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Abstract

Chromatin immunoprecipitation-sequencing (ChIP-seq) is widely used to find transcription factor
binding sites, but suffers from various sources of noise. Knocking out the target factor mitigates noise
by acting as a negative control. Paired wild-type and knockout experiments can generate improved
motifs but require optimal differential analysis. We introduce peaKO—a method to automatically
optimize motif analyses with knockout controls, which we compare to two other methods. PeaKO
often improves elucidation of the target factor and highlights the benefits of knockout controls. It is
freely available at https://peako.hoffmanlab.org.

Introduction

Transcription factors, often recognizing specific DNA motifs, control gene expression by binding to
cis-regulatory DNA elements56. Accurate identification of transcription factor binding sites remains
a challenge24, with experimental noise further compounding a difficult problem32. Improving motif
models to better capture transcription factor binding affinities at each position of the binding site
facilitates downstream analyses on gene-regulatory effects. Higher-quality motifs also promote the
exclusion of spurious motifs, obviating costly experimental follow-up.

Chromatin immunoprecipitation-sequencing (ChIP-seq)29,61 is a standard approach to locating
DNA-binding protein and histone modification occupancy across the genome. Many steps of the
ChIP-seq protocol can introduce noise, masking true biological signal and impeding downstream in-
terpretation16,27,32,42,58. Poor antibody quality presents a major source of noise, characterized by low
specificity to the target transcription factor or non-specific cross-reactivity. Cross-reactive antibodies
often cause spurious pull-down of closely related transcription factor family members. Antibody
clonality also contributes to antibody quality. Polyclonal antibodies tend to recognize multiple epi-
topes, which allows for more flexibility in binding to the desired transcription factor but at the cost
of increasing background noise32.

To address issues of antibody quality, large consortia such as the Encyclopedia of DNA Elements
(ENCODE) Project have established guidelines for validating antibodies through rigorous assessment
of sensitivity and specificity22,42. Other considerable sources of technical noise include increased sus-
ceptibility to fragmentation in open chromatin regions4, and variations in sequencing efficiency of
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DNA segments arising from differences in base composition32. Downstream computational process-
ing further reveals a different type of noise arising from contamination of peaks with zingers, motifs
for non-targeted transcription factors73.

Additional control experiments can mitigate the effects of the aforementioned biases.
Common types of controls include input and mock immunoprecipitation. Input control
experiments isolate cross-linked and fragmented DNA without adding an antibody for pull down.
Mock immunoprecipitation control experiments utilize a non-specific antibody, commonly
immunoglobulin G (IgG)27,42, during the affinity purification step, instead of an antibody to the
transcription factor. In theory, IgG mock experiments should better address technical noise since they
more closely mimic the steps of the wild type (WT) ChIP protocol42. In practice, however, they suffer
from a range of issues stemming from low yield of precipitated DNA32. Although the ENCODE
Project22 recommends the use of input controls, these experiments also suffer from limitations. Input
can only capture biases in chromatin fragmentation and sequencing efficiencies, thus failing to
capture the full extent of ChIP-seq technical noise.

Knockout (KO) control experiments present an attractive alternative to input and mock immuno-
precipitation. In these experiments, mutations directed to the gene encoding the target transcription
factor result in little to no expression of the transcription factor, prior to ChIP-seq. This preserves most
steps of the ChIP protocol, including antibody affinity purification. Therefore, KO experiments can
account for both antibody-related noise and biases in library preparation.

Common transcription factor KO constructs include CRISPR/Cas9-targeted mutations17 and
Cre/loxP conditional systems65,66. In downstream computational analyses, signal from the KO ex-
periment serves as a negative set for subtraction from the WT positive set. Many pre-existing com-
putational methods can use negative sets, typically input controls, to model background distribu-
tions59,69,76. For example, some peak calling tools, such as MACS275, can perform discriminative
peak calling. Most of these tools use the control set to set parameters of a background Poisson or
negative binomial distribution5 serving as a null for assessing the significance of WT peaks59.

Since KO controls better account for biases in WT data than input controls, optimizing methods
for KO controls should improve the quality of results from downstream analyses. Indeed, as KO
constructs become increasingly more accessible19, the need for optimal KO processing guidelines
becomes more crucial. While some preliminary studies have investigated the use of KO controls34,49,
further rigorous comparison of methods and establishment of a standard remain necessary.

