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Abstract

Chromatin immunoprecipitation-sequencing (ChIP-seq) is widely used to find transcription factor
binding sites, but suffers from various sources of noise. Knocking out the target factor mitigates noise
by acting as a negative control. Paired wild-type and knockout experiments can generate improved
motifs but require optimal differential analysis. We introduce peaKO—a computational method
to automatically optimize motif analyses with knockout controls, which we compare to two other
methods. PeaKOoften improves elucidation of the target factor andhighlights the benefits of knockout
controls, which far outperform input controls. It is freely available at https://peako.hoffmanlab.org.

Introduction

Transcription factors, often recognizing specific patterns of DNA sequences called motifs, control
gene expression by binding to cis-regulatory DNA elements56. Accurate identification of transcription
factor binding sites remains a challenge25, with experimental noise further compounding a difficult
problem33. Improving motif models to better capture transcription factor binding affinities at each
position of the binding site facilitates downstream analyses on gene-regulatory effects. Higher-quality
motifs also promote the exclusion of spurious motifs, obviating costly experimental follow-up.

Chromatin immunoprecipitation-sequencing (ChIP-seq)30,61 is a standard approach to locating
DNA-binding protein and histone modification occupancy across the genome. Many steps of the
ChIP-seq protocol can introduce noise, masking true biological signal and impeding downstream
interpretation16,28,33,43,58. Poor antibody quality presents a major source of noise, characterized by low
specificity to the target transcription factor or non-specific cross-reactivity. Cross-reactive antibodies
often cause spurious pull-down of closely related transcription factor family members. Antibody
clonality also contributes to antibody quality. Polyclonal antibodies tend to recognize multiple epi-
topes, which allows for more flexibility in binding to the desired transcription factor but at the cost of
increasing background noise33.

To address issues of antibody quality, large consortia such as the Encyclopedia of DNA Elements
(ENCODE) Project have established guidelines for validating antibodies through rigorous assessment
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of sensitivity and specificity22,43. Other considerable sources of technical noise include increased
susceptibility to fragmentation in open chromatin regions4, and variations in sequencing efficiency
of DNA segments arising from differences in base composition33. Downstream computational pro-
cessing further reveals a different type of noise arising from contamination of peaks with zingers,
motifs for non-targeted transcription factors76.

Additional control experiments can mitigate the effects of the aforementioned biases. Common
types of controls include input and mock immunoprecipitation. Input control experiments isolate
cross-linked and fragmented DNA without adding an antibody for pull down. Mock immunoprecip-
itation control experiments use a non-specific antibody, commonly immunoglobulin G (IgG)28,43,
during the affinity purification step, instead of an antibody to the transcription factor. In theory, IgG
mock experiments should better address technical noise since they more closely mimic the steps of
the wild type (WT) ChIP protocol43. In practice, however, they suffer from a range of issues stemming
from low yield of precipitated DNA33. Although the ENCODE Project22 recommends the use of input
controls, these experiments also suffer from limitations. Input can only capture biases in chromatin
fragmentation and sequencing efficiencies, thus failing to capture the full extent of ChIP-seq technical
noise.

Knockout (KO) control experiments present an attractive alternative to input and mock immuno-
precipitation. In these experiments, mutations directed to the gene encoding the target transcription
factor result in little to no expression of the transcription factor, prior to ChIP-seq. This preserves
most steps of the ChIP protocol, including antibody affinity purification. Therefore, KO experiments
can account for both antibody-related noise and biases in library preparation.

Common transcription factor KO constructs include CRISPR/Cas9-targeted mutations17 and
Cre/loxP conditional systems66,69. In downstream computational analyses, signal from the KO ex-
periment serves as a negative set for subtraction from theWT positive set. Many pre-existing com-
putational methods can use negative sets, typically input controls, to model background distribu-
tions59,72,79. For example, some peak calling tools, such as MACS278, can perform discriminative peak
calling. Most of these tools use the control set to set parameters of a background Poisson or negative
binomial distribution5 serving as a null for assessing the significance ofWT peaks59.

Since KOcontrols better account for biases inWTdata than input controls, optimizingmethods for
KO controls should improve the quality of results fromdownstream analyses. Indeed, as KO constructs
become increasingly more accessible19, the need for optimal KO processing guidelines becomes more
crucial.While some preliminary studies have investigated the use of KO controls35,49, further rigorous
comparison of methods and establishment of a standard remain necessary.

