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Abstract

Caspases are a critical class of proteases involved in regulating programmed cell death and other biological
processes. Selective inhibitors of individual caspases, however, are lacking, due in large part to the high
structural similarity found in the active sites of these enzymes. We recently discovered a small-molecule
inhibitor, 63-R, that covalently binds the zymogen, or inactive precursor (pro-form), of caspase-8, but not other
caspases, pointing to an untapped potential of procaspases as targets for chemical probes. Realizing this goal
would benefit from a structural understanding of how small molecules bind to and inhibit caspase zymogens.
There have, however, been very few reported procaspase structures. Here, we employ x-ray crystallography to
elucidate a procaspase-8 crystal structure in complex with 63-R, which reveals large conformational changes
in active-site loops that accommodate the intramolecular cleavage events required for protease activation.
Combining these structural insights with molecular modeling and mutagenesis-based biochemical assays, we
elucidate key interactions required for 63-R inhibition of procaspase-8. Our findings inform the mechanism of
caspase activation and its disruption by small molecules, and, more generally, have implications for the
development of small molecule inhibitors and/or activators that target alternative (e.g., inactive precursor)

protein states to ultimately expand the druggable proteome.
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Introduction

Caspases are cysteine proteases responsible for driving many cellular activities and are most well-known for
inducing and executing apoptosis. However, caspases are also involved in promoting cellular activation,
differentiation, and inflammation events, and their role in these processes is less understood'®. Aberrant
proteolysis by this family of proteases can have devastating results, including the proliferation of cancers’,
neurodegeneration®®, and immunological disorders'®'!. As such, caspases are heavily regulated within the
cellular environment. They are synthesized as a single polypeptide chain with an unformed active site and are
maintained in this inactive state until a cellular stimulus triggers proteolysis of the scissile bond after distinct

aspartate residues’?3.

Efforts to develop selective caspase inhibitors and molecular probes have largely focused on compounds that
target the active caspase conformers'. Unfortunately, as numerous molecular structures of active caspases
have revealed, this family of proteases share highly conserved active site and molecular architecture, leading
to significant overlap in substrate specificity''°. This general conservation is supported by in vitro studies
using short fluorogenic peptide-based substrates and inhibitors with electrophilic warheads'®'”. Therefore,
peptide-based inhibitors, such as the commonly used zVAD-fluoromethyl ketone (zZVAD-fmk), are hampered by
limited selectivity profiles against both caspase- and non-caspase proteases. Given the rapid rate of activation
of most caspases and the subsequent cleavage of downstream executioner caspases, inhibition of active
conformers will likely fail to fully block the ensuing consequences of caspase activation. Allosteric inhibitors,
such as compounds that target the caspase dimer interfaces have been proposed as an alternative strategy to
improve the selectivity profile of caspase inhibitors'®'°. To date, allosteric caspase inhibitors are only available

for caspase-1 and -7.

The promiscuity and incomplete inhibition of active caspase inhibitors could be circumvented by an alternative
strategy of targeting procaspases. The maturation of the pro- (inactive or zymogen) enzymes is the primary
mechanism of caspase regulation in the cellular environment (Fig. 1A). Although the specific molecular

mechanism of activation for individual caspases remains somewhat unresolved, studies have established that,
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for initiator caspases (i.e., caspases-2, -8, -9, and -10), proteolysis is triggered by transient proximity-induced
homodimerization followed by intramolecular proteolysis?>2'. Executioner caspases (i.e., caspases-3 and -7)
are subsequently subjected to proteolysis by activated initiator caspases. Of the 12 known human caspases,
only procaspases-1, -3, and -7 have x-ray crystal structures?-2*. An NMR structure of the procaspase-8
monomer has also been reported®. Consequently, our understanding of the molecular mechanisms of
caspase activation, particularly, the determination of whether the processing of caspases occurs in cis
(intramolecular) or in trans (intermolecular) have been limited. Studies have also indicated that the somewhat
cryptic enzymatic activity of the unprocessed procaspase likely contributes to a variety of non-apoptotic

activities assigned to caspases®?’.

We recently identified several non-peptidic, selective inhibitors of procaspase-828, an initiator caspase that
contributes to both extrinsic (Fas ligand-induced) and intrinsic apoptosis?®3°. These compounds (Fig. 1B)
function by irreversible alkylation of the catalytic cysteine in the inactive precursor state of the enzyme, thus
blocking activation and subsequent cleavage of downstream executioner caspases-3. The most potent
compound, 63-R, featured an alpha-chloroacetamide electrophile coupled to an N,N-disubstituted (R)-3-
aminopiperidine phenyl core that is further functionalized with a 4-morpholinobenzoyl substituent. Targeting the
procaspase conformer is akin to drugging inactive conformations of kinases, a method that has yielded potent

and selective inhibitors of several kinases, including the Abl kinase inhibitor imatinib3'-34,

We report the crystal structure of procaspase-8 in complex with 63-R, which reveals that 63-R binds in a pose
distinct from that characterized for inhibitors of processed, active forms of caspases. The structure also
uncovers large conformational changes in active-site loops that accommodate the intramolecular cleavage
events required for caspase-8 processing and activation. To identify and validate key residues involved in
ligand recognition and binding, including those not resolved in the crystal structure, we combined molecular
modeling with point mutagenesis and binding studies. This hybrid computational-biochemical approach
uncovered residues involved in recognition of 63-R, another less potent inhibitor 7, and an alkyne-containing

clickable analog of 7 (61). Our findings also aided in the rationalization of an inactive, structurally related
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compound (62) (Fig. 1B). We anticipate that the integrated and interdisciplinary strategy described herein will
find widespread utility for the identification and functional validation of key structural features missing from

crystal structures.

