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Disease and predation are both highly important in ecology, and pathogens with multiple host
species have turned out to be common. Nonetheless, the interplay between multi-host epidemics
and predation has received relatively little attention. Here, we analyse a model of a predator-prey
system with disease in both prey and predator populations and determine reasonable parameter
values using allometric mass scaling relations. Our analysis focuses on the possibility of extinction
events rather than the linear stability of the model equations. We find that if the predator is
a specialist, epidemics frequently drive the predator species to extinction. If the predator has an
additional, immune prey species, predators will usually survive. Coexistence of predator and disease
is impossible in the single-prey model. We conclude that for the prey species, carrying a pathogen
can be an effective weapon against predators, and that being a generalist is a major advantage for
a predator.
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INTRODUCTION

Predation is one of the fundamental modes of inter-
action among living organisms. Mechanisms similar to
predation are found in anything from mammals to bac-
teria. Another equally important factor is epidemic dis-
ease, which is also found on all scales in the ecosphere.
In recent years it has become clear that many epidemic
pathogens are shared between several species [1], of which
some presumably prey on each other. If the predator runs
a risk of becoming infected when eating infected prey, it
is possible that the prey species will be able to use the
pathogen as a weapon against the predator. This could
even be a very effective evolutionary strategy, given that
prey species are often much more numerous than their
predators, leading to a high infection pressure against
the predator species [2]. On this basis, we propose the
hypothesis that a disease shared between a prey species
and its predator will often turn out to be a major problem
for the predator, and thus perhaps a long term advantage
for the prey. However, if the predator has several prey
options, epidemics should pose much less of a threat to
it, as it can just feed on an immune prey species in the
event of an epidemic.

The dynamics of predator-prey-pathogen interactions
in general have received some attention in recent decades.
Most attention has been given to the interaction be-
tween predators and single-host epidemics or parasitism
[3–7]. On the other hand, despite the ubiquity of
shared pathogens, the interplay between predation and
multi-host disease has not been as thoroughly studied.
Nonetheless, a few models similar to the one we will put
forward in this paper do exist. Hsieh and Hsiao [8] have
constructed one such model, and Han et al. [9] briefly

cover another. These examples focus their analyses on
the linear stability of the fixed points of their system,
whereas we will focus on extinction events. We choose
this focus, since a linear stability analysis will not reveal
if a population is temporarily driven to such low densities
that it would lead to extinction in the real world despite
the stability of a fixed point.

Furthermore, when analysing epidemiological models,
it is difficult but crucial to determine what parameter
ranges are realistic. A discussion of this problem is often
missing from more theoretical treatments [8, 9]. There-
fore, we will here attempt to use the allometric mass
scaling laws for many demographic and epidemiological
quantities to estimate the range of parameters.

It has long been known that quantities such as re-
production rate and metabolic effect scale with animal
mass to some quarter power [10]. Attempts have been
made in ecology to use this to predict the behaviour of
predator-prey systems [11–13]. More recently, it has been
shown that disease recovery and death rates also scale
with animal mass [14], which is useful in epidemiological
modelling [15]. The parameterisation that we will use
here will be based in part on our previous work on pa-
rameterising the Lotka-Volterra predator-prey equations
[13]. The mass scaling relations are for the most part
fairly general across different classes of animals. We will
here be using the mass scaling relations valid for mam-
mals. One could construct similar models for predation
among other animals by mainly changing the constants of
proportionality [10], and we would therefore expect our
model to be relevant even for non-mammals. Only when
looking at entirely different organisms such as bacteria do
we need to be more careful, as the mechanisms that might
be responsible for the scaling are different [16]. Nonethe-
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less, a similar scaling law for metabolic effect exists even
for bacteria [17]

In summary, the questions that we will try to answer
here will be whether an epidemic affecting a prey species
can drive a predator species to extinction, and if so, for
what parameter values this will be most likely. We also
want to examine the effect of a predator being a gener-
alist, i.e. having an alternative prey option that is not
affected by the epidemic.

