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ABSTRACT

Background:  Metagenomic  sequencing  has  lead  to  the  recovery  of  previously  unexplored

microbial  genomes.  In  this  sense,  short-reads  sequencing  platforms  often  result  in  highly

fragmented metagenomes, thus complicating downstream analyses.  Third generation sequencing

technologies, such as MinION, could lead to more contiguous assemblies due to their ability to

generate long reads. Nevertheless, there is a lack of studies evaluating the suitability of the available

assembly tools for this new type of data.  

Findings: We benchmarked the ability of different short-reads and long-reads tools to assembly two

different commercially available mock communities, and observed remarkable differences in the

resulting assemblies  depending on the software of  choice.  Short-reads  metagenomic assemblers

proved unsuitable for MinION data. Among the long-reads assemblers tested, Flye and Canu were

the  only  ones  performing  well  in  all  the  datasets.  These  tools  were  able  to  retrieve  complete

individual genomes directly from the metagenome, and assembled a bacterial genome in only two

contigs in the best scenario. Despite the intrinsic high error of long-reads technologies, Canu and

Flye lead to high accurate assemblies (~99.4-99.8 % of accuracy).  However, errors still  had an

impact on the prediction of biosynthetic gene clusters.

Conclusions:  MinION  metagenomic  sequencing  data  proved  sufficient  for  assembling  low-

complex  microbial  communities,  leading  to  the  recovery  of  highly  complete  and  contiguous

individual genomes. This work is the first systematic evaluation of the performance of different

assembly tools on MinION data, and may help other researchers willing to use this technology to

choose the most appropriate software depending on their goals. Future work is still needed in order

to assess the performance of Oxford Nanopore MinION data on more complex microbiomes.
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INTRODUCTION

Metagenomic sequencing became a paradigm shift in the way we study and characterize microbial

communities. This culture-independent technique based on shotgun sequencing has been applied in

a  broad  range  of  biological  fields,  ranging  from  microbial  ecology  (Hiraoka  et  al.,  2016) to

evolution (Hug  et  al.,  2016),  or  even clinical  microbiology (Nutman and  Marchaim, 2019).  In

recent years, metagenomics has also become a powerful tool for recovering individual genomes

directly from complex microbiomes (Hug  et al., 2016; Tully  et al., 2018; Nayfach  et al., 2019),

leading to the identification and description of new relevant -and mainly unculturable- taxa with

meaningful implications (Fettweis et al., 2019). 

Illumina sequencing platforms have been the most widely used for metagenomics studies. Illumina

reads are characterized by their short length (75-300 bp) and high accuracy (0.1-1 % of errors)

(Goodwin et al., 2016). When performing de novo assemblies, Illumina sequences often result in

highly fragmented genomes, even if sequencing is carried out from pure cultures (Goldstein et al.,

2019;  Wick  et al.,  2017). This is a consequence of the inability to correctly assemble genomic

regions containing repetitive elements that are longer than read length (Goldstein et al., 2019). The

fragmentation  problem  is  magnified  when  handling  with  metagenomic  sequences  due  to  the

existence of intergenomic repeats. Intergenomic repeats are genomic regions shared by more than

one taxon present in the microbial community (Olson et al., 2017). It has to be noted that microbial

communities often contain related species or sub-species in different -and unknown- abundances,

resulting in extensive intergenomic overlaps that difficult the global assembly (Ayling et al., 2019;

Sczyrba et al., 2017).

Third generation sequencing platforms have recently emerged as a solution to resolve ambiguous

repetitive regions and to improve genome contiguity. Despite the considerable error associated to

these technologies (>10 %), their ability to produce long reads (up to 10-12 kb of mean read length)

(Goodwin  et al., 2016; Nicholls  et al., 2019) has allowed them to generate genomes with a high

degree of completeness (Jayakumar and Sakakibara, 2017; Loman et al., 2015). Currently, the most

widely used third generation technologies are Pacific Biosciences (PacBio) and Oxford Nanopore

Techonologies (ONT), both based on single molecule sequencing, and therefore, PCR-free. PacBio

was the first long-read technology to be established in the market (Koren et al., 2013). However,

