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Abstract 1 

Polygenic adaptation is frequently associated with small allele frequency changes of many loci. 2 

Recent works suggest, that large allele frequency changes can be also expected. Laboratory 3 

natural selection (LNS) experiments provide an excellent experimental framework to study the 4 

adaptive architecture under controlled laboratory conditions: time series data in replicate 5 

populations evolving independently to the same trait optimum can be used to identify selected 6 

loci. Nevertheless, the choice of the new trait optimum in the laboratory is typically an ad hoc 7 

decision without consideration of the distance of the starting population to the new optimum. 8 

Here, we used forward-simulations to study the selection signatures of polygenic adaptation in 9 

populations evolving to different trait optima. Mimicking LNS experiments we analyzed allele 10 

frequencies of the selected alleles and population fitness at multiple time points. We 11 

demonstrate that the inferred adaptive architecture strongly depends on the choice of the new 12 

trait optimum in the laboratory and the significance cut-off used for identification of selected loci. 13 

Our results not only have a major impact on the design of future Evolve and Resequence (E&R) 14 

studies, but also on the interpretation of current E&R data sets. 15 

 16 

Introduction  17 

Laboratory natural selection (LNS) has been a popular approach for many years because it is a 18 

powerful approach to study adaptation processes under controlled replicated conditions. 19 

Polymorphic populations are subjected to different types of stressors (e.g. temperature, 20 
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 3 

desiccation, etc) and monitored for changes in the phenotype of one or several traits that are 21 

usually controlled by a large number of loci (i.e polygenic traits). Recently, the analysis of 22 

phenotypic change is combined with the analysis of allele frequency changes by contrasting the 23 

evolved and ancestral populations (Evolve & Resequence, E&R). The primary goal of such 24 

experiments is to uncover the adaptive architecture of the focal trait(s) in populations subjected 25 

to certain conditions based on the allele frequency changes during the experiment.  26 

The analysis of different LNS studies revealed contrasting genomic signatures. The most 27 

apparent discrepancies between studies are related to the number of putative selection targets 28 

and the extent of parallelism across replicates. While some studies detected only a small number 29 

of selection targets (Magwire et al. 2012; Mallard et al. 2018), others suggested a polygenic 30 

response (Barghi et al., 2019; Jha et al., 2015). While some E&R studies found highly parallel 31 

selection response among replicates (Burke et al. 2010; Burke et al. 2016; Graves et al. 2017; 32 

Fragata et al. 2018; Mallard et al. 2018; Rebolleda‐Gómez and Travisano 2018; Michalak et al. 33 

2019) in other studies selection signatures were much less concordant (Cohan and Hoffmann 34 

1986; Teotónio et al. 2004; Simões et al. 2008; Griffin et al. 2017; Barghi et al. 2019). A particularly 35 

striking difference has been observed for natural Drosophila simulans populations exposed to the 36 

same hot environment. A Portuguese population showed parallel strong selection response at 37 

few genomic regions in 5 replicates (Mallard et al. 2018). On the other hand, a population from 38 

Florida uncovered highly heterogeneous polygenic selection response among 10 replicates 39 

(Barghi et al. 2019). The reason for these different adaptive architectures remains unclear.  40 
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In this study we evaluate a potential source of heterogeneity in the adaptive architecture-41 

different selection regimes. We used forward-time simulations to study the influence of the 42 

difference between the phenotype of the founder population and the new trait optimum on the 43 

adaptive architecture. We show that the distance to the trait optimum has a major influence on 44 

the frequency changes of selected alleles and consequently on the underlying adaptive 45 

architecture. 46 

Materials and Methods 47 

 We simulated adaptation of a quantitative trait to new optimum in a population of 300 diploid 48 

individuals with random mating. The population phenotype (z) is the sum of the phenotypic value 49 

of all contributing alleles computed using 𝑧 = ∑ 𝑎𝑖(𝑝𝑖 − 𝑞𝑖) + 2𝑑𝑝𝑖𝑞𝑖
𝐿
𝑖=1  (where α is the effect 50 

size, d the dominance and L the number of the contributing alleles). In all the simulations, no 51 

