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Disease and predation are both highly important in ecology, yet their interplay has received little
attention from biophysicists. Here, we analyse a model of a predator-prey system with disease in
both prey and predator populations and determine reasonable parameter values using allometric
mass scaling relations. We find that if the predator is a specialist, epidemics frequently drive the
predator species to extinction. If the predator has an additional, immune prey species, predators
will usually survive. Coexistence of predator and disease is impossible in the single-prey model. We
conclude that for the prey species, carrying a pathogen can be an effective weapon against predators,
and that being a generalist is a major advantage for a predator.
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INTRODUCTION

Predation is one of the fundamental modes of inter-
action among living organisms. Mechanisms similar to
predation are found in anything from mammals to bac-
teria. Another equally important factor is epidemic dis-
ease, which is also found on all scales in the ecosphere.
In recent years it has become clear that many epidemic
pathogens are shared between several species [1], of which
some presumably prey on each other. If the predator runs
a risk of becoming infected when eating infected prey, it
is possible that the prey species will be able to use the
pathogen as a weapon against the predator. This could
even be a very effective evolutionary strategy, given that
prey species are often much more numerous than their
predators, leading to a high infection pressure against
the predator species [2]. On this basis, we propose the
hypothesis that a disease shared between a prey species
and its predator will often turn out to be a major problem
for the predator, and thus perhaps a long term advantage
for the prey. However, if the predator has several prey
options, epidemics should pose much less of a threat to
it, as it can just feed on an immune prey species in the
event of an epidemic.

Despite the ubiquity of the two mechanisms, the in-
terplay between predation and disease has been studied
relatively little in quantitative biology. Only a few dy-
namical models exist, most of which primarily concern
themselves with single-host epidemics affecting either the
predator or the prey [3–5]. Others deal specifically with
parasitism rather than epidemic pathogens [6]. Hsieh
and Hsiao [7] have constructed a predator-prey-disease
model similar to the one we will put forward in this pa-
per. However, their parameterisation and mathematical
treatment is different from ours.

A further novelty of our study will be the parameteri-
sation of the model. Previous works on this subject have

made few attempts at estimating biologically reasonable
model parameters. We will use the well-known allometric
scaling of several biological quantities with animal mass
to make such estimates. It has been known for decades
that quantities such as reproduction rate and metabolic
effect scale with animal mass to some quarter power [8].
Attempts have been made in ecology to use this to predict
the behaviour of predator-prey systems [9–11]. More re-
cently, it has been shown that disease recovery and death
rates also scale with animal mass [12], which is useful
in epidemiological modelling [13]. The parameterisation
that we will use here will be based in part on our previous
work on parameterising the Lotka-Volterra predator-prey
equations [11].

In summary, the questions that we will try to answer
here will be whether prey species can use epidemic dis-
eases as a weapon against their predators, and if so, for
what parameter values this weapon will be most effec-
tive. We also want to examine the effect of a predator
being a generalist, i.e. having an alternative prey option
that is not affected by the epidemic.

MODELS

The first classic theory upon which we will base our
study is the Lotka-Volterra predator-prey model
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= αx(1 − x/K) − φx
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where x is prey, y is predator, α is the per capita prey
reproduction rate and δ is the predator starvation rate
in the absence of prey. K is the prey carrying capacity
and ε is the half-saturation constant for predators. φ y

x+ε
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gives the rate of prey being eaten (the so-called functional
response) and ν x

x+ε gives the predator reproduction rate
as a function of prey population (the numerical response)
[14]. We have here chosen to modify the original Lotka-
Volterra model to account for the natural limit on prey
growth and the fact that predators do not grow infinitely
fast when there is infinite available prey, nor do they
starve when there is enough prey.

We will combine these equations with the equally clas-
sic SIR model, which gives the following equations for
the changes in population during an epidemic:

dS

dt
= −βSI (3)

dI

dt
= βSI − γI (4)

dR

dt
= γI. (5)

Here, S denotes susceptible individuals, I infected, and R
recovered or dead individuals. β gives the rate at which
each infected individual infects susceptible individuals,
and γ gives the death or recovery rate of the infected
[15].

