs), governed by secreted developmental signals [Davidson, 2010], raising the question of36

how precision is achieved inspite of the biological noise and inherent stochastic fluctuations37

associated with the regulation of gene expression [Raser and O’Shea, 2005].38

A popular metaphor for the process of developmental pattern formation is the Waddington39

landscape, in which the differentiation trajectory of a cell is conceived as a ball rolling down a40

landscape of bifurcating valleys [Waddington, 1957]. In this representation, the landscape is41

shaped by the GRN with the valleys representing cell fates and developmental signals allocating42

cell identity by determining the valley a cell enters. This can be formalised more rigorously by43

describing the GRN using dynamical systems theory such that Waddingtonian valleys corre-44

spond to the attractor states of the GRN [Enver et al., 2009, Wang et al., 2011, Balázsi et al.,45

2011, Zhou et al., 2012]. In this view, cells can be driven out of a valley into an adjacent46

attractor – thus producing a change in identity – not only by developmental signals but also47

by gene expression noise.48

How is noise buffered in developing tissues to ensure that developmental signals generate49

precise and reproducible patterns of gene expression? For individual genes, the activity of re-50

dundant regulatory elements (so-called shadow enhancers), the 3D architecture of the genome,51

the presence of multiple alleles, and the effect of RNA processing have all been proposed to52

buffer fluctuations and increase the robustness of gene expression [Perry et al., 2010, Frankel53

et al., 2010, Lagha et al., 2012, Little et al., 2013, Battich et al., 2015, Cannavò et al.,54

2016, Dickel et al., 2018, Osterwalder et al., 2018, Paliou et al., 2019, Tsai et al., 2019]. At55

the level of the tissue, mechanisms that regulate the shape, steepness or variance of gradients56

have been explored and their effect on the precision of gene expression detailed [Bollenbach57

et al., 2008, Sokolowski et al., 2012, Tkačik et al., 2015, Zagorski et al., 2017, Lucas et al.,58

2018]. Several mechanisms, including differential adhesion, mechanical barriers and juxtacrine59

signalling, have been proposed to correct anomalies and enhance precision, once cellular pat-60

terning has been initiated [Xu et al., 1999, Standley et al., 2001, Rudolf et al., 2015, Dahmann61

et al., 2011, Addison et al., 2018]. In addition, theoretical studies have suggested that the62

structure and activity of GRNs can also affect precision [Chalancon et al., 2012, Lo et al.,63

2015, Perez-Carrasco et al., 2016]. However, experimental evidence to support this remains64
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elusive.65

The developing vertebrate neural tube offers the opportunity to test the role of GRNs66

in the precision of patterning. The neural tube GRN partitions neural progenitors into dis-67

crete domains of gene expression arrayed along the dorsal-ventral axis [Sagner and Briscoe,68

2019]. The boundaries between these domains are clearly delineated and accurately positioned69

[Kicheva et al., 2014] resulting in sharp spatial transitions in gene expression that produce70

characteristic stripes of molecularly distinct cells. In the ventral neural tube, the secreted71

ligand Sonic Hedgehog (Shh), emanating from the notochord and floor plate, located at the72

ventral pole, controls the pattern forming GRN (Fig. 1A). The regulatory interactions between73

the transcription factors (TFs) comprising the GRN explain the dynamics of gene expression74

in the ventral neural tube and produce the genetic toggle switches that result in discrete tran-75

sitions in gene expression in individual cells [Balaskas et al., 2012]. The network includes the76

TFs Pax6, Olig2, Irx3 and Nkx2.2. Irx3 represses Olig2 [Novitch et al., 2001], while Nkx2.277

is repressed by Pax6, Olig2 and Irx3 [Briscoe et al., 1999, Briscoe et al., 2000, Novitch et al.,78

2001, Balaskas et al., 2012]. In the absence of Shh signaling, progenitors express Pax6 and79

Irx3. Moderate levels of Shh signalling are sufficient to induce Olig2 expression and repress Irx380

to specify motor neuron progenitors (pMN) [Ericson et al., 1997, Briscoe et al., 2000, Novitch81

et al., 2001, Balaskas et al., 2012]. In response to high and sustained levels of Shh signalling,82

Nkx2.2 is induced and inhibits the expression of Pax6 and Olig2, which then generates p3 pro-83

genitors and delineates the p3-pMN boundary (Fig. 1B). In embryos lacking Pax6, the domain84

of Nkx2.2 expression expands resulting in a decrease in Olig2 expression and dorsal shift in the85

p3-pMN boundary [Ericson et al., 1997, Novitch et al., 2001, Balaskas et al., 2012].86

In addition to the change in the position of the p3-pMN boundary, the loss of Pax6 also87

results in decreased precision of the p3-pMN boundary with noticeably more intermixing of88

cells [Ericson et al., 1997, Briscoe et al., 2000, Novitch et al., 2001, Balaskas et al., 2012].89

Here we set out to understand what explains this loss of precision. We hypothesised that90

stochastic fluctuations in gene expression coupled with changes in the dynamics of the GRN in91

the absence of Pax6 account for the decreased boundary precision. We provide a combination92

of experiment, data analysis and theory that are consistent with this idea. We also found that93

perturbing the regulatory input onto Olig2, by deleting a single cis-regulatory element, altered94

the dynamics of the GRN and decreased the precision of the p3-pMN boundary. The decreased95

precision was not a result of increased noise in the expression of individual genes. Instead96

the absence of the Olig2 regulatory element, similar to the loss of Pax6, changed the overall97

configuration of the stochastic fluctuations and made transitions from a pMN to p3 state more98
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likely. A computational screen for networks that generate precise boundaries supported this99

idea and revealed two dynamical mechanisms by which small gene circuits attenuate the effect100

of noise in order to increase patterning precision. Thus, although mechanisms necessitating101

additional signals, differential adhesion or cell mechanics are often invoked to explain the102

precision of tissue patterning, our analysis suggests that the intrinsic properties of a GRN can103

also enhance boundary precision.104

Results105

Pax6 contributes to p3-pMN boundary precision106

We assayed the precision of the boundary between p3 (Nkx2.2 expressing) and pMN (Olig2 and107

Pax6 expressing) in the ventral neural tube. Consistent with previous reports [Ericson et al.,108

1997, Balaskas et al., 2012], compared to wild-type (WT) mouse embryos, the precision of the109

boundary between p3-pMN domains was decreased in embryos lacking Pax6, resulting in more110

intermixing of cells expressing Olig2 or Nkx2.2 (Fig. 1C) [Ericson et al., 1997, Briscoe et al.,111

2000, Balaskas et al., 2012]. Measurements of the dorsal-ventral width of the region that con-112

tains both Nkx2.2 and Olig2 expressing cells in WT and Pax6 mutant embryos (Supplemental113

Section G.8) indicated that between e9.0 and e10.5, the width of the pMN-p3 boundary region114

is wider in Pax6−/− embryos, consistent with a loss of precision (Fig. 1E & S1).115

We hypothesised that the decreased precision of the Nkx2.2 boundary, leading to the116

increased width in Pax6−/− embryos (Fig. 1C), could be explained by noise in gene expression117

in the GRN. Previously, we established a deterministic model of the GRN, based on coupled118

Ordinary Differential Equations (ODEs), that replicated the response of the network to Shh119

signalling and the shifts in boundary position in mutant embryos, including Pax6−/− [Panovska-120

Griffiths et al., 2013, Balaskas et al., 2012, Cohen et al., 2014]. This model recapitulated the121

pMN and p3 steady states. The analysis also produced a region of bistablity in which both122

the pMN and p3 states were stable, however, due to the initial conditions and deterministic123

behaviour, the system always adopted a pMN state in the bistable region. We reasoned124

that fluctuations in gene expression could result in noise driven transitions within the bistable125

region from a pMN state to a p3 identity. (For a glossary of dynamical systems terminology126

see Supplemental Section B.) We constructed a stochastic differential equation (SDE) model127

that retained the parameters of the ODE model but incorporated a description of intrinsic gene128

expression fluctuations, based on experimental measurements (Supplemental Section C & D).129

Simulations with this model revealed that stochasticity in gene expression was sufficient to130
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promote a switch from a pMN state to a p3 identity within the bistable region and the131

probability of a noise driven transition increased with higher levels of signal as the system132

approached the p3 monostable regime. Moreover, the hysteresis that is a consequence of the133

bistablity [Panovska-Griffiths et al., 2013, Balaskas et al., 2012, Cohen et al., 2014] meant134

that transitions from pMN to p3 were more frequent than the reverse.135

We used the SDE model to simulate a Pax6−/− mutant. Compared to WT simulations, in136

the Pax6−/− mutant not only was the boundary of the Nkx2.2 expressing p3 domain displaced137

dorsally, but the boundary also showed markedly reduced precision (Fig. 1F,G,H). Thus, in-138

clusion of intrinsic noise in the GRN dynamics was sufficient to accurately reproduce the139

alterations in the position and precision of gene expression boundaries.140

An Olig2 enhancer influences boundary precision141

To test the hypothesis that the regulatory dynamics of the GRN affect the the precision of142

patterning we sought to alter the strength of interactions within the network. We turned143

our attention to the cis-regulatory elements controlling the TFs in the GRN, as regulatory144

elements have been shown to affect the reliability of patterning in other systems [Perry et al.,145

2011, El-Sherif and Levine, 2016]. Several predicted regulatory regions are located in the146

vicinity of Olig2; these include a prominent candidate region 33kb upstream of the Olig2147

gene [Oosterveen et al., 2012, Peterson et al., 2012], which we termed O2e33. This region148

binds (i) the repressor Nkx2.2; (ii) Sox2, which activates Olig2; and (iii) the Gli proteins, the149

transcriptional effectors of the Shh pathway (Fig. 2A) [Oosterveen et al., 2012, Peterson et al.,150

2012, Nishi et al., 2015, Kutejova et al., 2016] and becomes accessible in neural progenitors151

[Metzis et al., 2018]. To test the role of O2e33 in the network we first analysed its function152

in vitro in neural progenitors differentiated from mouse embryonic stem (ES) cells [Gouti153

et al., 2014]. Unlike WT cells, which express high levels of Olig2 at Day 5 of differentiation154

[Gouti et al., 2014, Sagner et al., 2018], cells in which the O2e33 enhancer had been deleted155

(O2e33−/−) had a marked reduction in levels of Olig2. By Day 6, Olig2 expression had156

increased in O2e33−/− cells, but the percentage of cells and the level of expression never157

reached that of WT (Fig. 2B,C). Consistent with the role of Olig2 in the generation of MNs,158

the production of MNs was substantially decreased in O2e33−/− cells (Fig. 2D).159

We used the experimentally observed delay in Olig2 induction to identify changes in model160

parameters that mimic the effect of deleting the O2e33 enhancer (Supplemental Section E).161

Of the parameter sets that delayed Olig2 induction in silico, most predicted the generation of162

a smaller pMN domain, resulting from a ventral shift in the dorsal boundary. Strikingly, many163
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of the parameter sets also predicted a loss of boundary sharpness of the p3-pMN boundary.164

To test these predictions, we generated mutant mice lacking the O2e33 enhancer (Methods).165

Assaying the neural tube of embryos from these mice revealed lower Olig2 expression levels166

in pMN cells and a delay in the induction of Olig2 in O2e33−/− embryos compared to WT,167

in agreement with in vitro results (Fig. S2, S3). As predicted by the in silico analysis, the168

pMN domain was decreased in size in O2e33−/− embryos, with its dorsal limit of expression169

noticeably more ventrally positioned (Fig. 2E). Moreover, the boundary between the pMN170

and p3 domain was less precise than WT (Fig. 2E, F,G). Consistent with the reduced domain171

size, there was a significant reduction in the generation of MNs in O2e33−/− embryos and a172

comcommitant increase in V2 neuron production (Fig. 2H,I). The decrease in the precision173

of the boundary, despite continued expression of Olig2 and Pax6 in pMN cells, suggests that174

secondary correction mechanisms do not suffice to determine the precision of the boundary175

between these two domains.176

Using the in vivo observations we further constrained the parameter space of the model177

by restricting our analysis to parameter sets that generated an imprecise p3-pMN boundary178

and alter the position of the pMN-p2 boundary (Supplemental Section E). This produced179

simulations in which the loss of boundary precision in the O2e33−/− embryos is not as severe180

as the Pax6−/− phenotype, in line with the experimental data (Fig. 2J), and the width of the181

boundary and the size of the pMN domain were consistent with in vivo analysis (Fig. 2K-L).182

Taken together, the data suggest that Pax6 function and the activity of the O2e33 enhancer183

increase the precision of the p3-pMN boundary by attenuating the effects of gene expression184

stochasticity in the GRN.185

Rate of stochastic switching is controlled by GRN dynamics186

To understand the mechanism by which Pax6 and O2e33 contribute to boundary precision, we187

explored the dynamical properties of the SDE model. The model did not predict a difference188

in the magnitude of the fluctuations in the expression of individual genes between the WT189

and the Pax6 mutant (Supplemental Section C). Consistent with this, experimental measure-190

ments of the coefficient of variation (CV) of Olig2 from WT and Pax6−/− embryos did not191

reveal significant differences (Fig. 1I). This raised the possibility that, rather than the size of192

fluctuations in individual genes, the change in precision was a consequence of the regulatory193

interactions of the network. The model of the GRN predicts a bistable regime between the194

two steady states of Nkx2.2 (p3) and Olig2/Pax6 (pMN) (Fig. 3A) [Balaskas et al., 2012, Co-195

hen et al., 2014]. In the absence of noise, the transition between the two steady states is196
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determined solely by the level of Shh signalling. However, in the presence of intrinsic noise,197

fluctuations in gene expression can result in spontaneous transitions between pMN and p3198

identity within the bistable region [Perez-Carrasco et al., 2016]. Below a threshold of Shh199

signalling, the rate of transitions is very low and cells remain in the pMN state. Conversely,200

above a certain level of Shh signalling, transitions from the pMN to the p3 steady state take201

place so rapidly that almost all cells undergo this transition. In between these two regimes, a202

region of heterogeneity is observed in which there is an intermediate probability for each cell203

to spontaneous transition (≤50 hours), see Fig. 3A-B. We calculated the characteristic time it204

would take for transitions between the pMN and p3 states at different dorsal-ventral positions205

of the neural tube. We termed this “fate jump time”. For WT, fate jump time changes rapidly206

in response to Shh signalling, implying that there is only a limited region where the effective207

probability of transitions is not 0 or 1 (Fig. 3B; black line). By contrast, the larger region of208

heterogeneity observed in the Pax6−/− mutant is due to the weaker dependence of fate jump209

time on levels of Shh signalling (Fig. 3B; blue line). There is a larger range of Shh levels for210

which noise driven transitions are possible and therefore a larger boundary region where cells211

in both p3 and pMN states exist.212

Fate jump times changed more slowly for O2e33−/− than for WT (Fig. 3B), but more213

rapidly than for the Pax6−/− system. This is in line with the boundary precision of O2e33−/−
214

embryos falling between that of WT and Pax6−/−. Analysis in vivo of the magnitude of the215

combined fluctuations in Pax6 and Olig2 indicated that it was similar in WT and O2e33−/−
216