To elucidate motifs when KO controls are available, we introduce a new method, peaKO. PeaKO
combines two pipelines incorporating differential processing of WT and KO datasets at different
stages. By comparing the rankings of a variety of known and de novo motifs, we highlight peaKO’s
value for discovering and assessing binding motifs ofWT/KO experiments, and peaKO’s applications
in other differential contexts.

Results

PeaKO combines two differential analysis pipelines

Two steps of ChIP-seq computational processing allow for the subtraction of control signal fromWT
signal: peak calling andmotif analysis.Therefore, we created two complementary pipelines, Pipeline A
and Pipeline B, integrating the same software tools but selecting opposing steps to subtract matched
KO signal fromWT signal. (Figure 1A).
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Figure1.OverviewofPipelinesAandB,andpeaKO. (A)PipelinesA andBdiffer in their differential analysis steps.
Each pipeline accepts both wild type (WT) and knockout (KO) ChIP-seq data as input. Pipeline A incorporates
differential motif elucidation via MEME-ChIP51, whereas Pipeline B incorporates differential peak calling via
MACS278. Both pipelines produce a ranked list of motifs predicted as relevant to the ChIP-seq experiment by
CentriMo9,44. PeaKO extracts significant peaks from CentriMo and computes a new score by which it ranks
motifs. (B) PeaKO computes its ranking metric 𝑟 through a series of set operations. PeaKO uses peak sets 𝐴WT
and 𝐴KO, extracted from Pipeline A, and peak set 𝐵, extracted from Pipeline B. (C) A toy example illustrates the
calculation of peaKO’s score. Starting from the top row of peak set 𝐴WT and moving downwards, we apply the
peak set operations of 𝑟 sequentially to identify regions satisfying the numerator criteria.
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Pipeline A incorporates differential motif analysis through MEME-ChIP50,51. It focuses on the
motif discovery algorithms MEME7,8 and DREME6, and includes the motif enrichment algorithm
CentriMo9,44. MEME-ChIP uses control peak sets for discriminative enrichment analysis50.

Instead of differential motif analyses, Pipeline B incorporates differential peak calling through
MACS278. MACS2 uses the control peak set to set the parameters of the background null distribution
from which it calls significant peaks. Pipeline B drew inspiration from the knockout implemented
normalization (KOIN) pipeline35.

Both pipelines conclude by executing CentriMo9,44. CentriMo’s measure of motif central en-
richment assesses the direct DNA binding of the enriched transcription factor9. Some aspects of
CentriMo’s output differ according to whether we choose differential44 or non-differential9 mode.
Both pipelines, however, output a list of motifs ranked in order of increasing p-values. Ideally, the
top motif should reflect the target factor in the underlying ChIP-seq experiment, although some
circumstances may preclude this.

Each pipeline incorporates a unique approach to discriminative analysis. By modeling the peak
background distribution using the negative control set, Pipeline B directly compares the position
of read pileups between positive and negative datasets. In this model, we assume that read pileups
shared between both datasets represent technical noise, while the remaining significantWT read
pileups represent binding of the target transcription factor. Conversely, Pipeline A disregards the
positional information of peaks and instead focuses on the position of the motif matches within the
peaks. Pipeline A takes into account each peak’s membership in the positive or negative set only
when assessing the statistical significance of a motif. In Pipeline A, the simple motif discovery tool
DREMEcompares the fraction of de novomotifmatches inWT sequences to KO sequences.We assume
that motifs more often located near peak centers in theWT dataset than in the KO dataset suggest
associated binding events.

To select for motifs that both have consistent matches within peaks and fall within regions of
significant read pileup, we combined both pipelines in a new way to develop peaKO. For each motif,
peaKO computes the number of overlapping peaks between peak sets generated by both pipelines,
with overlaps interpreted as genuine binding events (Figure 1B and Figure 1C; see Methods).

PeaKO usually improves or maintains the best ranking of the knownmotif

To assess the performance of eachmethod,we can first compare howwellmethods rank known canon-
ical motifs of sequence-specific transcription factor datasets.We collected publicly availableWT/KO
paired ChIP-seq datasets for 8 sequence-specific transcription factors: ATF380, ATF427, CHOP27,
GATA374, MEF2D3, OCT434, SRF70, and TEAD431 (Table 1). We evaluated our methods on these
datasets, supplementing CentriMo with the collection of vertebrate motifs from the JASPAR 2016
database53 (see Methods). Each transcription factor in ourWT/KO datasets contains a corresponding
motif within the JASPAR database.We used these JASPAR motifs as our gold-standard known motifs,
and compared their rankings acrossmethods. As a control, we processed theWTdataset alone through
the same pipeline steps without any KO data.