Results

X-ray structure of procaspase-8 compared to active caspase-8

We determined the x-ray crystal structure of procaspase-8 (residues 223-479) in complex with 63-R to 2.88 A
resolution (PDB 6PX9) (Fig. 2 and Supplementary Table 1). The final Reryst and Rsee Values were 28.9% and
36.6%, respectively, with 89% of the residues residing the most favored region of the Ramachadran plot
(Supplementary Table 1). The structure solution contains 6 molecules per asymmetric unit that form 3
biologically relevant homodimers. Residues 362-388, 409-419, and 453-460 of all 6 subunits lacked
interpretable density. All three missing sequences are localized to loops that are exposed to solvent channels,

and the missing density suggests these loops are highly flexible.

Superposition of procaspase-8 with the structure of active caspase-8 in complex with Ac-3Pal-D-BhLeu-hLeu-
D-AOMK (PDB 4JJ7) shows the zymogen core scaffold is highly conserved with the active conformer (Fig.
2A,B). The average main-chain root-mean-square deviation (RMSD) is 0.39 A (191/256 procaspase-8 Ca.).
The average RMSD is 0.93 A for all atoms, with a maximum of 2.43 A (residues 223-358, 397-403, 421-452,
463-478). The most significant conformational change with respect to the active form is loop 1 (residues 389-
396). In the procaspase-8 structure, loop 1 is well positioned over the dimer interface, as demonstrate by clear
electron density (Fig. 2C,D), and this orientation is similarly observed for loop 1 in the procaspase-7 crystal
structure and procaspase-8 NMR solution structure??25. Upon maturation, loop 1 flips approximately 180° upon
cleavage of the activation linker (residues 375-384) and results in the N-terminal region of loop 1 (residues
359-365) contributing key residues to the mature active site, while the C-terminal region of loop 1 (residues
390-396) is solvent exposed (Fig. 2A,C). The primary interactions that position loop 1 are unique to each of the
homodimer subunits and thus account for the dimer interface residing on a non-crystallographic symmetry axis.

Interestingly, loop 1 of both subunits are positioned by residues within loops 1, 2, and 3 of the opposing
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subunit. The side chain of Arg391 and the main-chain carbonyl of 11e393 of subunit B are both within hydrogen
bonding distance to the side chain of GIn465 of subunit A (Fig. 2E). Likewise, both the side chain and main-
chain carbonyl of Asp395 from subunit B interact with the main-chain amide of Met463 from subunit A (Fig.
2E). Conversely, the Asp395 side chain of subunit A forms potential hydrogen bonds with the side chain of
Thr405 and main-chain amide from GIn462 of loops 2 and 3, respectively, from subunit B. An important
consequence of the intact procaspase-8 loop 1 is the 3.1 A shift (as measured by Ca) of the catalytic Cys360
residue relative to the activated state (Fig. 2F and Supplementary Fig. 1). The displacement of Cys360 partially
occludes the side chain from solvent exposure as well as misaligns the thiol with respect to His317, which is

critical to promoting the nucleophilicity of Cys360 in the active caspase-8 structure (Fig. 2F).

In addition to the loop 1 rearrangement, loop 2 (missing residues 409-419) likely has a large conformational
shift from the inactive to active conformers. In the active state, residues in loop 2 provide key active site
pockets that are required for the recognition and positioning of the non-prime side region of peptide/protein
substrates (C-terminal to the scissile bond) (Fig. 2A). Despite much of loop 2 lacking electron density in the
procaspase-8 structure (Fig. 2G; see also Supplementary Fig. 1), the N-terminal residues 404-408 of loop 2
form a B-strand that provides a hydrogen-bond network with the neighboring strand containing Cys360 (Fig. 2B
and Supplementary Fig. 1). As such, the trajectory of the beginning residues within the loop suggest a distinct
conformational orientation compared to the active state. Unfortunately, no residues that comprise loop 3

(residues 453-462) are resolvable in the procaspase structure, suggesting that this region is quite flexible.

Procaspase-8 interactions with 63-R

Crystallization of precursor forms of caspases has likely proven technically challenging due to their structural
flexibility, and, in this regard, the procaspase-8 structure appears to have been facilitated by covalent
modification with 63-R. Electron density was visible for inhibitor 63-R covalently attached to all subunits;
however, contiguous density was observed only in subunit B and we opted to model 63-R into this monomer
only (Fig. 3A and Supplementary Fig. 2). We also subjected the procaspase-8 crystals to LC-MS/MS analysis

to verify that the protease was modified by 63-R. Crystals were harvested, washed, solubilized in urea, and
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digested with trypsin. The trypsin-digested peptides were analyzed by liquid chromatography tandem mass
spectrometry using an Q Exactive™ mass spectrometer. The LC-MS/MS analysis confirmed that Cys360 was

alkylated by 63-R (Fig. 3 and Supplementary Table 2).

The most significant interaction between 63-R and procaspase-8, aside from the covalent bond between the
catalytic Cys360 and the inhibitor, is a weak hydrogen bond formed between the side chain of His264 and the
oxygen on the morpholino group (Fig. 3B). A further hydrogen bond is formed with the Asn261 with an adjacent
subunit in the crystal lattice (Fig. 3B). Due to the lack of any other polar interactions between the ligand and
protein, we hypothesize that the driving force for the procaspase-8-ligand complex is primarily due to
hydrophobic interactions. For example, the phenylamine is nestled within a pocket formed by GIn358, Arg260
and Trp420 (Fig. 3B). The piperidine is positioned by the side chain of Trp420 and the benzoyl group has
minimal interactions with the protein, leaving the carbonyl exposed to solvent. The morpholino group of 63-R is
sandwiched into a pocket formed by residues His264 and Leu265 (Fig. 3B). We believe that the density of the
ligand in subunit B is likely continuous due to the additional stability afforded by the potential crystal contact
network. The ligand may also reduce the entropy of crystallization by stabilizing the crystal lattice.
Superposition of active caspase-8 and procaspase-8 structures show that loop 2 residues 412-418 would

directly overlay with the procaspase-8 inhibitor and clearly prevents 63-R from binding the mature caspase.