PacBio instruments require particular operation conditions and huge capital investments (Gonzalez-

Escalona  et al., 2019).  On the other side, ONT platforms are becoming more and more popular

between researchers, mainly thanks to MinION sequencers. MinION is a cost-effective (~1000$),
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portable sequencing platform, which enables real-time analysis  pipelines (Lu  et al.,  2016). This

platform has been broadly applied over the last few years, especially for testing their suitability for

in-field or clinical applications (Pomerantz et al., 2018; Orsini et al., 2018), but also for sequencing

complete prokaryotic and eukaryotic genomes (Loman et al., 2015; Wick et al., 2017; Deschamps

et al., 2018; Jain et al., 2018) and for characterizing microbial communities (Hardegen et al., 2018;

Benítez-Páez and Sanz, 2017).

Benchmarking is a straightforward way to evaluate genomic methodologies (i.e. DNA extraction,

library  preparations,  etc.)  and  bioinformatic  tools.  In  the  metagenomic  context,  benchmarking

studies are  frequently  based on mock communities. A mock community is an artificial microbial

community in which the abundance of all the present microorganisms is known (Bokulich  et al.,

2016). Mock communities could be generated in silico (Fritz  et al., 2019) or experimentally, as a

mixture of defined DNA proportions. For de novo assemblies, a great effort has been made in order

to benchmark all the available tools and methodologies suitable for studying microbial ecosystems

via Illumina shotgun sequencing (Sczyrba  et al., 2017; Vollmers  et al., 2017; Nurk  et al., 2017).

Nevertheless,  although  there  is  a  constant  development  of  new  softwares  applicable  to  ONT

platforms, we found that the few evaluation studies made for nanopore-based shotgun sequencing

data have focused on reconstructing single bacterial genomes from isolates, but not metagenomes

(Goldstein et al., 2019; Tyler et al., 2018; Sović et al., 2016).

In the present study, we used the data generated by Nicholls et al. (2019) to comprehensively assess

the current state-of-art of de novo assembly tools suitable for MinION sequencing. For that purpose,

we subsampled the sequences generated by GridION and PromethION platforms to get an output

comparable to the current yield of MinION sequencers. In total, we generated 8 datasets consisting

of 3 and 6 Gbps of data coming from the metagenomic sequencing of two microbial communites

(ZymoBIOMICS  Microbial  Community  Standards  CS  and  CSII)  with  both  GridION  and

PromethION. Our results show very notable differences in assembly performance among the tested

tools, including those designed to work with long-reads. Nevertheless, Flye and Canu were able to

retrieve highly complete and contiguous draft genomes directly from the metagenome, and work

consistently in all the datasets. Despite the high error associated to long-reads technologies, these

assemblers were able to return draft genomes with up to 99.85 % of accuracy. Overall, this work

demonstrates  the  suitability  of  using  MinION  sequencing  alone  for  assembling  low-complex

microbial communities, and paves the way towards the standardization of bioinformatic pipelines

for long-reads sequencing data.
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METHODS

Dataset description

Benchmarking  datasets  were  extracted  from Nicholls  et  al.  (2019),  and  consisted  of  the  high

coverage sequencing of two individual mock communities (ZymoBIOMICS Microbial Community

Standards CS Even ZRC190633 and CSII Log ZRC190842) with both GridION and PromethION

platforms.  The mock communities  contained the  same species  (eight  bacteria;  two yeasts),  but

differed in the expected proportion for each microorganism. CS mock community has an equal

distribution  of  the  microorganisms  (12% for  each  bacteria,  and  2% for  the  yeasts),  while  the

microbes present on CSII are distributed on a logarithmic scale, with relative abundances ranging

from 89.1% to 0.000089% (Table 1). Following the nomenclature from Nicholls et al. (2019), we

will now onwards use the terms “Even” when referring to CS mock community, and “Log” when

referring to CSII.

[Table 1]

The  objective  of  the  present  study  was  to  evaluate  de  novo assemblers  suitable  for  MinION

sequencing, which is the most widespread and accessible ONT sequencer. With the recent adoption

of Guppy (Oxford Nanopore Technologies) as the lead basecaller for all the ONT sequencers, the

main difference between GridION, PromethION and MinION is the final output of each platform.