When constructing our model, we shall make the as-
sumption that the disease is always deadly, as the pos-
sibility of recovery with immunity will vastly complicate
the analysis in a predator-prey system. Furthermore, we
assume that infection from predator to prey is impossible,
as any close encounters between the two species are likely
to cause the immediate death of the prey. For the sake of
simplicity we assume that the majority of predator infec-
tions stem from prey, and thus neglect predator-predator
infections. This is reasonable, as the density of prey will
usually be a lot higher than that of predators, leading
to a high prey-predator infection pressure [2, 11]. We
also let only healthy animals reproduce, although both
healthy and infected predators eat prey. Combining the
SIR and Lotka-Volterra models, we end up with the fol-
lowing equations for the single-prey system:

dSx
dt

= αSx(1 − (Sx + Ix)/K)

− βxxSxIx − φ
Sy + Iy

Sx + Ix + ε
Sx (6)

dIx
dt

= βxxSxIx − φ
Sy + Iy

Sx + Ix + ε
Ix − γxIx (7)

dSy
dt

= ν
Sx + Ix

Sx + Ix + ε
Sy − βyxSyIx

− δ
ε

Sx + Ix + ε
Sy (8)

dIy
dt

= βyxSyIx − γyIy − δ
ε

Sx + Ix + ε
Iy. (9)

The equations for the number of dead individuals have
been dropped, as they add no information when the
disease is universally fatal. Subscripts here denote the
species, with βij being the coefficient for infection from
species j to species i. If we set the probability of infection
when eating an infected prey equal to 1, the infection co-
efficient βyx becomes equal to φ

Sx+Ix+ε
, as the number

of infected prey eaten equals the number of predators
infected.

If we are to derive any information from these equa-
tions, it will be necessary to estimate realistic parameter
values, and this is what we will do in the following.

From [8, 11] we can find relations between predator and
prey mass (mx andmy), and the parameters α, δ, φ and ν.
We want α and ν to represent theoretical maximal repro-
duction rates for prey and predators respectively. Instead
of using the data from growing populations in the wild,
where starvation, disease and other complications prac-
tically always play a role, we believe that the theoretical
cap on reproduction should be set by the gestation pe-
riod. α and ν should thus be the inverse gestation period
[8]:

α ≈ 1/tg ≈
1

50
m−1/4x , ν ≈ 1

50
m−1/4y [1/days].

(10)

Our intuition tells us that when the predator is satis-
fied (Sy ≈ ε), predator reproduction should be equal

to predator death, giving us ν ≈ 1
50m

−1/4
y as well. In

order to calculate how many prey the predators need
to eat to reproduce this much, we must know the eco-
logical efficiency η. The ecological efficiency, defined as
the fraction of consumed prey biomass converted into
predator biomass, we estimate to be 10 % although the
quantity varies significantly with trophic level and the
specifics of the species [16, 17]. Knowing the efficiency,
we can calculate the number of prey eaten as φ Sx

Sx+ε
Sy =

my

ηmx
ν

Sy

Sx+ε
Sx, which implies φ =

10my

mx
ν =

m3/4
y

5mx
Finally,

also from Peters [8], we have the following approximate
relation for prey carrying capacity:

K ≈ 200m−3/4x [prey/km2]. (11)

Thus, we have finally decided that the units of the pop-
ulation densities are [km−2]. ε is difficult to determine,
and we therefore choose to set ε = K/2. We believe this
to be reasonable, as it allows the predator population
growth to saturate before the prey population reaches its
carrying capacity. However, as can be seen in the sup-
plement, we can set ε to practically any value between
0.3K and K and still get similar results.