dominance (d=0) and no epistasis were assumed. The phenotypes were mapped to fitness values 52 

using a Gaussian function (Fig. S1):  53 

(1) f(x | μ, σ2) =  
1

√2πσ2
e

−π,   2

2σ2  54 

where μ is the mean of the distribution (i.e the new trait optimum) and σ is the standard 55 

deviation which is equal to 1 in all of our simulated scenarios. In all simulations, fitness ranged 56 

between 0 and 4.5. 57 

To account for linkage, we used 189 D. simulans haplotypes for the simulations (Howie et 58 

al. 2019). Contributing alleles were randomly distributed across the entire chromosomes 2 and 3 59 
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and we used the recombination map of D. simulans (Howie et al. 2019). Because D. simulans 60 

males do not recombine, we divided the recombination rate estimates by two.  61 

   We initially simulated a quantitative trait with 100 contributing loci of equal effect size 62 

(ES=0.08) and starting frequency (SF=0.2, simulation 1.a in Table 1). Three different trait optima 63 

were simulated: close (C), intermediate (I) and distant (D) where the trait optimum was 1, 3, and 64 

5 units away from the phenotype of the founder population. We attempted to mimic an 65 

experimental evolution scenario in which a population evolves under three different selection 66 

regimes with different intensities (Fig. 1). The values for the three trait optima used in each 67 

simulation scenario are shown in Table 1.  68 

To examine the effect of starting frequency on the inferred adaptive architecture, we 69 

simulated a quantitative trait with 100 contributing loci with equal starting frequencies (0.1 and 70 

0.05) and equal effects (0.08, simulations 1.b and 1.c in Table 1).  71 

We also performed simulations matching typical experimental conditions more closely. 72 

First, we sampled the effect sizes from a gamma distribution with shape 0.09 and scale 1 73 

(~Γ(0.09,1), simulation 2 in Table 1). The choice of gamma distribution is motivated by findings of 74 

QTL mapping studies (Hayes & Goddard, 2001; Hua & Springer, 2018; Mackay, 2010 ). Second, in 75 

addition to sampling the effect sizes from gamma distribution, the starting frequency of alleles 76 

was sampled from an exponential distribution with scale 10 (exp(λ=10)), with the majority of 77 

alleles starting from low frequencies in the founder population (simulation 3 in Table 1).   78 

We also simulated a quantitative trait with different number of contributing loci (50 and 79 

20) in the founder population (simulations 4 and 5 in Table 1) and equal effect size (0.08).  80 
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To enable comparison of simulations with different starting frequencies, effect sizes and 81 

number of loci, in each simulation scenario we adjusted the trait optimum such that all 82 

populations need to move the same distance from starting phenotype (Table 1) to the new trait 83 

optimum, i.e. 1, 3, and 5 units for close, intermediate and distant optima, respectively.  84 

Phenotype and allele frequencies were recorded every 10th generations for 200 85 

generations. For each scenario, we performed 50 replicate simulations using function qff in 86 

MimicrEE2 (version v194, Vlachos & Kofler, 2018).   87 

To mimic Pool-Seq (Christian Schlötterer et al. 2014), we added a binomial sampling step 88 

to the frequencies of the contributing alleles. Selected alleles, i.e. alleles with frequency change 89 

more than expected under neutrality, were identified by performing neutral simulations. Neutral 90 

simulations were run for 200 generations, identical to the simulations provided in Table 1, but 91 

without selection. For each time point we used these neutral simulations to identify selected 92 

alleles with frequency changes larger than the 95% cut-off and those with frequency changes less 93 

than the 5% cut-off. To infer the adaptive architecture, we classified selected alleles into those 94 

with sweep signatures (frequency ≥ 0.9) and small shifts (frequency increase ≤ 10% quantile of 95 

allele frequency change distribution at each generation).  96 
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Results  97 