In 5 out of 8 cases, peaKO improved or maintained the optimal rank relative to all other methods.
PeaKO also always improved or maintained the rank relative to at least one other method (Figure 2).
The total number of ranked motifs differed between experiments, which suggests peaKO may benefit
analyses for awide range of transcription factors with variable binding affinities. Of the othermethods,
Pipeline A performed the worst overall, as exemplified by non-significant Fisher E-values for both
the GATA3 and ATF3 datasets. Pipeline B performed similarly to the use of onlyWT data processed
without controls, suggesting it benefits little from the control. PeaKO combines the best aspects of
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Table 1. ChIP-seq datasets used, with associated Gene Expression Omnibus (GEO) accession
numbers (where applicable) and number of replicates.

Factor GEO Reference Wild type Knockout Input

ATF3 GSE74355 Zhao et al.80 1 1 0
ATF4 GSE35681 Han et al.27 3 3 0

CHOP GSE35681 Han et al.27 1 1 0
GATA3 GSE20898 Wei et al.74 1 1 0

MEF2D GSE61391 Andzelm et al.3 3 1 3
OCT4 GSE87822 King and Klose34 3 3 1

SRF — Sullivan et al.70 1 1 0a

TEAD4 GSE82190 Joshi et al.31 1 1 1
a We excluded the available dataset because it came from a different, older DNA sequencer and
lacked quality scores.
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Figure 2. Known transcription factor motifs elucidated by different methods.Motifs originated from the
JASPAR 2016 motif database53. Knockout datasets served as a control for differential analyses. (A) Each method
ranked JASPAR database motifs based on their centrality within peak sets, as determined by CentriMo9,44. Ranks
correspond to the ChIPped transcription factor’s known motif (Table 2). Dashed area to right of plot: motifs
without statistical significance. (B) Total number of motifs assessed by peaKO. (C)The number of peaks found by
each method varies across peak sets.
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both types of differential analysis pipelines, limiting their deficiencies and highlighting their strengths.
This generally leads to better rankings of known motifs.

De novomotifs consistently match knownmotifs

We investigated each method’s ability to rank de novo motifs and assessed the similarity between
de novo and known JASPAR motifs. For consistency, we pooled de novo motifs generated by each
method (see Methods).We quantified similarity between de novo and known motifs using Tomtom26.
We studied these methods on the same 8WT/KO paired datasets used for our known motif analyses.

Usually, top de novo motifs more closely resembled the canonical motif across methods, resulting
in most ranking near 1 (Figure 3). Conversely, motifs ranking lower tended to have fewer matches
to the known motif, often not even matching the known motif at all. PeaKO generally followed this
trend, but in a few exceptions, such as CHOP, OCT4, and ATF3, top motifs also sparsely matched the
canonical motif. PeaKO might have found related, interacting factors, rather than the factor of interest.
For example, many top de novo motifs reported by peaKO for the CHOP dataset closely matched the
motif for ATF4, which interacts with CHOP27.

PeaKO teases apart similar GATA family motifs

We delved deeper into our GATA3 results, for which peaKO outperformed all other methods. GATA3
belongs to the family of GATA factors, all of which bind GATA-containing sequences55. Despite having
similar motifs, each GATA factor plays a distinct role and usually does not interact with the others73.

Distinguishing the targetedmotif amongGATA factors and other large transcription factor families
often presents a challenge. Minor differences in position weight matrices (PWMs)14 can cause major
differences in genome-wide transcription factor binding sites40. Understanding the downstream
effects of transcription factor binding necessitates pulling apart these intricacies in motif preferences.

CentriMo results across both pipelines further reinforced the difficulty of distinguishing these
motifs (Figure 4). Pipeline B identified closely related GATA family members with ranks 1–4, above the
desired fifth-ranked GATA3 motif. Pipeline A proved less promising, failing to reliably rank any GATA
family members. Furthermore, none of the shown Pipeline A motifs appeared centrally enriched
withinWT peaks. Instead, we observed a uniform distribution among theWT peak set and a series of
stochastic, sharp peaks among the KO peak set, likely representing inflated probabilities due to low
sample size.

Despite the difficulties affecting Pipeline B, peaKO draws on its ability to detect GATA family
members, and surpasses it by ranking GATA3 first. In this case, peaKO achieves specificity in ranking
motifs in the presence of many similar familial motifs.

Low-quality datasets account for poor rankings across methods

In a few cases, peaKO performed worse than the other methods at ranking the canonical motif (Fig-
ure 2). In particular, we observed a large spread in rankings across methods for ATF3 (ranging from
rank 17 to non-significant ranks, above 80).We found central enrichment of the canonical ATF3 motif
in the KO peak set, as depicted by Pipeline A’s CentriMo results (Figure 5). This central enrichment
appears even more prominent than that in theWT peak set.

