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Abstract 
Background: Assigning every human gene to specific functions, diseases, and traits is a grand challenge in                
modern genetics. Key to addressing this challenge are computational methods such as supervised-learning             
and label-propagation that can leverage molecular interaction networks to predict gene attributes. In spite of               
being a popular machine learning technique across fields, supervised-learning has been applied only in a few                
network-based studies for predicting pathway-, phenotype-, or disease-associated genes. It is unknown how             
supervised-learning broadly performs across different networks and diverse gene classification tasks, and how             
it compares to label-propagation, the widely-benchmarked canonical approach for this problem. 
 
Results: In this study, we present a comprehensive benchmarking of supervised-learning for network-based             
gene classification, evaluating this approach and a state-of-the-art label-propagation technique on hundreds of             
diverse prediction tasks and multiple networks using stringent evaluation schemes. We demonstrate that             
supervised-learning on a gene’s full network connectivity outperforms label-propagation and achieves high            
prediction accuracy by efficiently capturing local network properties, rivaling label-propagation’s appeal for            
naturally using network topology. We further show that supervised-learning on the full network is also superior                
to learning on node-embeddings (derived using node2vec), an increasingly popular approach for concisely             
representing network connectivity. 
 
Conclusion: These results show that supervised-learning is an accurate approach for prioritizing genes             
associated with diverse functions, diseases, and traits and should be considered a staple of network-based               
gene classification workflows. The datasets and the code used to reproduce the results and add new gene                 
classification methods have been made freely available. 
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Introduction 
In the post-genomic era, a grand challenge is to characterize every gene across the genome in terms of the                   
cellular pathways they participate in, and which multifactorial traits and diseases they are associated with.               
Computationally predicting the association of genes to pathways, traits, or diseases – the task termed here as                
“gene classification” – has been critical to this quest, helping prioritize candidates for experimental verification               
and for shedding light on poorly characterized genes [1–7]. Key to the success of these methods has been the                   
steady accumulation of large amounts of publicly available data collections such as curated databases of               
genes and their various attributes [8–18], controlled vocabularies of biological terms organized into ontologies              
[19–22], high-throughput functional genomic assays [23–25], and molecular interaction networks [26–30]. 
 
While protein sequence and 3D structure are remarkably informative about the corresponding gene’s             
molecular function [3,7,31–33], the pathways or phenotypes that a gene might participate in significantly              
depends on the other genes that it works with in a context dependent manner.. Molecular interaction networks                 
– graphs with genes or proteins as nodes and their physical or functional relationships as edges – are powerful                   
models for capturing the functional neighborhood of genes on a whole-genome scale [34–36]. These networks               
are often constructed by aggregating multiple sources of information about gene interactions in a              
context-specific manner [29,37]. Therefore, unsurprisingly, several studies have taken advantage of these            
graphs to perform network-based gene classification [38–43]. 
 
The canonical principle of network-based gene classification is “guilt-by-association”, the notion that            
proteins/genes that are strongly connected to each other in the network are likely to perform the same                 
functions, and hence, participate in similar higher-level attributes such as phenotypes and diseases [44].              
Instead of just aggregating “local” information from direct neighbors [45], this principle is better realized by                
propagating pathway or disease labels across the network to capture “global” patterns, achieving             
state-of-the-art results [34–36,38–41,46–56]. These global approaches belong to a class of methods referred             
to here as “label propagation.” Distinct from label propagation is another class of methods for gene                
classification that relies on the idea that network patterns characteristic of genes associated with a specific                
phenotype or pathway can be captured using supervised machine learning [29,42,43,57–59]. While this class              
of methods – referred to here as “supervised learning” – has yielded promising results in a number of                  
applications, how it broadly performs across different types of networks and diverse gene classification tasks is                
unknown. Consequently, supervised learning is used far less compared to label propagation for network-based              
gene classification. 
 