Procaspase-8 loop modeling

We next used homology modeling and docking to generate a complete model of the structure of procaspase-8
bound to inhibitors 63-R, 7, as well as the inactive compound 62. We generated approximately 5,000 models of
procaspase-8 to gain insight into the possible conformations of the missing active site loops 1 (residues 362-
388), 2 (residues 409-419), and 3 (residues 453-460) and their respective interactions with 63-R. The modeling
was restricted to the missing regions from the crystal structure and all residues with observable electron
density were fixed in position. These models were used to predict 63-R-binding residues that lacked electron

density in the x-ray structure. Out of the 5,000 models of the homodimer comprised of subunits A and B, we
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selected the best 1,000 models based on the energy score provided by MODELLER to explain and rationalize

the inhibitor SAR and the respective selectivity of the molecules for procaspase-8.

Our analysis confirmed the identities of all residues in close contact (< 4 A) with 63-R and suggested additional
contacts from residues within the floppy regions of the loops, including most notably Asn408 (side-chain
occupancy: 25.9%; main-chain occupancy: 5.8%); b) Cys409 (21.3%; 6.4%); and c) Asn407 (4.9%; 45.5%)
from loop 2 (Fig. 4). These residues are all in close contact with the phenylamide moiety of 63-R (Fig. 4). In
addition, we predict a number of loop 2 residues also transiently interact with 63-R with an occupancy < 10 %,
such as Pro415, Ser411, Ala416, Arg413 (ranked in decreasing order). We observed that the flexibility of loop
2 likely stems from Gly418, which does not interact directly with 63-R. Residues in loops 1 (with the exception
of Cys360) and 3 are predicted to have no interactions with 63-R (Fig. 4). It is important to highlight limitations
of the models, which are based on the crystallographic template, and therefore only missing loops are
considered as flexible, while the rest of the protein and the inhibitor are fixed in position. In non-crystallographic
condition, the position of 63-R and the flanking loop 250-266 are expected to present additional flexibility and
may limit the accuracy in the binding contributions by specific residues, and the resulting consequences of 63-
R binding predicted to occur with mutational analysis. Our prediction accuracy is inversely proportional with
respect to their distances from the crystallographically resolved residues. The residue occupancy calculated
from the models was used to guide the selection and prioritization of side-chain mutagenesis to rationalize
inhibitor SAR via perturbation of procaspase-8 conformational stability/dynamics and/or introduction of steric
clashes between 63-R and the procaspase-8 binding site. Both methods of perturbance would result in a

measurable and quantitative reduction in ligand binding.

Point mutagenesis and compound binding studies

We next aimed to biochemically validate our structural model (Fig. 4) and determine if the model accurately

predicts residues critical for molecular recognition of electrophilic compounds that covalently label Cys360 in
the specific active-site conformation formed in procaspase-8 (63-R and 7). We also sought to rationalize the

previously observed inactivity of compound 622¢. We theorized that residues proximal to 63-R would be
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partially responsible for the potency and selectivity of compound binding and that mutation of these residues
would alter compound affinity for procaspase-8. Among the residues within the procaspase-8 active site, the
following residues were prioritized for mutational analysis, including: a) Arg260 (predicted to increase the
nucleophilicity of Cys360); b) Cys409, the backbone of Asn407, and to a lesser extent Arg258 (predicted to
form the compound binding pocket lid); ¢) Asp266, GIn358 and Trp420 (comprise the bed of the binding site,
but do not directly hydrogen bond with either 63-R and 7) - also notable, Asp266 and GIn358 also contribute to
the hydrogen bond network that likely stabilizes the Cys360 thiolate; d) His264 predicted to form a putative H-
bond with the morpholino group of the ligand; and Asn261, which was not predicted to interact with the ligand
outside of the crystal lattice, and should then serve as a control mutation. All mutant proteins were generated
on the uncleavable procaspase-8 construct (see Methods for details). As the Asn407 and Cys409 side chains
were hypothesized to form a pocket, both residues were mutated to larger, bulkier groups (N407W and
C409W, respectively) to eliminate the pocket and block compound binding. All other resides were mutated to
alanine, including R260A, H264A, N261A, D266A, Q358A, and W420A. Unfortunately, the N407W and D266A

constructs failed to yield soluble, folded proteins and were removed from further study.

Using a competitive gel-based activity-based protein profiling (ABPP) assay, we assessed the ability of the
W420A and the H264A proteins to bind to compounds 7 and 63-R (Supplementary Fig. 3). Briefly, recombinant
mutant proteins in cellular lysates were incubated with the indicated compounds at the indicated
concentrations for 1h. The mixture was then chased with the alkyne-containing clickable analog of compound 7
(61 at 10 uM). Direct blockage of procaspase-8 labeling by 61 with pre-incubations in the presence of 63-R or
7 was visualized by Cu(l)-catalyzed azide-alkyne cycloaddition (CuUAAC or “click”) conjugation to rhodamine-
azide followed by SDS-page and in-gel fluorescence analysis. We were surprised to observe no difference in
compound labeling of the W420A compared to the wild-type procaspase-8 (Supplementary Fig. 3A). Next, we
chose to investigate the contributions of His264, which can form a labile hydrogen bond with the ligand in the
crystal structure. The H264A mutant protein showed comparable compound labeling to that observed for the
wild-type procaspase (Supplementary Fig. 3B), confirming the negligible contribution of this interaction to