Nicholls et al. (2019) yielded ~15 Gbp of data for GridION (48h of sequencing) and ~152 Gbp for

PromethION (64h of  sequencing).  Taking  into  account  that  GridION consists  of  five  MinION

flowcells, a single MinION standard run (48 h of sequencing) could yield, on average, an output of

3  Gbp,  which  is  a  conservative  estimation  in  comparison  to  other  recent  shotgun  sequencing

experiments based on MinION (Goldstein  et al., 2019; Dhar  et al., 2019; Parajuli  et al., 2019).

However, ONT hardware and software are in constant development, leading to huge improvements

in short periods of time. For that reason, GridION and PromethION datasets were subsampled to

two different  sequencing depths  (3  Gbps  and 6  Gbps)  in  order  to  recreate  MinION runs  with

different  outputs.  Finally,  all  the  selected  reads  were  trimmed  with  porechop

(https://github.com/rrwick/Porechop; v. 0.2.4) in order to remove adapters from reads ends and split

sequences with internal adapters. 

De novo assemblers selection

As first proposed by Lindgreen  et al. (2016), tools selected for the present benchmarking had to

meet the following criteria: 
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- The tool should be freely available

- The tool should have a proper manual, both for installation and usage.

- The tool should have been extensively used or show potential to become widely used

At the time of the software selection, there was not a huge variety of tools specially designed for

ONT data. Because of this, some of the most widespread used short-reads metagenomic assemblers

were also included into the benchmark. Although these assemblers are optimized for metagenomic

datasets, it has to be noted that they have not been designed to handle long and error-prone reads. A

total of six short-reads and six long-reads tools were taken into consideration. Nevertheless, it was

not possible to install or run all the softwares for different reasons (Table 2). It has to be noted that

tools  were  run  with  default  parameters  when  no  metagenomic  configuration  was  explicitly

recommended in the user guide.

[Table 2]

Reference genomes

All the species included in the mock community had an available reference genome sequenced with

a  combination  of  Illumina  and  nanopore  reads  (available  at  https://s3.amazonaws.com/zymo-

files/BioPool/ZymoBIOMICS.STD.refseq.v2.zip). These assemblies -provided by ZymoBIOMICS

company- consisted of eight complete genomes for the bacterial strains, and two draft genomes for

the yeasts.

Nicholls  et  al.  (2019)  sequenced  and  assembled  each  genome  again  from pure  cultures  using

Illumina  reads  only.  However,  we decided  to  use  ZymoBIOMICS genomes  as  a  reference  for

carrying out the comparative analyses, due to their higher level of completeness. Although these

references cannot be considered as a “gold standard”, Goldstein  et al.  (2019) demonstrated that

nanopore  sequences  polished  with  Illumina  reads  had  a  similar  error  profile  to  MiSeq-only

assemblies and higher contiguity. Reference genomes were gathered in a single multi-FASTA file to

create a single-reference metagenome.

Evaluation of the assembly tools

All the assemblers were run in the same desktop computer (CPU: AMD RYZEN 7 1700X 3.4GHZ;

Cores: 8;  Threads:  16;  RAM: Corsair  Vengeance 64 GB; SSD: Samsung 860 EVO Basic  SSD
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500GB) working under Ubuntu 18.04 operative system. Time required to perform the assembly by

each tool was measured with the built-in bash version of time command.

De novo assemblies completeness and contiguity were first evaluated via QUAST (Gurevich et al.,

2013; v. 5.0.2).  MetaQUAST (Mikheenko  et al.,  2015; v. 5.0.2) was used for obtaining further

assembly statistics based on the alignment of the generated contigs against the reference genomes.

Only contigs longer than 500 bp and with x10 coverage or more were selected for calculating the

general  statistics.  MetaQUAST failed  to  run  with  some  draft  metagenomes.  For  that  reason,

minimap2 (Li et al., 2018; v. ) was employed to align the assemblies to the reference metagenome.