Although CentriMo probabilities depend on the total number of peaks in each set, and a relatively
low number of peaks in the control set can inflate these probabilities, we expect non-specific matches
to generate a uniform background distribution rather than a distinctive centrally-enriched pattern9,44.
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Figure 3. Similarity of discovered de novomotifs to canonical JASPARmotifs across 4methods. For 8 trans-
cription factors (Table 2), we ran 4 methods (green: Pipeline A, yellow: Pipeline B, red:WT alone, purple: peaKO)
on a pooled set of de novo motifs generated by MEME7,8 and DREME6. Each method generated a ranking of
de novo motifs (x-axis). For each of these motifs, we quantified similarity to the known motif using Tomtom26

(y-axis). For a given de novo motif, Tomtom finds and ranks the most similar motifs from the total set of JASPAR
motifs.We record the rank of the transcription factor’s known JASPAR motif within this list. To emphasize strong
matches to known motifs, the provided ranks lie in descending order, with the best (rank 1) motif, at the top. In
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Figure 5.TheATF3motif is centrally enriched in the ATF3 knockout dataset. (A)CentriMo9,44 probability plots
depict enrichment of the top 3 motifs from each method, along with the ATF3 motif, within peak sets. (B)Motifs
resulting from each pipeline and peaKO lie beneath associated CentriMo plots. Motifs and corresponding se-
quence logos65 originate from JASPAR 201653. Capitalization is as it occurs in JASPAR. Information content of
bases underlying motifs range from 0.0000 bits to 2.0000 bits. Ranks of “ns” indicate non-significant motifs, and
therefore unreliable rankings. (C) Top DREME6 motifs with length greater than 5.0000 bp, for comparison.

Accordingly, ATF3 enrichment deviates substantially from our expectations and suggests issues with
the underlying KO ChIP experiment. This likely explains the poor rankings of ATF3 across methods,
including peaKO.

Knockout-controlled analyses consistently improvemotif elucidation

To investigate whether KO controls would better approximateWT ChIP-seq experimental noise than
input controls, we used input controls to repeat our analyses.We ran our methods on MEF2D, OCT4,
and TEAD4 datasets, which contained input controls (Table 1), by applying the same procedures but
using only the input dataset for differential analysis steps.

Using an input control instead of a KO control usually worsened the ranking of the known mo-
tif, as observed by an overall shift across methods toward poorer rankings (Figure 6A). In de novo
motif analyses with input controls, top-ranked motifs tended to have slightly poorer matches to
known motifs across methods, as compared with KO controls (Figure 6B). As in WT/KO analyses
of OCT4, we observed sparsity in top-ranked peaKO motifs matching the known motif. This could
point to low affinity of the antibody to the target factor or other types of noise affecting primarily
theWT set. Indeed, input experiments yielded even fewer significant peaks from CentriMo than KO
experiments (Figure 6C).
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Overall, using input controls instead of KO controls led to poorer rankings across methods. Al-
thoughpeaKOdidnot outperform theothermethodsusingonly input, it generally performed similarly,
suggesting utility in other differential applications.

Discussion

Increased accessibility of KO experiments presents a need for standardized computational processing
workflows. With KO data, peaKO’s dual pipeline approach generally outperformed each pipeline
alone when ranking the known motifs. This holds true even in challenging cases, such as distin-
guishing among large transcription factor families with shared core motifs. Applying our methods to
datasets containing both input and KO controls demonstrates the superiority of KO controls for motif
elucidation.

We observed a common theme throughout our analyses pertaining to the characteristic per-
formance of each pipeline alone.When tasked with ranking the known motif, Pipeline A generally
produced inferior rankings, especially for ATF3 and GATA3 (non-significant ranks of canonical motifs)
and, to a lesser extent, CHOP (rank 15).We could only attribute this to poor experimental quality for
ATF3. The significance of differential mode CentriMo p-values, calculated using Fisher’s exact test,
appears closely linked to the relative size of each peak set. Both CHOP and GATA3 KO control sets had
fewer than 50 KO peaks (Figure 2), which might account for Pipeline A’s poor performance.