To elucidate motifs when KO controls are available, we introduce a new method, peaKO. PeaKO
combines two pipelines incorporating differential processing of WT and KO datasets at different
stages. By comparing the rankings of a variety of known and de novo motifs, we highlight peaKO’s
value for discovering and assessing binding motifs of WT/KO experiments, and peaKO’s applications
in other differential contexts.

Results

PeaKO combines two differential analysis pipelines

Two steps of ChIP-seq computational processing allow for the subtraction of control signal from
WT signal: peak calling and motif analysis. Therefore, we created two complementary pipelines,
Pipeline A and Pipeline B, integrating the same software tools but selecting opposing steps to subtract
matched KO signal from WT signal. (Figure 1A).

Pipeline A incorporates differential motif analysis through MEME-ChIP50,51. It focuses on the
motif discovery algorithms MEME7,8 and DREME6, and includes the motif enrichment algorithm
CentriMo9,43. MEME-ChIP uses control peak sets for discriminative enrichment analysis50.
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Instead of differential motif analyses, Pipeline B incorporates differential peak calling through
MACS275. MACS2 uses the control peak set to set the parameters of the background null distribution
from which it calls significant peaks. Pipeline B drew inspiration from the knockout implemented
normalization (KOIN) pipeline34.

Both pipelines conclude by executing CentriMo9,43. CentriMo’s measure of motif central en-
richment assesses the direct DNA binding of the enriched transcription factor9. Some aspects of
CentriMo’s output differ according to whether we choose differential43 or non-differential9 mode.
Both pipelines, however, output a list of motifs ranked in order of increasing p-values. Ideally, the
top motif should reflect the target factor in the underlying ChIP-seq experiment, although some
circumstances may preclude this.

Each pipeline incorporates a unique approach to discriminative analysis. By modeling the peak
background distribution using the negative control set, Pipeline B directly compares the position of
read pileups between positive and negative datasets. In this model, we assume that read pileups
shared between both datasets represent technical noise, while the remaining significant WT read
pileups represent binding of the target transcription factor. Conversely, Pipeline A disregards the
positional information of peaks and instead focuses on the position of the motif matches within the
peaks. Pipeline A takes into account each peak’s membership in the positive or negative set only
when assessing the statistical significance of a motif. In Pipeline A, the simple motif discovery tool
DREME compares the fraction of de novo motif matches in WT sequences to KO sequences. We assume
that motifs more often located near peak centers in the WT dataset than in the KO dataset suggest
associated binding events.

To select for motifs that both have consistent matches within peaks and fall within regions of
significant read pileup, we combined both pipelines in a new way to develop peaKO. For each motif,
peaKO computes the number of overlapping peaks between peak sets generated by both pipelines,
with overlaps interpreted as genuine binding events (Figure 1B and Figure 1C; see Methods).

PeaKO usually improves or maintains the best ranking of the known motif

To assess the performance of each method, we can first compare how well methods rank known canon-
ical motifs of sequence-specific transcription factor datasets. We collected publicly available WT/KO
paired ChIP-seq datasets for 8 sequence-specific transcription factors: ATF377, ATF426, CHOP26,
GATA371, MEF2D3, OCT433, SRF67, and TEAD430 (Table 1). We evaluated our methods on these
datasets, supplementing CentriMo with the collection of vertebrate motifs from the JASPAR 2016
database53 (see Methods). Each transcription factor in our WT/KO datasets contains a corresponding
motif within the JASPAR database. We used these JASPAR motifs as our gold-standard known mo-
tifs, and compared their rankings across methods. As a control, we processed the WT dataset alone
through the same pipeline steps without any KO data.