To extend the predator-prey model to the predator-
prey-disease case, we also need to know the scaling re-
lations for disease duration. According to Cable et al.
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[12], both the time until first symptoms and the time
until recovery or death scale as t = cm1/4, where c is
an experimental constant. Here, we shall use the con-
stants appropriate for rabies. Rabies is able to infect
predators orally when they eat prey [18] and fulfills our
assumption of nearly 100 % mortality [19]. At the same
time, rabies infects most mammal species and extensive
data for mass scaling relations therefore exist [12]. Ra-
bies can only be passed on when the virus has reached
the brain and salivary glands and thus causes symptoms
[20]. Therefore, we will assume that the duration of the
period during which the infected individual can pass on
the disease can be written as tI ≈ tD−tS = (c2−c1)m1/4,
where c1 and c2 are the scaling coefficients appropriate for
time until first symptoms and death, respectively. These
constants have been determined using statistical analysis
by Cable et al., and their values are c1 = 9 (4, 19) and
c2 = 16 (7, 32), where the numbers in parentheses are
the boundaries of the confidence interval from p = 2.5 %
to p = 97.5 % [12]. γi can now be found as 1/tI,i.

Finally, to make the parameterisation more intuitive,
we choose to express infectivity in terms of the basic re-
production number (R) of the disease instead of the coef-
ficient β. The basic reproduction number represents the
number of animals infected when exposing an infected
individual to a completely susceptible population. The
reproduction number is related to the infection coeffi-
cient as Rij =

βijSi,0

γj
[2], where Si,0 is the initial density

of susceptible individuals of species i. R ranges from 1,
where an epidemic is barely able to sustain itself, up to
18 in measles [21]. We therefore intend to vary Rxx from
1 to 10, as we believe this covers a wide range of all epi-
demics. The cross-species reproduction number Ryx will
be determined by the number of prey eaten by predators
which in turn depends on their mass ratio.

By using this parameterisation, we are now left with
only five parameters: Prey mass, predator mass, ε, prey-
prey disease reproduction number, and the infection
probability when predators eat infected prey. If we set
this probability to 1, we save another parameter. We
believe that this is a reasonable thing to do, since the
pathogen load transferred from prey to predator upon
consumption must be very large. At the same time, we
have ensured that the values of the parameters used are
at least biologically plausible. All this will be highly ad-
vantageous when we examine parameter space.

EXAMINING PARAMETER SPACE

To derive information about parameter space most ef-
fectively, we perform a parameter sweep where we let
the different quantities vary logarithmically. This en-
sures that we probe each order of magnitude equally,
rather than each absolute interval. We believe that in bi-
ological systems, relative size differences are more mean-
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FIG. 1. The distribution of scenarios with predator survival
(red circles) and disease persistence (black crosses) in (preda-
tor mass) - (prey mass) - (disease reproduction number) space.
If (a) the predators are immune, large predators survive at
high Rxx. On the other hand, if (b) the predators are suscep-
tible, they survive if they are large and about the same size
as the prey. In (c), an immune prey is included alongside the
susceptible one. The susceptible predators survive regardless
of disease infectivity, so long as the predator is not too large
compared to the prey. If the predator is not susceptible, it
always survives.

ingful than absolute differences. For example, it proba-
bly makes a bigger difference whether a predator eats a
mouse or a rabbit than whether it eats a rabbit or a hare,
even though the absolute size difference between the lat-
ter two might be larger. We scan a region of parameter
space that we believe to be relevant for the largest pos-
sible number of diseases and predator-prey ecosystems.
An overview of the parameter ranges and increments can
be seen in table I. As initial condition, we choose the
classical Lotka-Volterra equilibrium to avoid introducing
large artificial oscillations into the system.