The goal of this study is to perform a comprehensive, systematic benchmarking of supervised learning (SL) for                 
network-based gene classification across a number of genome-wide molecular networks and hundreds of             
diverse prediction tasks using meaningful evaluation schemes. Within this rigorous framework, we compare             
supervised learning to a widely-used, state-of-the-art label propagation (LP) technique, testing both the original              
(adjacency matrix A) and a diffusion-based representation of the network (influence matrix I; Fig. 1). This                
combination results in four methods (listed with their earliest known references): label-propagation on the              
adjacency matrix (LP-A) [45], label-propagation on the influence matrix (LP-I) [52], supervised-learning on the              
adjacency matrix (SL-A) [58], and supervised-learning on the influence matrix (SL-I) [57]. Additionally, we              
evaluate the performance of supervised learning using node embeddings as features, as the use of node                
embeddings is burgeoning in network biology. 
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Our results demonstrate that SL outperforms LP for gene-function, gene-disease, and gene-trait prediction. We              
also observe that SL captures local network properties as efficiently as LP, where both methods achieve more                 
accurate predictions for genesets that are more tightly clustered in the network. Lastly, we show that SL using                  
the full network connectivity is superior to using low-dimensional node embeddings as the features, which, in                
turn, is competitive to LP. 
 

 
Fig. 1. Workflow for gene classification pipeline. Four methods are compared: supervised learning on the adjacency                
matrix (SL-A), supervised learning on the influence matrix (SL-I), label propagation on the adjacency matrix (LP-A), and                 
label propagation on the influence matrix (LP-I). Model performance on a variety of gene classification tasks is evaluated                  
over a number of different molecular networks, validation schemes, and evaluation metrics. Additionally, the performance               
of supervised learning using node embeddings as features (SL-E) is evaluated (not shown in this figure). 

Methods and Data 

Networks 
We chose a diverse set of undirected, human gene/protein networks based on criteria laid out in [30] (Fig. 1):                  
1) networks constructed using high- or low-throughput data, 2) the type of interactions the network was                
constructed from, and 3) if annotations were directly incorporated in constructing the network. We used               
versions of the networks that were released prior to 2017 so as not to bias the temporal holdout evaluations.                   
We used all edge scores (weights) unless otherwise noted, and the nodes in all networks were mapped into                  
Entrez genes using the MyGene.info database [16,17]. If the original node ID mapped to multiple Entrez IDs,                 
we added edges between all possible mappings. The networks used in this study are BioGRID [28], the full                  
STRING network [26] as well as the subset with just experimental support (referred to as STRING-EXP in this                  
study), InBioMap [27], and the tissue-naïve network from GIANT [29], referred to as GIANT-TN in this study.                 
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These networks cover a wide size range, with the number of nodes ranging from 14,089 to 25,689 and the                   
number of edges ranging from 141,629 to 38,904,929. More information on the networks can be found in the                  
Supplemental Material (Section 1.1).  

Network Representations 
We considered three distinct representations of molecular networks: the adjacency matrix, an influence matrix,              
and low-dimensional node embeddings. Let denote an undirected molecular network, where     V , E, W )G = (          V  
is the set of vertices (genes), is the set of edges (associations between genes), and is the set of edge      E           W       
weights (the strengths of the associations). can be represented as a weighted adjacency matrix      G          ,Ai,j = W i,j

where . can also be represented as an influence matrix, , which can capture both A∈ R|V |×|V |  G          F ∈ R|V |×|V |      
local and global structure of the network. was obtained using a random walk with restart transformation       F          
kernel [41], 
                                                                                                                      (eqn. 1) [ I  1  )W  ]F = α − ( − α D

−1  
where, is the restart parameter, is the identity matrix, and is the degree weighted adjacency matrix α      I       WD        
given by , where is a diagonal matrix of node degrees. A restart parameter of 0.85 was  DWD = A −1   D ∈ R|V |x|V |               
used for every network in this study. 
 

can also be transformed into a low-dimensional representation through the process of node embedding. InG                 
this study we used the node2vec algorithm [60], which borrows ideas from the word2vec algorithm [61,62] from                 
natural language processing. The objective of node2vec is to find a low-dimensional representation of the               
adjacency matrix, where . This is done by optimizing the following log-probability objective  ,E ∈ R|V |×d   < V |d < |           
function: 

                                                              )                                                       (eqn. 2)r emax
f

∑
 

u∈V
logP (N (u)S | (u)  

where is the network neighborhood of node generated through a sampling strategy and (u)N S       u       ,S   (u)e ∈ Rd  
is the feature vector of node In node2vec, the sampling strategy is based on random walks that are      .u              
controlled using two parameters and in which a high value of keeps the walk local (a breadth-first    p   ,q        q        
search), and a high value of encourages outward exploration (a depth-first search). The values of p and q      p              
were both set to 0.1 for every network in this study. 