ligand binding.
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We hypothesized that the dynamics of the active site loops might contribute to compound binding in a manner
that would not be captured by the x-ray structure based on these unexpected results. Given that Gly418 was
observed to contribute to loop dynamics in our modeling studies, we postulated that mutation of Gly418 to an
alanine would affect the loop dynamics and potentially alter the ligand binding. As such, we added the G418A
and G418L mutants to our panel of proteins to test. Competitive gel-based ABPP experiments were performed
at a single compound concentration of 10 uM, where 63-R and 7 completely (>90%) or partially (~25%) labeled
procaspase-8, respectively, and 62 did not label, consistent with our previous study (Fig. 5A)?2. As shown
previously, 63-R fully competes for labeling of procaspase-8 by 61, indicating a high-potency labeling event at
10 uM. 7 affords ~75% decrease in labeling by 61, and 62 exhibits no appreciably competition (Fig. 5B;
procaspase-8 gel band). Quite surprisingly given its relative distance from the 63-R (about 9.7 + 1 A on
average across the models), the G418A mutant exhibited striking changes in SAR across the compounds
tested. G418A did not alter labeling by the 4-amino-piperidino containing 7 but did significantly decrease
competition of 61 by the 3-amino-piperidino containing 63-R (Fig. 5A-C). While not conclusive, these results
indicate that the dynamics and flexibility of loop 2 may contribute to the improved potency of 63-R with respect

to 7 (prior calculated ICsoapp Of 0.7 and 5.0 uM, respectively?®).

Using our competitive ABPP assay, we next assessed the ability of the procaspase-8 mutant panel (N261A,
C409W, Q358A, R260A, and R258A) to bind compounds 7, 62, and 63-R (Fig. 5A,D-I and Supplementary
Figs. 4 and 5). The R260A mutation, which is soluble and folded comparably to WT, as indicated by CD,
showed no appreciable labeling by 7, consistent with R260 forming a key activating hydrogen bond with the
catalytic Cys360 thiol. The bulky C409W mutation, which is predicted to partially occlude the binding site,
significantly decreases labeling by 61 and nearly completely blocks competition by pre-treatment with 7 or 63-
R and agrees with the loop modeling. Mutation of Arg258, suspected to form part of the lid, did not significantly
decrease the apparent potency of compound 7 or 63-R. These results are consistent with the low occupancy of
Arg258 around 63-R and lack of direct contacts with the ligand. The Q358A mutation, significantly decreased

the intensity of protein labeling by 61 and modestly reduced competition of 61 by both 63-R and 7, which is
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consistent with our model that Q358, together with other residues, forms the bed beneath the compound, but
does not directly hydrogen bond to the ligand. While the N261A mutation caused a slight decrease in 61
labeling, the mutation did not significantly alter the overall binding of 63-R and 7 (Fig. 5H). We confirmed that
the purified proteins were folded properly as measured by circular dichroism (CD) (Supplementary Fig. 4A).
Similar protein concentrations for all mutant proteins in lysates were further confirmed by immunoblot

(Supplementary Fig. 4B).

We next calculated the apparent ICso values of labeling of the Q358A, C409W and G418A mutant proteins by
63-R and 7. As with the single dose experiments, proteins were spiked into lysates and labeled treated with
either 63-R or 7 at a range of concentrations (500 nM — 100 uM) followed by labeling with 61 (10 uM) and the
apparent ICsp values (Fig. 51 and Supplementary Figs. 6 and 7) were calculated from the competition of
labeling by 61. For the G418A mutation there is no significant change in the ICso of 7. In contrast, G418A
affords a 10-fold increase in the apparent ICso of 63-R from 0.75 uM for procaspase-8 (95% confidence interval
(Cl), 0.62-0.94) to 7.14 uM for the G418A mutant protein (95% ClI, 3.12—14.7), which decreases the potency of
63-R to approximate that of 7, which labels procaspase-8 with an apparent ICso value of 4.1 uM (95% CI, 2.94-
5.80). C409W significantly increases the ICso values of both 7 and 63-R, whereas Q358A only modestly alters
the apparent ICso values of both 63-R and 7. Notably, all mutant proteins remained resistant to labeling by
control probe 62, which showed no appreciable competition of labeling by 61, consistent with our previous

studies.

Pose prediction studies by molecular docking

To further verify and test the x-ray structure and mutagenesis data, we performed silico docking experiments of
63-R, 63-S, 7, and 62 with procaspase-8. The covalent dockings were based on the assumption that the four
structurally related compounds should all assume similar covalently bound poses. As such, the position of the
63-R phenylamine was assigned as having the highest structural complementarity to the procaspase-8 binding
site and was used as a reference anchor for the docking analysis. The predicted position of the inactive 62 1-

naphthyl was used for comparison with the rest of the molecule assuming a similar binding mode as 63-Rin
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the x-ray structure (Fig. 3A). Docking was performed on the 5000 loop models of procaspase-8 generated in
absence of 63-R, and the best docking score poses were selected for each molecule. Docking success rates
were defined as the percentage of correctly placed rings with an RMSD < 1 A (calculated on the aromatic ring
centroids) from the x-ray coordinates. Consistent with our previous biochemical studies, among all docked
ligands, the highest success rate was achieved for 63-R, which correctly positioned the phenylamine ring in
24% of the 5000 models (Fig. 6A,B). We had previously found that the enantiomer of 63-R, compound 63-S
was nearly ten-fold less potent?. In our docking studies the success rate of 63-S was significantly lower (14%).
For 7 and its alkynylated analogue 61, which in ABPP assays, both show similar potency to 63-S the docking
success rate was lower (6 and 8%, respectively). Gratifyingly, the inactive naphthyl compound 62 shows the

lowest success rate with 3% (Fig. 6A,C).