THE MODEL

The first classic theory upon which we will base our
study is the Lotka-Volterra predator-prey model

dx

dt
= αx(1 − x/K) − φx

y

x+ ε
(1)

dy

dt
= νy

x

x+ ε
− δy

ε

x+ ε
(2)

where x is prey, y is predator, α is the per capita prey
reproduction rate and δ is the predator starvation rate in
the absence of prey [18]. K is the prey carrying capac-
ity and ε is the half-saturation constant for predators.
The second term in the first equation is the functional
response, which gives the rate of prey being eaten. We
have here chosen to use a Holling type II functional re-
sponse. Similarly, the first term of the second equation,
ν x
x+ε , gives the predator reproduction rate as a function

of prey population, the numerical response. We have
modified the original Lotka-Volterra model to account
for the natural limit on prey growth and the fact that
predators do not grow infinitely fast when there is in-
finite available prey, nor do they starve when there is
enough prey. We end up with a model very similar to
the Rosenzweig-MacArthur model for predator-prey in-
teractions [19].

We will combine these equations with the equally clas-
sic SIR model, which gives the following equations for
the changes in population during an epidemic:

dS

dt
= −βSI (3)

dI

dt
= βSI − γI (4)

dR

dt
= γI. (5)

Here, S denotes susceptible individuals, I infected, and R
recovered or dead individuals. β gives the rate at which
each infected individual infects susceptible individuals,
and γ gives the death or recovery rate of the infected
[20].

When constructing our model, we shall make the as-
sumption that the disease is always deadly, as the pos-
sibility of recovery with immunity will vastly complicate
the analysis in a predator-prey system. Furthermore, we
assume that infection from predator to prey is impossi-
ble, as any close encounters between the two species are
likely to cause the immediate death of the prey. When
modelling the system below, we find that varying the
predator-predator infection rate makes relatively little
difference. Figures illustrating this can be found in the
supplement. For the sake of simplicity, in the following
we will therefore only treat the case where the major-
ity of predator infections stem from prey, and predator-
predator infections can be neglected. We also let only
healthy animals reproduce, although both healthy and in-
fected predators eat prey. Combining the SIR and Lotka-
Volterra models, we end up with the following equations
for the single-prey system:

dSx
dt

= αSx(1 − (Sx + Ix)/K)

− βxxSxIx − φ
Sy + Iy

Sx + Ix + ε
Sx (6)

dIx
dt

= βxxSxIx − φ
Sy + Iy

Sx + Ix + ε
Ix − γxIx (7)

dSy
dt

= ν
Sx + Ix

Sx + Ix + ε
Sy − βyxSyIx

− δ
ε

Sx + Ix + ε
Sy (8)

dIy
dt

= βyxSyIx − γyIy − δ
ε

Sx + Ix + ε
Iy. (9)

The equations for the number of dead individuals have
been dropped, as they add no information when the
disease is universally fatal. Subscripts here denote the
species, with βij being the coefficient for infection from
species j to species i. If we set the probability of infection
when eating an infected prey equal to 1, the infection co-
efficient βyx becomes equal to φ

Sx+Ix+ε
, as the number

of infected prey eaten equals the number of predators
infected.

If we are to derive any information from these equa-
tions, it will be necessary to estimate realistic parameter
values, and this is what we will do in the following.