In 5 out of 8 cases, peaKO improved or maintained the optimal rank relative to all other methods.
PeaKO also always improved or maintained the rank relative to at least one other method (Figure 2).
The total number of ranked motifs differed between experiments, which suggests peaKO may ben-
efit analyses for a wide range of transcription factors with variable binding affinities. Of the other
methods, Pipeline A performed the worst overall, as exemplified by rankings for the GATA3 (rank
of 118) and ATF3 (rank of 240) datasets. Pipeline B performed similarly to the use of only WT data
processed without controls, suggesting it benefits little from the control. PeaKO combines the best
aspects of both types of differential analysis pipelines, limiting their deficiencies and highlighting
their strengths. This generally leads to better rankings of known motifs.
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Figure 1. Overview of Pipelines A and B, and peaKO. (A) Pipelines A and B differ in their differential
analysis steps. Each pipeline accepts both wild type (WT) and knockout (KO) ChIP-seq data as
input. Pipeline A incorporates differential motif elucidation via MEME-ChIP51, whereas Pipeline B
incorporates differential peak calling via MACS275. Both pipelines produce a ranked list of motifs
predicted as relevant to the ChIP-seq experiment by CentriMo9,43. PeaKO extracts significant peaks
from CentriMo and computes a new score by which it ranks motifs. (B) PeaKO computes its ranking
metric r through a series of set operations. PeaKO uses peak sets AWT and AKO, extracted from
Pipeline A, and peak set B, extracted from Pipeline B. (C) A toy example illustrates the calculation
of peaKO’s score. Starting from the top row of peak set AWT and moving downwards, we apply the
peak set operations of r sequentially to identify regions satisfying the numerator criteria.

De novo motifs consistently match known motifs

We investigated each method’s ability to rank de novo motifs and assessed the similarity between
de novo and known JASPAR motifs. For consistency, we pooled de novo motifs generated by each
method (see Methods). We quantified similarity between de novo and known motifs using Tomtom25.
We studied these methods on the same 8 WT/KO paired datasets used for our known motif analyses.

Usually, top de novo motifs more closely resembled the canonical motif across methods, resulting
in most ranking near 1 (Figure 3). Conversely, motifs ranking lower tended to have fewer matches
to the known motif, often not even matching the known motif at all. PeaKO generally followed this
trend, but in a few exceptions, such as CHOP, OCT4, and ATF3, top motifs also sparsely matched the
canonical motif. PeaKO might have found related, interacting factors, rather than the factor of interest.
For example, many top de novo motifs reported by peaKO for the CHOP dataset closely matched the
motif for ATF4, which interacts with CHOP26.
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Figure 2. Known transcription factor motifs elucidated by different methods. Motifs originated
from the JASPAR 2016 motif database53. Knockout datasets served as a control for differential anal-
yses. (A) Each method ranked JASPAR database motifs based on their centrality within peak sets,
as determined by CentriMo9,43. Ranks correspond to the ChIPped transcription factor’s known mo-
tif (Table 2). (B) Total number of motifs assessed by peaKO. (C) The number of peaks found by each
method varies across peak sets.

PeaKO teases apart similar GATA family motifs

We delved deeper into our GATA3 results, for which peaKO outperformed all other methods. GATA3
belongs to the family of GATA factors, all of which bind GATA-containing sequences55. Despite having
similar motifs, each GATA factor plays a distinct role and usually does not interact with the others70.

Distinguishing the targeted motif among GATA factors and other large transcription factor families
often presents a challenge. Minor differences in position weight matrices (PWMs)14 can cause major
differences in genome-wide transcription factor binding sites39. Understanding the downstream
effects of transcription factor binding necessitates pulling apart these intricacies in motif preferences.

CentriMo results across both pipelines further reinforced the difficulty of distinguishing these
motifs (Figure 4). Pipeline B identified closely related GATA family members with ranks 1–4, above
the desired fifth-ranked GATA3 motif. Pipeline A proved less promising, failing to rank any GATA
members within its top 10 motifs. Furthermore, none of the top Pipeline A motifs appeared centrally
enriched within WT peaks. Instead, we observed a uniform distribution among the WT peak set and
a series of stochastic, sharp peaks among the KO peak set, likely representing inflated probabilities
due to low sample size.

Despite the difficulties affecting Pipeline B, peaKO draws on its ability to detect GATA family
members, and surpasses it by ranking GATA3 first. Thus, we find peaKO achieves specificity in
ranking motifs in the presence of many similar motifs.