Distance to trait optimum affects the inferred genetic 98 

architecture  99 

We evaluated how the difference between the phenotype of a founder population and the new 100 

trait optimum in the experiment influences the inferred adaptive architecture. The genetic 101 

architecture is described by the number and allele frequency changes of selected alleles, which 102 

deviate from neutral expectations. We classified the allele frequency trajectories as sweep 103 

signature and small shifts (Hancock et al. 2010; Berg and Coop 2014; Bourret et al. 2014; Höllinger 104 

et al. 2019). In several E&R experiments, the genomic response was studied after about 60 105 

generations of adaptation and strong selection response was identified (Mallard et al. 2018; 106 

Barghi et al. 2019; Michalak et al. 2019; Simões et al. 2019). Our standard simulations match this 107 

experimental time scale to investigate the adaptive architecture.  108 

We simulated a quantitative trait with 100 linked loci of equal effect (ES=0.08) and starting 109 

frequencies (SF= 0.2) (simulations 1.a, Table 1). The computer simulations showed that the 110 

distance to the trait optimum affects the inferred adaptive architecture. We observed that the 111 

number of selected alleles varies for different trait optima. For example, if the new trait optimum 112 

is close (Close scenario in Fig. 2), minor frequency changes are sufficient to reach the new 113 

optimum, thus alleles have only small shifts (Table 2). While more pronounced frequency changes 114 

occur with increasing distance to the new trait optimum (Fig. 2) that results in more sweep 115 

signatures (Table 2). 116 

 117 
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Effect of duration of the experiment on the adaptive architecture 118 

 119 

The allele frequency trajectories of selected alleles change as the experiment continues for 200 120 

generations (Fig. 3A). The influence of the duration of the experiment is illustrated by the 121 

comparison of generations 20, 40 and 60 for populations with different distances to the new trait 122 

optimum. Regardless of the duration of the experiment, the distance to trait optimum has a major 123 

influence on the genomic signature of adaptation (Fig. 3B). The difference in the number of loci 124 

with small shifts and sweep signatures between populations at variable distances to the new trait 125 

optimum is persistent at different time points (Table 2).  126 

Effect of allelic starting frequency on the inferred adaptive 127 

architecture 128 

We explored the influence of the starting frequency of contributing alleles on the inferred 129 

adaptive architecture by simulating 100 loci starting from equal frequencies (0.05, 0.1 and 0.2) 130 

and with equal effects (0.08). The starting allele frequencies in the founder population affect the 131 

allele frequency changes (Fig. S2) and the evolution of phenotype (Fig. S3). Regardless of the 132 

distance to the new trait optimum, populations with higher starting frequencies reach the new 133 

trait optimum faster. Higher allele frequencies also result in the loss of fewer alleles due to drift 134 

(Fig. S6). This pattern is observed regardless of the distance to the new trait optimum.  135 

Despite the substantial impact of starting frequencies on the allele frequency trajectories 136 

and subsequently the inferred adaptive architecture, the influence of the distance to the trait 137 

optimum remains fairly similar (Fig. 4). The number of alleles with sweep signatures is higher for 138 
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populations with more distant trait optima and populations with close trait optimum have more 139 

alleles with small shifts (Fig. 4, Table 2). While the number of alleles with sweep signatures and 140 

small shifts varies depending on the starting frequencies of alleles in the populations, the distinct 141 

patterns of selected loci in populations with different distance to the new trait optimum remain 142 

unaffected by the starting frequency (Fig. 4).   143 

Effect of allelic effect size on the inferred adaptive architecture 144 

We evaluated the influence of allelic effect sizes on the adaptive architecture by simulating a 145 

quantitative trait with 100 loci with equal starting frequencies (SF=0.2) and variable effect size. 146 

The effect size was sampled from a gamma distribution such that the majority of alleles have 147 

small effects and only few are with large effects (simulation 2 in Table 1). Similar to simulations 148 

with equal effect sizes across loci, the genomic signatures vary among populations with different 149 

distances to trait optimum (Fig. 5). The number of loci with small shifts is quite similar for different 150 

distances to the trait optimum (Table 2). However, alleles with sweep signatures, show more 151 

prominent differences-distant trait optima result in more loci with sweep signatures (Fig. 5, Table 152 

2).  153 

Furthermore, we tested the combined influence of variable effect sizes and starting 154 

frequencies on the inferred adaptive architecture by simulating effect sizes and starting 155 

frequencies sampled from a gamma and exponential distribution, respectively (simulation 3 in 156 