The capability of molecules to dock by engaging the hydrophobic pocket of the phenylamine ring appears to
partially recapitulate the trend found in the gel-based ABPP assays (Fig. 5). For 62, modeling shows that only
a small fraction of the conformationally accessible loop states are compatible with binding, suggesting that the
steric clash of the naphthyl group with the hydrophobic cavity near loop 2 is likely the cause of the observed
inactivity in ABPP studies (Fig. 5). Conversely, when modeling the impact of the W420A mutation, we found
that the absence of the aromatic side chain has a detrimental effect on docking accuracy, while no effect was
found in the mutagenesis experiments (Supplementary Fig. 3). This result indicates that either procaspase-8
undergoes a conformational reorganization to compensate for the W420A mutation, or that the W420A
substitution might not impact the initial non-covalent interactions and subsequent covalent alkylation of
procaspase-8 by 63-R. Also, while experimental data on 61 and 7 show comparable potency with 63-S, their
docking success rates are smaller than expected (Fig. 6D,E). These shortcomings are likely due to the
approximations used in the simulations, including the bias of the loop modeling based on the complex with 63-
R, the protein maintained as rigid during dockings, and docking scoring function limitations. Overall, the
docking results show that loop 2 contributes significantly to ligand binding, and our results underscore the
general utility of docking studies in characterizing the potential contributions of disordered regions of proteins

to molecular recognition of small molecules.

11


https://doi.org/10.1101/721951

bioRxiv preprint doi: https://doi.org/10.1101/721951; this version posted August 5, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Discussion

Our elucidation of the first crystal structure of procaspase-8 in complex with 63-R provides substantial insights
into the unique active-site features of precursor caspases that may afford greater specificity for interactions
with small-molecule inhibitors compared to the more classical targeting of mature caspase proteases. In the
zymogen structure, which is suboptimal for protease activity, key catalytic residues and active site loops are
shifted significantly from their positions observed in the structures of the mature, fully activated enzyme, and
the locations of these residues overlay closely with the corresponding residues in the structure of procaspase-7
(Fig. 7)?2. As was observed for the prior procaspase-7 structure, we found significant missing density for three
highly flexible active site loops, which we postulate form a lid that partially occludes the active site. One of
these loops, loop 1, is cleaved during proteolytic activation of caspase-8. Given the proximity of these loops to
the active site and key contributions to caspase activation, we speculated that these loops might, at least in
part, be contributing to recognition of 63-R. To test this theory, we used molecular modeling to generate a
series of high confidence energy minimized models of all three loops in the procaspase-8 conformer. This
hybrid structure-modeling approach identified several key residues that were predicted to interact with 63-R.
Consistent with the observed missing density, our model supported that the loops are highly disordered and
can adopt multiple conformations. These results are consistent with prior NMR studies of procaspase-8 that
revealed the highly dynamic nature of these loops (Fig. 7). We anticipate that our hybrid method will prove

generalizable for a wide range of structures that harbor intrinsically disordered regions.

A key conclusion from the combined x-ray structure and modeling studies is that nearly all observed
interactions between the covalent inhibitor 63-R and the protein are hydrophobic. Only one potential weak
hydrogen bond was identified with His264, and mutation of this residue did not alter the potency of 63-R,
suggesting a negligible role of this interaction in stabilizing ligand binding. This near complete absence of
hydrogen bonding interactions is unexpected given the relative potency of the optimized lead inhibitor.
Although it is possible that the compound is recognized purely based on hydrostatic interactions, another

explanation is that the compound's pre-alkylation binding pose is distinct from the final pose observed in the x-
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ray structure. Future structural studies using non-covalent compounds and simulations of the binding process
should help to delineate the mechanism of compound binding and subsequent alkylation. However, such
studies likely will prove challenging due to the difficulties associated with obtaining diffraction quality crystals
for both the pro- and active forms of apo caspase-8, which may be better suited to other structural methods,

such as NMR or cryo-electron microscopy.

Our structure-guided mutagenesis study provides a map of critical residues around the procaspase-8 binding
site that contribute to inhibitor potency and selectivity. Many of the residues identified by mutagenesis are near
to the co-crystallized 63-R and are likely to interact with the compound directly. Quite strikingly, mutation of
Gly418, which is located nearly ten angstroms away from the compound, significantly altered the observed
SAR, likely due to a reduction in flexibility of loop 2. The relative sensitivity of the protein to mutations at the
loop 2 hinge region is, perhaps, not surprising, given the significant repositioning of this loop to form the active
conformation. In fact, the portion of loop 2 that forms part of the active site of active caspase-8 and occupies
the same space as the covalent inhibitor in the procaspase-8 structure. This suggests that the inhibitor may be
recognized by the protein as a mimic of this active site loop. Future studies that use peptide or peptidomimetic

molecules that mimic this loop may enable further exploration of this model.

By integrating X-ray structural data with homology modeling, docking, and focused mutagenesis, we developed
a multidisciplinary approach to refine and analyze the structure and mode of inhibition of procaspase-8. The
resulting structure-model hybrid revealed the large conformational space of disordered active site loops and
rationalized the observed SAR of our compound series. Our approach should readily translate to a wide range
of other structures and should prove particularly useful for analysis of both reversibly and irreversibly inhibited
protein targets. We believe that this structure provides the groundwork for further efforts to elucidate the
complete structure of procaspase-8. The SAR and the mutagenesis data presented here lay the foundations
for more in-depth studies toward optimized inhibitors with greater activity and proteome-wide specificity. Given
the high sequence and structural homology of all caspases, and particularly between caspase-8 and caspase-

10, we also anticipate that this structure may reveal key features that distinguish caspase-8 and -10 that can

13


https://doi.org/10.1101/721951

bioRxiv preprint doi: https://doi.org/10.1101/721951; this version posted August 5, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

be leveraged to ultimately generate caspase-10 selective inhibitors, which have so far eluded our medicinal
chemistry efforts. Such studies will require more extensive biochemical and medicinal chemistry efforts, and it
will be essential in the application of more extensive computational approaches (e.g., molecular dynamics
simulations and free energy calculations) to better capture the structural heterogeneity of the disordered

regions of the protein and characterize their role in ligand recognition.