Pipeline B suffered from a different issue: it ranked known motifs almost identically toWT pro-
cessing alone, without any controls. In some cases,WT processing alone even surpassed Pipeline B.
WT-only processing out-performed Pipeline B when using KO and input controls for MEF2D, and
when using input controls for TEAD4. Since the sole difference between Pipeline B and WT-only
processing lies in the peak calling step, identical rankings indicate the sufficiency of constructing
the background distribution withWT-derived values alone. Indeed, similar rankings may point to a
shortcoming in comprehensively modeling noise captured in KO and input controls. Future work
should investigate the robustness of peak callers in modeling control signals and explore potential in-
tegration of other tools designed for identifying differential peak sets, such as DiffBind68. Differential
peak calling with KO controls does, however, reduce the size of theWT peak set. Perhaps this improves
an already specific peak set such that the improvement is largely undetectable when ranking known
motifs. Nonetheless, rankings differ in some cases and de novo motif analyses reveal differences be-
tween Pipeline B andWT-only processing. Overall, both pipelines show strengths in specific contexts,
which peaKO emphasizes.

In selecting known canonical motifs as ground truths to assess our experiments, we limited
our ability to evaluate each method’s detection of higher quality motifs.We partially addressed this
limitation by finding de novo motifs in a discovery use case. Maintaining consistency in performance
evaluation across analyses, however, required comparisons of de novo motifs to their cognate JASPAR
motifs. Therefore, even in the discovery use case, we remain limited by the quality of the known
canonical motifs.

Some of our methods ranked the motif of interest less favorably than other GATA family member
motifs. GATA family members share a common core motif, yet each have distinct and detectable
binding preferences that contribute to their diversity in genome-wide occupancy and function55.
Finding the general familial motif could prove sufficient in some cases63. Nonetheless, finding the
specific motif helps with understanding the roles of individual transcription factors.

The GATA3 motif (MA0037.2)53 that we ranked first (Figure 4) was generated from 4628 curated
sites from a ChIP-seq experiment. This motif likely has more similarity to actual GATA3 binding sites
than the other GATA family motifs we compared against, in that it was elucidated via an antibody
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Table 2. Known JASPAR CORE 201653 vertebrate motifs. Sentence case motif names designate
mouse transcription factor motifs, while full upper case names designate human motifs. Double
colons designate heterodimer motifs.

Common name JASPAR ID Motif name

ATF3 MA0605.1 Atf3
ATF4 MA0833.1 ATF4

CHOP MA0019.1 Ddit3::Cebpa
GATA3 MA0037.2 GATA3

MEF2D MA0773.1 MEF2D
OCT4 MA0142.1 Pou5f1::Sox2

SRF MA0083.3 SRF
TEAD4 MA0809.1 TEAD4

attempting to specifically target GATA3. CentriMo selected this particular motif as the most enriched
match, choosing it over other GATA3 motifs in JASPAR. Even if this motif does not model the full
intricacies of GATA3 binding, one would still prefer it ranked above motifs from assays targeting
other GATA family members. Our ability to rank the target motif first mainly provides additional
confirmation that peaKOperformswell and likely has utility in other contexts, including those focused
on differentiating similar motifs.

For OCT4 (also known as POU5F1), we selected the Pou5f1::Sox2 motif (MA0142.1). SOX2, like
OCT4, regulates pluripotency in embryonic stem cells77. The two transcription factors often act
together to regulate gene expression by forming a complex and co-binding to DNA1. Here, however,
the heterodimer motif differs substantially from the OCT4 motif alone, as it additionally contains a
SOX2 motif1.We chose to use the heterodimer motif in assessing our methods because the authors of
the study that generated the OCT4 dataset found a substantially larger proportion of peaks containing
the heterodimer (44.0%) as compared to the monomer (20.6%)34. Upon re-running our analyses
using the monomer motif instead, we found poorer rankings across methods, as expected from this
imbalance of motif types in peaks (see https://doi.org/10.5281/zenodo.3338330). Higher occupancy
of the heterodimer form, however, does not preclude the transcription factor from binding DNA
in its monomer form. Although all methods found the heterodimer motif as the top rank, deciding
upon which motif form to use and how it affects downstream processing would benefit from further
exploration.

We highlighted the ATF3 experiment as a case where peaKO performs poorly, and attributed the
poor performance largely to the dataset’s poor experimental quality. Nonetheless, the low information
content of the ATF3 motif used as ground truth may supply an alternative explanation. In the JASPAR
2016 motif database, ATF3 motif MA0605.1 captures a single core TGACmotif53. A newer version of
this motif (MA0605.2, added in JASPAR 202023), however, contains the canonical ATF/CRE motif,
which appears to better represent ATF3’s typical in vivo homo- or heterodimerization62. Many of the
top motifs returned by peaKO and other methods appear similar to this newer version. This suggests
that peaKO may have performed better than we were able to assess with JASPAR 2016, and highlights
the benefit of peaKO for motif discovery.