Low-quality datasets account for poor rankings across methods

In a few cases, peaKO performed worse than the other methods at ranking the canonical motif (Fig-
ure 2). In particular, we observed a large spread in rankings across methods for ATF3 (ranging from
rank 17 to rank 240). We found central enrichment of the canonical ATF3 motif in the KO peak set,
as depicted by Pipeline A’s CentriMo results (Figure 5). This central enrichment appears even more
prominent than that in the WT peak set.

Although CentriMo probabilities depend on the total number of peaks in each set, and a relatively
low number of peaks in the control set can inflate these probabilities, we expect non-specific matches
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Figure 3. Similarity of discovered de novo motifs to canonical JASPAR motifs across 4 methods.
For 8 transcription factors (Table 2), we ran 4 methods (green: Pipeline A, yellow: Pipeline B, red: WT
alone, purple: peaKO) on a pooled set of de novo motifs generated by MEME7,8 and DREME6. Each
method generated a ranking of de novo motifs. For each of these motifs, we quantified similarity to the
known motif using Tomtom25. To emphasize strong matches to known motifs, the provided ranks lie
in descending order, with the best (rank 1) motif, at the top. In some cases, the best rank achieved by
the match does not reach 1, as reflected by a greater lower limit. Black stars: methods achieving the
best possible rank across both ranking schemes within each experiment.
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Figure 4. PeaKO ranks the GATA3 motif above other GATA transcription factor family motifs.
(A) CentriMo9,43 probability plots depict enrichment of the top 3 motifs from each method, along
with the GATA3 motif, within peak sets. (B) Motifs resulting from each pipeline and peaKO lie be-
neath associated CentriMo plots. Motifs and corresponding sequence logos64 originate from JASPAR
201653. Capitalization is as it occurs in JASPAR. The information content of bases in the sequence
logos ranges from 0 bits to 2 bits. The black star denotes achieving the best rank of the GATA3 motif.
(C) Top DREME6 motifs with length greater than 5 bp, for comparison. In this case, all three motifs
are identical.

to generate a uniform background distribution rather than a distinctive centrally-enriched pattern9,43.
Accordingly, ATF3 enrichment deviates substantially from our expectations and suggests issues with
the underlying KO ChIP experiment. This likely explains the poor rankings of ATF3 across methods,
including peaKO.

Knockout-controlled analyses consistently improve motif elucidation

To investigate whether KO controls would better approximate WT ChIP-seq experimental noise than
input controls, we used input controls to repeat our analyses. We ran our methods on MEF2D, OCT4,
and TEAD4 datasets, which contained input controls (Table 1), by applying the same procedures but
using only the input dataset for differential analysis steps.

Using an input control instead of a KO control usually worsened the ranking of the known motif,
as observed by an overall shift across methods toward poorer rankings (Figure 6A). In de novo motif
analyses with input controls, top-ranked motifs tended to have slightly poorer matches to known
motifs across methods, as compared with KO controls (Figure 6B). As in WT/KO analyses of OCT4,
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Figure 5. The ATF3 motif is centrally enriched in the ATF3 knockout dataset. (A) CentriMo9,43

probability plots depict enrichment of the top 3 motifs from each method, along with the ATF3 motif,
within peak sets. (B) Motifs resulting from each pipeline and peaKO lie beneath associated CentriMo
plots. Motifs and corresponding sequence logos64 originate from JASPAR 201653. Capitalization is
as it occurs in JASPAR. Information content of bases underlying motifs range from 0 bits to 2 bits.
(C) Top DREME6 motifs with length greater than 5 bp, for comparison.

we observed sparsity in top-ranked peaKO motifs matching the known motif. This could point
to low affinity of the antibody to the target factor or other types of noise affecting primarily the
WT set. Indeed, input experiments yielded even fewer significant peaks from CentriMo than KO
experiments (Figure 6C).

Overall, using input controls instead of KO controls led to poorer rankings across methods. Al-
though peaKO did not outperform the other methods using only input, it generally performed simi-
larly, suggesting utility in other differential applications.
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Figure 6. Ranks of known and discovered motifs using input controls. (A) Ranks of known JASPAR53

motifs across methods for each ChIP-seq experiment (Table 2). Input datasets served as a control in dif-
ferential analysis steps. (B) We plotted ranks of de novo motifs discovered by MEME7,8 and DREME6

against their similarity to the known JASPAR motif, as quantified by Tomtom25. We compared queried
motifs against the JASPAR 2016 target motif database. Black stars: methods achieving the best possi-
ble rank across both ranking schemes within each experiment. (C) UpSet plot44 of overlap between
MEF2D peak sets generated by Intervene31 (left) for all motifs and (right) for the MEF2D motif only.
For Pipeline B peak sets, parentheses indicate the type of negative control used for peak calling: input
or knockout (KO).