(Fig. 3C; Supplemental Section G.8). Consistent with this, the combined magnitude of fluc-217

tuations of Pax6 and Olig2 in simulations were similar in WT and O2e33−/− mutants. This218

suggested that, similar to Pax6−/− embryos, the decreased precision was not the result of an219

increase in the overall magnitude of fluctuations (Fig. S9)(Fig. 3D). In addition, simulations of220

the O2e33−/− mutant predicted that variability in Olig2 should increase whereas the variability221

of Pax6 should decrease. In agreement with this, the CV of Olig2 and Pax6 between WT and222

O2e33−/− in vivo were increased and decreased, respectively (Fig. 3E).223

The dynamical landscape determines boundary precision224

To investigate the reasons for the change in fate jump time in O2e33−/− and Pax6−/− mutants,225

we explored the effect of these perturbations on the dynamical landscape of the system (see226

Supplemental Section B). Transitions between p3 and pMN states involve the system passing227

through, or very close to, a point in gene expression space - the saddle point in the dynamical228

landscape - that is characterised by specific levels of the transcription factors (TFs), we refer to229
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this as the "transition point” (Fig. 4A-C; purple point). In the landscape analogy it represents230

the lowest point in the ridge that separates the p3 and pMN valleys (Fig. 4A). Simulations231

of the SDE model indicated that intrinsic fluctuations around the pMN state are initially232

directed away from the transition point in WT. By contrast, in the Pax6 mutant fluctuations233

are oriented directly towards the transition point. As a consequence, fluctuations of the same234

magnitude would be more likely to reach the transition point in Pax6−/− than WT cells. To235

characterise this rigorously, we calculated the most likely gene expression trajectory that a236

stochastic transition caused by fluctuations in gene expression will take between the pMN237

and p3 steady states. This path is obtained as the minimum of an “action functional” -238

the minimum action path (MAP, see Supplemental Section B). It provides a portrait of the239

dynamical landscape underlying a noise induced transition and is an analytical representation240

of the behaviour that can be observed in simulations (Fig. 4A & Supplemental Section C)241

[Perez-Carrasco et al., 2016, Kleinert, 2009, Bunin et al., 2012]. Consistent with the SDE242

simulations, in WT, the MAP from the pMN to p3 steady state does not follow the shortest243

route leading to the transition point. Instead, the levels of Pax6 drop rapidly and pitch away244

from the transition point, resulting in a curvature of the gene expression path between steady245

states (Fig. 4B). By contrast, in the absence of Pax6, the MAP is directly oriented towards246

the transition point (Fig. 4C). Taken together, the analysis suggests that the GRN affects the247

precision of a domain boundary by determining the dynamical landscape, without changing248

the level of noise in overall gene expression.249

For the O2e33−/− mutants the MAP from pMN to p3 curved away from the shortest250

path to a lesser extent than for the WT; stochastic simulations further confirm this behaviour251

(Fig. 4D,E). Thus, in the absence of the O2e33 enhancer, stochastic fluctuations around252

the pMN steady state tended to take the system closer to the transition point than similar253

magnitude fluctuations in WT, making a noise driven switch in fate more likely in the mutant.254

Nevertheless, the curvature in the path in the O2e33−/− system was greater than in the255

Pax6−/− system, providing an explanation for the greater imprecision in Pax6−/− embryos256

compared to the O2e33−/− mutant (Fig. 4B-E).257

To explore this phenomenom further, we calculated the action along the path for each258

genotype [de la Cruz et al., 2018](Fig. 4F & Supplemental Section C). This represents the259

effective energy required to reach a point along the transition path and is a measure of the260

extent of the barrier that has to be overcome for a fate transition. Consistent with the results261

of the simulations, the effective energy necessary for a noise induced transition was greatest for262

WT, less for O2e33−/−, and lowest for the Pax6−/− mutant. Moreover, the analysis indicated263
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that the initial part of the trajectory presented a more significant barrier to noise induced264

transitions in the WT than O2e33−/− and Pax6−/− mutants (Fig. S6A), corresponding to the265

relative divergences of their transition trajectories from the shortest route to the transition266

point.267

An experimental testable signature of the alteration in the dynamical landscape in O2e33−/−
268

mutants would be changes in the relative expression levels of Olig2 and Pax6 in individual cells.269

In cells close to the pMN-p3 boundary O2e33−/− mutants are predicted to have higher levels270

of Pax6 and lower levels of Olig2 than WT (Fig. 4G,H). We therefore compared single cell271

immunofluorescence in the boundary region of WT and O2e33−/− embryos (Fig. 4I,J & Sup-272

plemental Section G.8). Consistent with the predictions, O2e33−/− mutants had higher levels273

of Pax6 and lower levels of Olig2 than WT. Thus the experimental evidence supports the idea274

that the strength of regulatory interactions encoded in the GRN contributes to the precision275

of domain boundaries by configuring the dynamical landscape of the system to reduce the276

likelihood of a stochastic fluctuation resulting in a noise driven change in cell identity.277

A computational screen identifies mechanisms for precise boundaries278

To ask whether other mechanisms could affect boundary precision, we performed a compu-279

tational screen to identify three node networks capable of generating a sharp boundary in280

response to a graded input (Fig. 5A & Supplemental Section F). For the networks recovered281

from the screen, we compared the boundary precision with the extent the MAP deviates from282

the shortest path to the transition, a quantity that we refer to as “curvature” (Supplemental283

Section F). This showed a positive correlation, consistent with our observations in the WT284

network, of high curvature and low boundary width. This correlation supports the idea that285

the shape of the transition pathway contributes to boundary precision (Fig. 5C). Nevertheless,286

for any given level of boundary sharpness, there were a range of MAP curvature values. We287

therefore investigated additional features that might affect boundary precision. We found a288

subset of the networks do not rely on path curvature to achieve precision and instead func-289

tioned effectively as two node networks (Fig. 5D). For these networks, the major contributor290

to boundary precision was the rate at which the steady state and transition point separated in291

response to changes in level of the input signal: the higher the rate of separation, the sharper292

the boundary (Fig. 5B). We termed this "separation speed”. The most precise boundaries were293

generated by networks that exploited both separation speed and curvature, which includes the294

Pax6-Olig2-Nkx2.2 network (Fig. 5E-F).295

Finally, we assessed whether particular network topologies favoured boundary sharpness.296
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Many topologies were able to generate sharp boundaries (Fig. 5G,H & Supplemental Sec-297

tion F), but four topologies appeared to be most effective (Fig. 5H). These tended to have298

similar separation speeds but much higher curvature than the networks with other topologies299

(Fig. S17). Crucial for this behaviour was the inhibition of x3 by x2 and the absence of300

repression of x2 by x3 (Fig. 5G & S16). This regulatory configuration generates curvature301

by allowing a steep decrease in x3, while sustaining high levels of x2 prior to the transition.302

Hence, an understanding of the dynamical properties of the GRN offers an explanation for its303

structure and the resulting gene expression behaviour that determines tissue patterning.304

Discussion305

In this study we provide evidence that the spatial heterogeneity that results from the stochastic-306

ity of gene expression can be attenuated by the dynamics of the GRN to enhance the precision307

of gene expression in developing tissues. This mechanism does not rely on suppressing stochas-308

tic fluctuations in individual genes, nor on cell-to-cell communication, but instead configures309

the dynamical landscape of the regulatory network to increase the fidelity of decision making.310

This strategy - “precision by design” - highlights the capacity of gene regulatory circuits to311

contribute to robust tissue patterning and identifies a mechanism that might be exploited in312

other biological settings requiring precise responses from groups of cells.313

GRN dynamics contribute to precise boundaries without attenuating gene expression314

noise315

Molecular noise is a universal feature of gene expression [Raj and van Oudenaarden, 2008,316

Raser and O’Shea, 2005, Chalancon et al., 2012]. Despite this, patterns of gene expression317

in developing tissues are remarkably reproducible and precise, as exemplified by the sharp318

boundaries of gene expression that delimit distinct domains of cells in many tissues. This319

spatial precision is critical for the accurate assembly of tissues. For example, along the anterior-320

posterior axis of the Drosophila embryo the expression of genes that partition the blastoderm321

into the major elements of the body axis are positioned with an accuracy of 1% or better322

[Dubuis et al., 2013, Petkova et al., 2019]. Similarly, in the central nervous system the323

correct positioning of different neuronal subtypes is a major determinant of their subsequent324

patterns of connectivity and underpins the formation of functional neural circuits [Jessell et al.,325

2011, Balaskas et al., 2019].326

Mechanisms involving cell-cell interactions to correct initial imprecisions in the spatial327

organisation of tissues have received considerable attention [Xu et al., 1999, Standley et al.,328
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2001, Rudolf et al., 2015, Dahmann et al., 2011, Addison et al., 2018]. Differential cell adhesion329

between neural progenitors with different cellular identities has been proposed to refine initially330

disordered patterns [Lei et al., 2004, Xiong et al., 2013, Tsai et al., 2020]. However, neither331

differential adhesion nor cell sorting appear to be the sole explanation for the precision of332

patterning in the neural tube. Lineage tracing in the mouse and chick neural tube [Kicheva333

et al., 2014, Leber and Sanes, 1995] indicates that sister cells form contiguous clones and there334

is no evidence that clones at a domain boundary behave in a way compatible with differential335

interactions across a boundary. Moreover, in both Pax6−/− and O2e33−/− mutants neural336

progenitors with distinct identities, pMN and p3, producing MNs and V3 neurons respectively,337

continue to be generated, but these different progenitor types intermix to a greater extent338

than normal. If the differential expression of cell adhesion molecules or different mechanical339

properties explained the sharpness of the boundary between pMN and p3 cells, this would340

lead to the sorting of pMN and p3 cells in the mutant embryos. Nevertheless, cell adhesion341

might play a role in the neural tube of teleosts [Xiong et al., 2013, Tsai et al., 2020]. Unlike342

the epithelial neural tube of amniotes, the zebrafish neural tube initially comprises unpolarised343

non-epithelial cells and sister cells disperse widely, including contralaterally, in the neural tube.344

This raises the possibility that differential cell adhesion plays a more important role in the345

anamniote neural tube.346

Similar to many developing tissues, the neural tube is patterned by graded signals that347

are transformed into discrete cell identities by the downstream GRN acting as a series of348

toggle switches to produce discontinuous changes in cell identity across the tissue [Sagner349

and Briscoe, 2019]. Previous studies have explored how properties of extracellular patterning350

signals [Bollenbach et al., 2008, Tkačik et al., 2015, Lucas et al., 2018, Sokolowski et al.,351

2012, Zagorski et al., 2017] and features of the regulation of individual genes [Perry et al.,352

2010, Frankel et al., 2010, Lagha et al., 2012, Little et al., 2013, Battich et al., 2015, Dickel353

et al., 2018, Osterwalder et al., 2018, Paliou et al., 2019] can contribute to the fidelity of354

gene expression. Some of these mechanisms may play a part in the precision of neural tube355

gene expression. For example, paralogs of several of the key transcription factors are co-356

expressed in the neural tube and appear to function, at least partially, redundantly [Vallstedt357

et al., 2001, Holz et al., 2010]. In addition, the provision of antiparallel signaling gradients358

emanating from the opposing dorsal and ventral poles of the neural tube have been implicated359

in increasing the precision of gene expression in central regions of the spinal cord [Zagorski360

et al., 2017]. However the ventral regions of the neural tube where the p3-pMN boundary is361

positioned is out of range of the dorsal signal. The changes in boundary precision in the neural362
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tube of the Pax6−/− and O2e33−/− mutants are not explained by changes in noise amplitude363

in individual genes or global changes in the magnitude of the noise. Instead the genetic364

perturbations we analysed alter the dynamics of the GRN and these change the configuration365

of gene expression fluctations and make noise driven transitions between cell states more likely.366

Thus the dynamics of the gene regulatory network affect patterning precision, without altering367

the stochasticity of individual components of the system, indicating that the configuration of368

gene expression noise, not simply the magnitude, affects development precision.369

Stochastic fluctuations in gene expression are expected to result in variations in the position370

at which cells switch identity and produce indistinct boundaries. There is a trade-off between371

the steepness, precision and speed of boundary formation [Chalancon et al., 2012, Lv et al.,372

2014, Perez-Carrasco et al., 2016, Tran et al., 2018]. If gene expression were deterministic,373

a graded signal controlling such a switch would generate a sharp, precisely positioned gene374

expression boundary in the tissue. However, the effect of stochastic fluctuations is that an375

increase in non-linearity and switch-like behaviour decreases boundary precision: stochastic376

fluctuations generate a change in gene expression that is independent of changes in signal377

input. Our analysis of the Pax6-Olig2-Nkx2.2 network revealed that the GRN is configured378

to decrease the probability of such spontaneous noise driven transitions while retaining the379

ability to produce discontinuous switch-like changes in gene expression, thereby generating a380

sharp, precise boundary in the tissue. This mechanism enhances boundary precision even in381

the presence of noise in the signalling gradient (Supp. F & Fig. S18). Moreover, the same382

regulatory mechanism that decreases the probability of a noise driven transition from pMN383

to p3 also produces hysteresis, this ratchet-like effect means that once a cell has adopoted384

a p3 identity it is unlikely to transition back [Balaskas et al., 2012]. Thus the dynamics of385

this GRN increase the precision of the pMN-p3 boundary by decreasing the probability of386

transitions between pMN and p3 in either direction.387

Configuring the dynamical landscape to maximise precision388

. Viewed from the perspective of the Waddington landscape [Waddington, 1957], spontaneous389

changes in cell state resulting from gene expression fluctuations would be represented as a cell390

being displaced from one valley to another by traversing the intervening ridge (Supplementary391

Section B). The dynamical landscape produced by the Pax6-Olig2-Nkx2.2 network is config-392

ured so that the height of the ridge between the two valleys changes rapidly as the level of393

morphogen signalling changes. This is evident from analysis of the MAP, which reveals that394

transition trajectories between cell states diverge substantially from the shortest route to the395
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transition point (Fig. 4B-E). The consequence of this is that the effective energy necessary for396

a noise induced fate transition was higher for WT than either of the mutants with a perturbed397

GRN (Fig. 4F & Supplemental Section C). Thus the GRN minimizes the range of signalling398

for which noise induced transitions are likely to occur, without altering the stochasticity of399

individual genes, hence increasing boundary sharpness.400

This mechanism, which we termed “curvature”, was identified in an unbiased computational401

screen of three node networks responding to a graded input signal (Fig. 5). In addition, the402

screen recovered a second mechanism - “separation speed” - that relied on the rate at which403

the two cell states separated in response to changes in the level of input signal (Fig. 5B).404