Our use of cross-species PWMs potentially limits our findings.We used motifs from the JASPAR
vertebrate collection interchangeably where the known motif did not always originate from the same
species as our ChIP-seq datasets (seeTables 1 and 2). Recently, Lambert et al.42 found that, contrary to
commonly held belief, extensive motif diversification among orthologous transcription factors occurs
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quickly as species diverge. Additionally, PWMs14 themselves, while providing the most commonly
used motif model12,37, may not sufficiently capture nuanced binding differences20,37.

Technical biases can negatively influence peaKO’s scoring metric. Antibody quality, sequencing
biases, and various batch effects, can lead to a failure to recover sufficient peaks or can enrich for
additional off-target peaks. This can, in turn, alter the proportion of peaks in peaKO’s score, changing
the motif ranking, in a potentially confounded manner. Further work is needed to assess the statistical
robustness of peaKO’s score in the face of such biases. Even without that assessment, our empirical
results demonstrate that peaKO’s score remains useful. Furthermore, as we have previously discussed,
ranking discrepancies between motifs become obvious in peaKO results. PeaKO, like the vast majority
of software that works to elucidate transcription factor binding sites, requires sequence-specific
transcription factors that are suitable for narrow peak calling. While this includes the majority of
transcription factors, it implies that this method is not applicable for the analysis of histone marks or
other broad peak targets. Irrespective of improved motif rankings, peaKO facilitates differential motif
comparisons and the generation of potentially improved de novo motifs.

Lastly, we used peaKO along with our other methods to assess the benefit of KO controls over
input, suggesting that peaKO may prove useful for other non-WT/KO differential contexts. CRISPR
epitope tagging ChIP-seq (CETCh-seq), which involves the insertion and expression of FLAG epitope
tags on the target transcription factor64, presents one alternative differential context which may gain
from peaKO. CETCh-seq provides a substantial advantage over traditional ChIP-seq because it only
requires one high-quality monoclonal antibody recognizing the FLAG antigen across any number
of transcription factor experiments. Notably, CETCh-seq also avoids artefacts that may arise from
perturbations of the cellular context in knockout experiments. Preliminary analyses using CETCh-seq
datasets revealed challenges arising from unexpected signal from a shared control of ChIP-seq in
an untagged cell line. Further work should investigate the role of CETCh-seq controls and how they
integrate with peaKO.We expect this work to also prove useful for comparable or enhanced methods,
like CUT&RUN67, which one could similarly improve through careful design of complementary
controls and differential motif analyses.

Similar considerations for the proper use of control sets could also apply to combining replicates.
Combining negative control replicates with the irreproducible discovery rate (IDR) framework48 may
pose problems considering that these datasets represent noise rather than a full range across true
signal and noise. This may present an issue as IDR’s underlying copula mixture model assumes the
existence of an inflection point within the dataset marking the transition between true signal and
noise48.

Conclusion

We present peaKO, a free and publicly available tool for ChIP-seq motif analyses with KO controls
(https://peako.hoffmanlab.org). PeaKO improves over two kinds of differential processing in ranking
the motif of interest.We anticipate that peaKO will prove useful in identifying motifs of novel trans-
cription factors with available KO controls.We hope this will encourage both greater collection and
wider usage of knockout datasets.
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Methods

Overview of ChIP-seq processing and analysis methods

ChIP-seq processing follows this overarching path:

1. subject sequenced reads to trimming and quality control assessment;
2. align reads to a reference genome;
3. call peaks according to significant read pileups; and
4. elucidate de novo motifs and assess peaks for evidence of direct DNA binding.

For some methods, steps 3 and 4 can incorporate information from control datasets.We constructed
two pipelines to compare differential analyses in both of these steps (Figure 1A).

In Pipeline A, we performdifferential analysis withMEME-ChIP50,51.MEME-ChIP uses the de novo
motif elucidation tools MEME7,8 and DREME6, and assesses the central enrichment of motifs in
peaks via CentriMo9,44. CentriMo ranks motifs according to multiple-testing corrected binomial
p-values (non-differential mode)9 or Fisher’s exact test p-values (differential mode)44.

In Pipeline B, we perform differential peak calling through MACS278. While Pipeline B draws
inspiration from the KOIN pipeline35, it does not incorporate the HOMER makeTagDirectory or
annotatePeaks29 steps.We replaced HOMER motif tools29 with those from the MEME Suite10,11.
Both Pipelines A and B incorporate identical pre-processing and alignment steps, described later.
Since both pipelines employ CentriMo in their last step, they generate a list of ranked motifs with
predicted association to the ChIP-seq experiment.