Then,  ‘pileup.sh’ script  from BBTools  (sourceforge.net/projects/bbmap/,  v.  2.15-r915) suite  was

utilized to calculate the percentage of metagenome covered by the draft assemblies.

The resulting assemblies were further evaluated in order to determine their error profile. Due to the

lack of a standard methodology, SNPs and indels were ascertained using two different strategies.

The  first  one  consisted  of  the  alignment  of  the  contigs  against  the  reference  metagenome via

minimap2. BAM files were then revised using bcftools (https://samtools.github.io/bcftools/;  v. 1.9)

and the in-house script ‘indels_and_snps.py’ (Supplementary File 1) was applied to quantify the

variants.  The  second  strategy  was  based  on  MuMmer4

(https://sourceforge.net/projects/mummer/files/; v. 3.23). This tool was employed to align the draft

assemblies to the reference metagenome. Then, the script ‘count_SNPS_indels.pl’ from Goldstein

et al. (2019) was utilized to calculate the final number of SNPs and INDELs. In both strategies, the

number of variants were normalized to the total assembly size of each metagenome. 

Biosynthetic  gene  clusters  (BGCs)  are  usually  formed  by  repetitive  genetic  structures  hard  to

assemble  with  short-reads  technologies,  and   long-read  technologies  could  thus  be  suitable  to

overcome this issue. However, BGCs are also very sensitive to frameshift errors, which have been

reported to frequently occur in nanopore data (Goldstein et al., 2019). For that reason, AntiSMASH

web service (v. 5.0; Blin  et al., 2019) was used to compare the performance on BGC prediction

among the different assembly tools.
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FINDINGS:

Subsampling

In order to study the applicability of ONT to characterize low complex microbial communities, we

used the data recently released by Nicholls et al. (2019), which consisted of the ultra-deep nanopore

sequencing of two different mock communities by GridION and PromethION platforms. The mock

communities were constituted by the same ten microorganisms, but in different proportions (Table

1). As we wanted to study the suitability of MinION to reconstruct individual microbial genomes

from metagenomes, we subsampled the GridION and PromethION datasets to have a final output of

approximately 3 Gbps and 6 Gbps, which is the current output of MinION. In general, mean read

length remained the same in the subsampled datasets in comparison to the original sequencing data

(Nicholls et al., 2019). However, read quality proved higher in the subsampled dataset, suggesting a

bias towards lower qualities when the data volume increases (Table 3). 

[Table 3]

Metagenome assembly

From the selected pool of available tools (Table 2), we were able to correctly install and run five out

of  the  six  long-reads  assemblers,  and  two  out  of  the  six  short-reads  assemblers.  In  total,  58

assemblies were generated, 28 for the Even mock community and 24 for the Log community. The

total  size of each draft  assembly and the fraction of metagenome recovered from the reference

genomes were evaluated for the Even datasets in order to obtain a first view of the general tool

performance. 

Overall, long-reads assemblers resulted in a total assembly size closer to the theoretical size, and

also recovered a largest metagenome fraction, with some exceptions (Fig. 1). Nevertheless, huge

differences were detected for both metrics among the assemblers. In general, all the assemblers

were far from recovering the totality of the metagenome, either in the 3 Gbps or 6 Gbps datasets

(Fig. 1A). It has to be noted that metaQUAST and minimap2 results were consistent for the long-

reads assemblers, but not for the short-reads assemblers, where minimap2 metric was significantly

higher (Fig. 1B). The Flye assembler yielded the best assembly in terms of total metagenome size

and metagenome recovery -except for the minimap2 metric-, whereas Canu proved the second best

assembler for both dataset sizes. Interestingly, Unicycler and Miniasm performed relatively well for

the 3 Gbps dataset, but when using 6 Gb, the final assembly did not improve significantly in the

case of Miniasm, and the general performance was highly reduced for Unicycler. Wtdbg2 resulted
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in a poor assembly in comparison to the other long-reads tools for both the 3 Gbps and 6 Gbps

datasets.