In the context of the Waddington landscape, separation speed can be viewed as changes in405

signal levels producing rapid changes in the distance between the two valleys. A feature of406

this second mechanism is that it can be implemented with only two genes. However, instead407

of producing two cell states both with uniform levels of gene expression, one of the resulting408

cell states is characterised by a gradient of gene expression S15). This might limit its utility409

in some tissue patterning roles. By contrast, the curvature mechanism requires a minimum410

of three nodes to implement, but it is able to produce two cell states with almost constant411

levels of gene expression. Nevertheless, the two mechanisms of speed and curvature are not412

mutually exclusive and the networks recovered by the screen that generated the most precise413

boundaries combined both mechanisms.414

Regulatory principles of patterning precision415

Similar to other recent studies [Cotterell and Sharpe, 2010, Schaerli et al., 2014, Verd et al.,416

2019], the screen indicated that the dynamics of the networks, not simply the network topology,417

were key to determining the resulting precision. A feature shared by many of the networks with418

the sharpest boundaries, including the neural tube network, was an asymmetry in inhibition419

between two of the genes (Fig 5H). Specifically, x3 (Pax6) repressed x2 (Olig2), but not420

vice versa. Moreover, the graded expression of Pax6 (x3) within the domain is indicative of421

the separation speed mechanism, providing evidence that this too contributes to boundary422

precision while allowing uniform levels of Olig2 expression (x2; the gene necessary for defining423

the identity of this domain). This analysis therefore raises the possibility that the dynamics424

of the Pax6-Olig2-Nkx2.2 network were adopted in the developing vertebrate neural tube for425

its capacity to generate distinct cell type identities with precise boundaries. In this context,426

it is striking that gene circuits with similar structure and dynamics have been implicated in427

the patterning of the anterior-posterior axis of the Drosophila embryo [Akam, 1987, Ingham,428
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1988, Sánchez and Thieffry, 2001, Manu et al., 2009, Verd et al., 2017] and the Drosophila eye429

imaginal discs [O’Neill et al., 1994, Rebay and Rubin, 1995, Graham et al., 2010] (Supplemental430

Section F & Fig. S19, S20). Taken together therefore, the computational screen defines design431

features of multi-stable gene circuits that are suited to the generation of sharp boundaries in432

response to graded inputs.433

The dynamics of a GRN are governed by the strength of regulatory interactions between434

the components of the network, which in turn are determined by cis regulatory elements and435

their binding to transcription factors [Davidson, 2010]. Many genes involved in development436

are associated with two or more cis regulatory elements that seem to function in a partially437

redundant manner [Perry et al., 2011, El-Sherif and Levine, 2016, Cannavò et al., 2016,438

Dunipace et al., 2019]. This appears to be the case for Olig2, where removal of the O2e33439

element perturbs, but does not completely abrogate, Olig2 expression (Fig. 2). This supports440

the idea that one function of multiple cis regulatory elements is to provide robustness and441

precision to gene expression [Perry et al., 2010, Frankel et al., 2010, Lagha et al., 2012, Battich442

et al., 2015, Dickel et al., 2018, Osterwalder et al., 2018, Paliou et al., 2019, Tsai et al.,443

2019]. Our analysis indicates that these functions are not simply a consequence of multiple444

elements supplying duplicate activities. Instead individual cis regulatory elements provide445

specific dynamical properties to gene regulation that sculpt the gene expression landscape.446

Thus, distinct cis regulatory elements of a target gene serve specific dynamical functions447

within a GRN.448

Taken together, our analysis illustrates how a tissue level feature - the spatial precision449

of gene expression patterns - is influenced by cell autonomous mechanisms, implemented by450

cis regulatory elements that influence the activity of a network of interacting transcription451

factors. The data reveal that the potential detrimental effects of stochastic fluctuations in452

gene expression that would lead to spatial heterogeneity can be attenuated by the dynamics of453

the GRN. We term the strategy “precision by design” as it arises from the integrated function454

of the gene circuit and is not intrinsic to any individual network component. This provides455

insight into decision making in multicellular systems and highlights how an understanding of456

the dynamics of GRNs can explain its structure and function. More generally, identifying the457

principles that produce robust and precise outputs despite the inherent stochasticity of gene458

expression should assist in the future design, modification and engineering of gene circuits.459
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Figure 1: Pax6 contributes to boundary precision. (A) Schemaic of the GRN responsible
for positioning the p3 and pMN domains. (B) Immunofluorescence assays of Pax6 (blue),
Olig2 (red) and Nkx2.2 (green) in neural progenitors from e8.5 to e9.5. (C) WT and Pax6−/−

embryos assayed for Olig2, Pax6 and Nkx2.2. (D) Position of the pMN-p3 boundary in WT
(grey) and Pax6−/− (blue). (Box plots in all figures show upper and lower quartile and mean;
n = 7 (WT), n = 8 (Pax6−/−), Mann-Whitney test p = 0.005). (E) Width of pMN-p3
boundary in WT (grey) and Pax6−/− (blue) (Mann-Whitney test p = 0.0006). (F) Stochastic
simulations of the GRN in WT (middle) and Pax6−/− (right). (G,H) Boundary position and
width from simulations. Width is given as fraction of total neural tube size. n = 10 (WT),
n = 10 (Pax6−/−), Mann-Whitney test p = 0.0001 for position and boundary width. (I)
Coefficient of variation (CV) of Olig2 levels for WT and Pax6−/− (Mann-Whitney p = 0.422)
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Figure 2: An Olig2 enhancer affects precision of the pMN-p3 boundary. (A) Chromatin
accessibility (ATAC-seq) and predicted TF binding locations around Olig2. CRISPR target
sites (orange triangles) for deletion of the O2e33−/− [Metzis et al., 2018, Kutejova et al.,
2016, Peterson et al., 2012, Oosterveen et al., 2012]. (B) Sox2 (expressed in all neural
progenitors) and Olig2 at day 6 in neural progenitors differentiated from WT and O2e33−/− ES
cells exposed to 500nM SAG. (C) Flow cytometry (top) for mKate2 flourescence in Olig2-T2A-
mKate2 ES cell derived neural progenitors exposed to 500nM SAG. (D) RT-qPCR indiates Isl1
is decreased in O2e33−/− (red) cells compared to WT (black) cells differentiated under spinal
cord conditions. Similarly, Olig2 and Isl1 expressing cells are reduced in mutant compared to
WT. (E) Olig2, Pax6 and Nkx2.2 in transverse sections of e9.5 neural tube from WT and
O2e33−/− (red, Olig2; green, Nkx2.2). (F, G) Domain size and boundary width in WT (grey)
and O2e33−/− mutants (red). n = 6 (WT), n = 12 (O2e33), Mann-Whitney test p = 0.004.
The p3-pMN boundary is wider in O2e33−/− mutants compared to WT (Mann-Whitney test
p = 0.009). (H) Isl1 and Hb9 expressing motor neurons are reduced in O2e33−/− embryos
compared to WT. (I) Chx10 expressing V2 neurons increase in the 02e33−/− mutant. Scale
bars = 100µm. (J) Simulations of the O2e33−/− model recapitulate in vivo observations of
a narrower pMN domain and decreased precision of the p3-pMN boundary. (K, L) Boundary
width (I) and position (H) from simulations (box plot shows upper and lower quartile and
mean; n = 10 (WT); n = 10 (O2e33), Mann-Whitney test p = 0.0001 for both).
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Figure 3: The rate of transition between progenitor states is determined by the GRN
structure. (A) A 3D bifurcation diagram illustrates bistablity for pMN (red; expressing Olig2
and Pax6) and p3 (green; expressing Nkx2.2) with a transition point (unstable fixed point
of dynamics, purple). Noise driven transition pathway from pMN to p3 is indicated by black
arrows. Panels (right) represent the transitions as one-dimensional Waddington landscape
sketches. (B) Fate jump times calculated from simulations: pMN to p3 in WT (black),
Pax6−/− (blue) and O2e33−/− mutants (red). Fractional distance refers to distance from
the bifurcation point. Grey shading indicates where transitions can occur on developmental
timescales. (C) Total variance in gene expression per embryo (Olig2 and Pax6) within pMN
domain for WT (grey) and O2e33−/− embryos (red). Relative root-mean-square variance of
WT and O2e33−/− embryos captures total noise of the system. No significant change in noise
levels between genotypes (p > 0.05, Mann-Whitney test). (D) Measurements of noise in
silico in the pMN domain in WT and O2e33−/−, each grey point is an individual configuration
(Supplemental Section C, Mann-Whitney test p > 0.05). (E) Coefficient of variation for Olig2
(left) and Pax6 (right) in WT (grey) and O2e33−/− (red) from experimental data (top) and
in silico simulations (bottom).
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Figure 4
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Figure 4: Mutant phenotypes affect the configuration of gene expression fluctuations.
(A) A quasi-potential (U) representation of the neural tube dynamical system in region where
noise driven transitions result in heterogeneity between pMN and p3 states. (B-C) Gene
expression space view of the transition path from pMN (red point) to p3 (green point) steady
states via the transition point (purple point). Simulated trajectory (dots) shows stochastic
fluctuations from the pMN steady state. Axes show relative expression levels. WT (left) and
Pax6−/− (right) for neural tube position at fraction 0.1 of total neural tube length dorsal to the
bifurcation point. (D-E) Projection into Olig2-Pax6 gene expression space of the minimum
action path (red) predicted from the model and simulated trajectory (dots) in WT (I) and
O2e33−/− (J) at the same position as G-H. Insets show projection onto Nkx2.2-Olig2 axes.
(F) Effective energy barrier (cumulative action) for noise-induced transitions, plotted along the
transition path (normalised to unit length) at the same neural tube positions as G-J. WT (grey)
has a higher barrier than O2e33−/− (red), leading to longer jump times; O2e33−/− in turn
has a higher barrier than Pax6−/− (blue). (G-H) Simulated Pax6 and Olig2 expression levels
(black dots) for WT and O2e33−/− in regions proximal to the p3-pMN boundary. (I-J) A shift
to higher levels of Pax6 and reduced levels of Olig2 is observed in cells from O2e33−/− mutants
in vivo compared to controls. Axes show fluorescence intensity (arbitary units). Contour lines
correspond to densities of the distribution of points, 0.6 (Orange), 1.6 (Red) and 2.6 (Blue).
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Figure 5
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Figure 5: Computational screen reveals the design principles of precision. (A) Three
node networks, comprising all possible interactions and a morphogen input into two nodes.
(B) Two mechanisms for producing a precise boundary. Close to the boundary (Position 1.0
a.u.; Signal 1.0 a.u.) the steady state (red point) is near the transition point (purple point) in
gene expression space. Further away (increasing Position; decreasing Signal) curvature of the
MAP (red line) with respect to the shortest pathway (top row) or the rate at which the steady
state separates from the transition point (bottom row) can contribute to increasing boundary
precision. (C) For each network recovered from the screen (points), the boundary width was
compared to the deviation of the MAP from the shortest path to the transition (curvature).
Median value (red line) and illustrates that sharper boundaries (smaller width) tend to have
higher MAP curvature. Green star represents the WT neural tube network. (D) Curvature
compared to effective contribution of the third node in the network (boundary width indicated
by colour of the point). (E) Curvature compared to separation speed. Colour of points by
boundary width indicates both high curvature and high separation speed contribute to the
sharpest boundaries. (F) Histogram of boundary width in 3D (red) and 2D (blue) networks.
Green line represents the WT network. (G) The most common topologies, arranged in order
of fraction of networks with precise boundaries; each column represents an individual topology.
Dark blue indicates networks with a wider boundary. Topologies are shown in Fig. S16. (H)
Four topologies that favour the sharpest boundaries. These networks comprise inhibition from
node 2 to node 3, and lack repression from node 3 to node 2. The WT neural tube network
has topology 3.
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A Supplementary Figures785

Figure S1: pMN-p3 boundary precision decreases over time in Pax6 mutants. Trans-
verse sections of wildtype and Pax6−/− embryos between e9.0 and e10.5 stained for Pax6
(blue), Olig2 (red) and Nkx2.2 (green). Scale bar = 100µm. The pMN-p3 boundary becomes
less well defined at later time points.
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Figure S2: Olig2 expression in O2e33−/− mutants is lower and delayed in onset.
(A) Transverse brachial sections of e9.5 WT and O2e33−/− embryos stained for Olig2. The
O2e33−/− embryo has a smaller Olig2 domain with reduced expression levels. Scale bar =
50µm (B) Normalised Olig2 expression for single cells in WT and O2e33−/− embryo sections.
(C, D, E) Wholemount images of WT (C) and O2e33−/− mutants (D, E) for DAPI (i) and
Olig2 staining (ii-iii). Expression of Olig2 in wildtype is observed at 5 somites but in O2e33−/−

Olig2 onset occurs later at 8 somites. Olig2 is not observed in O2e33−/− embryos at 7 somites.
Scale bar = 100µm
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Figure S3: Transverse sections of the hindbrain (A) and thoracic region (B) e9.5
wildtype and O2e33−/− embryos Stained for Olig2 (red) and Nkx2.2 (green). Scale bar =
50. (A) Hindbrain: The pMN domain is smaller and the pMN-p3 boundary is less well defined
in O2e33−/− mutant embryos. (B) Thoracic region: The pMN domain is smaller and there is
more intermixing between pMN and p3 cells in O2e33−/− mutant embryos.
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B Glossary of dynamical systems terminology786

The terms in this glossary come from the field of dynamical systems theory and more detail787

can be found in [Kuznetsov, 2008, Strogatz, 2014]. We then also use elements relating to788

stochastic processes for which further information can be found in e.g. [Van Kampen, 2007].789

• Deterministic system790

Deterministic systems are those that involve no randomness and will therefore always791

behave in the exact same way when started from the same conditions. In this study792

deterministic systems model the production and degradation of genes in the absence of793

any stochasticity.794

• Stochastic systems795

These are systems of equations that incorporate randomness such that the system will not796

behave the same way every time. In our study, these are derived from the deterministic797

system by adding a stochastic element to form a Chemical Langevin Equation.798

• Chemical Langevin Equation799

The Langevin equation was derived by Paul Langevin as an equation that approximates800

the randomness generated by individual processes and has been adapted to describe801

chemical reaction systems [Lemons and Gythiel, 1997, Gillespie, 2000]. It assumes802

each individual reaction in a system takes place with Gaussian noise and has been803

shown to be accurate for systems in which the number of molecules for each component804

(e.g. transcription factor) in the system is sufficiently large. It involves incorporating805

stochastic terms, which describe the noise, into the deterministic system.806

• Phase space807

Phase space is an abstract space in which each dimension represents the concentration808

of one of the components (transcription factors) of the gene regulatory network. This809

allows the dynamics of the GRN to be visualised geometrically, such that the change in810

concentration of the TFs over time traces out a line in phase space.811

• Critical points812

A critical point is a point in phase space where the deterministic system does not813

change over time. That is, the time derivative of all concentrations at a critical point is814

zero. These points can represent stable fixed points of a system, or unstable fixed815

points.816
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• Stable fixed points (Attractor points)817

A stable fixed point is a type of critical point. If in the immediate surroundings of818

a critical point the dynamics of the deterministic system indicate that the system819

moves towards the fixed point from any direction, this critical point is termed a stable820

fixed point. This notion is referred to as Lyapunov stability [Lyapunov, 1992]. In a821