Discussion

Increased accessibility of KO experiments presents a need for standardized computational processing
workflows. With KO data, peaKO’s dual pipeline approach generally outperformed each pipeline
alone when ranking the known motifs. This holds true even in challenging cases, such as distin-
guishing among large transcription factor families with shared core motifs. Applying our methods
to datasets containing both input and KO controls demonstrates the superiority of KO controls for
motif elucidation.

We observed a common theme throughout our analyses pertaining to the characteristic perfor-
mance of each pipeline alone. When tasked with ranking the known motif, Pipeline A generally
produced inferior rankings, especially for ATF3 and GATA3 (ranks > 100) and, to a lesser extent,
CHOP (rank 15). We could only attribute this to poor experimental quality for ATF3. The significance
of differential mode CentriMo p-values, calculated using Fisher’s exact test, appears closely linked
to the relative size of each peak set. Both CHOP and GATA3 KO control sets had fewer than 50 KO
peaks (Figure 2), which might account for Pipeline A’s poor performance.

Pipeline B suffered from a different issue: it ranked known motifs almost identically to WT process-
ing alone, without any controls. Since the sole difference between Pipeline B and WT-only processing
lies in the peak calling step, identical rankings indicate the sufficiency of constructing the background
distribution with WT-derived values alone. Differential peak calling with KO controls does, however,
reduce the size of the WT peak set. Perhaps this improves an already specific peak set such that the
improvement is undetectable when ranking known motifs. Nonetheless, rankings differ in some cases
and de novo motif analyses reveal differences between Pipeline B and WT-only processing. Overall,
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both pipelines show strengths in specific contexts, which peaKO emphasizes.
Some of our methods ranked the motif of interest less favorably than other GATA family member

motifs. Finding the general familial motif could prove sufficient in some cases62. Nonetheless, finding
the specific motif helps with understanding the roles of individual transcription factors. GATA family
members share a common core motif, yet each have distinct and detectable binding preferences that
contribute to their diversity in genome-wide occupancy and function55.

For OCT4 (also known as POU5F1), we selected the Pou5f1::Sox2 motif (MA0142.1). SOX2, like
OCT4, regulates pluripotency in embryonic stem cells74. The two transcription factors often act to-
gether to regulate gene expression by forming a complex and co-binding to DNA1. Here, however,
the heterodimer motif differs substantially from the OCT4 motif alone, as it additionally contains a
SOX2 motif1. We chose to use the heterodimer motif in assessing our methods because the authors of
the study that generated the OCT4 dataset found a substantially larger proportion of peaks contain-
ing the heterodimer (44.0%) as compared to the monomer (20.6%)33. Upon re-running our analyses
using the monomer motif instead, we found poorer rankings across methods, as expected from this
imbalance of motif types in peaks (see https://doi.org/10.5281/zenodo.3338330). Higher occupancy
of the heterodimer form, however, does not preclude the transcription factor from binding DNA
in its monomer form. Although all methods found the heterodimer motif as the top rank, deciding
upon which motif form to use and how it affects downstream processing would benefit from further
exploration.

Our use of cross-species PWMs potentially limits our findings. We used motifs from the JASPAR
vertebrate collection interchangeably where the known motif did not always originate from the same
species as our ChIP-seq datasets (see Tables 1 and 2). Recently, Lambert et al 41 found that, contrary to
commonly held belief, extensive motif diversification among orthologous transcription factors occurs
quickly as species diverge. Additionally, PWMs14 themselves, while providing the most commonly
used motif model12,36, may not sufficiently capture nuanced binding differences20,36.