MetaQUAST was further employed for evaluating the degree of completeness of the individual

species draft genomes (Fig. 2). As expected, yeasts were generally less recovered than bacteria, due

to their  lower abundance (2 %) and higher  genome size.  Minia and Megahit  were not  able  to

recover any single highly complete genome (>95 % of genome coverage) in any dataset, while

wtdbg2  only  worked  well  on  recovering  Pseudomonas  aeruginosa’s genome.  For  the  3  Gbps

dataset, Flye and Unicycler recovered the eight bacterial genomes with a high completeness level (>

99%). Canu resulted in lower recovery percentages, but still retrieved all the prokaryotic genomes

with a mean covered fraction greater than 87%. Unicycler was able to return three totally complete

genomes, but did not work properly on recovering eukaryotic genomes. This was expected, since

this  assembler  was  designed  for  working  on  bacterial  genomes  only.  For  the  6  Gbps  dataset,

Unicycler  performance decreased substantially,  while  Canu and Flye retrieved better  or  similar

results. In general, Flye performed the best on both dataset sizes, especially if taking into account

the proportion of yeast genomes recovered for each tool. 

These results were confirmed when analyzing the Log mock community (Fig. S1). Canu, Flye and

wtdbg2 were able  to  recover Listeria  monocytogenes   (89.1% of  the total  genomic  DNA) and

Pseudomonas  aeruginosa  (8.9%)  genomes  with  a  level  of  completeness  higher  than  99%.

Nevertheless,  only  Canu and Flye  recovered  a  significant  fraction  of Bacillus  subtilis  (0.89%).

Again, Flye outperformed the rest of the tools in terms of total metagenome recovery. Unicycler

failed to run with the two 3 Gbps datasets, and performed poorly with the 6 Gbps ones. These

results  were  expected,  since  Unicycler  was  designed  and  optimized  for  working  with  isolated

bacterial genomes. Finally, short-reads assemblers resulted in highly fragmented draft metagenomes

and were not able to recover any single complete genome (Fig. S1).

Regarding the time consumed by each tool, wtbdg2 was the fastest assembler (Fig. 3A). This tool

was able to assemble the 6 Gbps datasets in only 155 seconds, approximately. Miniasm was the

second most rapid software, followed by Flye, which was 2.1-2.5 times faster than Unicycler, and

3-5  times  faster  than  Canu,  the  slowest  tool.  These  trends  were  also  found  in  the  Log  mock

community (Fig. S2), were Canu spent up to 22 hours to reconstruct a draft metagenome assembly

from the 6 Gbps datasets.
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Metagenome general statistics (N50, L50, and number of contigs) were evaluated using QUAST

(Fig. 3). It has to be stressed that these statistics have to be taken with care in this case, due to the

huge  variation  in  general  performance  among  the  different  assemblers.  For  instance,  wtdbg2

resulted in the higher N50 and the lower L50 values for the 6 Gbps dataset, but this tool was able to

cover  less  than  the 25 % of  the  metagenome.  In fact,  the total  assembly size  for  wtdgb2 was

approximately 18 Mbps, in comparison to the  53 Mbps assembled by Flye. Altogether, it can be

concluded that N50 and L50 results for wtdgb2 were indeed an artifact.

Short-reads  assemblers  performed  poorly,  resulting  in  thousands  (Minia),  or  even  hundreds  of

thousands contigs (Megahit). Interestingly, long-reads assemblers resulted in more fragmented draft

genomes when using the 6 Gbps datasets,  with the only exception of  wtdbg2. Flye,  Canu and

Unycicler also reduced their N50 and increased their L50 score when using 6 Gbps. This variation

was specially marked in the case of Unicycler, confirming a worse performance of this tool when

using larger datasets. Goldstein  et al.  (2019) demonstrated that Canu assemblies improved with

higher  coverage  for  bacterial  isolates  assemblies.  This  fact  suggests  that  the  loss  of  contiguity

detected in Flye and Canu may be a direct consequence of a higher recovery rate of yeast genomes,

which might be more fragmented. Indeed, assembly statistics of these two assemblers remained

almost the same for the bacterial species when using 3 or 6 Gbps (Tables S1 and S2). Finally, Flye

resulted in a more contiguous assembly with higher N50 and lower L50 in comparison to Canu for

both 3 and 6 Gbps datasets (Fig. 3). Remarkably, Flye lead to the assembly of complete bacterial

genomes in a range of only 2 to 21 contigs (Fig. S3).