From [10, 13] we can find relations between predator
and prey mass (mx and my) and the parameters α, δ, φ,
and ν. We want α and ν to represent theoretical max-
imal reproduction rates for prey and predators respec-
tively. Instead of using the data from growing popu-
lations in the wild, where starvation, disease and other
complications practically always play a role, we believe
that the theoretical cap on reproduction should be set by
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the gestation period. α and ν should thus be the inverse
gestation period [10]:

α ≈ 1/tg ≈
1

50
m−1/4x , ν ≈ 1

50
m−1/4y [1/days],

(10)

with mass in kilograms. A similar mass scaling law can
be found for the incubation period of species that lay
eggs [21]. Our intuition tells us that when the preda-
tor is satisfied (Sy ≈ ε), predator reproduction should

be equal to predator death, giving us δ ≈ 1
50m

−1/4
y as

well. In order to calculate how many prey the predators
need to eat to reproduce this much, we must know the
ecological efficiency η. The ecological efficiency, defined
as the fraction of consumed prey biomass converted into
predator biomass, we estimate to be 10 % although the
quantity varies significantly with trophic level and the
specifics of the species [22, 23]. Knowing the efficiency,
we can calculate the number of prey eaten as φ Sx

Sx+ε
Sy =

my

ηmx
ν

Sy

Sx+ε
Sx, which implies φ =

10my

mx
ν =

m3/4
y

5mx
Finally,

also from Peters [10], we have the following approximate
relation for the carrying capacity:

K ≈ 200m−3/4x [prey/km2]. (11)

This relation is valid if we assume that the prey is a
mammal and accept that the metabolic scaling exponent
3/4 is the ”true” theoretical value of the empirically es-
timated scaling exponent (∼ 0.61) of the carrying capac-
ity. By using this carrying capacity relation, we decide
that the units of the population densities are [km−2]. ε
is difficult to determine, and we therefore choose to set
ε = K/2. We believe this to be reasonable, as it allows
the predator population growth to saturate before the
prey population reaches its carrying capacity. However,
as can be seen in the supplement, we can set ε to practi-
cally any value between 0.3K and K and still get similar
results.

To extend the predator-prey model to the predator-
prey-disease case, we also need to know the scaling re-
lations for disease duration. According to Cable et al.
[14], both the time until first symptoms and the time un-
til recovery or death scale as t = cm1/4, where c is an
experimental constant. Here, we shall use the constants
appropriate for rabies. We choose to use these constants
since we need an estimate of the order of magnitude of
the scaling coefficient for the infective period, and rabies
behaves a lot like we assume the disease to do in our
model (universally fatal, multiple host species, etc. [24]).
It should be stressed, however, that the disease is not
in fact rabies, since we also wish to study the effects of
varying the infectivity of the disease.

According to Cable et al. the duration of the period
during which the infected individual is symptomatic can
be written tI ≈ tD− tS = (c2− c1)m1/4, where c1 and c2

are the scaling coefficients appropriate for the time until
first symptoms and death, respectively. We assume that
this period is of the same order as the infective period of
the disease. The constants have been determined using
statistical analysis, and their values are c1 = 9 (4, 19)
and c2 = 16 (7, 32), where the numbers in parentheses
are the boundaries of the confidence interval from p = 2.5
% to p = 97.5 % [14, 24]. γi can now be found as 1/tI,i.

Finally, to make the parameterisation more intuitive,
we choose to express infectivity in terms of a quantity
Rxx related to the basic reproduction number (R0) of
the disease. The basic reproduction number represents
the number of secondary infections that occur when ex-
posing an infected individual to a completely susceptible
population. The reproduction number is related to the
infection coefficient as Rij =

βijSi,0

γj
in the SIR model [2],

where Si,0 is the initial density of susceptible individuals
of species i at the onset of the epidemic. R0 ranges from
1, where an epidemic is barely able to sustain itself, up to
18 in measles [25]. We therefore intend to vary Rxx from
1 to 10, as this covers a wide range of all possible disease
infectivities. The cross-species reproduction number Ryx
will be determined by the number of prey eaten by preda-
tors which in turn depends on their mass ratio. Since our
model is quite different from the SIR model, we should
argue why the parameter Rxx is equivalent to the original
R0. R0 has the important property that if it is less than
1, the epidemic always dies out. If we choose the starting
population Sx,0 to be the Lotka-Volterra equilibrium in

the absence of disease, we have Rxx =
βxxSx,0

γx
= βxxδε

γxν
.