Methods

Procaspase-8 expression and purification

Procaspase-8 is over-expressed as a N-terminal Hise-tag fusion from E. coli BL21DE3pLysS (Strategene) in a
pET23b vector. Cells were grown in 2xYT media supplemented with 50 ug/ml ampicillin and chloramphenicol
at 37 °C to an OD600 nm of 0.6-0.8. Flasks were then transferred to 12 °C and protein expression was
induced with 220 uM IPTG for 16h. Cells were immediately harvested and resuspended in ice cold 100 mM
Tris, pH 8.0 and 100 mM NaCl (buffer A) and subjected to 3 cycles of lysis by microfluidization (Microfluidics).
The cell lysate was clarified by centrifugation at 14,500 x g for 8 min at 4 °C and soluble fractions were loaded
onto a 5 mL HisTrap FF crude Ni-NTA affinity column (GE Amersham) pre-equilibrated with buffer A and eluted
with buffer A containing 250 mM imidazole. The eluted protein was immediately diluted 5-fold with buffer B (20
mM Tris, pH 8.0) and purified by anion-exchange chromatography (HiTrap Q HP, GE Amersham) with a 20-
column volume gradient to 50% of buffer B containing 1 M NaCl. Fractions corresponding to procaspase-8

were pooled and immediately stored at -80 °C.

Procaspase-8 mutation

The expression construct that encodes the Hise-tag zymogen form of caspase-8 (residues 214-479 with D374A
D384A, C409S, and C433S mutations) to site directed mutagenesis to generate R260A, G418A, C409W,
N261A, R258A mutations. Proteins harboring these mutations were expressed and purified from E. coli as

described for procaspase-8.

Western blot analysis
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The concentration of recombinant procaspase-8 proteins was calculated by NanoDrop™ and the final protein
concentrations adjusted to 500 nM in clarified HEK 293T cellular lysates. The procaspase-containing lysates
were then resolved by SDS—-PAGE and transferred to PVDF membranes, blocked with 5% milk in TBST and
probed with 6x-His Tag Monoclonal Antibody (HIS.H8) (ThermoFisher MA1-21315, 1:3000). Blots were
incubated with primary antibodies overnight at 4 °C with rocking and were then washed (3x5min, TBST) and
incubated with secondary antibodies (LICOR, IRDye 800LT goat anti-mouse, 1:10,000) for 1h at ambient
temperature. Blots were further washed (3x 5min, TBST) and visualized on a BioRad ChemiDoc™ MP

Imaging System.

LC-MS/MS analysis of procaspase-8 63-R crystals

Protein crystals were harvested, washed, and solubilized in 50 uL 8M urea (660 mg/mL in PBS). To this was
added 10 mM DTT (2.5 uL of 200 mM stock solution) and the reaction was incubated at 65 °C for 15 min
following which 20 mM iodoacetamide (2.5 uL of 400 mM stock solution) was added and the reaction
incubated for 30 min at 37 °C. The samples were then diluted with 150 uL PBS and to this was added 1 mM
CaCl; (2 pL of a 200 mM stock in water) and trypsin (2 ug, Promega, sequencing grade, V5111) and the
digestion was allowed to digest overnight at 37 °C with shaking. The samples were then acidified to a final
concentration of 5% (v/v) formic acid and desalted using C18 Tips (Pierce 87784), following the manufacturer's
instructions. The samples were analyzed by liquid chromatography tandem mass spectrometry using an Q
Exactive™ mass spectrometer (Thermo Scientific) coupled to an Easy-nLC™ 1000 pump. The peptides were
eluted on a C18 column with a 5 um tip (100 um fused silica, 18 cm) using a 140 min gradient of Buffer B in
Buffer A (buffer A: 92% water, 5% acetonitrile, 3% DMSO 0.1% formic acid; buffer B: 5% water, 3% DMSO,
92% acetonitrile, 0.1% formic acid) and a flow rate of 200 nL/min with electrospray ionization of 2.2kV. Data
was collected in data-dependent acquisition mode with dynamic exclusion (15 s) and charge exclusion
(1,7,8,>8) enabled. Data acquisition consisted of cycles of one full MS scan (400-1800 m/z at a resolution of
70,000) followed by 12 MS2 scans of the nth most abundant ions at resolution of 17,500. The MS2 spectra
data were extracted from the raw file using Raw Converter (version 1.1.0.22; available at

http:/fields.scripps.edu/rawconv/). MS2 spectra were searched using the ProLuCID algorithm (publicly
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available at http://fields.scripps.edu/yates/wp/?page id=17) using a reverse concatenated and nonredundant

variant of the Human UniProt database (release-2012_11) modified to include the sequence of caspase-8
harboring D374A D384A C409S C433S point mutations. Cysteine residues were searched with a static
modification for carboxyamidomethylation (+57.02146 C). Searches also included methionine oxidation as a
differential modification (+15.9949 M) and labeling by the compound 63-R (+348.18378 C) as a differential

modification®®.

Circular dichroism

Circular dichroism (CD) was measured in a JASCO J-715 CD spectrophotometer, scanning 2 times from 250 -
195 nm at 50 nm/min, time constant = 4 sec, bandwidth = 1 nm, slit width = 500 um. 0.3 mg/mL protein
solutions in buffer (25 mM Tris HCI, pH 7.4 and 8.3 mM NaCl) were held in 0.1 cm path length quartz cuvettes.
Each secondary structure data set was analyzed via SELCON method against Hennessy and Johnson

reference proteins®3’,

Crystallization and x-ray data collection

Inhibitor 63-R was added in a 3-fold molar excess to procaspase-8 (300 uM) in 20 mM Tris, pH 8.0 and 10 mM
DTT. The protein:inhibitor mixture was clarified of any precipitant by centrifugation at 3000 x g for 3 min.
Crystals were grown by sitting drop-vapor diffusion by mixing equal volumes (1.5 pl) of the procaspase-8:63-R
complex and reservoir solution consisting of 0.08 M imidazole, pH 8.0 and 1 M sodium citrate at 25 °C. Data
was collected on a single, flash-cooled crystal at 100 K in a cryoprotectant consisting of mother liquor and 25%
glycerol and were processed with HKL2000 in orthorhombic space group P31. The calculated Matthews’
coefficient (Vwm = 3.14 A®Da™") suggested six monomers per asymmetric unit with a solvent content of 60%. X-
ray data was collected to 2.88 A resolution on beamline 9.2 at the Stanford Synchrotron Radiation Lightsource

(SSRL) (Menlo Park, CA).