Prediction methods 
We compared the prediction performance across four specific methods across two classes, label-propagation             
(LP) and supervised-learning (SL). 
 
Label Propagation 
LP methods are the most widely used methods in network-based gene classification and achieve              
state-of-the-art results [39,48]. In this study, we considered two LP methods, label propagation on the               
adjacency matrix (LP-A) and label propagation on the influence matrix (LP-I). First, we constructed a binary                
vector of ground-truth labels, , where = 1 if gene is a positively labeled gene in the training set,    x∈ R|V |×1   xi     i           
and 0 otherwise. In LP-A, we constructed a score vector,  denoting the predictions,,S ∈ R|V |×1  
                                                                                                                                                  (eqn. 3) A xS =   
where is the adjacency matrix. Thus, the predicted score for a gene using LP-A is equal to the sum of the A                      
weights of the edges between the gene and its direct, positively labeled network neighbors. In LP-I, the score                  
vector, is generated using eqn. 3, except is by replaced by , the influence matrix (eqn. 1). In both LP-A ,S        A      F          
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and LP-I, only positive examples in the training set are used to calculate the score vector , but both positive                S     
and negative examples in the test set are later used for evaluation. 
 
Supervised Learning 
Supervised-learning (SL) can be used for network-based gene classification by using each gene’s network              
neighborhoods as feature vectors, along with gene labels, in a classification algorithm. Here, we used logistic                
regression with L2 regularization as the SL classification algorithm, which is a linear model that aims to                 
minimize the following cost function [63]: 

                                                                                        (eqn. 4)w w  min
w,c 2

1 T + C ∑
n

i=1
log exp( −( yi X w( i

T + c)) + 1)   

where is the vector of weights for a model with features, determines the regularization strength, w ∈ Rm          m   C     
the number of samples, is the ground-truth label, is the data matrix, and is the intercept. Aftern      y     X ∈ Rn×m      c      

training a model using the labeled genes in the training set, the learned model weights are used to classify the                    
genes in the testing set, returning a prediction probability for these genes that is bounded between 0 and 1.                   
The regularization parameter, C, was set to 1.0 for all models in this study. 
 
In this study, three different network-based gene-level feature vectors were used to train three different SL                
classifiers: the rows of the adjacency matrix (SL-A), the rows of the influence matrix (SL-I), and the rows of the                    
node embedding matrix (SL-E). Model selection and hyperparameter tuning are described in detail in the               
Supplemental Material (Section 1.2). 

Geneset-collections 
We curated a number of geneset-collections to test predictions on a diverse set of tasks: function, disease, and                  
trait (Fig. 1). Function prediction was defined as predicting genes associated with biological processes that are                
part of the Gene Ontology (referred to here as “GOBP”) [19,20] obtained from MyGene.info [16,17] and                
pathways from the Kyoto Encyclopedia of Genes and Genomes [10–12], referred to ”KEGGBP” since              
disease-related pathways were removed from the original KEGG annotations in the Molecular Signatures             
Database [8,9]. Disease prediction was defined based on predicting genes associated with diseases in the               
DisGeNET database [13,14]. Annotations from this database were divided into two separate            
geneset-collections: those that were manually-curated (referred to as “DisGeNet” in this study) and those              
derived using the BeFree text-mining tool (referred to as “BeFree” in this study). Trait prediction was defined as                  
predicting genes linked to human traits from Genome-wide Association Studies (GWAS), curated from a              
community challenge [64], and mammalian phenotypes (annotated to human genes) from the Mouse Gene              
Informatics (MGI) database [15].  
 