If we analyse the linear stability of the fixed point with
coexsistence of prey and disease in the model with no
cross-species infection, we find that this fixed point in-
deed becomes stable when Rxx becomes greater than 1.
The disease is thus able to persist only when Rxx > 1.
This means that Rxx behaves like R0, and it is justi-
fied to use Rxx as a basic reproduction number. As the
initial predator population, we similarly choose the LV-

equilibrium value, Sy,0 = αε
φ
Kδν+Kν2−δ2ε−δεν

ν2K , which re-
duces to Sy,0 = αε

φ given our parameterisation.

By using this parameterisation, we are now left with
only five parameters: Prey mass, predator mass, ε, prey-
prey disease reproduction number, and the infection
probability when predators eat infected prey. If we fix
this probability at 1, we save another parameter. This is
not always a good approximation [26]. However, varying
the infection probability has a much smaller effect than
varying mi or Rxx, as is demonstrated in the supplement.
We therefore choose to fix the probability at 1. Figures
demonstrating this are shown in the supplement. The
mass parameterisation further ensures that the values of
the parameters used are at least biologically plausible.
All this will be highly advantageous when we examine
parameter space.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2020. ; https://doi.org/10.1101/721506doi: bioRxiv preprint 

https://doi.org/10.1101/721506
http://creativecommons.org/licenses/by-nc-nd/4.0/


4

(a)

(b)

(c)

FIG. 1. (Colour online) Parameter space regions where the
predator survives or the disease persists, as a function of prey
mass mx, predator mass my (both in kg), and disease repro-
duction number between prey Rxx. The coordinates of each
red dot indicates a set of parameter values where the preda-
tor survives, while the location of the black squares indicate
parameter values with disease persistence. If (a) the preda-
tors are immune, large predators survive at high Rxx. On the
other hand, if (b) the predators are susceptible, they survive
if they are relatively large and subsist on a prey that is not
too small. In (c), an immune prey is included alongside the
susceptible one. The susceptible predators survive regardless
of disease infectivity, so long as the predator is not too large
compared to the prey. If the predator is not susceptible, it
always survives (figure not shown).

EXAMINING PARAMETER SPACE

To derive information about parameter space most ef-
fectively, we perform a parameter sweep where we let the
different quantities vary logarithmically. We scan a re-

Min. value Increment Max. value
log(mx) -2 0.8 2
log(my) -1.2 0.8 2
log(Rxx) 0 0.1 1

TABLE I. (a) The ranges of parameters examined in our log-
arithmic parameter sweep. mi is the mass of species i, and
Rxx is the disease reproduction number characterising infec-
tion from prey to prey. 330 parameter sets were tested.

gion of parameter space large enough that the species
falling within this region are interestingly different. An
overview of the parameter ranges and increments can be
seen in table I. As initial condition, we choose the classi-
cal Lotka-Volterra equilibrium to avoid introducing large
artificial oscillations into the system.

In the analysis of our model, we have found that when
using reasonable parameter values, the populations will
usually perform damped oscillations of initially large am-
plitude around some equilibrium, or approach a limit cy-
cle with some possibly large amplitude. Although the
equilibria might be stable, after a disease outbreak the
populations often temporarily reach such low values that
it would lead to extinction in any system with a discrete
number of individuals. Also, an equilibrium with a very
low population density would lead to extinction in the
real world. If we introduce an extinction threshhold to
our model to account for the finite and discrete number
of individuals found in real populations, this changes the
dynamics significantly.