Structure solution and refinement
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The procaspase-8 structure was determined by molecular replacement (MR) with Phaser® using the
previously published active caspase structure (PDB 4JJ7) as the initial search model. The structure was
manually built with WinCoot*® and iteratively refined using Phenix*® with cycles of conventional positional
refinement with isotropic B-factor refinement. Non-crystallographic symmetry (NCS) constraints were applied.
The electron density maps clearly identified that 63-R was covalently attached to Cys360 within the active site
in subunit B. Water molecules were automatically positioned by Phenix using a 2.5¢ cutoff in f,-f. maps and
manually inspected. The final Reryst and Riee are 28.9% and 36.6%, respectively (Fig. 2 and Supplementary
Table 1). The model was analyzed and validated with the PDB Validation Server prior to PDB deposition.
Analysis of backbone dihedral angles with the program PROCHECK*' indicated that all residues are located in
the most favorable and additionally allowed regions in the Ramachandran plot. Coordinates and structure
factors have been deposited in the PDB with accession entry 6PX9. Structure refinement statistics are shown

in Supplementary Table 1.

Loop modeling and analysis

Several models of the missing N-terminal residues 217-222, as well as the missing residues in loops 1, 2, and
3, were built using MODELLER 9v2142. The homodimeric crystal structure of procaspase-8 subunits A and B
within the asymmetric unit with covalently bound 63-R to C360 in chain B was used as the structural template.
Due to the lack of density for the side chain of R258 (chain B) and its apparent proximity with the N-terminal
region of the flexible loop 2, the side chain orientation was also refined during the loop modeling. Each model
was first optimized twice with the variable target function method (VTFM) set to the slow level with 300 steps of
conjugate gradients (CG) and an objective function cutoff of 1x10°. The models were subsequently refined
using molecular dynamics (MD) coupled with simulated annealing (SA), set at the slow level. This protocol was

applied to generate 5,000 models of the homodimer consisting of chains A and B.

For the analysis, models were ranked by using the DOPE energy score from MODELLER, and the top 1,000
results were selected for 63-R binding analysis. Using the Python module MDAnalysis*3, the occupancy of

each residue in close contact with the covalently bound 63-R, using a distance cutoff of 4 A, was computed
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from the selected models. The occupancy was defined as the ratio of the number of models where the residue
iis in close contact (< 4 A) with the ligand over the total number of selected models. The occupancy values are
ranging from 0 % (never in close contact) to 100 % (always in contact). To increase resolution, backbone and

sidechain of each residue were considered independently.

Molecular docking

Using the previously described loop modeling protocol, 5000 additional models were generated in the absence
of ligand in order to limit biases toward 63-R. In contrast with the loop analysis, all models were used for the
docking of 7, 61, 62, 63-R, and 63-S. The models were prepared for docking by adding hydrogen atoms with
REDUCE* at pH 7.0 with Asn, GIn and His sidechains allowed to flip, then following the standard preparation
protocol*. The 3D coordinates of compound 63-R were taken from the crystallographic structure of
procaspase-8, and compounds 7, 61, 62, and 63-S were built with the builder module in PyMOL“%, using 63-R
as reference. The affinity maps were generated using AutoGrid with the standard AutoDock forcefield. The
center of the search space was set to position x:-14.0, y:-22.0, z:10), the size of the grid set to 60 x 60 x 60
with a grid spacing of 0.375 A A and the smoothing was removed. The ligands were then prepared for covalent
docking for AutoDock 4.2.1%” on Cys360 following the flexible residue protocol*. The standard GA parameters

were used to generate 10 docked poses, and the lowest energy pose was selected for each docking.

Gel-based activity-based protein profiling

25 ulL of soluble proteome (1 mg/mL) containing procaspase-8 (500 nM each respectively) was labeled with
the indicated concentration of the indicated compounds (1 uL of 25 x stock solution in DMSO) for 1h at
ambient temperature followed by labeling with 10 uM of probe 61 (1 uL of 25 x stock solution in DMSO).
Subsequently, the samples were subjected to CUAAC conjugation to rhodamine-azide for 1h at ambient
temperature. CUAAC was performed with 20 uM rhodamine-azide (50x stock in DMSO), 1 mM tris(2-
carboxyethyl)phosphine hydrochloride (TCEP; fresh 50x stock in water, final concentration = 1 mM), ligand

(17% stock in DMSO:t-butanol 1:4, final concentration = 100 uM) and 1 mM CuSO4 (50x% stock in water, final
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concentration = 1 mM). Samples were quenched with 10 uL 4x SDS-PAGE loading buffer. Quenched reactions

were analyzed by SDS-PAGE and visualized by in-gel fluorescence.

Determination of apparent ICs values

25 ulL of proteomes containing the indicated protein at 500 nM final concentration were treated with the
indicated compounds for 1h at ambient temperature, labeled with probe 61 for 1h, subjected to CUAAC
conjugation to rhodamine-azide, quenched, and analyzed by SDS-PAGE and in-gel fluorescence visualization
(n = 3). The percentage of labeling was determined by quantifying the integrated optical intensity of the bands,
using ImageJ software14. Nonlinear regression analysis was used to determine the apparent ICs values from

a dose-response curve generated using GraphPad Prism 6.