“Waddington-like” landscape visualisation, stable fixed points can be thought of as the822

basins at the bottom of valleys. In this study, we look at systems with a maximum of823

two stable fixed points (Fig. S4 & S5).824

• Unstable fixed points825

An unstable fixed point is also a type of critical point. In contrast to stable fixed826

points, if the analysis of the deterministic system shows that the system moves away827

from the fixed point when started some small distance away in at least one direction, the828

point is termed an unstable fixed point. This means that the system will only remain at829

this point if it is located there exactly. A stochastic system will not remain at such830

a point as the stochastic terms will eventually result in the system moving away along831

an unstable direction. In a “Waddington-like” landscape, unstable fixed points can be832

thought of as peaks or ridges from which the cell will move away.833

• Saddle point (Transition point)834

A saddle point is a type of unstable fixed point that is attractive in at least one835

dimension. In the systems within this study (as in many others), saddle points separate836

stable fixed points. A system will approach a saddle point and pass through it during837

a transition between stable fixed points. In a “Waddington-like” landscape, a saddle838

point appears like a mountain pass between two peaks, or a saddle, hence the name839

(Fig. S4 & S5).840

• Bifurcation point841

In the systems in this study bifurcation points are the positions along the morphogen842

gradient where the system goes from having a single stable steady state to being843

bistable; this means having two stable steady states and one saddle point (Fig. S4).844

• Fluctuations in concentration845

In a stochastic system the concentrations of the molecules fluctuate at all times in a846

way described by the Chemical Langevin Equation. This means that a system never847

stabilises at a constant concentration, even at a stable fixed point. Fluctuations in848
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concentration around a stable fixed point remain and can be analysed and visualised in849

phase space (Fig. S5).850

• Noise driven transitions851

Fluctuations in concentration near a stable fixed point move the state of the852

system away from the stable fixed point in phase space. This can result in the system853

reaching a saddle point and as a consequence transitioning from the original stable854

fixed point to the basin of attraction of a different stable fixed point. This process855

is a noise driven transition (Fig. S4 & S5).856

• Minimum Action Path (MAP)857

From the equations for the stochastic system it is possible to calculate the most likely858

path that a system will take to complete a transition from one stable fixed point to859

another [Kleinert, 2009, Bunin et al., 2012]. This is termed the Minimum Action Path860

(MAP) and can be visualised as a gene expression trajectory in the phase space of861

TF concentrations. In a “Waddington-like” landscape visualisation such paths can be862

thought of as the lowest paths in the landscape, which cells are most likely to follow as863

they move from one state to another(Fig. S5).864

In addition, we use the following terms to describe the characteristics of a dynamical system865

that contribute to precise boundaries.866

• Curvature867

This is a measurement of how directly the Minimum Action Path (MAP) connects868

a stable fixed point to a saddle point. In phase space, the length of the MAP is869

compared with the shortest distance (straight line) between the initial stable steady870

state and the saddle point, at a fixed neural tube position. The greater the ratio871

between these two distances, the higher the curvature.872

• Separation speed873

A measurement of the Euclidean distance in phase space between the stable fixed874

point at which the system starts and the saddle point, at a fixed neural tube distance875

from the bifurcation point (the same neural tube position where also the curvature876

is determined). This is termed the separation speed as it indicates how fast the stable877

fixed point and saddle point separate in response to distance from the source of878

morphogen.879
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Stable fixed point:
High Nkx2.2

All cells transition

Stable fixed point:
High Olig2

Saddle point

Stable fixed point:
High Nkx2.2

Some cells transition

Stable fixed point:
High Nkx2.2

Stable fixed point:
High Olig2

Saddle point

No cells transition

Bistable regionMonostable region

Ventral: closer to morphogen source Dorsal: further from morphogen source

Figure S4: One-dimensional sketches of the dynamical landscape of the neural tube network
at multiple dorso-ventral positions as indicated by the bottom arrow. The larger dots with
black contours indicate critical points as labelled on the plot. The multiple smaller dots
represent the final gene expression profile of different simulations of stochastic GRN at the
same neural tube position. The stochastic nature of the systems leads to cells not following
the same identical path. The leftmost plot indicates monostability for high Nkx2.2 near the
ventral end of the neural tube; here all cells present high levels of Nkx2.2 as there is no other
stable fixed point. In the bistable region all systems start out with high levels of Olig2 as
happens in the neural tube. The middle plot represents the landscape slightly dorsal to the
bifurcation point. The system here presents bistability so that noise driven transitions can
occur where the system is driven to and beyond the saddle point; however these transitions
do not always occur, leading to heterogeneity in fate decisions for cells at this position. The
plot to the right represents cells much further dorsal of the bifurcation; here the probability
of a system reaching the saddle point is extremely low even with stochastic terms as can be
appreciated from the figure. In this region despite the existence of bistability, only the high
Olig2 stable fixed point is observed as the probability for noise driven transitions to occur
is vanishingly small.
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Stable fixed point: High Olig2

Saddle point

Stable fixed point: High Nkx2.2

Minimum Action Path (MAP)

Fuctuations in concentration
near a stable fixed point

Noise driven transition

Figure S5: Representation of the dynamical landscape of the neural tube network at a region of
bistability, slightly dorsal to the bifurcation point. The x and y axes are the concentrations of
Nkx2.2 and Olig2 respectively (2D phase space), whereas the z axis represents the landscape
of the system. The plot relates to the same neural tube position as the middle figure in
Fig. S4, therefore there is heterogeneity in fate decisions. The colouring of the critical points
is consistent with Fig. S4; see also the legend. The light blue dots represent two different
simulations near each stable fixed point, illustrating fluctuations in concentration. The
thick black line illustrates the MAP from the high Olig2 stable fixed point to the high
Nkx2.2 stable fixed point. Note that it passes through a critical point – a saddle (purple
dot).
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C Formulation and analysis of stochastic GRN dynamics880

881

Formulation of stochastic dynamics882

In order to investigate heterogeneity of gene expression in the neural tube we made use of883

stochastic differential equations that describe the GRN and in particular the time evolution of884

the concentration xj of each TF j. We start with a thermodynamic-like model as detailed in885

[Cohen et al., 2014], which captures the macroscopic behaviour by a system of ODEs; these886

contain terms for production and decay of each TF. The ODE description corresponds to887

the limit of a reaction volume Ω that is large enough for the copy numbers Ωxj of all protein888

species to be large, allowing fluctuations to be neglected; formally one takes Ω→∞. When Ω889

is finite, stochastic effects occur. These can be described by the chemical Langevin equation,890

a system of SDEs, see e.g. [Van Kampen, 2007, Gillespie, 2000]. The drift, i.e. the systematic891

variation with time in the SDEs coincides directly with the deterministic limit. The diffusion892

(stochastic) term arises from the stochastic nature of the individual protein production and893

decay reactions; it is a Gaussian white noise [Gillespie, 2000] whose covariance structure is894

determined by the mean reaction rates. In our case the chemical Langevin equation for the895

protein levels xj within the GRN takes the form:896

d

dt
xj =

∑
n

p(j,n)α(j,n) − xjβj + Ω−1/2εj(t) (C.1a)

p(j,n) = k(j,n)
∏

i x
ni
i∑

n′ k(j,n′)
∏

i x
n′

i
i

Dij = δij

[∑
n

p(j,n)α(j,n) + xjβj

]
(C.1b)

〈εi(t)εj(t′)〉 = δ(t− t′)Dij (C.1c)

The deterministic part of these equations is equivalent to those used in [Cohen et al., 2014].897

The covariance (C.1b,C.1c) of the zero mean Gaussian white noise εj(t) arises from the decay898

and production of each protein being independent and random, given the concentration of the899

regulators of the relevant gene. In the equations above, α represents protein production rate900

and β degradation rate, while the w provide the weights of the respective DNA conformations901

(j,n) when multiplied by the respective concentration. The conformations are labelled by902

the protein j being produced and the numbers n = {ni} of TF molecules bound. The δ in903

(C.1b) and (C.1c) are the Kronecker and Dirac delta respectively. As explained above, Ω is904

the volume of the system in which all reactions take place.905
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When looking at the chemical Langevin equation (C.1a), one notices that the rate∑n p(j,n)α(j,n)906

for producing protein j, has a nonlinear dependence on the TF concentrations xi. One might907

be concerned that with such a nonlinear dependence, modelling production of protein j as908

a single reaction is too simplistic. However, (C.1a) can be obtained from a larger system909

of simple unary and binary mass action reactions, in which the concentration of each DNA910

conformation is kept track of individually. We only sketch this construction here and explain911

its implications for the stochastic terms in (C.1a); for further details see [Herrera-Delgado912

et al., 2018]. The deterministic part of the time evolution of the DNA concentrations is given913

as follows:914

d

dt
x(j,n) = γ

∑
p

(
kp+

(j,n−ep)x(j,n−ep)xp − kp+
(j,n)x(j,n)xp + kp−

(j,n+ep)x(j,n+ep) − kp−
(j,n)x(j,n)

)
(C.2)

Here x(j,n) = x̃(j,n)/γ
′ tracks the concentration of each DNA conformation and is scaled915

down by a large factor γ′ to account for the low quantity of binding sites in relation to protein916

numbers. Correspondingly the protein production rate constants α(j,n) = γ′α̃(j,n) have to be917

large in order to give an appreciable overall rate of protein production nonetheless.918

To derive the correct stochastic equations for the protein species, the large γ-limit of (C.2)919

is taken: the concentration of each DNA conformation then changes sufficiently quickly that it920

constantly tracks the instantaneous protein concentrations. For appropriately chosen binding921

and unbinding rate constants kp+
(j,n) and k

p−
(j,n) this leads back to the thermodynamic-like form922

of the deterministic part of the protein dynamics in (C.1a) [Herrera-Delgado et al., 2018]. As923

shown in [Thomas et al., 2012] the existence of fast species (in our case, DNA conformations)924

can lead to additional terms arising in the noise acting on the slow species (protein production),925

as a consequence of reactions between slow and fast species. In our case it turns out that these926

extra noise terms scale with γ′/γ. We then make use of the biological meaning of the terms:927

1/γ represents the timescale of reaction rates for TF binding to DNA and 1/γ′ represents the928

characteristic time for the process of going from active DNA to producing a protein. We find it929

biologically reasonable to choose a 1/γ that is substantially smaller than 1/γ′, given the many930

biological processes necessary for the production of a fully functional protein. The ratio γ′/γ is931

then small so that the additional noise terms that arise from the general calculation in [Thomas932

et al., 2012] become negligible, leaving exactly the noise terms in (C.1c). The intuition is that933

because protein production is slow compared to binding and unbinding of factors to DNA, noise934

from the many binding and unbinding events during production averages out; the overall noise935

then arises only from the stochasticity of the production processes, at the relevant average936

DNA concentrations. We note that in accordance with this conclusion, explicit calculations937
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show that when γ′ is of the order of γ or larger, additional noise terms from the stochasticity938

in DNA concentrations do enter the dynamics of the protein concentrations. Moreover, these939

additional terms are dependent on the precise choices of binding and unbinding rates, which940

are only partially constrained by the requirement that the thermodynamic-like deterministic941

equations (C.1a) are retrieved for large γ [Herrera-Delgado et al., 2018].942

Amount of noise943

The noise level in our model is set by Ω−1, the inverse reaction volume. This determines the944

scale of the stochastic fluctuations in protein production and decay, both of which the model945

represents as single step processes. A larger Ω thus leads to smaller stochastic effects. In946

equation (C.1a), multiplying Ω by the concentration of a protein species gives the number of947

molecules for that protein. In our calculations we measure volumes in units that make typical948

protein concentrations of order unity, so that Ω can be interpreted as a copy number. In949

accordance with our observations in (Supp. D), a value for Ω can be read as a copy number950

for Pax6, Nkx2.2 and Irx3; the corresponding typical copy numbers for Olig2 are ten times951

higher (Supp. D).952

However, the model is a coarse-grained description that does not explicitly describe the953

many possible sources of noise within a living cell. These include spatial heterogeneity and954

effects from the bursty, multi-step nature of protein production, which includes processes955

such as transcription, translation, post-translational modification, protein folding and protein956

shuttling [McAdams and Arkin, 1997]. As noted in [Van Kampen, 2007] and as implemented957

in [Wang et al., 2007, Zhang et al., 2012, Li and Wang, 2013], Ω relates inversely to the958

magnitude of fluctuations at a macroscale. It therefore represents the combined effect of all959

the processes involved in gene regulation and protein production that contribute to the overall960

system noise. Hence Ω is an “effective” system size parameter, which incorporates all the961

stochastic effects in the system. Of particular relevance, mRNA molecule number is typically962

one thousandth that of protein number [Schwanhäusser et al., 2011]. Consistent with this we963

have found an average of ∼100,000 Olig2 protein molecules/cell but only ∼40 Olig2 mRNA964

molecules/cell [Rayon et al., 2019].965

We therefore set out to estimate lower and upper bounds on the noise level Ω−1, i.e. the966

range of noise that makes sense within our description. The lower bound is given by the typical967

number of proteins of each species in a cell: these numbers determine the minimum amount968

of noise that must arise from the stochastic nature of protein production and decay. From969

protein quantifications (Supp. D) we obtain Ωmax ∼ 10, 000 for the protein counts of Nkx2.2970
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A B

WT WTPax6-/- Pax6-/-

Pax6

Olig2

Nkx2.2

Ω = 100 Ω = 2000

Figure S6: Simulations of the WT and Pax6−/− stochastic models for (A) Ω = 100,
(B) Ω = 2000. For this range for Ω the simulations recapitulate the observed relationship of
boundary sharpness and position in WT and Pax6−/− mutants.

and Pax6 per cell at saturation levels (which in our model correspond to concentrations close971

to unity). Olig2 has a higher estimated count of ∼100,000 and in accordance a 10 times higher972

concentration in the model (the maximum concentration for Olig2 is 10, and 1 for the other973

TFs). Because of the many neglected sources of additional noise, we expect 1/Ωmax to be a974

considerable underestimate; indeed, simulations with this noise level show almost deterministic975

behaviour. However, already for a slightly increased noise level (Ω = 2000), we find that the976

relationships between jump-rate differences across WT and mutant phenotypes discussed in977

the main text hold true (see Fig. S6). In particular, the WT presents a small amount of978

heterogeneity (as observed in vivo) and the mutants have a more heterogeneous boundary979

than the WT.980

To obtain a lower bound for Ω, we measured the coefficient of variation at steady state for981

all 3 TF values across embryos, to estimate the total amount of noise in the system (Fig. 1A).982

We then decrease Ω in our numerical simulations until we see coefficients of variation similar983

to those observed in vivo, giving Ωmin = 20. This assumes that all observed differences in984

protein levels arise solely from the stochasticity in our model. We reason that there are other985

sources of noise that make the coefficients of variation higher in vivo, such as noise resulting986

from transcription, protein transport within the cell, antibody specificity and measurement987

error, so that the amount of noise contributed by the stochasticity in our dynamical model988

will be smaller than 1/Ωmin = 1/20. On that basis we find a reasonable smallest value of Ω989

of ∼ 100. The value we use for all results throughout this study is Ω = 250, which is within990

the broad bounds of Ωmin = 20 and Ωmax = 20, 000. Importantly, the results we observe991
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remain qualitatively unchanged across the entire range of Ω that we assess as reasonable,992

100 ≤ Ω ≤ 2000 (Fig. S6).993

To confirm that the effective Ω provides a reasonable estimate of the effect of noise, we994

performed simulations of the GRN that incorporate the mRNA as well as the protein steps for995

the production of TFs as additional variables in the system. For this we use experimentally996

determined mRNA levels [Rayon et al., 2019]. With this addition, protein levels of between 104
997

and 105 molecules/cell and mRNA levels of ∼50 molecules/cell recapitulate the experimentally998

observed variance in protein levels and the stochasticity of cell fate transitions (Fig. S7). Since999

it is not our aim to add unnecessary complexity to the model, we did not include mRNA steps1000

in our further analyses.1001
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Figure S7: Stochastic simulations of the three genotypes incorporating mRNA as well as protein
production. Setup consistent with the simulations shown in the manuscript, with the same
colour code and top-down being dorso-ventral. The simulated model includes transcription and
translation by including mRNA and protein concentrations for each TF. The simulations use
a copy number of 100,000 protein/molecules per cell for Olig2 and 10,000 for the other TFs.
For mRNA of Olig2, 40 molecules per cell were used, and 20 molecules for all other mRNA
numbers. Parameters for transcription and translation have been extracted from experimental
measurements [Rayon et al., 2019]. The lines along each simulation graph show the probability
of finding a cell in the p3 state at each neural tube position, with the lines indicating the
boundary width extracted from these probabilities.