Lastly, we used peaKO along with our other methods to assess the benefit of KO controls over
input, suggesting that peaKO may prove useful for other non-WT/KO differential contexts. CRISPR
epitope tagging ChIP-seq (CETCh-seq), which involves the insertion and expression of FLAG epitope
tags on the target transcription factor63, presents one alternative differential context which may gain
from peaKO. CETCh-seq provides a substantial advantage over traditional ChIP-seq because it only
requires one high-quality monoclonal antibody recognizing the FLAG antigen across any number of
transcription factor experiments. Preliminary analyses using CETCh-seq datasets revealed challenges
arising from unexpected signal from a shared control of ChIP-seq in an untagged cell line. Further
work should investigate the role of CETCh-seq controls and how they integrate with peaKO.

Similar considerations for the proper use of control sets could also apply to combining replicates.
Combining negative control replicates with the irreproducible discovery rate (IDR) framework47 may
pose problems considering that these datasets represent noise rather than a full range across true
signal and noise. This may present an issue as IDR’s underlying copula mixture model assumes the
existence of an inflection point within the dataset marking the transition between true signal and
noise47.

Conclusion

We present peaKO, a free and publicly available tool for ChIP-seq motif analyses with KO controls
(https://peako.hoffmanlab.org). PeaKO improves over two kinds of differential processing in rank-
ing the motif of interest. We anticipate that peaKO will prove useful in identifying motifs of novel
transcription factors with available KO controls. We hope this will encourage both greater collection
and wider usage of knockout datasets.

10

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 28, 2019. ; https://doi.org/10.1101/721720doi: bioRxiv preprint 

http://jaspar2016.genereg.net/?ID=MA0142.1&rm=present&collection=CORE
https://doi.org/10.5281/zenodo.3338330
https://peako.hoffmanlab.org
https://doi.org/10.1101/721720


Methods

Overview of ChIP-seq processing and analysis methods

ChIP-seq processing follows this overarching path:

1. subject sequenced reads to trimming and quality control assessment;

2. align reads to a reference genome;

3. call peaks according to significant read pileups; and

4. elucidate de novo motifs and assess peaks for evidence of direct DNA binding.

For some methods, steps 3 and 4 can incorporate information from control datasets. We constructed
two pipelines to compare differential analyses in both of these steps (Figure 1A).

In Pipeline A, we perform differential analysis with MEME-ChIP50,51. MEME-ChIP uses the de novo
motif elucidation tools MEME7,8 and DREME6, and assesses the central enrichment of motifs in
peaks via CentriMo9,43. CentriMo ranks motifs according to multiple-testing corrected binomial
p-values (non-differential mode)9 or Fisher’s exact test p-values (differential mode)43.

In Pipeline B, we perform differential peak calling through MACS275. While Pipeline B draws
inspiration from the KOIN pipeline34, it does not incorporate the HOMER makeTagDirectory or
annotatePeaks28 steps. We replaced HOMER motif tools28 with those from the MEME Suite10,11.
Both Pipelines A and B incorporate identical pre-processing and alignment steps, described later.
Since both pipelines employ CentriMo in their last step, they generate a list of ranked motifs with
predicted association to the ChIP-seq experiment.

PeaKO: motivation and score

Differential peak calling and differential motif analysis address the same problem of noise removal,
albeit in distinct ways. Therefore, we surmised that by combining the two approaches, the results
from each pipeline could complement and strengthen one another. CentriMo produces a ranked list
of motifs, and each motif has an associated peak set containing a centered window enriched for that
motif. We reasoned that motifs with a large proportion of peaks shared between both pipelines are
likely relevant to the ChIP-seq experiment. We then created a metric that captures this.

PeaKO takes as input the CentriMo output of each pipeline. We modified CentriMo code to output
negative control set peaks associated with each motif in differential mode, since current versions only
output positive peaks. These changes are merged into the CentriMo source repository and the MEME
Suite’s next major release will include them. From the CentriMo results peaKO filters out motifs with
multiple-testing corrected p-values > 0.1.

PeaKO computes a ranking metric r that represents the proportion of high-quality AWT peaks
found in set B but not in set AKO. To do this, peaKO calculates the overlap between peak sets AWT
and AKO from Pipeline A, and peak set B from Pipeline B through a series of set operations:

r =
|(AWT − AKO)∩ B|

|AWT|
.