Statistical analysis
Data are shown as mean + SD. P-values were calculated using unpaired, two-tailed Student's t-test with

values <0.05 considered significant.
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Fig. 1. Caspase activation and structures of procaspase inhibitors. a General scheme for activation of

procaspase-8 by proteolysis after conserved aspartate residues. b The structures of caspase-8 lead

compounds 7 and 63-R, alkyne-containing chemical probe 61 and inactive control compound 62%.
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Fig. 2. Crystal structure of human procaspase-8. a Cartoon representation of homodimeric active caspase-8

bound to covalent inhibitor, Ac-3Pal-D-BhLeu-hLeu-D-AOMK (yellow) shown with the catalytic cysteine (Cys

360) highlighted in magenta and the start and end residues of the three disordered loops, loop 1 (359-396),

loop 2, (404-420) and loop 3 (452-462) highlighted in magenta, cyan, and green, respectively, with individual

subunits colored tan and grey. b The structure of homodimeric procaspase-8 with one chain bound to covalent

inhibitor, 63-R. Loops, catalytic cysteine, and inhibitor are colored as in ‘a’. ¢ Overlay of the C-terminal end of

loop 1 in active caspase-8 (grey) and procaspase-8 (magenta). Release of loop 1 due to cleavage of the

activation linker results in a 180° flip relative to the position of loop 1 in procaspase-8. d 2f,-f. density map of

well-positioned C-terminal end of loop 1 contoured at 1.0 o is shown in blue mesh. e Potential hydrogen bonds

25


https://doi.org/10.1101/721951

bioRxiv preprint doi: https://doi.org/10.1101/721951; this version posted August 5, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

between loops 1, 2, and 3 and the partnering chain at the dimer interface with colors conserved in a. f Overlay
of the catalytic cysteine in active caspase-8 (pink) and procaspase-8 (magenta). g 2f,-f. density map of loop 2

contoured at 1.0 c asin ‘d’.
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Fig. 3. Procaspase-8 in complex with covalent inhibitor 63-R. a 2f,-f. density map of 63-R bound to catalytic

Cys360 contoured at 1.0 o shown in blue mesh. b Schematic showing the interactions between procaspase-8
and 63-R (yellow carbon in the left stick model and blue in the right schematic). Aside from potential hydrogen
bonds between 63-R and His264 as well as a crystal contact from Asn261 of subunit E (green carbon), the rest

of the residues form hydrophobic interactions with the inhibitor.

27


https://doi.org/10.1101/721951

bioRxiv preprint doi: https://doi.org/10.1101/721951; this version posted August 5, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

C409
B:6.4%/S:21.3%

N408

B: 5.8 % / S: 25.9 %
7
\ — W i.
‘ N407 P ) |
B:45.5 % /S: 4.9 % AL( /
\ 1 /-:. v [
\ | , A /

Fig. 4. Models of missing loops of procaspase-8 in complex with covalent inhibitor 63-R. Ribbon representation
of the 10 best models, generated with MODELLER, are shown with the start and end residues of the three
disordered loops, loop 1 (359-396), loop 2, (404-420) and loop 3 (452-462) colored in magenta, cyan, and
green, respectively, with individual subunits in tan and grey. In cartoon representation and as stick, the
representative model of the three disordered loops and residues located around 63-R, respectively. The
inhibitor 63-R in stick representation with yellow carbon is shown with the backbone and sidechain
occupancies of residues N407, N408 and C409 of procaspase-8, as well as the representative model of the

loops obtained from the 1000 best models.
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Fig. 5. Mutational studies to identify residues that alter probe labeling of procaspase-8. a Procaspase-8
recombinant protein (D384A and D394A to prevent activation), which also harbor the indicated mutated
residues, were evaluated by gel-based ABPP. Equal concentrations of individual proteins were added to HEK
293T cellular lysates, treated with 7, 63-R, 62, or vehicle (DMSO) for 1h, followed by labeling with 61 (10 uM)
for 1h, “click” conjugation to rhodamine-azide and analysis by SDS-PAGE and in-gel fluorescence. Decrease in
fluorescence intensity indicates competition of 61 labeling by compound pre-treatment. b-h Quantification of
the gel-based data shown in ‘B’. The integrated fluorescence band intensities were quantified and the

percentage labeling by 61 was calculated relative to the integrated intensity of DMSO-treated procaspase-8.
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Shown are the mean and standard deviations derived from three replicate independent experiments for (b)
procaspase-8, (c) G418A, (d) R260A, (e) C409W, (f) R258A, (g) Q358A, (h) N261A. | For the mutant proteins
that showed significantly altered compound labeling in ‘b-¢,’ the apparent half maximal inhibitory concentration
(ICs0) values for compounds 7 and 63-R were calculated for blockade of 61-labeling from the mean +/- SD of
triplicate experiments. Quantification of the decrease in fluorescence compared to vehicle treated samples was

calculated from the total integrated intensity of the labeled bands for procaspase-8.
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Fig. 6. Docking results analysis. a Cumulative docking success rates for 61, 7, 63-R, 63-S, and 62 on the 5000
loop models ensemble. b The top 5 docking results of 63-R (white carbon) with respect to the experimental
coordinates (yellow carbon), with modeled loop 2 conformations in cyan. ¢ Docking result of 63-R (yellow
spheres) in a representative model, showing how the position of the naphthyl ring in the corresponding position
(green mesh) would clash with the residues of the loop 2 and the folded portions of the protein (cyan and tan

spheres, respectively). d,e The top 5 docking results of compounds 7 and 63-S.
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Fig. 7. Comparison of different procaspase protein structures. a Cartoon representation of the average NMR
structure of procaspase-8 (PDB 2k7z), obtained from 20 models, with the first five NMR models represented in
transparent. The loops 1, 2, and 3 are colored magenta, cyan and green, respectively. b Average structure of
procaspase-8 in complex with the inhibitor 63-R (chain B only) in stick representation and colored in yellow,
obtained from the 1000 best loop modelling models, with the five best models represented in transparent. ¢ X-
ray structure of procaspase-7 (PDB 1k88) (chain B only) in cartoon representation with loops 1, 2, and 3

colored magenta, cyan and green, respectively.

32


https://doi.org/10.1101/721951