PeaKO:motivation and score

Differential peak calling and differential motif analysis address the same problem of noise removal,
albeit in distinct ways. Therefore, we surmised that by combining the two approaches, the results
from each pipeline could complement and strengthen one another. CentriMo produces a ranked list
of motifs, and each motif has an associated peak set containing a centered window enriched for that
motif.We reasoned that motifs with a large proportion of peaks shared between both pipelines are
likely relevant to the ChIP-seq experiment.We then created a metric that captures this.

PeaKO takes as input the CentriMo output of each pipeline.We modified CentriMo code to output
negative control set peaks associated with each motif in differential mode, since at the time of this
work, the software only output positive peaks. These changes have now been incorporated into the
MEME Suite, and are available from all versions since 5.0.0. From the CentriMo results peaKO filters
out motifs with multiple-testing corrected p-values > 0.1.

PeaKO computes a ranking metric 𝑟 that represents the proportion of high-quality 𝐴WT peaks
found in set 𝐵 but not in set 𝐴KO. To do this, peaKO calculates the overlap between peak sets 𝐴WT
and 𝐴KO from Pipeline A, and peak set 𝐵 from Pipeline B through a series of set operations:

𝑟 =
|(𝐴WT−𝐴KO)∩𝐵|

|𝐴WT|
.

PeaKO performs this by employing pybedtools (version 0.7.7; BEDTools version 2.26.0)18,60. First,
peaKO removes any𝐴WT peak overlapping at least 1.0000 bp of an𝐴KO peak (pybedtools subtract
-A; Figure 1B). Second, peaKO finds regions overlapping by at least 1.0000 bp between remaining𝐴WT
peaks and 𝐵 peaks (pybedtools intersect -wa). Third, peaKO applies pybedtools mergewith
default settings to overlapping regions, which merges identical regions and ensures that the ranking
metric 𝑟 has a maximum value of 1. PeaKO’s final output consists of a list of motifs ranked according
to this metric.
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Datasets

We analyzed a total of 8 publicly available ChIP-seq experiment datasets with KO controls (Table 1). Of
these 8, we selected two datasets (GATA3 and SRF) fromKrebs et al.35, while we selected the remainder
by searching for KO-associated ChIP-seq datasets on GEO21. We accessed datasets through GEO,
except for the SRF dataset29, available on Zenodo (https://doi.org/10.5281/zenodo.3405482). ATF3
experiments come from human tissue, while the other experiments come from mouse tissue.

Motifs

We downloaded the collection of vertebrate motifs in MEME format11 from the JASPAR CORE 2016
motif database, which consists of curated PWMs derived from in vivo and in vitro methods53.

We defined each canonical motif from the JASPAR collection as the motif matching the tar-
get transcription factor except in two cases: OCT4 and CHOP (Table 2). In both cases, we instead
chose motifs derived from their common heterodimer complex forms. CHOP or DDIT3 likely binds
DNA as an obligate multimer41,57, so we used Ddit3::Cebpa (MA0019.1). The CHOP monomer mo-
tif closely resembles its C/EBP𝛼 heterodimer motif, relative to its Cis-BP (version 1.02)75 DDIT3
motif (T025314_1.02, derived from HOCOMOCO38). For OCT4, we used the Pou5f1::Sox2 motif
(MA0142.1; see Discussion).

Weprovidedmotifs toCentriMo9,44 for central enrichment analyses and toTomtom26 for similarity
assessments.

Pre-processing, alignment, and peak calling

Before alignment, we trimmed adapter sequences with TrimGalore! (version 0.4.1)36 which uses
Cutadapt (version 1.8.3)52. We assessed sequencing data quality using FastQC (version 0.11.5)2.
We used Picard’s FixMateInformation and AddOrReplaceReadsGroups (version 2.10.5)15 and
GATK’sPrintReads (version3.6)54 to preventGATKerrors.Then,wealigned reads toGRCm38/mm10
or GRCh38/hg38 with BWA bwa-aln (version 0.7.15)46 (as recommended47, since some datasets
have readsll 70.0000 bp), using Sambamba (version 0.6.6)71 for post-processing.

Next, we called peaks using MACS2 (version 2.0.10)78 with parameters -q 0.05. In Pipeline A,
we calledWT and KO peaks separately. In Pipeline B, we provided the KO dataset as a control to the
WT dataset during peak calling (parameter -c), resulting in a single set of peaks.