Each of these six geneset-collections contained anywhere from about a hundred to tens of thousands of                
genesets that varied widely in specificity and redundancy. Therefore, each collection was preprocessed to              
ensure that the final set of prediction tasks from each source are specific, largely non-overlapping, and not                 
driven by multi-attribute genes. First, if genesets in a collection corresponded to terms in an ontology (e.g.                 
biological processes in the GOBP collection), annotations were propagated along the ontology structure to              
obtain a complete set of annotations for all genesets. Second, we removed genesets if the number of genes                  
annotated to the geneset was above a certain threshold and then compared these genesets to each other in                  
order to remove genesets that were highly-overlapping with other genesets in the collection, resulting in a set                 
of specific, non-redundant genesets. Finally, individual genes that appeared in more than 10 of the remaining                
genesets in a collection were removed from all the genesets in that collection to remove multi-attribute (e.g.                 
multi-functional) genes that are potentially easy to predict [65]. Detailed information on geneset pre-processing              
and geneset attributes can be found in the Supplemental Material (Section 1.3, Table S2, and Fig. S3). 
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Selecting positive and negative examples: In each geneset collection, for a given geneset, genes annotated to                
that set were designated as the set of positive examples. The SL methods additionally required a set of                  
negative genes for each given geneset for training; both SL and LP methods require a set of negative genes                   
for each geneset for testing. A set of negative genes was generated by: a) finding the union of all genes                    
annotated to all genesets in the collection, b) removing genes annotated to the given geneset, and c) removing                  
genes annotated to any geneset in the collection which significantly overlapped with the given geneset (p-value                
< 0.05 based on the one-sided Fisher’s exact test). 

Validation schemes 
We performed extensive and rigorous evaluations based on three validation schemes: temporal holdout,             
study-bias holdout, and 5-fold cross validation (5FCV). In temporal holdout, within a geneset-collection, genes              
that only had an annotation to any geneset in the collection after Jan 1st, 2017 were considered test genes,                   
and all other genes were considered training genes. Temporal holdout is the most stringent evaluation scheme                
for gene classification since it mimics the practical scenario of using current knowledge to predict the future                 
and is the preferred evaluation method used in the CAFA challenges [3,7]. Since Gene Ontology was the only                  
source with clear date-stamps for all its annotations, temporal holdout was applied only to the GOBP                
geneset-collection. For study-bias holdout, genes were ranked by the number of PubMed articles they were               
mentioned in, obtained from [66]. The top two-thirds of the most-mentioned genes were considered training               
genes, and the rest of the least-mentioned genes were used for testing. Study-bias holdout mimics the                
real-world situation of learning from well-characterized genes to predict novel un(der)-characterized genes.            
The last validation scheme is the traditional 5-fold cross validation, where the genes are split into 5 equal folds                   
in a stratified manner (i.e. in each split, the proportion of genes in the positive and negative classes is                   
preserved). In all these schemes, only genesets with at least 10 positive genes in both the training and test                   
sets were considered. More information on the validation schemes is available in the Supplemental Material               
(Section 1.4). 

Evaluation Metrics 
In this study, we considered three evaluation metrics: the area under the precision-recall curve (auPRC), the                
precision of the top K ranked predictions (P@TopK), and, for completeness, the area under the               
receiver-operator curve (auROC). For P@TopK, we set K equal to the number of ground truth positives in the                  
testing set. Since the standard auPRC and P@TopK scores are influenced by the prior probability of finding a                  
positive example (equal to the proportion of positives to the total of positives and negatives), we expressed                 
both metrics as the logarithm (base 2) of the ratio of the original metric to the prior. More details on the                     
evaluation metrics can be found in the Supplemental Material (Section 1.5). 