In the analysis of our model, we have found that when
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Min. value Increment Max. value
log(mx) -2 0.4 2
log(my) -1.2 0.4 2
log(Rxx) 0 0.1 1

TABLE I. (a) The ranges of parameters examined in our log-
arithmic parameter sweep. mi is the mass of species i, and
Rxx is the disease reproduction number characterising infec-
tion from prey to prey. 1089 parameter sets were tested.

using reasonable parameter values, the populations will
usually perform damped oscillations of initially large am-
plitude around some equilibrium, or approach a limit cy-
cle with some possibly large amplitude. Although the
equilibria might be stable, after a disease outbreak the
populations often temporarily reach such low values that
it would lead to extinction in any system with a discrete
number of individuals. Also, an equilibrium with a very
low population density would lead to extinction in the
real world. If we introduce an extinction threshhold to
our model to account for the finite and discrete number
of individuals found in real populations, this changes the
dynamics significantly. Instead of carrying out a linear
stability analysis of the fixed points, we will therefore
focus on the existence of the various populations.

We introduce an extinction threshhold of 10−5. If a
population dips below this value, we consider it extinct.
It should be noted that the precise value of the thresh-
hold makes a relatively small difference in the end result.
After solving the equations numerically over T = 20000
days, we classify the end state of the system into one of
four categories: Scenarios with predator survival, disease
persistence, disease-predator coexistence, and scenarios
where only the healthy prey population survives. Since
coexistence of disease and predator appears to be tran-
sient, we let the simulation run up to 105 days if there is
still coexistence initially. Plots of the regions of parame-
ter space with predator survival and disease persistence
can be seen in fig. 1.

First and foremost, we observe that the prey species
practically always survives the epidemic. Therefore,
there are a few scenarios where the prey ends up with
no natural enemies and thus will grow to the carrying
capacity and dominate the ecosystem. As another point,
it should be noted that the pathogen never coexists with
the specialist predator.

From the plots, we see that the survival of predators
is strongly dependent on the reproduction number of the
disease among prey and the mass of the predator species.
When the epidemic does not directly affect the predators
(fig. 1 (a)), the predators can survive at high Rxx. A
high mass is advantageous to the predator, as this en-
sures that it is not affected as much by starvation when
the epidemic lowers the prey population. We see a ”zone
of exclusion” at intermediate Rxx where the disease keeps

the predator away. This gap is evidence of competitive
exclusion between predator and disease, which both sub-
sist on the same resource, the susceptible prey.

In the case where predators are susceptible to the dis-
ease (fig. 1 (b)), on the other hand, the predator species
can sometimes survive at high Rxx, but only if its mass
is in the same range as or smaller than the prey. Be-
ing large is otherwise an advantage for the predator, but
only up until about 10 times the prey mass. Above this
threshhold, the predator needs to eat so many prey to
survive that it is almost guaranteed to be infected. These
diagrams show us that sharing a pathogen with a prey
species will most often cause the predator to go extinct.
In fact, even an outbreak of a prey-specific epidemic can
cause predator extinction, at least if the predator is a
specialist.

The effect of additional prey species could be interest-
ing to study, since a large part of the reason why epi-
demics are so deadly to predators appears to be that
specialist predators starve if prey population drops. We
do not expect this effect to be present, or at least not
nearly as powerful in the presence of two prey species, of
which one is immune. To test this hypothesis, we mod-
ify the equations (6)-(9) to include another prey that is
unaffected by the disease. We assume that the immune
prey is identical to the susceptible prey, as predators will
probably hunt similar sized prey species most of the time.
The route of infection from prey to predator is the same
as before, and the initial combined prey population is
also the same. Scanning the parameter space as before,
we get the results seen in fig. 1 (c)

There is a striking difference compared to the case with
only susceptible prey. In the two-prey model, predators
will always survive, so long as they are small enough (less
than 50-100 times the prey size at high Rxx and less than
the prey size at low Rxx). We here see the same effect as
in fig. 1 (b), that predators bigger than this need to eat a
lot of prey and will therefore almost always end up eating
an infected individual. We can confirm that this is the
mechanism by making predators immune to the disease.
In such a case, we always see predator survival. Fur-
thermore, coexistence of predator and pathogen is now
possible, as they no longer compete for a single resource.
The conclusion that disease is usually an effective weapon
against predators thus has to be modified. It holds for
the specific case of specialist predation. If we add an
additional prey species, carrying a disease can still be
effective against predators, but only if they are large.