PeaKO implements these operations using pybedtools (version 0.7.7; BEDTools version
2.26.0)18,60. First, peaKO removes any AWT peak overlapping at least 1 bp of a AKO
peak (pybedtools subtract -A; Figure 1B). Second, peaKO finds regions overlapping by at
least 1 bp between remaining AWT peaks and B peaks (pybedtools intersect -wa). Third, peaKO

11

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 28, 2019. ; https://doi.org/10.1101/721720doi: bioRxiv preprint 

https://doi.org/10.1101/721720


applies pybedtools merge with default settings to overlapping regions, which merges identical
regions and ensures that the ranking metric r has a maximum value of 1. PeaKO’s final output
consists of a list of motifs ranked according to this metric.

Datasets

We analyzed a total of 8 publicly available ChIP-seq experiment datasets with KO controls (Table 1).
We selected two datasets (GATA3 and SRF) from Krebs et al 34 , while we selected the remainder by
searching for KO-associated ChIP-seq datasets on Gene Expression Omnibus (GEO)21. We accessed
most datasets through GEO. Heinz et al 28 provided us with the SRF data48. ATF3 experiments come
from human tissue, while the other experiments come from mouse tissue.

Table 1. ChIP-seq datasets used, with associated GEO accession numbers (where applicable) and
number of replicates.

Factor GEO Reference Wild type Knockout Input

ATF3 GSE74355 Zhao et al 77 1 1 0
ATF4 GSE35681 Han et al 26 3 3 0

CHOP GSE35681 Han et al 26 1 1 0
GATA3 GSE20898 Wei et al 71 1 1 0
MEF2D GSE61391 Andzelm et al 3 3 1 3

OCT4 GSE87822 King and Klose 33 3 3 1
SRF — Sullivan et al 67 1 1 0a

TEAD4 GSE82190 Joshi et al 30 1 1 1
a We excluded the available dataset because it came from a different, older DNA sequencer and

lacked quality scores.

Motifs

We downloaded the collection of vertebrate motifs in MEME format11 from the JASPAR CORE 2016
motif database, which consists of curated PWMs derived from in vivo and in vitro methods53.

We defined each canonical motif from the JASPAR collection as the motif matching the target tran-
scription factor except in two cases: OCT4 and CHOP (Table 2). In both cases, we instead chose motifs
derived from their common heterodimer complex forms. CHOP or DDIT3 likely binds DNA as an obli-
gate multimer40,57, so we used Ddit3::Cebpa (MA0019.1). The CHOP monomer motif closely resembles
its C/EBPα heterodimer motif, relative to its Cis-BP (version 1.02)72 DDIT3 motif (T025314_1.02, de-
rived from HOCOMOCO37). For OCT4, we used the Pou5f1::Sox2 motif (MA0142.1; see Discussion).

We provided motifs to CentriMo9,43 for central enrichment analyses and to Tomtom25 for similarity
assessments.

Pre-processing, alignment, and peak calling

Before alignment, we trimmed adapter sequences with TrimGalore! (version 0.4.1)35 which uses
Cutadapt (version 1.8.3)52. We performed quality control using FastQC (version 0.11.5)2.
We used Picard’s FixMateInformation and AddOrReplaceReadsGroups (version 2.10.5)15

and GATK’s PrintReads (version 3.6)54 to prevent GATK errors. We then aligned reads to
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Table 2. Known JASPAR CORE 201653 vertebrate motifs. Sentence case motif names designate
mouse transcription factor motifs, while full upper case names designate human motifs. Double
colons designate heterodimer motifs.

Common name JASPAR ID Motif name

ATF3 MA0605.1 Atf3
ATF4 MA0833.1 ATF4

CHOP MA0019.1 Ddit3::Cebpa
GATA3 MA0037.2 GATA3
MEF2D MA0773.1 MEF2D

OCT4 MA0142.1 Pou5f1::Sox2
SRF MA0083.3 SRF

TEAD4 MA0809.1 TEAD4

GRCm38/mm10 or GRCh38/hg38 with BWA bwa-aln (version 0.7.15)45 (as recommended46, since
some datasets have reads� 70 bp), using Sambamba (version 0.6.6)68 for post-processing.

Next, we called peaks using MACS2 (version 2.0.10)75 with parameters -q 0.05. In Pipeline A,
we called WT and KO peaks separately. In Pipeline B, we provided the KO dataset as a control to the
WT dataset during peak calling (parameter -c), resulting in a single set of peaks.