Results 
We systematically compare the performance of four gene classification methods (Fig. 1): supervised learning              
on the adjacency matrix (SL-A), supervised learning on the influence matrix (SL-I), label propagation on the                
adjacency matrix (LP-A), and label propagation on the influence matrix (LP-I). We choose six              
geneset-collections that represent three prominent gene-classification tasks: gene-function (GOBP, KEGGBP),          
gene-disease (DisGeNet, BeFree), and gene-trait (GWAS, MGI) prediction. We use three different validation             
schemes: temporal holdout (train on genes annotated before 2017 and test on genes annotated in 2017 or                 
later; only done for GOBP as it has clear timestamps), holdout based on study-bias (train on well-studied                 
genes and predict on less-studied genes), and the traditional 5-fold cross validation (5FCV). Temporal holdout               
and study-bias holdout validation schemes are presented in the main text as they are more stringent and                 
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reflective of real-world tasks as compared to 5FCV [67]. To ascertain the robustness of the relative                
performance of the methods to the underlying network, we choose five different genome-scale molecular              
networks that differ in their content and construction. To be in concert with temporal holdout evaluation and                 
curtail data leakage, all the networks used throughout this study are the latest versions released before 2017.                 
We present evaluation results based on the area under the precision-recall curve (auPRC) in the main text and                  
results based on the precision at top-k (P@topK) and the area under the ROC curve (auROC) in the                  
Supplemental Material (Figs. S4-S8). We note that the 5FCV, P@topK, and auROC results in the               
Supplemental Material are, for the most part, consistent with the results presented in the main text of this                  
study. 
 

 
Fig. 2. Average rank across the four methods. Each point in each boxplot represents the average rank for a                   
geneset-collection–network combination, obtained based on ranking the four methods in terms of performance for each               
geneset in a geneset-collection using the standard competition ranking. (A) Functional prediction tasks using GOBP               
temporal holdout, (B) Functional prediction tasks using study-bias holdout for GOBP and KEGGBP, and (C) Disease and                 
trait prediction tasks using study-bias holdout for DisGeNet, BeFree, GWAS, and MGI. The results are shown for auPRC                  
where different colors represent different networks and different marker styles represent the different geneset-collections.              
SL methods outperform LP methods for all prediction tasks. 
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Our first analysis was to directly compare all four prediction methods against each other for each geneset in a                   
given collection. For each geneset-collection–network combination, we rank the four methods per geneset             
(based on auPRC) using the standard competition ranking and calculate each method’s average rank across               
all the genesets in the collection (Fig. 2). For function prediction, SL-A is the top-performing method by a wide                   
margin (particularly clear based on GOBP temporal holdout), with SL-I being the second best method. For                
disease and trait prediction, SL-A and SL-I still outperform LP-I, but to a lesser extent. In all cases, LP-A is the                     
worst performing method. The large performance difference between the SL and LP methods in the GOBP                
temporal holdout validation is noteworthy since temporal holdout is the most stringent validation scheme and               
the one employed in community challenges such as CAFA [3,7]. 

 

 
Fig. 3. Testing for a statistically significant difference between SL and LP methods. A) A key on interpreting the                   
analysis. For each network-geneset combination, each method is compared to the two methods from the other class (i.e.                  
SL-A vs LP-I, SL-A vs LP-A, SL-I vs LP-I, SL-I vs LP-A). If a method was found to be significantly better than both                       
methods from the other class (Wilcoxon ranked-sum test with an FDR threshold of 0.05), the cell is annotated with that                    
method. If both models in that class were found to be significantly better than the two methods in the other class, the cell                       
is annotated in bold with just the class. The color scale represents the fraction of genesets that were higher for the SL                      
methods across all four comparisons. The first column uses GOBP temporal holdout, whereas the remaining 6 columns                 
use study-bias holdout. B) SL methods show a statistically significant improvement over LP methods, especially for                
function prediction.  
 
Following the observation that SL methods outperform LP methods based on relative ranking, we use a                
non-parametric paired test (Wicoxon signed-rank test) to statistically assess the difference between specific             
pairs of methods (Fig. 3A). For each geneset-collection–network combination, we compare the two methods in               
one class to the two methods in the other class (i.e. we compare SL-A to LP-A, SL-A to LP-I, SL-I to LP-A, and                       
SL-I to LP-I). Each comparison yields a p-value along with the number of genesets in the collection where one                   
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method outperforms the other. After correcting the four p-values for multiple hypothesis testing [68], if a                
method from one class outperforms both methods from the other class independently (in terms of the number                 
winning genesets), and if both (corrected) p-values are <0.05, we consider a method to have significantly                
better performance compared to the entire other class. Additionally, we track the percentage of times the SL                 
methods outperform the LP methods across all four comparisons within a geneset-collection–network            
combination. 
 