Assembly accuracy

Sequencing errors are the biggest throwback of third generation sequencing platforms. These errors

can reach the final assemblies, resulting in lower quality draft genomes. In order to evaluate how

the different assembles handle the MinION specific error profile, we ascertained the total number of

SNPs and INDELs present in each draft metagenome. As described in the Methods section, we used

two different  -and complementary-  strategies  to  quantify  these  type  of  errors:  (1)  minimap2 +

bcftools, and (2) MuMMer (Fig. 4). Both strategies relied on the alignment of the draft assemblies

to  the  reference  metagenome,  composed by a  mix  of  all  the  complete  genomes  of  each strain

present in the mock community.

Results  were  not  fully  consistent  between  the  two  methodologies,  especially  for  the  INDELs

estimation, but they still showed interesting trends. All the long-reads assemblers retrieved draft

metagenomes with an average similarity higher than 98.9 %, with the exception of Miniasm, which
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resulted in an approximate accuracy of only 96%. Canu was the most accurate assembler for both

methodologies and datasets, followed by Unicycler for the 3 Gbps dataset and Flye for the 6 Gbps

one. In the case of the INDELs profile, Unicycler and Canu clearly outperformed Flye. Indeed,

taking into account  the lack of consistency of Miniasm results,  Unicycler  presented the lowest

INDEL  ratio.  This  might  be  explained  by  the  polishing  step  via  Racon

(https://github.com/isovic/racon)  that  Unicycler  pipeline  incorporates.  In  order  to  test  this

hypothesis, we used Racon for polishing Flye assemblies with the original nanopore raw reads. In

this case, no improvements were detected in SNPs and INDELs ratio.

Biosynthetic gene cluster prediction

Gene prediction is highly affected by genome assembly and accuracy. Biosynthetic gene clusters

(BCGs) are especially influenced by these factors, since they are usually found on repetitive regions

which are often poorly assembled. In order to evaluate the BGC prediction on nanopore-based

metagenomic assemblies, we used AntiSMASH to assess the number of clusters found on the draft

assemblies retrieved by each tool in comparison to the reference metagenome (Fig. 5). For the 3

Gbps GridION dataset, Unicycler predicted the maximum number of BCGs (39/46), followed by

Canu and Flye (38/46). Nevertheless, Flye BGC profile differed more from the reference profile,

due to an enrichment in lasso peptides. To further study this phenomenon, lasso peptides predicted

by Flye were searched though BLAST against the BGCs predicted in the reference metagenome.

No hits  were found,  suggesting that  these  results  might  be  assembly  artifacts.  For  the  6 Gbps

GridION dataset, Canu performed the best, but did not increase the number of predicted clusters

(38/46). As expected, Unicycler drastically decreased the number of predicted BGCs. Interestingly,

Flye performed worse with higher coverage, and resulted in less BGCs (32/46). 
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DISCUSSION:

Assembling shotgun sequencing data is often a key factor for characterizing the functional and

taxonomic diversity  of  microbial  communities.  In the recent  years,  MinION (Oxford Nanopore

Technologies) sequencer is rapidly growing in popularity due to four basic reasons: (1) low cost, (2)

long-reads generation, (3) portability, and (4) real-time analysis. Different bioinformatic tools have

been developed in order to handle MinION sequences during the assembly process. Nevertheless,

there is a lack of studies evaluating the performance of the current available tools for carrying out

metagenomic assemblies from MinION sequences. This work aimed at filling this gap using data

previously published by Nicholls et al. (2019), which consisted of the ultra-deep sequencing of two

different mock communities (Table 1) using GridION and PromethION platforms (ONT). These

sequencers  follow the  same sequencing  principles  than  MinION,  but  they  have  a  significantly

higher output. For that reason, we decided to subsample the datasets to adequate their output to the

current yield offered by MinION (3-6 Gbps) (Goldstein et al., 2019; Dhar et al., 2019; Parajuli et

al., 2019).