Table 1). The exponential distribution mimics a founder population with most selected alleles 157 

starting from low frequencies as observed in some experimental evolution studies (Tobler et al. 158 

2014; Barghi et al. 2019). The differences in the inferred genetic responses in populations with 159 
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different trait optima (Fig. 5B) were not as pronounced as previous simulations. However, as seen 160 

in other simulations, sweep signatures were more common for adaptation to an intermediate or 161 

distant optimum (Table 2) and thus result in different genomic response among populations.  162 

 163 

Effect of number of contributing loci on the inferred adaptive 164 

architecture 165 

We studied the influence of the number of contributing loci on the genomic responses by 166 

simulating 100, 50 and 20 loci with equal effect sizes (ES=0.08) and starting frequencies (SF= 0.2) 167 

(simulations 1.a, 4 and 5 in Table 1). With more loci in the founder population the new trait 168 

optimum is reached faster (Fig. S4).  However, the median frequency change of the selected 169 

alleles is lower (Fig. S5) because more alleles with smaller frequency changes are required to 170 

reach the new trait optimum. This trend is seen regardless of the distance to the new trait 171 

optimum.   172 

Our analyses show that the distinct adaptive architectures inferred for different distances 173 

to the trait optimum do not depend on the number of contributing loci in the founder population 174 

(Fig. 6). Adaptation of populations to distant trait optima is accompanied by higher number of 175 

alleles with sweep signatures while alleles with small shifts are observed more when the new trait 176 

optimum is closer to the founder population’s phenotype.  177 

 178 
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Effect of neutrality threshold on the inferred adaptive 179 

architecture 180 

With the distance to trait optimum affecting the trajectories of allele frequencies and phenotype 181 

evolution (Fig. S2, S3) we hypothesized that the power to detect selected loci is also influenced 182 

by the distance to the new trait optimum. A more distant trait optimum imposes stronger 183 

selection resulting in more prominent allele frequency changes which are more reliably 184 

distinguished from neutrally evolving loci.  185 

 More stringent criteria for the identification of selected loci will result in the detection of 186 

fewer loci. Since the distribution of allele frequency changes differs for the various trait optima, 187 

we were interested whether the inferred architecture also depends on the cut-off used to identify 188 

selected loci. The choice of neutrality threshold, higher (more conservative) or lower (more 189 

liberal) cut-offs, strongly influences the number of identified selected loci, but the distinction 190 

between populations adapting to different trait optima remains unaffected (Fig. 7).  191 

 192 

Potential mis-classification of selected alleles in experimental 193 

populations 194 

Experimental populations are usually maintained at moderate sizes (Matos et al. 2002; Mallard 195 

et al. 2018; Barghi et al. 2019; Simões et al. 2019), which results in considerable drift. In particular, 196 

low frequency alleles are more prone to loss. In addition to neutral drift, selection also impacts 197 

allele frequency changes at neutral and selected alleles. A naive expectation may be that 198 

adaptation to close trait optima is based on frequency changes of fewer loci and results in the 199 
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loss of more beneficial alleles compared to distant trait optima. Simulations with 100 contributing 200 

linked loci show, however, the opposite (Fig. 8A). We hypothesized that this pattern results from 201 

the interplay of drift and selection, with adaptation to distant optimum causing more intense 202 

selection and drift resulting in selected alleles decreasing in frequency. We tested this hypothesis 203 

by simulating a quantitative trait with 50 contributing and 50 neutral unlinked loci, and 204 

determined the number of selected alleles decreasing in frequency, i.e. alleles with more 205 

pronounced frequency decrease than expected under neutrality. These simulations 206 

demonstrated that neutral loci in populations with distant trait optimum experience a more 207 

pronounced loss than in populations with close optimum (Fig. 8B.2). Consistent with stronger 208 

selection in populations with more distant trait optima, their estimated effective population size 209 

was considerably smaller than for populations with closer trait optima (Table 3). This result is 210 

particularly interesting for experimental studies in which the selected alleles are not known. The 211 

natural classification is that the allele with frequency increase is selected. In this case, however, 212 

with the decrease in frequency of selected alleles, the alternative allele increases in frequency 213 

and would, therefore, incorrectly be classified as the selected allele. 214 

 215 

Discussion 216 

Recently, the combination of experimental evolution with whole genome sequencing (E&R, C 217 