The results show that, for function prediction, SL is almost always significantly better than LP when considering                 
auPRC (Fig. 3B). Based on temporal holdout on GOBP, both SL-A and SL-I are always significantly better than                  
both LP methods. Based on study-bias holdout, in the 10 function prediction geneset-collections–network             
combinations using GOBP and KEGGBP, SL-A is a significantly better method 8 times (80%) and SL-I is a                  
significantly better method 6 times (60%). Neither LP-I nor LP-A ever significantly outperform the SL models.                
The performance of SL and LP are more comparable for disease and trait prediction, but SL methods still                  
perform better in a larger fraction of genesets. For the 20 disease and trait geneset-collection–network               
combinations, SL-I is a significantly better method 8 times (40%), and SL-A is a significantly better method 6                  
times (30%), LP-I is a significantly better method once (5%), and LP-A is never a significantly better method. 
 
To visually inspect not only the relative performance of all four methods, but to also see how well the models                    
are performing in an absolute sense, we examined the boxplots of the auPRC values for every                
geneset-collection–network combination (Fig. 4). The first notable observation is that, regardless of the            
method, function prediction tasks have much better performance results than disease/trait prediction tasks             
(Fig. 4B). Based on temporal holdout for function prediction (GOBPtmp), SL-A is the top-performing model              
based on the highest median performance for every network. Additionally, for all networks except              
STRING-EXP, SL-I is the second best performing model. For the 10 combinations of five networks with GOBP                 
and KEGGBP, the top method based on the highest median performance is an SL method all but once, with                   
SL-A being the top model 7 times (70%), SL-I being the top model 2 times (20%, GOBP and KEGGBP on                    
GIANT-TN), and LP-A being the top model once (10%, KEGGBP on STRING-EXP). As noted earlier, for                
disease and trait prediction, SL and LP methods have more comparable performance. Of the 20               
geneset-collection–network combinations, each of SL-A, SL-I, LP-I, and LP-A is the top method based on               
median performance 5 (25%), 10 (50%), 4 (20%), and 1 (5%) times, respectively. 
 
Among the two classes of network-based models – SL and LP – it is intuitively clear how LP directly uses                    
network connections to propagate information from the positively-labeled nodes to other nodes close in the               
network. On the other hand, while SL is an accurate method for gene classification, it has not been studied if                    
SL’s performance is tied to any traditional notion of network connectivity. To shed light on this problem, we                  
investigated the performance of SL-A and LP-I as a function of three different properties of individual genesets                 
in a collection: the number of annotated genes, edge density (a measure of how tightly connected the geneset                  
is within itself), and segregation (a measure of how isolated the geneset is from the rest of the network). While                    
the performance of neither SL-A nor LP-I has a strong association with the size of the geneset, the                  
performance of SL-A has a strong positive correlation with both edge density and segregation of the geneset,                 
similar to what is seen for LP-I (Fig. 5). For visual clarity, Fig. 5 presents results for just the STRING network,                     
but very similar results are seen in the other networks as well (Fig. S9). Detailed information on how the                   
geneset and network properties are calculated can be found in the Supplemental Material (Section 1.3). 
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Fig. 4. Boxplots for performance across all geneset-collection–network combinations. A)The performance for each             
individual geneset-collection–network combination is compared across the four methods; SL-A (red), SL-I (light red), LP-I               
(blue), and LP-A (light blue). The methods are ranked by median value with the highest scoring method on the left.                    
Results show SL methods outperform LP methods, especially for function prediction. B) Each point in the plot is the                   
median value from one of the boxplots in A. This shows that both SL and LP methods perform better for function                     
prediction compared to disease/trait prediction.  
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Fig 5. Performance vs Network/Geneset properties. SL-A (A-C) is able to capture network information as efficiently as                 
LP-I (D-F), for the STRING network. There is no correlation between the number of genes in the geneset versus                   
performance (A,D), but there is a strong correlation between the performance and the edge density (B,E) as well as                   
segregation (C,F). The different colored dots represent function genesets (red, GOBP and KEGGBP), disease genesets               
(blue, DIGenet and BeFree), and trait genesets (black, GWAS and MGI). The vertical line is the 95% confidence interval.                   
Similar trends can be seen for the other networks (Fig. S9). 
 