We introduce an extinction threshhold of 10−5. If a
population dips below this value, we consider it extinct.
It should be noted that the precise value of the thresh-
hold makes a relatively small difference in the end result.
After solving the equations numerically over T = 20000
days, we classify the end state of the system into one of
four categories: Scenarios with predator survival, disease
persistence, disease-predator coexistence, and scenarios
where only the healthy prey population survives. Since
coexistence of disease and predator appears to be tran-
sient, we let the simulation run up to 105 days if there is
still coexistence at the end of the first simulation. Plots
of the regions of parameter space with predator survival
and disease persistence can be seen in fig. 1.

First and foremost, we observe that the prey species
practically always survives the epidemic. Therefore,
there are a few scenarios where the prey ends up with
no natural enemies and thus will grow to the carrying
capacity and dominate the ecosystem. As another point,
it should be noted that the pathogen never coexists with
the specialist predator.

From the plots, we see that the survival of predators
is strongly dependent on the reproduction number of the
disease among prey and the mass of the predator species.
When the epidemic does not directly affect the predators
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(fig. 1 (a)), the predators can survive at high Rxx. A
high mass is advantageous to the predator, as this en-
sures that it is not affected as much by starvation when
the epidemic lowers the prey population. We see a ”zone
of exclusion” at intermediate Rxx where the disease keeps
the predator away. This gap is evidence of competitive
exclusion between predator and disease, which both sub-
sist on the same resource, the susceptible prey.

In the case where predators are susceptible to the dis-
ease (fig. 1 (b)), on the other hand, the predator species
can sometimes survive at high Rxx, but only if its mass is
not too large. The predators survive if they have less than
about 10 times the prey mass. Above this threshhold, the
predator needs to eat so many prey to survive that it is
almost guaranteed to be infected. These diagrams show
us that sharing a pathogen with a prey species will most
often cause the predator to go extinct. In fact, even an
outbreak of a prey-specific epidemic can cause predator
extinction, at least if the predator is a specialist.

The effect of additional prey species could be inter-
esting to study, since a large part of the reason why epi-
demics are so deadly to predators appears to be that spe-
cialist predators either starve if prey population drops, or
have to eat infected prey to avoid this. We do not expect
these effects to be present, or at least not nearly as pow-
erful in the presence of two prey species, of which one
is immune. To test this hypothesis, we modify the equa-
tions (6)-(9) to include another prey that is unaffected by
the disease. We assume that the immune prey is similar
to the susceptible prey and simply set their parameters
to be equal. The initial combined prey population is the
same as before, and the prey species do not compete. We
get the results seen in fig. 1 (c)

There is a striking difference compared to the case with
only susceptible prey. In the two-prey model, predators
will always survive, so long as they are small enough (less
than 50-100 times the prey size at high Rxx and less than
the prey size at low Rxx). We here see the same effect
as in fig. 1 (b), that predators bigger than this need to
eat a lot of prey and will therefore almost always end up
eating an infected individual. If we instead assume that
predators are immune, they always survive.

DISCUSSION

The most striking conclusion to be drawn from this
study is that an emerging epidemic in a specialist
predator-prey system will tend to drive the predator, but
not the prey, to extinction. Packer et al. have previ-
ously concluded that there are many situations in which
a predator species might keep prey epidemics and par-
asites in check [7]. The argument that we will make
based on this study is the converse: Given our dynamical
model and an extinction threshhold, epidemic pathogens
will make life hard for predators. The parameter sweeps

show that disease and specialist predators cannot coex-
ist. We believe this to be an example of competitive
exclusion. Both the pathogen and the predator share a
resource - the susceptible prey - and in such cases, long-
term coexistence is impossible [27]. As the spread of the
disease is not limited by saturation or energetic concerns,
it will tend to win over the predator. The obvious im-
plication of these two conclusions is that we should see
very few ecosystems with specialist predators, prey, and a
shared pathogen in the real world, as they are inherently
unstable. Indeed, when examining existing literature,
we have found no examples of specialist predators and
prey sharing a deadly pathogen, nor of less specialised
predators sharing a pathogen with their main prey. Of
course, we should be careful drawing too many conclu-
sions from our inability to find such systems. For ex-
ample, pathogens that do not affect humans or economi-
cally important species are likely to receive less attention
and therefore feature less prominently in the literature.
However, our model can be used to argue that predator-
prey-pathogen ecosystems should be rare, and we have
so far not been able to falsify this. One further potential
caveat is that we have here focused on mammals, using
the mass scaling relations and assumptions relevant for
mammalian predator-prey systems. However, due to the
near-universality of mass-scaling relations in animals [17]
we expect that most of the relations derived here should
be easily transferable to other classes.