Schlötterer, Kofler, Versace, Tobler, & Franssen, 2014; Turner & Miller, 2012; Turner, Stewart, 218 

Fields, Rice, & Tarone, 2011) has been a very popular approach to study the adaptive architecture 219 

of traits (Teotónio et al. 2004; Burke et al. 2010; Griffin et al. 2017; Mallard et al. 2018; Barghi et 220 
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al. 2019). While the research goal is well-defined, the impact of the experimental design is not 221 

yet fully understood. Previous studies compared the influence of important experimental 222 

parameters, such as population size, duration of experiment and number of replicates with 223 

computer simulations assuming either adaptation by selective sweeps (Baldwin-Brown et al. 224 

2014; Kofler and Schlötterer 2014) or truncating selection for a quantitative trait (Kessner and 225 

Novembre 2015; Lou et al. 2019; Vlachos and Kofler 2019). Very little is known, however, about 226 

laboratory natural selection, which aims to mimic natural selection in the laboratory by exposing 227 

a polymorphic population to a novel environment. When the allele frequencies of a natural 228 

population are preserved in the founder population, LNS does not only identify selection targets, 229 

but also provides information about the frequency of the selected alleles in natural populations. 230 

Furthermore, LNS can be used to distinguish between polygenic adaptation and the selective 231 

sweep paradigm (Barghi and Schlötterer 2019). The choice of the new laboratory environment is 232 

frequently an ad hoc decision because of insufficient knowledge about the phenotype and 233 

adaptive potential of the founder population. Our study shows that laboratory conditions are not 234 

merely a nuisance parameter, but their choice has profound implications. 235 

Consistent with previous studies (Pavlidis et al. 2012; Jain and Stephan 2017; Stetter ID et 236 

al. 2018), our simulations demonstrated that several parameters, such as the number of 237 

contributing loci, effect size and starting frequency have major influence on the selection 238 

response. Independent of these parameters, we show that the distance to the new phenotypic 239 

optimum affects the selective response. For more distant trait optima, the selection signature 240 

becomes more sweep-like with selected alleles experiencing a substantial allele frequency 241 
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increase that some reach fixation. For close trait optima, the predominant selection signature is 242 

better described by small shifts. Thus, focusing only on the observed allele frequency change, 243 

different experiments may result in contrasting conclusions about the underlying adaptive 244 

architecture-even when the same founder population was used. 245 

The relevance of the selection regime in the laboratory is nicely illustrated by the evolution 246 

of insecticide resistance in the Australian sheep blowfly, Lucilia cuprina (McKenzie et al. 1992). 247 

Experimental populations that were not mutation limited were exposed to two different selection 248 

regimes. In one case the populations were treated with sub-lethal doses of insecticide while in 249 

the other one a lethal dose was applied. Sublethal selection regime resulted in the acquisition of 250 

many alleles with small effect, like in our simulations of close trait optima. In the other selection 251 

regime, the typical major effect loci were identified, matching the loci observed in natural 252 

populations.  253 

Our results have more profound implications for the interpretation of selection signatures 254 

in LNS experiments than contributing to an improved experimental design. Because the selected 255 

phenotype in LNS studies is rarely known, it is impossible to determine the distance of the founder 256 

population to the new trait optimum. Consequently, the choice of the laboratory environment 257 

will remain an ad hoc decision. The important insight is that, depending on the distance of the 258 

trait optimum either sweep-like or small shift signatures can be expected if sufficient genetic 259 

variation is present in the founder population. We anticipate that our results also have 260 

implications for the interpretation of selection signatures of populations with different origins 261 

that evolve in the same laboratory conditions. Populations that are closer to the trait optimum in 262 
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the laboratory are expected to show more shift signatures, while more distant populations will 263 

display sweep-like signatures. We propose that LNS studies which explicitly expose evolving 264 

populations to conditions with different trait optima may provide a powerful approach to study 265 

the architecture of polygenic adaptation at an unprecedented level.  266 
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Tables and Figures 443 