Combining replicates

For MEF2D, OCT4, and TEAD4 experiments which consist of biological replicates (see Table 1),
we processed replicates using the ENCODETranscription Factor and Histone ChIP-seq processing
pipeline39. The ENCODE pipeline replaces the pre-processing, alignment, and peak calling steps
described earlier.We chose default parameters for punctate (narrow peak) binding experiments in all
steps. Instead of a q-value threshold, this pipeline caps the number of peaks (𝑛 = 500000.0000) to
ensure that the IDR framework48 can analyze a sufficient number of peaks across a full spectrum.
IDR combines peaks across replicates based on the assumption that strong peaks shared across
replicates represent true binding events, while weak, one-off peaks represent noise. To emulate the
first steps of Pipeline A and Pipeline B, we either ran the ENCODE pipeline onWT replicates and KO
replicates separately (for Pipeline A), or we ran the ENCODE pipeline on allWT and KO replicates
simultaneously, setting KO replicates as controls (for Pipeline B). For downstream motif analyses, we
used the combined “optimal” peak sets output by IDR.
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Motif analyses with MEME-ChIP

In both pipelines, we employed MEME-ChIP50,51 from the MEME Suite10,11 for motif analysis.We
used MEME-ChIP version 4.12.0, except for CentriMo, which we compiled from version 4.11.2 and
modified to output negative sequences. MEME-ChIP performs motif discovery with complementary
algorithms MEME7,8 and DREME6, and motif enrichment with CentriMo9,44.

We extended MACS2 narrowPeak regions equidistantly from peak summits to create a uniform set
of 500.0000 bp centered peaks50. Then, we extracted underlying genomic sequences using BEDTools
slop (version 2.23.0)60 from a repeat-masked genome.We masked the genome with Tandem Repeats
Finder (TRF) (version 4.09)13 with options -h -m -ngs and parameters 2 7 7 80 10 50 500
for mouse (as done originally by Benson13), and options 2 5 5 80 10 30 200 for human (as
recommended by Frith et al.24).

In Pipeline A, we provided the negative control set in addition to the WT set, running MEME,
DREME, and CentriMo in differential mode. In ranking known motifs, we ran CentriMo providing only
JASPAR database motifs. Differential CentriMo mode ranks motifs according to Fisher E-values. Since
the E-value is the p-value (atmost 1) times the number of tests, the E-value cannot exceed the number
of motifs in the provided database. Once differential CentriMo reaches the maximum E-value, it starts
ranking motifs alphanumerically by motif identifier. Therefore, we do not consider the reported, but
relatively meaningless, ranks of motifs with non-significant Fisher E-values. In ranking de novomotifs,
we ran CentriMo providing only MEME and DREME motifs.

Pooling de novomotifs

Each run of MEME or DREME creates new and globally non-unique identifiers for output motifs.
This leads to recurring identifiers that refer to different motifs across multiple runs. To consolidate
identifiers across multiple MEME and DREME runs, we modified identifiers to reflect the pipeline
from which they originate.We then pooled de novo motifs across methods and re-ran the CentriMo
step of each pipeline, providing the pooled database, allowing for accurate comparisons.

Assessing similarity of de novomotifs to knownmotifs

For each experiment, we quantified the similarity of de novo motifs to the known JASPAR motif using
Tomtom26. Tomtom compared the de novo motifs to the JASPAR motif database through ungapped
alignment across columns26. Tomtom generated a list of known motif matches, ranked by increasing
Bonferroni-corrected p-values. An exact match between a de novo motif and a JASPAR motif would
result in the JASPAR motif’s ranking first in this list of matches.

Comparing input to knockout controls

For experimentswith associated input controls, we re-ran our knownmotif and de novomotif analyses
swapping out KO datasets for input datasets.We compared peaks between sets using UpSet (version
1.4.0) plots45, via Intervene (version 0.6.2)32, which calculates genomic region overlapswith BEDTools
(version 2.26.0)60.
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Availability

PeaKO is available at https://peako.hoffmanlab.org. We additionally include Python source code
for peaKO and both pipelines at: https://github.com/hoffmangroup/peako. Persistent
availability is ensured by Zenodo, in which we have deposited the version of our code we used
(https://doi.org/10.5281/zenodo.3338324), its downstream CentriMo and peaKO outputs
(https://doi.org/10.5281/zenodo.3338330), and our changes to the CentriMo source code and the
Linux x86-64 binary that we used (https://doi.org/10.5281/zenodo.3356995). All source code is
licensed under a GNU General Public License, version 3 (GPLv3), except for CentriMo, which retains
its original license.
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