Quite often when the predator goes extinct but the epi-
demic persists, the resulting prey-pathogen equilibrium
will have a lower prey population than the prey-predator
equilibrium. Nonetheless, carrying the pathogen may
still turn into an advantage for the prey species. From
evolutionary biology, we know that when a pathogen be-
comes endemic in a given species, there will be a pres-
sure for it to evolve to become less lethal over time [28].
This allows the pathogen to live longer in each host, and
possibly to spread more effectively. An initially fatal epi-
demic can thus end up becoming harmless to its primary
host species. If it has wiped out the predator in the pro-
cess, this will represent a win-win situation for the prey
species.

Possibly, we could expand our conclusion and simply
state that specialist predators generally are extremely
vulnerable to any changes in prey population. It is a
well-known fact of ecology that specialists are the most
vulnerable to extinction in the event of changes such as
disease outbreaks [29]. Predator species that subsist en-
tirely on one prey species should therefore also be rare in
nature. This is supported by the fact that even preda-
tors which are usually noted as specialists, such as the
weasels (Mustela nivalis) of northern Scandinavia that
often form the basis of predator-prey models [30], tend
to switch prey in times when their preferred prey is scarce
[31].

Finally, as an additional result, predators that are
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much bigger than the size of their prey are a lot more
vulnerable to infection with a shared pathogen from their
prey, since they need to eat more potentially infected
individuals to survive. This is true even for general-
ist predators and is an obvious consequence if a large
percentage of the prey population is infected. What
is less obvious is that the upper bound on predator to
prey mass ratio drops abruptly when Rxx dips below a
certain threshhold (around 4) in the generalist predator
case. Above this threshhold, a generalist predator species
can be nearly a hundred times the size of its infectious
prey species and still not go extinct due to infection. Be-
low the threshhold, any predator larger than the infected
prey will be driven to extinction by cross-species infec-
tions. The reason behind this change is that at high
infectivities, the epidemic quickly uses up the supply of
susceptibles and dies out. Therefore, the entire preda-
tor population will not have time to be infected. This
result, in addition to energetic concerns about hunting
very small animals, could lead to an evolutionary pres-
sure for predators to not grow too large compared to their
prey.

Given all of the above, we conclude that epidemic dis-
eases can serve as an evolutionary weapon against spe-
cialist predators. A pathogen infecting a prey species
will competitively exclude any specialist predator species,
even when the predator is not itself susceptible to the
pathogen. Shared epidemics between predator and prey
may help impose an upper limit on the predator-prey
size ratio, since eating a lot of small prey is dangerous
if the prey is infectious. The negative effect of prey dis-
ease on the predator is however weakened a lot when we
take into account additional, immune prey species. The
uneasy coexistence of predators and pathogens should
make specialist predator-prey-disease systems rare in the
real world, and this is apparently the case. Our study
supports the conclusion that being a specialist predator
is a highly vulnerable position, and that being a gen-
eralist should be evolutionarily favourable for predator
species. Normally, one would expect that competitive
exclusion presents a drive towards speciation and spe-
cialisation [32]. Our model, on the contrary, provides an
example of how the inherent vulnerability of specialists
will drive species towards generalisation.

In conclusion, our study supports the idea that shared
epidemic diseases could be a much more important factor
in the coevolution of predator and prey species than they
are usually given credit for.
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