Minimum action path1002

Much of the theoretical analysis in the main text concentrates on the stochastic transitions1003

between fixed points of the deterministic GRN dynamics, which are long-lived metastable1004

states of the stochastic dynamics. The minimum action path (MAP) is the most likely path1005

the system takes in such a transition (for large enough values of Ω), from a steady state to1006
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a transition point (which is the saddle point of the dynamical system) and then onwards to1007

a new steady state. The second piece of the path always follows the deterministic dynamics1008

and has a negligible effect on the transition times, so we focus on the first part of the path.1009

The negative log probability for any path is proportional to what is called the action, which1010

for our Langevin dynamics is of so-called Onsager-Machlup form [Kleinert, 2009]. The action1011

is an integral over time of the Lagrangian, which in turn depends only on the current state1012

(vector of concentrations) and velocity of the system. The time integral can be discretised and1013

the action then minimised as described in e.g. [Bunin et al., 2012]. We analyse the resulting1014

MAP in gene expression space in order to understand how its shape affects the jump times1015

between steady states and thus eventually the boundary width.1016

The typical time the system takes to reach any point on the MAP scales exponentially1017

with the action up to that point, hence this quantity can be interpreted as an effective energy,1018

within the analogy of a particle making a transition from one local minimum in an energy1019

landscape across a barrier to another minimum. In Fig. 4F we plot this effective energy along1020

the (relative) length of the MAP, describing the effective energy landscape governing the1021

transition. Fig. S8 shows an alternative representation that gives further insight: we plot the1022

derivative of the action along the path, which is the effective force pushing the system back1023

towards the initial steady state.1024
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Figure S8: (A-B) Unnormalised and normalised space derivative of the action along the MAP,
plotted along the length of the path. This reflects the effective force driving the system back
towards its initial steady state. In the WT system (gray) the force is highest near the beginning
of the path, leading to a noticeably skewed plot, while the O2e33−/− (red) and Pax6−/− (blue)
more nearly symmetric force profiles. The high initial force in WT responsible for the large
typical jump times in the system, and is related to the significant curvature of the MAP away
from the straight line between initial steady state and transition point (Fig. 4D-F)
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Calculating magnitude of fluctuations1025

To compare the magnitude of fluctuations between WT and mutants in silico we take two
separate approaches. The first is to consider fluctuations in expression levels around a steady
state, before any transition to a new state occurs. For moderate noise levels such fluctuations
can be analysed using a linear expansion of the dynamics around the steady state (here: pMN),
leading to a local Gaussian distribution of expression levels. The corresponding covariance
matrix C can be calculated from the Jacobian matrix J of the linearized dynamics and the
noise covariance D as defined in (C.1b), both evaluated at the steady state. The required
link between the three matrices is the Lyapunov equation, which determines C via

D = JC + CJT

Once C has been found we normalise it by the corresponding pMN steady state values (X),1026

to obtain C̄ = diag(X)−1Cdiag(X)−1. We finally compute the trace of C̄ and take the1027

square root. The end result is the typical standard deviation (root-mean-square fluctuation)1028

of the expression levels, relative to the mean expression levels. This is shown in Fig. S9A as1029

a function of neural tube position.1030
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Figure S9: Comparing total noise across genotypes (A) Comparison of noise levels as
defined by root-mean-square relative expression level fluctuations, calculated within a Gaussian
approximation near the steady state. Points represent different positions along the neural tube
(B) Noise levels defined as noise variance calculated at equidistant points along the MAP, at
fixed fractional neural tube length from the bifurcation point. Note that in both definitions,
noise levels are comparable across WT and both mutants, with slightly lower values in Pax6−/−.

The second approach to quantifying noise levels is to use the noise variance, which is1031

the trace of the noise covariance matrix given in (C.1b). This noise variance depends on1032

the expression levels so we average it across equidistant points along the MAP and take1033

the square root of this value to obtain the root-mean-square noise level. Example results at1034

a specific position along the neural tube are shown in Fig. S9B; results at other positions1035
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were qualitatively the same (data not shown). Both approaches to quantifying noise show1036

comparable total variance across the different genotypes, with slightly lower noise in Pax6−/−
1037

than in WT and O2e33−/−. To make the comparison to in vivo observations we accounted1038

for the fact that experimentally, noise levels are averaged across several neural tube positions1039

throughout the pMN domain. We therefore also performed an average in silico of neural tube1040

positions to obtain comparable data for Fig. 3D.1041
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D Protein Number Quantifications1042
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1     0.5    0.25   0.125  0.06  0.03 0.015
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1 ng = 1.095 x 1010 Pax6 
molecules (recombinant)
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Pax6+ 
cells %

Pax6 molecules 
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%

Olig2 molecules 
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4 0.28 390,000 23.5 90,000
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Figure S10: (Caption on next page)
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Figure S10: Quantifying Protein Copy Number (A) Flow cytometry analysis to determine
percentage of Olig2 expressing cells in differentiated ES cells at the indicated days. Table shows
quantification of a gel for days 4 and 5. Olig2 has approximately a 10-fold higher protein copy
number compared to Nkx2.2 and Pax6. (B) Analysis of Nkx2.2 expressing cells on days 6
and 7 of differentiation. Nkx2.2 molecules per cell calculated using the measured percentage
of cells expressing Nkx2.2 and quantification of the Western blot analysis. (C) Analysis of
Pax6 expressing cells to determine protein copy number at days 5 and 6 of differentiation.
Pax6 molecules per cell calculated using the measured percentage of cells expressing Pax6 and
quantification of the Western blot analysis.
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E Simulating WT and mutant GRNs1043

We used the equations and parameters described in [Cohen et al., 2014] for the GRN that1044

patterns the neural tube; this parameter set was optimised to replicate the boundary positions1045

in wild-type and mutant embryos. Following the inclusion of the noise term as explained in1046

Supp. C we explored the effect of the initial conditions for the TFs (i.e. their initial expres-1047

sion levels xj). The aim was to find a consistent set of initial conditions that sustain the1048

boundary positions but also recapitulate the boundary sharpness of each mutant. The initial1049

conditions that satisfied these conditions were identified in a systematic scan as xPax6 = 0.1,1050

xOlig2 = 0, xNkx2.2 = 0, xIrx3 = 0.1. The p3-pMN boundaries in WT, Irx3−/−, Nkx2.2−/−
1051

and Olig2−/− simulations remained sharp as is the case in vivo (Fig. S11). Only the loss of1052

Pax6 resulted in decreased boundary sharpness. Boundary positions remained consistent with1053

in vivo observations as was the case in the original deterministic model (Fig. S11) & [Cohen1054

et al., 2014].1055

Pax6 levels

Pax6-/-

Nkx2.2-/-

Olig2-/-

WT

Irx3 levels Nkx2.2 levels Olig2 levels

Figure S11: Patterning phenotypes produced by stochastic simulations for WT and
mutants. Predicted expression patterns for the four TFs in the indicated genotypes are
qualitatively similar to those in [Cohen et al., 2014]. Ventral to the left and dorsal to the
right. Although boundary positions change, boundary precision is largely unaffected except for
Pax6−/−, consistent with in vivo experimental observations.

Model parameters1056

We detail the parameters used throughout the paper to model neural tube development for1057

equation (C.1a), and adapted for the computational screen as explained in Supp. F.1058

1059
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Name Meaning Value Source
αP Pax6 production rate 2 [Cohen et al., 2014]
αO Olig2 production rate 2× 10 [Cohen et al., 2014] & Supp. C
αN Nkx2.2 production rate 2 [Cohen et al., 2014]
αI Irx3 production rate 2 [Cohen et al., 2014]
βP Pax6 degradation rate 2 [Cohen et al., 2014]
βO Olig2 degradation rate 2 [Cohen et al., 2014]
βN Nkx2.2 degradation rate 2 [Cohen et al., 2014]
βI Irx3 degradation rate 2 [Cohen et al., 2014]
kPO Olig2 binding to Pax6 DNA 1.9/10 [Cohen et al., 2014] & Supp. C
kPN Nkx2.2 binding to Pax6 DNA 26.7 [Cohen et al., 2014]
kON Nkx2.2 binding to Olig2 DNA 60.6 [Cohen et al., 2014]
kOI Irx3 binding to Olig2 DNA 28.4 [Cohen et al., 2014]
kNP Pax6 binding to Nkx2.2 DNA 4.8 [Cohen et al., 2014]
kNO Olig2 binding to Nkx2.2 DNA 27.1/10 [Cohen et al., 2014] & Supp. C
kNI Irx3 binding to Nkx2.2 DNA 47.1 [Cohen et al., 2014]
kIO Olig2 binding to Irx3 DNA 58.8/10 [Cohen et al., 2014] & Supp. C
kIN Nkx2.2 binding to Irx3 DNA 76.2 [Cohen et al., 2014]
wP,p Polymerase binding to Pax6 DNA 3.84 [Cohen et al., 2014]
wO,p Polymerase binding to Olig2 DNA 2.01263 Converted from [Cohen et al., 2014]
wN,p Polymerase binding to Nkx2.2 DNA 0.572324 Converted from [Cohen et al., 2014]
wI,p Polymerase binding to Irx3 DNA 18.72 [Cohen et al., 2014]
kO,in Gli (Shh signal) binding to Olig2 DNA 180 Converted from [Cohen et al., 2014]
kN,in Gli (Shh signal) binding to Nkx2.2 DNA 373 Converted from [Cohen et al., 2014]

Ω System volume 250 Supp. C
xP(0) Pax6 initial condition 0.1 Supp. E
xO(0) Olig2 initial condition 0 Supp. E
xN(0) Nkx2.2 initial condition 0 Supp. E
xI(0) Irx3 initial condition 0.1 Supp. E

1060

1061

Where factors of 10 have been written in the table, these arise because we have modified1062

the model of [Cohen et al., 2014] to represent explicitly the experimental observation that Olig21063

has a concentration 10 times higher than the other TFs. While this difference is immaterial1064

for a deterministic description of the GRN dynamics, it affects the stochastic representation1065

because larger copy numbers have smaller relative fluctuations.1066

The above parameters are used in the general model (C.1a) for the dynamics of the TFs1067

j = P (Pax6), O (Olig2), N (Nkx2.2) and I (Irx3). DNA conformations are defined by the1068

numbers n = (np, nin, nP, nO, nN, nI) of bound molecules of polymerase, Gli signal input,1069

Pax6, Olig2, Nkx2.2, Irx3 in that order. The only allowed conformations are the empty1070

conformation, the conformations with polymerase and nin = 0 or 1 signal molecule bound;1071

and conformations with at least one molecule of the other TFs bound, with maximally two1072

molecules from each other TF. All other conformations are assigned affinity zero. The weights1073
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for the allowed conformations are multiplicative, with bound polymerase contributing a factor1074

wj,p (see below), bound signal a factor kj,inxin and each TF i bound to DNA producing1075

TF j a factor kjixi. Examples of the corresponding affinities are kO,(0,0,0,0,1,0) = kON and1076

kO,(0,0,0,0,0,2) = kOI
2. The polymerase binding parameters are directly stated as the weights1077

wj,p = kj,pxp including polymerase concentration (which is assumed constant). As detailed in1078

[Cohen et al., 2014], this weight describes all basal production inputs for each TF and thus1079

represents input from TFs such as Sox2 [Graham et al., 2003, Oosterveen et al., 2012, Peterson1080

et al., 2012]. Finally, the protein production rates αj,n in the general model (C.1a) are set1081

to the value given in the table for the DNA conformations with bound polymerase, and zero1082

otherwise.1083

As an explicit example of the resulting GRN equations, we write here the production rate
for Olig2:

αOwO,p(1 + kO,inxin)
wO,p(1 + kO,inxin) + (1 + kOIxI)2(1 + kONxN)2 (E.1)

The signal input concentration xin is the gradient e−s/0.15, which depends on the dorsal-ventral1084

neural tube position s ranging from 0 to 1 as in [Cohen et al., 2014].1085
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O2e33−/− mutant1086

To find parameter sets that describe the behaviour of the O2e33−/− enhancer mutation, we first1087

identified those parameters that are related directly to the deletion of the respective enhancer.1088

Analysis of the sequence of the enhancer together with CHIP-seq and ATAC-seq [Oosterveen1089

et al., 2012, Peterson et al., 2012, Kutejova et al., 2016, Metzis et al., 2018] suggested that1090

Gli proteins, Nkx2.2, Irx3, and Sox2 all have a direct effect on this enhancer (Fig. 2A). We1091

therefore considered variations in the parameters that specify Nkx2.2 binding, Irx3 binding, Gli1092

binding and basal production (corresponding to Sox2 binding). We systematically explored how1093

reducing the parameters for each of these interactions, to a fraction f of their original value,1094

could explain the observed phenotype. We used a uniform distribution to perform this search1095

and throughout this supplementary represent the respective parameter reductions directly in1096

terms of the ratio f between new and original (WT) parameter values.1097

Fitting in vitro delay and resulting predictions1098

We first identified parameter sets that could replicate the observed in vitro delay in the onset of1099

Olig2 expression in the mutant, leading to a reduced parameter space (Fig. S12). In this step1100

we do not set any constraints to the position or precision of boundaries between expression1101

domains as this information cannot be extracted from the in vitro system. The delay in Olig21102

activation was determined for networks positioned a fraction 0.3 along the neural tube, and1103

we retained those networks that took twice the amount of time to express Olig2 than in the1104

WT. The same measurement was performed at other neural tube positions and resulted in1105

similar distributions (data not shown).1106

We next investigated what further phenotypical behaviour the retained parameter sets1107

predict, focussing on the domain size and boundary precision generated in response to a1108

graded Shh signal. We found that 68% of the parameter combinations reduced boundary1109

precision, 80% reduced the size of the pMN domain, with 83% presenting one or the other1110

of the phenotypes (data not shown). Here, the pMN domain size was calculated with respect1111

to the Shh gradient and we considered it reduced if it was below 70% of the WT size. For1112

determining boundary sharpness, we regarded as imprecise those systems that had a boundary1113

width at least twice the size of the WT; this width is calculated using the SDE system with1114

the thresholds described in Fig. 3B. The fact that a majority of the parameter sets identified1115

affected domain size and boundary precision encouraged us to generate the mouse lines.1116
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Figure S12: Distribution of parameter changes to mimic in vitro O2e33−/− mutant.
To recapitulate the O2e33−/− dynamics in vitro, model parameters were systematically ex-
plored to identify changes that could account for the delay in onset of Olig2 expression. The
graphs show the distributions of reduction factors f (x-axis) relative to WT parameter values,
across parameter sets that recapitulate the delay. The (y-axis) shows number of parameter
combinations that recapitulate the phenotype. The results show that what is needed to gen-
erate a delayed induction of Olig2 is a substantial reduction in Sox2 input while maintaining
input of Irx3.