Despite the relatively low complexity of the mock communities analyzed in this evaluation study,

our results showed that there is a huge variation in assembly results depending on the software

chosen to perform the analysis. Minia and Megahit poorly reconstructed the microbial genomes

(Fig.  1 and Fig.  2) and produced highly fragmented draft  assemblies (Fig.  3).  This  output was

expected, since these assemblers are highly optimized to work on short-reads, which are totally

different from the data generated by MinION. 

Long-reads assemblers (Canu, Flye,  Unicycler,  Miniasm and wtdgb2) also presented significant

differences in the general assembly performance. Overall, only Canu and Flye performed well on all

the datasets tested. They were able to recover the eight bacterial genomes from the Even dataset

with  a  high  degree  of  completeness,  and  also  reconstructed  a  significant  fraction  of  the  yeast

genomes. Strikingly, the draft bacterial genomes were highly contiguous. In fact, Flye was able to

reconstruct all the prokaryotic genomes in a range of only 2-21 contigs (Fig. S3). 

Although sequencing errors are one of the main throwbacks of third generation data, Canu and Flye

assemblies  demonstrated  to  be  up  to  99.67%  (Flye)  and  99.87%  (Canu)  accurate.  Regarding

INDELs, Flye was more prone to insertion/deletions than Canu. This might influence the prediction

of biosynthetic gene clusters, where Canu showed a more similar functional profile in comparison

to  the  reference  metagenome.  Indeed,  Flye  BGC profile  was biased  to  lasso peptides.  BLAST
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analyses confirmed that these clusters did not match any other cluster predicted in the reference

genome. This suggests that predicted lasso peptides might be artifact probably caused by frameshift

erros due to INDELs, which explains that these type of cluster were more frequently detected in

Flye’s  assemblies  -which had a  higher  INDEL ratio.  Finally,  time is  a  crucial  parameter  when

choosing a bioinformatic tool, even more if considering MinION’s ability to generate real-time data.

In this sense, Flye was up to 6.7 times faster than Canu, which resulted to be the slowest tool tested

on this benchmarking. 

Unicycler,  miniasm  and  wtdbg2  results  indicated  that  they  are  not  suitable  for  metagenomic

assembly due to different reasons. Unicycler worked well on the 3 Gbps Even dataset, but not for

the rest. Indeed, this assembler was unable to run with the two 3 Gbps Log datasets, indicating a

lack of consistency of the software for its application in a metagenomic context. Wtdbg2 was the

fastest tool, but it was able to reconstruct only one complete genome for the Even datasets. For the

Log datasets, wtdbg2 managed to recover the two most abundant bacterial genomes, being only

outperformed by Canu and Flye. This fact suggested that the performance of wtdbg2 is associated

with  the  composition  of  the  original  microbiome.  Lastly,  Miniasm  resulted  in  low  accuracy

assemblies (~96 % of similarity to reference metagenome) (Fig. 4). This high error may explain the

fact that metaQUAST failed to analyze Miniasm results. MetaQUAST is a tool mainly designed to

work on second generation assemblies, and this error-prone assembly could have caused a problem

when aligning the contigs against  the reference.  In fact,  Miniasm’s low accuracy could be also

detected in the prediction of biosynthetic gene clusters (Fig. 5). For the 3 Gbps dataset, antiSMASH

was able to predict only 7 BGCs in the Miniasm assembly, whereas 15 BGCs were predicted in

wtdbg2 assembly,  despite having a lower metagenome recovery fraction (~42% in Miniasm vs.

~25% in wtdbg2).

To sum up, MinION data can lead to highly contiguous and accurate assemblies when using the

proper  tools,  with  no  need  of  complementary  sequencing  with  Illumina.  From  all  the  tested

softwares, Flye resulted the best in terms of metagenome recovery fraction, metagenome size, and

contiguity. Canu was the most accurate, introduced less INDELs, and resulted in a more similar

BGC  profile  in  comparison  to  the  reference  metagenome,  but  its  assembly  process  also

demonstrated to  be time consuming.  This  work might  help  software  developers  to  design new

bioinformatic  tools  optimized  for  MinION-based  shotgun  metagenomic  sequencing.  Further

research is still needed in order to evaluate the suitability of MinION for the metagenomic analysis

of more complex microbial communities. 