Finally, since machine learning on node embeddings is gaining popularity for network-based node             
classification, we compare the top SL and LP methods tested here to this approach. Specifically, we compare                 
LP-I and SL-A to an SL method using embeddings (SL-E) obtained from the node2vec algorithm [60] (Fig. 6).                  
For function prediction, we observe that SL-E substantially outperforms LP-I. For GOBP temporal holdout,              
SL-E is always significantly better than LP-I. For the GOBP and KEGGBP study-bias holdout, out of the 10                  
geneset-collection–network combinations, SL-E is significantly better than LP-I 5 times (50%), whereas the             
converse is true only once (10%). These patterns nearly reverse for the 20 disease/trait prediction tasks, with                 
LP-I performing significantly better than SL-E 6 times (30%), and SL-E significantly outperforming LP-I 3 times                
(15%). The comparison between SL-E and SL-A showed that SL-A demonstrably outperforms SL-E for both               
function and disease/trait prediction tasks. Among the 30 geneset-collection–network combinations, SL-A is a             
significantly better model 20 times (67%), whereas SL-E comes out on top just once (3%). This shows that                  
although methods that use node embeddings are a promising avenue of research, they should be compared to                 
the strong baseline of SL-A when possible. 
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Fig 6. Performance of SL-E vs LP-I and SL-A. We compare the performance of supervised learning on the embedding                   
matrix (SL-E) vs LP-I and SL-A using a Wilcoxon ranked-sum test. The performance metric is auPRC, the color scale                   
represents the fraction of terms that were higher for the SL-E model (with purple being SL-E had a higher fraction of better                      
performing genesets compared to either LP-I or SL-A) and an “x” signifies that the p-value from the Wilcoxon test was                    
below 0.05. A) Shows that SL-E is quite competitive with the current state-of-the-art method of LP-I and B) shows that                    
SL-A outperforms SL-E in a majority of cases.  

Discussion 
We have conducted the first comprehensive benchmarking of supervised-learning that establishes it as a              
leading approach for network-based gene classification. Further, to the best of our knowledge, neither the               
studies that propose new methods nor those that systematically compare existing approaches have directly              
compared the two classes of methods – supervised-learning and label-propagation – against each other. Our               
work, provides this systematic comparison and shows that supervised-learning (SL) methods demonstrably            
outperform label-propagation (LP) methods for network-based gene classification, particularly for function           
prediction. 
 
Both SL and LP methods are, in general, more accurate for function prediction than disease and trait                 
prediction. This trend is likely due to the fact that molecular interaction networks are primarily intended, either                 
through curation or reconstruction, to reflect biological relationships between genes/proteins as they pertain to              
‘normal’ cellular function. The utility of network connectivity to gene-disease or gene-trait prediction is              
incidental to the information the network holds about gene-function associations. This notion is supported by               
the observation that genesets related to function genesets are more tightly-clustered than disease and trait               
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genesets in the genome-wide molecular networks used in this study (Fig. S3). Further analysis of prediction               
accuracy of genesets as a function of their network connectivity lends credence to the use of network structure                  
by SL (Fig. 5 and Fig. S9). Part of LP’s appeal, widespread use, and development is this natural use of                    
network topology to predict gene properties by diffusing information from characterized genes to             
uncharacterized genes in their network vicinity. Therefore, we expect that genes associated with             
tightly-clustered pathways, traits, or diseases will be easier to predict using LP, which is observed in our                 
analysis (Fig. 5 and Fig. S9). On the other hand, since SL (based on the full network) is designed to use global                      
gene connectivity, it has been unclear if there is any association between the local clustering of genesets and                  
their prediction performance using SL. Here we show that the performance of SL, across networks and types                 
of prediction tasks, is highly correlated with local network clustering of the genes of interest (Fig. 5 and Fig.                   
S9). This result substantiates SL as an approach that can accurately predict gene attributes by taking                
advantage of local network connectivity. 
 