 444 

Table 1. Parameters for the simulations performed in this study. Trait Optimum specifies the new 445 

trait optimum values (C: close, I: intermediate and D: distant) that have distance of 1, 3 and 5 446 

units away from the Starting Phenotype. SF: starting frequency, ES: effect size, Nr of loci: Number 447 

of contributing loci. 448 

 449 
 450 

 451 

 452 

Table 2. Number of selected alleles with sweep signature and small shifts for populations with 453 

close (C), intermediate (I) and distant (D) trait optima. SF: starting frequency, ES: effect size, 454 

Gamma: gamma distribution, exp: exponential distribution. Simulation parameters are specified 455 

in Table 1. 456 

 457 

 458 
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 459 

Table 3. Effective population size (Ne) computed using neutral alleles at generation 20, 40 and 60 460 

for all trait optima (C: close, I: intermediate, and D: distant), for the simulation with 50 461 

contributing and 50 neutral loci. 462 

 463 

 464 

 465 

 466 

 467 

 468 

 469 

 470 

 471 

 472 

 473 

 474 

 475 
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 476 

Figure 1. Illustration of the simulated scenarios with varying distances between the phenotype of 477 

the founder population and the new trait optimum. We assumed a natural population that adapts 478 

to new trait optima that differ in their distance from the phenotype of the founder population. 479 

As an example, the corresponding fitness functions are shown. Solid lines show the fitness 480 

function and the intensity of shades of blue corresponds to the distance of the new trait optimum: 481 

close, intermediate and distant. The black dotted line depicts the distribution of phenotype of the 482 

founder population at the start of the experiment and the y-axis on the right shows the number 483 

of individuals. 484 

 485 

 486 
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  487 
 Figure 2. Frequency spectrum of selected alleles (A) and distribution of phenotypes (B) in 488 

populations evolved to close, intermediate and distant trait optima after 60 generations. The 489 

simulation parameters are specified as 1.a in Table 1.   490 

 491 

Figure 3. A) Frequency trajectories of selected alleles through 200 generations. B) Frequency 492 

spectrum of selected alleles in populations with different distances to the trait optima at 493 

generations 20, 40 and 60. The simulation parameters are specified as 1.a in Table 1.  494 
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  495 
Figure 4. Frequency spectrum of selected alleles with different frequencies (0.05, 0.1, and 0.2) in 496 

the founder population and equal effect sizes (ES=0.08) at generation 60. The simulation 497 

parameters are specified as 1.a, 1.b and 1.c in Table 1. 498 

 499 

 500 

 501 

Figure 5. Frequency spectrum of selected alleles with effect sizes sampled from a gamma 502 

distribution (Γ(0.09,1)) at generation 60 with A) constant starting frequency (SF=0.2) and B) 503 

starting frequencies sampled from an exponential distribution (exp(λ=10)). The simulation 504 

parameters are specified as 2 (A) and 3 (B) in Table 1. 505 

 506 
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 507 

Figure 6. Frequency spectrum of selected alleles at generation 60 with different number of 508 

contributing loci (20, 50, and 100) in the founder population with constant starting frequency 509 

(SF=0.2) and effect size (ES=0.08). Simulation parameters are specified as 1.a, 4, and 5 in Table 1. 510 

 511 

 512 

Figure 7. The number of selected alleles at generation 60 with a cut-off of 90%, 95% and 99% 513 

determined by neutral simulations. The simulation parameters are specified as 1.a in Table 1. 514 
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 515 

Figure 8. The number of selected alleles decreasing in frequency in simulations with A) 100 linked 516 

contributing loci (SF=0.2 and ES=0.08) and B) 50 contributing (SF=0.2 and ES=0.08) and 50 neutral 517 

unlinked loci (SF=0.2). The number of selected alleles that decrease in frequency more than 518 

expected under neutrality is shown. Decreasing selected alleles are those alleles with frequency 519 

changes less than the 5% cut-off from the neutral simulations. The simulation parameters in A are 520 

specified as 1.a in Table 1. SF: starting frequency, ES: effect size. 521 
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