Fitting in vivo phenotype with patterning information1117

Once the mouse lines were generated we confirmed the delay in onset of Olig2, and noted two1118

additional phenotypes as expected from the initial parameter screen: a loss of precision at the1119

p3-pMN boundary and a ventral shift of the pMN-p2 boundary. Importantly, this in vivo data1120

allowed us to define targets regarding boundary position and precision for our fitting of the1121

mutant phenotype. The new targets were therefore extracted from this data, and were used1122

to further constrain the results displayed in Fig. S12. These additional constraints were:1123

• The pMN-p3 boundary width to be at least twice the size of the WT as explained above.1124

• The pMN-p3 boundary position to be between [0.17 0.25] (as the WT boundary position1125

is at 0.17 and some of the in vivo mutants show a small dorsal shift).1126

• The p2-pMN position to be below or equal to 0.5 (WT boundary is at 0.55, this means1127

a reduction of the domain size of at least 15% with respect to WT) but higher than the1128

pMN-p3 boundary position, such that the pMN domain does not disappear.1129

• Other aspects of patterning not to be disturbed.1130

The resulting retained networks present a substantially reduced parameter space and are shown1131

in Fig. S13. From these parameter sets we took a representative point as our model for the1132

O2e33−/− mutant; as expected this replicates the observed experimental phenotypes.1133
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Figure S13: Distribution of parameter changes to mimic in vivo O2e33−/− mutant.
Equivalent histograms to Fig. S12 with the additional constraints from in vivo observations:
ventral shift of pMN-p2 boundary and broad p3-pMN boundary. The main results are: main-
taining WT levels of Irx3 input; substantial reduction in Sox2 input, some reduction in Gli
input but with a broad distribution, and a mild reduction in Nkx2.2 input.
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F Screening three node networks for precision1134

Defining a functional form1135

To perform a parameter screen we explored three node networks with all possible interactions1136

between the nodes, as this has provided useful insights in other systems (Fig. 1A) [Cotterell1137

and Sharpe, 2010, Leon et al., 2016]. For the purpose of exploring different dynamics, we1138

enumerated the different possible transcriptional/occupancy states of the promoter to model1139

the production rates of a given protein. These rates depend on polymerase availability, signal1140

input (morphogen) and regulating transcription factors, with concentrations xp, xin and xi1141

respectively. The transcription factors i can be activating (i ∈ P) or repressing (i ∈ N ), with1142

P and N denoting the sets of activating and repressing transcription factors, respectively.1143

While in the previous model, in its most general form (C.1a), different protein production1144

rates can be used for different DNA conformations, in the neural tube network we used the1145

same production rate for all protein-producing input conformations (see Supp. E). We adopt1146

the same approach here and set the production rate to unity in appropriate units of time; thus1147

the model is specified only by the binding affinities of the various DNA conformations. Without1148

loss of generality we fixed the affinity (and hence the weight) of the unbound conformation to1149

1 as explained in [Sherman and Cohen, 2012]. We assign the weights of conformations with1150

only one bound molecule as kpxp, kinxin and kixi. In accordance with our previous model1151

(C.1a), we set the following constraints:1152

• All conformations with polymerase and without any repressor i ∈ N produce protein; it1153

does not matter whether signal or any activator i ∈ P are bound.1154

• Conformations that have one or more repressor i ∈ N bound together with either1155

signal, polymerase or any activator P are excluded, based on the assumption that these1156

molecules compete for the same binding site1157

• Binding of signal or any activator P enhances binding of polymerase1158

• No other cooperativity effects are present1159

Expressions for conformation states1160

The only states that can produce protein are those with polymerase bound. For brevity we1161

follow the convention in Supp. E and abbreviate1162

wp = kpxp (F.1)
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in the following, taking polymerase levels as constant throughout our dynamics. As specified1163

above, the only states that can bind polymerase are those that have no repressors bound. We1164

assume no cooperativity between signal xin and activators xi, i ∈ P , hence the total weight of1165

states that can potentially bind polymerase (assuming two binding sites per activator i ∈ P1166

but only one for the signal) is:1167

(1 + kinxin)
∏
i∈P

(1 + kixi)2 (F.2)

Given that repressors N can only bind by themselves, and that there is no other cooperativity1168

between the inputs, the total weight for conformations with at least one repressor N bound1169

while assuming two binding sites per repressor i ∈ N is:1170

−1 +
∏
i∈N

(1 + kixi)2 (F.3)

In accordance with biological intuition, polymerase is recruited by activators P or signal.1171

The simplest way to implement this is to increase the weight of conformations having both1172

polymerase and at least one activator i ∈ P or signal by a cooperativity factor c, giving a total1173

weight of:1174

cwp[−1 + (1 + kinxin)
∏
i∈P

(1 + kixi)2] (F.4)

Finally, the weight for the unbound (empty) conformation is taken as 1, as explained above,1175

and for the conformation with one polymerase bound it is wp as defined in (F.1). The total1176

weight, i.e. the denominator of the protein production rate, is then1177

wp+cwp[−1+(1+kinxin)
∏
i∈P

(1+kixi)2]+(1+kinxin)
∏
i∈P

(1+kixi)2−1+
∏
i∈N

(1+kixi)2 (F.5)

while the numerator is the total weight of conformations with polymerase, either on its own1178

(F.1) or together with activators or signal (F.4), giving overall for the production rate (which1179

with protein production set to unity is also the probability of being in a DNA conformation1180

that produces protein)1181

wp + cwp[−1 + (1 + kinxin)φ]
wp + cwp[−1 + (1 + kinxin)φ] + (1 + kinxin)φ+ ψ − 1 (F.6)

with the abbreviations1182

φ =
∏
i∈P

(1 + kixi)2, ψ =
∏
i∈N

(1 + kixi)2 (F.7)

S27

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 20, 2020. ; https://doi.org/10.1101/721043doi: bioRxiv preprint 

https://doi.org/10.1101/721043
http://creativecommons.org/licenses/by/4.0/


General strong cooperativity limit1183

It will be convenient in the following to write the effective affinities of signal and activating1184

TFs in combination with polymerase in a form that includes the cooperativity effect from the1185

factor c, i.e. in terms of k̃in = c kin and k̃i = c ki for i ∈ P . The protein production rate is1186

then expressed as1187

wp + cwp[−1 + (1 + k̃inxin/c)φ]
wp + cwp[−1 + (1 + k̃inxin/c)φ] + (1 + k̃inxin/c)φ+ ψ − 1

(F.8)

with now1188

φ =
∏
i∈P

(1 + k̃ixi/c)2 (F.9)

We can now compare with the analogous expression (E.1) in the neural tube network. There1189

all interactions are repressive so that P is the empty set and hence φ = 1, which simplifies1190

(F.8) to1191

wp(1 + k̃inxin)
wp(1 + k̃inxin) + k̃inxin/c+ ψ

(F.10)

This agrees with (E.1) except for the middle term in the denominator, which represents the1192

weight of DNA conformations with only signal but no polymerase bound. Its absence in1193

the neural tube network formally corresponds to the strong cooperativity limit c → ∞. In1194

our screen we use a finite cooperativity c = 100 to avoid the extreme case of excluding1195

conformations with only signal bound completely; this value of c is still large enough, however,1196

to replicate the dynamics of the neural tube network. We thus take (F.8) with c = 100 as the1197

form of protein production rates in our screen; compared to the neural tube case this allows1198

us to include both activating and repressive interactions.1199

Adding a protein decay term (with unit decay rate) and stochastic fluctuations, the dy-
namics of the three-node networks in our screen, with protein levels x1, x2 and x3, is thus
described by

d

dt
xj = wj,p + cwj,p [−1 + (1 + kj,inxin/c)φj]

wj,p + cwj,p [−1 + (1 + kj,inxin/c)φj] + (1 + kj,inxin/c)φj + ψj − 1 − xj (F.11)

φj =
∏
i6=j

(1 + [kji]+xi/c)2

ψj =
∏
i6=j

(1 + [kji]−xi)2

for j = 1, 2, 3; compared to (F.8) we have dropped all tildes to unclutter the notation. We1200

have also allowed the sets P and N of activating and repressing transcription factors to be1201

determined implicitly by the system parameters. This is done by generalizing the affinities kji1202
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so that a positive sign indicates an activation of j by i and a negative sign a repression. The1203

corresponding switching of species i between the products over activators and repressors is1204

achieved mathematically by setting [k]+ = max(k, 0) and [k]− = max(−k, 0).1205

To mimic the structure of the neural tube network, we assume that only proteins 1 and1206

2 have direct signal inputs, while 3 does not, so that k3,in = 0. This leaves 11 network1207

parameters: 2 for the signal (gradient) inputs from the gradient (k1,in into node 1 and k2,in1208

into node 2), 6 from the interactions between TFs (k12, k13, k21, k23, k31 and k32) and 3 for1209

polymerase binding weights (w1,p, w2,p and w3,p).1210

Parameter exploration1211

We explored the 11 dimensional parameter space specified above using a uniform log distribu-1212

tion (log10), where the ranges are set differently depending on the parameter. Specifically we1213

chose the ranges as: range(kin) = [10 : 400], range(wp) = [0.1 : 10], range(kji) = [−100 :1214

−1] ∪ [1 : 100] with the sign of each regulation kji being chosen randomly.1215

We provide a schematic in Fig. S14 of the sequential steps taken to screen for relevant1216

networks, analyse them and classify them into topologies. We explored parameter combinations1217

for a three node network defined in the form (F.11). The main criterion for choosing a viable1218

set of parameters was that they must produce a patterned steady state, i.e. a saddle-node1219

bifurcation on the same gradient as in the neural tube, defined as xin = e−s/0.15 where s1220

indicates dorsal-ventral neural tube position and ranges from 0 to 1. To avoid trivial effects1221

from shifts in the boundary position we set a further constraint that the bifurcation must occur1222

at a position s in the same range as in the neural tube network, 0.165 ≤ s ≤ 0.17. More1223

specifically networks were required to be monostable below s = 0.165, with high levels of x1;1224

and bistable beyond s = 0.17, with one state having high x2 and the other high x1 (with1225

“high” being a concentration value above 0.6). For each network meeting these criteria, we1226

then proceeded to calculate the MAPs in the same way as for the neural tube network (as1227

explained in Supp. C), and the jump time. We selected networks that have boundaries sharper1228

than a certain threshold, set by requiring the boundary to be no wider than 0.2 fractional1229

neural tube units; boundary widths were calculated based on their transition time obtained1230

from simulating the SDEs. To simulate the neural tube network from (E.1) in the screen1231

we used the standard parameters from that network, reverting to the original version [Cohen1232

et al., 2014] with maximal concentrations of unity for all TFs in order to ensure comparability1233

with the networks produced by the screen. We removed all terms relating to Irx3, as these1234

do not contribute substantially to the dynamics of transitioning from a pMN to a p3 steady1235
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Define regulatory
interactions that will

be analysed.

Select networks
that pass success

criteria 

All TFs may regulate each other via activation,
repression or not at all. x1 and x2

may receive input from the gradient or not

System produces a
bifurcation at same signal
levels as WT neural tube

Bifurcation results in
system transitioning from

 monostability to bistability

Use interaction parameters to define topologies

Define position of all fixed points

Calculate:
- Boundary precision

- Curvature of the MAP

Steady states must be
- High x1 and low x2
- High x2 and low x1

Characterise systems
meeting success criteria

Determine boundary sharpening mechanisms for each
topology and compare parameter sets

Calculate:
- Transition time from initial steady state to saddle point

- Separation speed between saddle point and steady state
- Minimum action path between steady state and saddle point

- Variation of concentration within high x2 domain

Compare successful
systems and classify

into distinct topologies

Figure S14: Schematic of steps for systematic screening. We desgined the screen to first
identify parameter sets that describe networks that generate a sharp boundary at a specific
location within a gradient. This ensures that the resulting networks are comparable with each
other. The parameter sets that pass this filter are then analysed by defining the characteristics
relevant to forming a precise boundary. Finally, we classify the parameter sets into topologies.

state. We further set production and degradation rates to be equal to unity in the screen as1236

these simply scale the jump time and do not affect the results.1237

In analysing the results of the network screen we quantified the curvature of the MAP as1238

the largest perpendicular distance of any point on the MAP from the straight line between1239

steady state and transition point, normalised by the total length of this line. We refer to this1240

value throughout the text by the shorthand “curvature” as it gives a quantitative indication of1241

how much the MAP deviates from the shortest path. The curvature was measured at s = 0.251242

and the robustness of the results with respect to this choice of neural tube position was tested1243

by comparing with multiple other locations, with qualitatively similar results in all cases (data1244

not shown).1245

In the analysis we also characterised networks by the strength of the contribution of the1246

third node, which does not receive direct signal input. We quantified this by taking the value of1247

x3 at the steady state and transition point (saddle point) and multiplying each by parameters1248
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for the repression or activation of nodes 1 and 2 by node 3, taking the maximum value. The1249

multiplication by representative concentration levels of the third node was motivated by the1250

fact that when those concentrations are small, even large interaction parameter values have1251

small net effects.1252

Networks with a low third node contribution are effectively two node networks, and turned1253

out to have low MAP curvature. This led us to explore other mechanisms for generating1254

sharp boundaries. Geometrically, in the space of expression levels (phase space), the speed at1255

which the steady state and saddle point separate as a function of neural tube position s is a1256

plausible contributor to boundary sharpness because even if the fluctuations around the initial1257

steady state favour a jump, such a jump will be inhibited by a large separation between steady1258

state and transition point. High separation speed should thus lead to rapidly increasing jump1259

times and hence to sharp boundaries. To measure separation speed we focussed on a fixed1260

position (chosen as s = 0.25) along the neural tube, beyond the saddle-node bifurcation, and1261

calculated the Euclidean distance between steady state and transition point. We then used1262

this as a simple quantitative indication of separation speed. We checked the robustness of this1263

measure by performing the measurement for different fixed positions along the neural tube,1264

and also at variable locations chosen as the centre of the boundary region for each network;1265

we found qualitatively similar results in every case (data not shown).1266
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Figure S15: Histogram of variation of the expression level of the second node within its domain
of expression for 3D (red) and 2D (blue) networks; inset shows example variation of expression
levels across a domain. 3D networks can generate domains of expression with more constant
levels of expression (lower domain variation) than 2D networks, which rely on separation speed
to create sharp boundaries. Green line represents the WT network.