Combining replicates

For MEF2D, OCT4, and TEAD4 experiments which consist of biological replicates (see Table 1), we pro-
cessed replicates using the ENCODE Transcription Factor and Histone ChIP-seq processing pipeline38.
The ENCODE pipeline replaces the pre-processing, alignment, and peak calling steps described ear-
lier. We chose default parameters for punctate (narrow peak) binding experiments in all steps. Instead
of a q-value threshold, this pipeline caps the number of peaks (n = 500 000) to ensure that the IDR
framework47 can analyze a sufficient number of peaks across a full spectrum. IDR combines peaks
across replicates based on the assumption that strong peaks shared across replicates represent true
binding events, while weak, one-off peaks represent noise. To emulate the first steps of Pipeline A
and Pipeline B, we either ran the ENCODE pipeline on WT replicates and KO replicates separately
(for Pipeline A), or we ran the ENCODE pipeline on all WT and KO replicates simultaneously, setting
KO replicates as controls (for Pipeline B). For downstream motif analyses, we used the combined
“optimal” peak sets output by IDR.

Motif analyses with MEME-ChIP

In both pipelines, we employed MEME-ChIP50,51 from the MEME Suite10,11 for motif analysis. We
used MEME-ChIP version 4.12.0, except for CentriMo, which we compiled from version 4.11.2 and
modified to output negative sequences. MEME-ChIP performs motif discovery with complementary
algorithms MEME7,8 and DREME6, and motif enrichment with CentriMo9,43.

We extended MACS2 narrowPeak regions equidistantly from peak summits to create a uniform set
of 500 bp centered peaks50. We then extracted underlying genomic sequences using BEDTools slop
(version 2.23.0)60 from a repeat-masked genome. We masked the genome with Tandem Repeats Finder
(TRF) (version 4.09)13 with options -h -m -ngs and parameters 2 7 7 80 10 50 500 for mouse (as
done originally by Benson 13), and options 2 5 5 80 10 30 200 for human (as recommended by Frith
et al 23).
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In Pipeline A, we provided the negative control set in addition to the WT set, running MEME,
DREME, and CentriMo in differential mode. In ranking known motifs, we ran CentriMo providing
only JASPAR database motifs. In ranking de novo motifs, we ran CentriMo providing only MEME and
DREME motifs.

Pooling de novo motifs

Each run of MEME or DREME creates new and globally non-unique identifiers for output motifs.
This leads to recurring identifiers that refer to different motifs across multiple runs. To consolidate
identifiers across multiple MEME and DREME runs, we modified identifiers to reflect the pipeline
from which they originate. We then pooled de novo motifs across methods and re-ran the CentriMo
step of each pipeline, providing the pooled database, allowing for accurate comparisons.

Assessing similarity of de novo motifs to known motifs

For each experiment, we quantified the similarity of de novo motifs to the known JASPAR motif using
Tomtom25. Tomtom compared the de novo motifs to the JASPAR motif database through ungapped
alignment across columns25. Tomtom generated a list of known motif matches, ranked by increasing
Bonferroni-corrected p-values. An exact match between a de novo motif and a JASPAR motif would
result in the JASPAR motif’s ranking first in this list of matches.

Comparing input to knockout controls

For experiments with associated input controls, we re-ran our known motif and de novo motif analyses
swapping out KO datasets for input datasets. We compared peaks between sets using UpSet (version
1.4.0) plots44, via Intervene (version 0.6.2)31, which calculates genomic region overlaps with BEDTools
(version 2.26.0)60.

Availability of data and materials
PeaKO is available at https://peako.hoffmanlab.org with Python source code for peaKO and both pipelines at:
https://github.com/hoffmangroup/peako. Persistent availability is ensured by Zenodo, in which we have de-
posited the current version of our code (https://doi.org/10.5281/zenodo.3338324), its downstream CentriMo
and peaKO outputs (https://doi.org/10.5281/zenodo.3338330), and our changes to the CentriMo source code
and the Linux x86-64 binary that we used (https://doi.org/10.5281/zenodo.3356995). All source code is li-
censed under a GNU General Public License, version 3 (GPLv3), except for CentriMo, which retains its original
license.
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