DISCUSSION

The most striking conclusion to be drawn from this
study is that an emerging epidemic in a specialist
predator-prey system will tend to drive the predator, but
not the prey, to extinction. Furthermore, the parame-
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ter sweeps show that disease and predators cannot co-
exist. We believe this to be an example of competitive
exclusion. Both the pathogen and the predator share
a resource - the susceptible prey - and in such cases,
long-term coexistence is impossible [22]. The obvious
implication of these two conclusions is that we should
see very few ecosystems with specialist predators, prey,
and a shared pathogen in the real world, as they are in-
herently unstable. Indeed, when examining existing lit-
erature, we have found quite few examples of predators
and prey sharing a deadly pathogen. Our model pro-
vides a reasonable explanation for the absence of such
ecosystems.

Quite often when the predator goes extinct but the epi-
demic persists, the resulting prey-pathogen equilibrium
will have a lower prey population than the prey-predator
equilibrium. Nonetheless, carrying the pathogen may
still turn into an advantage for the prey species. From
evolutionary biology, we know that when a pathogen be-
comes endemic in a given species, there will be a pres-
sure for it to evolve to become less lethal over time [23].
This allows the pathogen to live longer in each host, and
possibly to spread more effectively. An initially fatal epi-
demic can thus end up becoming harmless to its primary
host species. If it has wiped out the predator in the pro-
cess, this will represent a win-win situation for the prey
species.

Possibly, we could expand our conclusion and simply
state that specialist predators generally are extremely
vulnerable to any changes in prey population. It is a
well-known fact of ecology that specialists are the most
vulnerable to extinction in the event of changes such as
disease outbreaks [24]. Predator species that subsist en-
tirely on one prey species should therefore also be rare in
nature. This is supported by the fact that even preda-
tors which are usually noted as specialists, such as the
weasels (Mustela nivalis) of northern Scandinavia that
often form the basis of predator-prey models [25], tend
to switch prey in times when their preferred prey is scarce
[26].

Finally, as an additional and somewhat curious result,
predators that are much bigger than the size of their
prey are a lot more vulnerable to infection with a shared
pathogen from their prey, since they need to eat more po-
tentially infected individuals to survive. This, in addition
to energetic concerns about hunting very small animals,
could lead to an evolutionary pressure for predators to
not grow too large compared to their prey.

Given all of the above, we conclude that epidemic dis-
eases can serve as a powerful evolutionary weapon against
specialist predators. A pathogen infecting a prey species
will often competitively exclude the predator species,
even when the predator is not itself susceptible to the
pathogen. This is coupled with the direct impact that
the epidemic may have on the predator if it is susceptible.
Although the prey will often end up afflicted by the en-

demic pathogen instead of the predator, this may through
coevolution end up being a net advantage for the prey
species. Shared epidemics between predator and prey
may help impose an upper limit on the predator-prey
size ratio, since eating a lot of small prey is dangerous if
the prey is infectious. The uneasy coexistence of preda-
tors and pathogens should make predator-prey-disease
systems rare in the real world, and this is indeed what we
see. Our study supports the conclusion that being a spe-
cialist predator is a highly vulnerable position, and that
being a generalist should be evolutionarily favourable for
predator species. The effectiveness of disease as a weapon
is significantly diminished when letting the predator have
an alternative, immune prey. Normally, one would expect
that competitive exclusion presents a drive towards speci-
ation and specialisation [27]. Our model, on the contrary,
provides an example of how the inherent vulnerability of
specialists will drive species towards generalisation.

In conclusion, our study supports the idea that shared
epidemic diseases could be a much more important factor
in the coevolution of predator and prey species than they
are usually given credit for.
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