When a network had a high separation speed, this typically resulted in the steady state (the1267

expression profile) of x2 varying, i.e. changing within a domain of the steady state pattern.1268
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We quantified this heterogeneity by the standard deviation of x2 within the region of high1269

x2 expression. This confirmed (see Fig. S15) that sharp 2D networks have a higher level of1270

heterogeneity than 3D networks, which use the curvature of the MAP to generate sharpness.1271

Characterisation of topologies1272

Finally we analysed the topologies of the networks resulting from the screen. To sort networks1273

into topologies we used thresholds to identify whether nodes 1 and 2 receive significant signal1274

input, and for each of the TF nodes whether it significantly activates or represses the other1275

TFs. Starting with the former, within the input parameter range [10 : 400] for nodes 1 and1276

2, we took any parameter 30 < kin to be a positive input; lower values were classified as1277

lack of input. This cutoff was chosen by testing a range of different values and imposing the1278

constraints that we want to neither classify the majority of networks as having two inputs1279

(which would provide no information on the input topology, as could happen if the cutoff1280

was too low) nor assign any network to a topology with no inputs (which would not make1281

biological sense and would occur when the cutoff is too high). For interactions between nodes1282

we took into account not only the parameters kji but whether each parameter in conjunction1283

with the actual states of the system would have a noticeable effect. We evaluated interactions1284

by considering the contribution of an interaction given the highest level that the effector node1285

can take. Accordingly, we consider an interaction with 0.3 < |kji|max(xi) to be significant,1286

otherwise we classify it as negligible. The maximum was taken over all steady states for1287

all neural tube positions. The cutoff value of 0.3 was chosen by systematic inspection of a1288

representative number of networks, for which we compared the dynamics with and without1289

individual interactions and assessed whether these were qualitatively identical or not. To assess1290

the robustness of the cutoff value, we varied it within a range up to an order of magnitude larger1291

and found that the results of our characterisation of network topologies remained qualitatively1292

the same (data not shown).1293

With this approach we classified all the 3D network parameter sets into topologies, de-1294

termined those that occurred most often (Fig. S16) and plotted the boundary precisions they1295

generate (Fig. 5H). The results indicated that although some topologies are more frequently1296

represented amongst networks producing a sharp boundary, there is no single topology that1297

ensures sharpness. Some networks (such as 1–4 in Fig. S16) prevented the boundary from1298

becoming very imprecise, but even within these network topologies the range of sharpness was1299

large (Fig. 5G,H & Fig. S16 & Fig. S17). This leads to the conclusion that the dynamical prop-1300

erties generated by the network, rather than the structure of the network determines boundary1301
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precision. Indeed, we confirmed by analysing each topology separately that the main indicators1302

of sharpness are the two mechanisms identified in the main text: curvature of transition path1303

and separation speed (Fig. S17). Nonetheless, a network’s topology can substantially bias the1304

dynamics towards high MAP curvature, and hence towards sharpness.1305
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Figure S16: List of topologies that generate sharp boundaries, sorted in the same order as
Fig. 5H. Red arrows indicate activation, black lines with blunt ends represent repression.
Mutual repression between the first and second nodes (1 and 2) is a consistent feature, as well
as the input from the signal to the first node. For the sharpest networks, a mutual repression
between the first and third nodes is observed.
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Figure S17: MAP curvature plotted against separation speed with boundary width indicated by
colouring. The data are equivalent to those shown in Fig. 5D, but here each plot represents an
individual network topology and networks with wide boundaries have been included in the plots
(deep blue). Network topologiess are ordered as in Fig. S16. While separation speed does not
exhibit obvious differences between topologies, network topologies 1–4 have consistent high
curvature.

Effect of signalling noise on boundary precision1306

We explored what effect noise in the signal gradient would have on the precision of boundaries1307

generated by the mechanisms revealed in the screen. To this end, we simulated networks recov-1308

ered from the screen using a noisy signal as an input. For this we have used Ornstein-Uhlenbeck1309

noise and explored systematically a range of fluctuation timescales and noise amplitudes (see1310

Eq. F.12). As is commonly done we use a log version to avoid negative values, i.e. we write1311

the fluctuating signal input as sOU(t) = exp(`(t)) where `(t) evolves in time as1312

d`(t) = θ (ln(s)− `(t)) dt+ σdW (t) (F.12)

`(0) = ln(s) (F.13)

The variables are the standard terms for Ornstein-Uhlenbeck processes: θ is the inverse corre-1313

lation time of fluctuations, σ is the noise amplitude, W is a Wiener process, s is the constant1314

Gli input in the original model. We compared the boundary widths generated by simulations1315

using these noisy gradients with those in which the signal was constant, for otherwise identical1316

parameter sets (Fig. S18). This revealed that noise in the signal had relatively limited effects1317

on the precision of boundaries for moderate levels of noise. Moreover, the same relative sharp-1318

ness of boundaries for the different networks was found in the simulations with a constant and1319

a noisy signal. Above a level of signal noise all sharpness was lost, as anticipated. Thus the1320
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determining factors for boundary sharpness are curvature and separation speed, as the net-1321

works that maximise these two parameters produce the sharpest boundaries with or without1322

signal noise (Fig. S18).1323

Correlation time (θ) = 100

Correlation time (θ) = 10-0.5

Correlation time (θ) = 10-1

Correlation time (θ) = 10-1.5

Correlation time (θ) = 10-2

Amplitude (σ) = 10-2 Amplitude (σ) = 10-1.5 Amplitude (σ) = 10-1 Amplitude (σ) = 10-0.5

Figure S18: Effect of different levels of noise in the gradient on boundary precision. The
boundary widths produced by systems recovered from the computational screen are plotted for
simulations with no noise in the signal gradient (x axis) and with noise in the signal gradient
(y axis). Colour labels networks from least (blue) to most (red) curvature. The behaviour
of the noise in the signal has been modelled as an Ornstein-Uhlenbeck process, with the
indicated amplitudes and correlation times. The same network parameter values were used for
the simulations with and without signal noise. The analysis shows that the noise in the signal
has relatively small effects on the precision of boundaries, except when the noise in the signal
is so extreme that all sharpness is lost (bottom right plots).

Comparison with Drosophila GAP gene and Eye Imaginal disc net-1324

works.1325

We compared the networks recovered from the computational screen with those described1326

for anterior posterior patterning of the Drosophila embryo and eye imaginal disc [Verd et al.,1327

2017, Graham et al., 2010]. Both these systems have been characterised extensively such that1328
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we have sufficient knowledge of the network to perform our analysis [Akam, 1987, Ingham,1329

1988, Sánchez and Thieffry, 2001, Manu et al., 2009, O’Neill et al., 1994, Rebay and Rubin,1330

1995]. We added intrinsic noise to the original models from [Verd et al., 2017, Graham et al.,1331

2010] using Langevin equations and an Ω that was chosen to result in fluctuations without1332

leading to ergodicity. For the GAP gene system we used the parameters and equations as1333

described in [Verd et al., 2017], for the imaginal disk network we used the Mathematica code1334

provided as supplementary in [Graham et al., 2010]. We inspected the configurations in gene1335

expression fluctuations near relevant steady states.1336
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Figure S19: (Left) GAP gene network for the anterior boundary between Kruppel and Giant.
The network has the same topology as the most frequently recovered network identified by our
screen, with a difference only in the input (dashed link). This differences does not affect the
dynamics as it only alters how the network interprets a change in signal. (Right) Black dots
represent multiple simulations and illustrate fluctuations near the high-Giant / low-Kruppel
steady state (red point). To transition to the low-Giant and high-Kruppel steady state (green
point) the system must reach the transition point (purple point). The fluctuations in gene
expression space are coerced into the Hunchback dimension (x axis), decreasing the probability
of a stochastic fluctuation of the system reaching the transition point.

The architecture of the transcription circuits that comprise the GAP gene network [Verd1337

et al., 2017] match closely those found in our computational screen (Fig. S16). As predicted by1338

our computational screen, we can identify role for specific links between network components1339

in the formation of GAP gene boundaries. In particular, for the anterior boundary between1340

Giant and Kruppel, if we remove Knirps, which is not expressed in either of these domains,1341

we find one the most common topologies recovered from our screen, with the correspondence1342

Kruppel – x1, Hunchback – x2, Giant – x3 (Fig. S19). In this case, Hunchback and Giant1343

display mutual exclusivity and the graded expression profile of Giant suggests that separation1344

speed is used to sustain the sharp boundary; this is similar to the role played by Pax6 (x3) in1345

the neural tube GRN. An interesting difference is that while Hunchback affects the direction1346

of fluctuations in gene expression space, it does not change in concentration and simply alters1347
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the dynamics of the transition (Fig. S19).1348
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Figure S20: (Top) Multiple instances of one of the top topologies for boundary sharpness found
in our computational screen are contained in the Drosophila eye disc network. This network
is composed of several interactions and mediates the transition between Yan-on and Yan-off
states. The configuration of inputs from the signal (Erk) is different to our topologies (dashed
lines) but this does not affect the dynamics. (Bottom) Fluctuations near the Yan-off state (red
point) for different projected views corresponding to the networks shown. The fluctuations
are configured in directions that are not aligned with the transition point (purple point). This
configuration decreases the possiblity of a cell reverting to a Yan-on state after the wave of
Erk has shifted the system to a Yan-off state. Note that for Mae and miR-7 the inhibitions
of Yan happen through direct interactions, thus where noted we show the fluctuations for the
variable tracking the Inhibitor:Yan complex (Mae:Yan or miR-7:Yan).

The differentiation pattern of the eye imaginal disc also relies on cross-repressive interac-1349

tions [O’Neill et al., 1994, Rebay and Rubin, 1995, Graham et al., 2010]. The expression of1350

Yan, downstream of RTK signalling distinguishes between differentiated and undifferentiated1351

precursors in the eye disc as the furrow migrates. We inspected the network proposed to1352

achieve this [Graham et al., 2010] by focusing on three node networks that involved Yan and1353

two other components in cross-repression with Yan. This approach resulted in three versions1354

of a network topology found frequently as one with high curvature in our screen, with the1355

mappings: (1) Yan – x1, miR-7 – x2, Mae - x3, (2) Yan – x1, Mae – x2, PntP1 – x3 and1356

(3) Yan – x1, miR-7 – x2, PntP1 – x3 (Fig. S20). Simulations also indicate that the dy-1357
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namics of these networks configure gene expression fluctations to decrease the probablity of1358

a noise driven transition (Fig. S20). The bistable network facilitates a sharp switch between1359

steady states, ensuring that cells only transition from a Yan-off to a Yan-on state when Yan1360

is sufficiently activated by Erk signalling. Once the wave of Erk has passed, the dynamical1361

curvature established by the network ensures that cells do not transition back to a Yan-on1362

state (Fig. S20). Thus both Drosophila embryo and eye imaginal disc networks appear to have1363

adopted network structures that are compatible with precision enhancing mechanisms.1364
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G Materials and methods1365

G.1 Mouse Strains1366

Mouse strains containing the following alleles were used: Pax6(Sey) [Ericson et al., 1997] and1367

O2e33−/− in strain backgrounds C57BL/6Jax and F1(B6xCBA) respectively. The O2e33−/−
1368

allele was derived using zygote injection of CRISPR gRNA and Cas9 plasmids (see below).1369

Embryos were transferred to psuedopregnant females and subsequent pups were genotyped.1370

O2e33−/− mice were maintained as a heterozygous population; the line was sub-viable with1371

less than 2/40 homozygous offspring surviving. Embryos for analyses were collected at the1372

indicated time points following a mating, with the day of plug detection designated e0.5. All1373

animal procedures were carried out in accordance with the Animal (Scientific Procedures) Act1374

1986 under the Home Office project licence PPL80/2528 and PD415DD17.1375

G.2 Embryonic Stem Cell Culture1376

For the enhancer deletion in vitro, mouse ES cells containing a fluorescent reporter cotranslated1377

with Olig2 (Olig2::T2A-mKate2) [Sagner et al., 2018] were used. Mouse embryonic stem cells1378

were maintained on mitotically inactivated fibroblasts (feeder cells) in ES medium with 1,0001379

U/ml LIF. Cells were differentiated to spinal cord neural progenitors as previously described1380

[Gouti et al., 2014]. To initiate differentiation, ES cells were dissociated using 0.05% Trypsin1381

(Gibco) and panned in ES medium on culture plates for 2x 15 minutes to remove feeder cells.1382

ES cells were collected, spun down and re-suspended in N2B27 medium. 50,000 cells were1383

plates on 35mm CellBIND dishes (Corning). Dishes had been coated with 0.1% gelatine in1384

PBS before addition of 1.5ml of N2B27 with 10 ng/ml bFGF. After 48 hours medium was1385

replaced with N2B27 + 10ng/ml bFGF + 5uM CHIR99021 (Axon). 24 hours later, at D3,1386

medium was replaced with N2B27 + 100nm RA (Sigma) and 500nm SAG (Calbiochem), this1387

was repeated every 24 hours.1388

G.3 CRISPR/Cas9 targeting1389

For CRISPR/Cas9-mediated excision of the -33 kb enhancer, two pairs of short guide RNA1390

(sgRNA) sequences were designed to target either side of the enhancer region. ZiFit on-1391

line tool (http://zifit.partners.org/) was used to select guides that had the lowest number of1392

potential off target sites. sgRNA sequences (ACTTTGTAAGCCGAGCC) and (GATAATCGC-1393

CTCCCTCC were cloned into pX459 v2.0 (Addgene, [Ran et al., 2013]) and transfected into1394

ES cells via nucleofection. This generated a cell line with a 995bp deletion (chr16: 91192464-1395
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91193458). Two separate clones were analysed to determine whether there was substantial1396

clonal variation. A second line was generated with a larger deletion of approximately 3.3kb1397

using sgRNA sequences (GTTTATGGCTCATCCCC and TCCAGGCTCCCATATCC). Cell lines1398

with this larger deletion yielded the same results as the smaller deletion (data not shown). To1399

generate the mouse line, plasmids encoding the sgRNAs for the 3.3kb deletion were injected1400

into zygotes before being transferred to pseudo-pregnant females. The mouse line generated1401

had a 3259 bp deletion (chr16: 91191295-91194570).1402

To assess Olig2 protein copy number, a transgenic cell line was constructed, Olig2-HA-1403