While being accurate, training a supervised-learning model on the adjacency matrix (SL-A) can take some               
computational time and resources as the size of the molecular network increases, thus considerably differing in                
speed for, say, STRING-EXP (14,089 nodes and 141,629 unweighted edges) and GIANT-TN (25,689 nodes              
and 38,904,929 weighted edges). Worthy of note in this context is the recent excitement in deriving node                 
embeddings for each node in a network, concisely encoding its connectivity to all other nodes, and using them                  
as features in SL algorithms for node classification [60,69–74]. Although we show that SL-A markedly               
outperforms supervised-learning on the embedding matrix (SL-E; Fig. 6), the unique characteristics of SL-E              
methods call for further exploration. For instance, the greatly reduced number of features allows SL-E methods                
to be more readily applicable to classifiers more complex than logistic regression, such as deep neural                
networks (DNNs), which are typically ill-suited for problems where the number of features is much greater than                 
the number of training examples. Further, since the reduced number of features allow SL-E methods to be                 
trained orders of magnitude faster than SL-A or supervised-learning on the influence matrix (SL-I), they can be                 
easily incorporated into ensemble learning models, which combine the results from many shallow learning              
algorithms. Akin to LP [38,75,76], node embeddings also offer a convenient route to incorporating multiple               
networks into SL approaches. While methods such as SL-I and SL-A may require concatenating the original                
networks or integrating them into a single network before learning, recent work has shown that SL-E-based                
methods can embed information from multiple molecular/heterogeneous networks and learn gene classifiers in             
tandem [77–85]. However, none of these studies have compared the variety of SL-E methods to learning                
directly on the adjacency matrix. Given our finding here that SL-A greatly outperforms SL-E for function,                
disease and trait prediction, we advice and urge that every new SL-E methods should be compared to SL-A for                   
network-based gene classification. 
 
In past work, SL methods for gene classification have mostly relied on hand-crafting features from               
graph-theory metrics, such as degree and centrality measures, or combining metrics to expand the feature set,                
resulting in a feature set size of ~30 or less [86,87]. We do not include a comparison to these types of methods                      
in this study because predicting genes to functions or diseases based on generic network metrics such as high                  
degree does not capture anything unique about specific functions or diseases. On the other hand, SL models                 
with individual genes as features contain information biologically relevant to the specific prediction task [88,89].  
 
Critical to all these conclusions is the rigorous preparation of diverse, specific prediction tasks and the choice                 
of meaningful validation schemes and evaluation metrics. Temporal holdout and study-bias holdout validations             
help faithfully capture the performance of the computational methods when a researcher uses them to prioritize                
novel uncharacterized genes in existing molecular networks for experimental validation based on a handful of               
currently known genes. Although we provide all the results for the auROC metric in Supplemental Materials for                 
completion (Figs. S4, S5, and S8), we base our conclusions on metrics driven by precision: auPRC and                 
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P@topK. While auROC is still commonly used in genomics, it is ill-suited to most biological prediction tasks                 
including gene classification since they are highly imbalanced problems, with negative examples far             
outnumbering positive examples [90]. Optimizing for precision-based metrics, on the other hand, helps control              
for false-positives among the top candidates [91], thus making them pertinent to computational gene              
classification as a viable way of providing a list of candidate genes for further study. Accompanying the results                  
in this manuscript, we are providing our comprehensive evaluation framework in the form of data – networks,                
prediction tasks, and evaluation splits – on Zenodo and the underlying code on Github to enable other                 
researchers to not only reproduce our results but also to add new network-based gene classification methods                
for comparison. Together, the data and the code provides the community a systematic framework to conduct                
gene classification benchmarking studies. See “Availability of data and materials” for more information. 
 
In conclusion, we have established that supervised-learning outperforms label-propagation for network-based           
gene classification across networks and prediction tasks (functions, diseases, and traits). We show that              
supervised-learning, in which every gene is its own feature, is able to capture network information just as well                  
as label-propagation. Finally, we show that supervised-learning on the adjacency matrix demonstrably            
outperforms supervised-learning using node embeddings, and thus we strongly recommend that future work on              
using node embeddings for gene classification draws a comparison to using supervised-learning on the              
adjacency matrix. 

Additional files 
Additional file 1: We provide supplemental material that contains detailed descriptions of the: molecular              
networks (Section 1.1), model selection and hyperparameter tuning (Section 1.2), processing steps and             
properties of the geneset-collections (Section 1.3), validation schemes (Section 1.4), evaluation metrics            
(Section 1.5), and results using P@topK, auROC, and 5FCV (Section 2). 
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