SnapTag. Sequencing encoding an HA tagged SnapTag was placed at the C-terminus of1404

the endogenous coding sequence for Olig2 via homologous recombination using CRISPR. The1405

SnapTag sequence was extracted from the pSNAPf vector (N9183S, NEB) and inserted into1406

a plasmid containing Olig2 [Sagner et al., 2018] and targeted as previously described.1407

G.4 Protein Copy Number Quantification1408

The concentration of recombinant proteins (used as standards) was calculated from Coomassie1409

staining (GelCode Blue Stain Reagent, Thermo scientific). Recombinant proteins used were1410

Pax6 (Bioclone, PI-0099) Nkx2.2 (MyBioSource, MBS717917) and SnapTag (NEB, P9312S).1411

A solution of 5 Îĳm SNAP-tag was labelled with Janelia Fluor JF549 (TOCRIS, 6147) SnapTag1412

Ligand at 10 Îĳm (assembled in house) for 30 mins at 37ÂřC.1413

To determine Pax6 and Nkx2.2 average molecule number per cell, a WT HM1 mouse1414

embryonic stem cell line was used [Doetschman et al., 1987]. Cells were lysed in RIPA buffer1415

supplemented with protease inhibitors. The cell lysates were analysed by Western blot, with1416

lysate from a known number of cells loaded per lane. The following antibodies were used:1417

rabbit anti-Pax6 (Millipore AB2237, 1:2000), mouse anti-Nkx2.2 (DSHB 745A5, 1:50), donkey1418

anti-mouse IRDye 800CW (Licor) and donkey anti-rabbit IRDye 680RD (Licor). Blots were1419

scanned using an Odyssey Scanner (Licor).1420

We used the cell line Olig2-HA-SnapTag to determine protein copy number for Olig2.1421

Cells for Olig2 and Nkx2.2 copy numbers were differentiated as described. For Pax6, cells1422

were exposed to 100nm RA only from day 4 to induce a more dorsal spinal cord cell fate.1423

One day prior to sample collection, the cells were incubated with Janelia Fluor JF549 SnapTag1424

Ligand (assembled in house) directly in the media at 1 µM overnight. Cells were lysed in RIPA1425

buffer supplemented with protease inhibitors. A known number of cells were loaded per lane.1426

Gels were scanned using Typhoon FLA 9500.1427

To determine the percentage of expressing cells, flow cytometry was carried out as described1428
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in the Flow Cytometry section.1429

G.5 Flow Cytometry Analysis1430

Cells were dissociated using 0.05% Trypsin and collected in ES media. Cells were then washed1431

in PBS and resuspensed in PBS containing live-cell Calcein Violet dye (Life Technologies).1432

Control and O2e33−/− cells were differentiated in parallel and analysed together. Control cells1433

differentiated without SAG from day 4 were used to set population gates for mKate positive1434

cells.1435

For protein quantifications, flow cytometry was used to determine percentage of cells1436

expressing Olig2, Pax6 and Nkx2.2. Cells were labelled with either PE Mouse anti-Nkx2.21437

(BD Pharmingen 564730, 1:20); AlexaFluor 647 mouse anti-Human Pax6 (BD Pharmingen1438

562249, 1:50); goat anti-Olig2 (R&D Systems AF2418, 1:800) then donkey anti-goat 4051439

(Biotium 20398, 1:500). Flow analysis was performed using a Becton Dickinson LSRII flow1440

cytometer.1441

G.6 qPCR assays1442

The mRNA was extracted using RNeasy Mini Kit (Qiagen) according to the manufacturerâĂŹs1443

instructions. 1 µg of RNA was used for reverse transcription reaction using SuperScript1444

III (Invitrogen) with random hexamers. Platinum SYBR Green qPCR SuperMix-UDG with1445

ROX (Invitrogen) was used for amplification on a QuantStudio 5 Real-Time PCR system1446

(ThermoFisher ScientiïňĄc). Expression values were normalised against β-actin. Two repeats1447

of four (Islet1) samples at each timepoint were analysed. qPCR primers used were Islet1 FWD:1448

5âĂŹ-TATCAGGTTGTACGGGATCAAA and REV:5âĂŹ-CTACACAGCGGAAACACTCG.1449

G.7 Immunohistochemistry and Microscopy1450

Embryos were collected at defined timepoints and fixed for 30 minutes for e8.5, 1 hour for e9.51451

and 2 hours for e10.5 in 4% paraformaldehyde in PBS. Embryos for wholemount imaging were1452

washed in PBS containing 0.1% Triton X-100 (PBST) before addition of primary antibodies.1453

Embryos for sectioning were placed in cryopreservation 30% sucrose overnight at 4ÂřC then1454

dissected into forelimb neural tube fragments. These were mounted in gelatine then frozen.1455

12Îĳm sections were collected on glass slides using Zeiss Hyrax C 60R cryostat. Gelatine was1456

removed from the slides by 4 x 5 min washes in PBS at 42ÂřC and sections washed with1457

PBST. For in vitro stainings, cells were washed in PBS and fixed in 4% paraformaldehyde1458

for 15 min at 4ÂřC then washed in PBS then PBST. For whole embryos, embryo sections1459
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and cells, primary antibodies diluted in blocking solution (1% BSA in PBST) were applied1460

overnight at 4ÂřC. These were then washed in 3 x PBST before secondary antibodies diluted1461

in PBST were added for 1 hour at room temperature. Secondary antibodies were removed1462

with 3 x washes with PBST and one wash containing PBST and DAPI. Sections and cells1463

were mounted using Prolong Gold (Invitrogen). Embryos for wholemount were mounted us-1464

ing glycerol. Primary antibodies used were guinea pig anti-Olig2 (gift from Bennett Novitch,1465

1:8000 [Novitch et al., 2001]); mouse anti-Nkx2.2 (BD Pharmingen 564731, 1:500); rab-1466

bit anti-Pax6 (Millipore AB2237, 1:1000); goat anti-Sox2 (R&D Systems AF2018, 1:200);1467

mouse anti-Mnx1/HB9 (DSHB 81.5C10, 1:40); rabbit anti-Olig2 (Millipore AB9610, 1:1000);1468

goat anti-ISL1 (R&D Systems AF1837, 1:1000); mouse anti-Chx10 (Santa Cruz, sc-365519,1469

1:100). All secondary antibodies were raised in donkey and conjugated to Alexa488, Alexa568,1470

Alexa647 (Abcam).1471

Cells were imaged on a Zeiss Imager.Z2 microscope using 20x objective. Z-stacks were taken1472

and presented as a maximum projection using FiJi imaging software. A Leica SP5 upright1473

confocal microscope was used to image embryo sections (40x oil objective) and whole embryos1474

(20x dry objective). For Fig.2I, images were acquired using a Leica Sp8 inverted confocal (20x1475

dry objective). For whole embryos, z-stacks were taken across a tile-scan then assembled and1476

maximally projected using FiJi imaging software.1477

G.8 Image quantification1478

Fluorescent intensity measurements1479

Single optical planes from confocal z-stack images were used for analysis. Each nucleus was1480

identified individually using the FiJi point tool. The DAPI channel was used as reference for1481

the position of the nuclei regardless of TF expression. A circle of 2 µm radius was taken1482

around each point, x and y position and mean fluorescence intensity values for Nkx2.2, Olig21483

and Pax6 were recorded. Reference points at the ventral and dorsal pole of the neural tube in1484

each section were recorded in order to align all embryos along the dorso-ventral axis.1485

Pre-processing1486

We performed a set of normalisation steps in order to compare embryos from different batches1487

and across phenotypes:1488

1. The datasets were realigned vertically with respect to the reference points and the1489

ventral-most point was set to (0,0) in axes coordinates1490
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2. Cells with DAPI levels below two SDs from the mean were removed to eliminate falsely1491

identified nuclei. This value was decided individually for each sample to account for1492

different background levels resulting from technical noise.1493

3. Points that were very low in intensity (below two SDs) were set to a minimum threshold1494

in each individual channel.1495

4. For Nkx2.2 and Olig2, the intensity values were re-scaled such that the minimum value1496

is at 0 and the 40% quantile is at the arbitrary value of 0.08. This was done individually1497

for each embryo with the assumption that most nuclei in a full neural tube cross-section1498

will not express these proteins.1499

5. For Pax6, most nuclei in the image express some level of Pax6; accordingly we set the1500

60% quantile at 0.6 across all datasets.1501

Staging embryos with size1502

We used the dorsal-ventral length of the neural tube as a proxy for embryo age [Cohen et al.,1503

2015]. For e9.5 embryos, the neural tube size measured was between 250µm and 350µm and1504

for e10.5 embryos it was larger than 350µm. In order to subgroup e9.5 embryos, neural tube1505

size was used. In total we have 46 WT, 29 O2e33−/− and 16 Pax6−/−. By sizes they are1506

distributed as:1507

WT O2e33−/− Pax6−/−

150 - 250 µm 17 5 5
250 - 350 µm 13 13 3
350 - µm 16 11 8

1508

Classification into cell types1509

In order to analyse the heterogeneity at the boundary between domains, we classified all cells1510

into one of 5 specific cell types: floor plate, p3, pMN, Irx3 positive, other; this was done based1511

on the position and expression profile of each cell. We refrained from using the Pax6 channel in1512

our classifier to avoid any bias in the classification of Pax6−/− embryos. We therefore classified1513

based on three parameters: Nkx2.2 intensity, Olig2 intensity and dorsal-ventral position. The1514

thresholds we employed for Nkx2.2 and Olig2 concentrations are shown in Fig. S21A-B. There1515

was a further constraint on the dorsal-ventral position for each cell type, in order to avoid1516

anomalies from blood vessels and imaging artefacts and to be able to separate floor plate1517

cells from Irx3 positive cells, both of which lack expression of Nkx2.2 and Olig2 (Fig. S21B-1518

C). Manually bench-marking this method indicated that we were able to classify most cells1519
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accurately for all three phenotypes. The classifier becomes less accurate for cells in dorsal1520

regions but this is of no concern as our subsequent analysis did not involve these cells. For the1521

specific task of quantifying the Olig2-Irx3 boundary position we employed the Pax6 channel1522

as a further parameter to aid classification. This was only performed for WT and O2e33−/−
1523

(data not shown).1524
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Figure S21: Analysis of gene expression in embryos(A) Plot illustrating the concentrations
of Nkx2.2 and Olig2 for all cells analysed. This highlights that the majority of cells are negative
for both TFs and also that very few cells co-express both TFs. (B) Criteria to determine the
identity of each cell by using the levels of Nkx2.2 and Olig2; colours indicating cell assignment
as Olig2 (red), Nkx2.2 (green) and neither (blue) are consistent throughout the figure. The
concentration of Pax6 is not used for classification. (C) Positional limits along the neural tube
for each cell type. Cells that express neither Olig2 nor Nkx2.2 are classified based on their
position as they can be ventral floor plate cells (black) or more dorsal progenitors. Cells that
have mismatching values of concentration and position are classified as exceptions in Cyan
(D) Examples of classified embryos of increasing age, illustrating the accuracy of the approach
for determining cell type.

Defining boundary position and width1525

Once the cell types had been classified we assigned a quantitative measure of the width of gene1526

expression boundaries. For this we fit to the cell position data, for each embryo, a smooth1527

function indicating the probability of finding a cell of one type (the prevalent type on one1528
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side of the boundary) at each location of the image. We focused on the boundary between1529

p3 and pMN domains. The classifier is then binary and gives the probability of finding a p31530

cell at each image location. We used a Gaussian process approach to fit this classifier as1531

detailed in [Rasmussen and Williams, 2004], using public MATLAB code (MATLAB version1532

r2018b). The Gaussian process was chosen to have a constant mean function and a squared1533

exponential covariance function. This choice of covariance function is relatively standard and1534

allows us in particular to assign separate covariance function lengthscales in the x and y image1535

directions by automatic relevance determination [Rasmussen and Williams, 2004]. We used a1536

logistic transfer function to convert Gaussian process values to probabilities, again a standard1537

choice. Once the classification probabilities have been obtained in this way, we define the1538

boundary as the region where the probability of p3 cells lies in the range 11% to 89%, i.e.1539

where there is significant mixing of cell types. We then determine the width of this region1540

geometrically. This method allowed us to calculate the boundary widths for all embryos in a1541

consistent manner, and to compare WT with mutants. The boundary region is determined from1542

the trained classifier for each embryo as explained above; the position where the classification1543

probability is 50% for either cell type is used to define the position of the boundary (an average1544

position of the boundary along the left-right axis) (Fig. S22). We do not use entropy based1545

measures such as in [Dubuis et al., 2013, Petkova et al., 2019] as these typically rely on the1546

assumption of Gaussian gene expression level distributions; this assumption is inapplicable in1547

the boundary region, where the system is bistable and the distributions therefore bimodal.1548

Information theoretical methods are also normally used with a single spatial coordinate while1549

we are looking at a 2D tissue. This may have irregular growth or oblique sectioning which1550

could lead to a slanted boundary and therefore misleading results once projected onto a single1551

dimension.1552

Quantifying TF levels1553

We extracted Olig2 positive cells that were classified as being within the boundary region.1554

The model predicted that these cells were the most likely to transition to a Nkx2.2 positive1555

state, given sufficient time. We quantify the levels of Pax6 and Olig2 for these cells in1556

WT and O2e33−/− mutants. The resulting measurements do not provide absolute numbers;1557

but given that all samples are normalised in the same way, as described (Sec. G.8), the1558

resulting measurements are comparable relative to each other. We use these measurements1559

as equivalents to observing fluctuations around a steady state over a series of dorso-ventral1560

positions. In this way, we take the corresponding equivalent in the simulations, where we also1561
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Figure S22: Examples of boundaries determined by the Gaussian process classifier.
The red lines indicate the computed boundary position, and correspond to the image locations
where the probability of being a p3 or pMN cell is 0.5. Blue lines close to the p3-pMN boundary
delimit the area identified as the boundary region, where the probability of being a p3 cell is
in the range 11% to 89%. By measuring the area between the two blue curves and dividing
by the width of the embryo we are able to quantify the width of the boundaries. In turn by
obtaining the average position of the red line, we are able to calculate the boundary position.

average fluctuations across several neural tube positions (Supp. C).1562

Calculating variance levels1563

In order to calculate the total variance of Olig2 and Pax6 levels within the pMN domain we1564

extracted all Olig2 expressing cells, for both WT and O2e33−/−, outside the boundary region.1565

The variances and covariances of the normalised fluorescence intensity values were calculated,1566

in analogy with the theoretical approach (Supp. C). The square root of the trace of the1567

resulting covariance matrices was then used to obtain the typical root-mean-square relative1568

variance.1569

S46

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 20, 2020. ; https://doi.org/10.1101/721043doi: bioRxiv preprint 

https://doi.org/10.1101/721043
http://creativecommons.org/licenses/by/4.0/