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 1, 2019. ; https://doi.org/10.1101/722405doi: bioRxiv preprint 

https://doi.org/10.1101/722405
http://creativecommons.org/licenses/by-nc-nd/4.0/


CONCLUSIONS:

Shotgun  metagenomic  sequencing  based  on  short  reads  usually  results  in  highly  fragmented

metagenomes, which complicate downstream analyses such as the recovery of individual genomes,

or the prediction of complex and repetitive gene structures (i.e. biosynthetic gene clusters, CRISPR-

CAS systems, etc). This work demonstrates that, despite the high error intrinsic to third-generation

sequencing  platforms,  MinION  sequencing  alone  can  overcome  these  limitations  and  retrieve

extremely contiguous genomes directly from simple microbial communities,. However, there is a

huge variation in assembly performance depending on the chosen software. In general terms, Flye is

the  best  assembler  for  MinION metagenomic  data.  This  tool  leads  to  the  highest  metagenome

recovery ratio and performs robustly among the tested datasets. Canu is more suitable when lower

error  rates  are  required,  as  in  the  case  of  BGC  prediction.  Our  results,  along  with  the  fast

improvements  of  Oxford  Nanopore  devices  and  dedicated  softwares,  suggest  that  this  type  of

platforms could become the metagenomic sequencing standard in the near future.
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FIGURE LEGENDS

Figure 1. Evaluation of metagenome assembly size corresponding to each tested tool for the Even

datasets. (A) Total assembled size of draft assemblies with respect to the total size of the reference

metagenome; (B) Fraction of the reference metagenome covered by the draft assembly, calculated

by two different methods: metaQUAST (up) and minimap2 + BBTools (down).

Figure 2.  Fraction of genome covered by draft assemblies obtained with each tool, and for each

individual microorganism (Even datasets). Minimap2 + miniasm assemblies are not shown, since it

was not possible to evaluate them with metaQUAST.

Figure 3. General assembly performance of each tool for the Even datasets. (A) Run time; (B) N50;

(C) Number of contigs; (D) L50.

Figure 4.  Assembly accuracy for  the  draft  assemblies  in  the  Even datasets.  (A) Percentage of

similarity  calculated  as  the  total  number  of  matches  normalized  by  the  metagenome  size;  (B)

Percentage of INDELs calculated as the total number of INDELs normalized by the metagenome

size. In both cases, two different strategies were used: (1) alignment with minimap and evaluation

with bcftools +  ‘indels_and_snps.py’ in-house script; (2) alignment with MuMMer and evaluation

with ‘count_SNPS_indels.pl’ script from Goldstein et al. (2019).

Figure 5.  Number of biosynthetic gene clusters (BGCs) predicted by antiSMASH for each draft

assembly in the Even GridION datasets. (A) BGCs predicted for the 3 Gbps dataset; (B) BGCs

predicted for the 6 Gbps dataset.

Figure S1. Fraction of genome covered by draft assemblies obtained with each tool, and for each

individual microorganism (Log datasets). Minimap2 + miniasm assemblies are not shown, since it

was not possible to evaluate them with metaQUAST.

Figure S2. General assembly performance of each tool for the Log datasets. (A) Run time; (B) N50;

(C) Number of contigs; (D) L50.

Figure S3. Number of contigs for each bacterial genome retrieved by Flye for the Even datasets.
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TABLE LEGENDS

Table 1. Description of the microorganisms comprising the ZymoBIOMICS mock communities and

their theoretical composition.

Table 2. List of assemblers selected for the present benchmarking study.

Table 3. Description of the original and the subsampled datasets.

Table S1. Canu’s basic assembly statistics for the GridION datasets.

Table S2. Flye’s basic assembly statistics for the GridION datasets.
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Species Type Estimated
size NCBI

(Mbp)

Theoretical
Composition

Even (CS)

Theoretical
Composition

Log (CSII)

Bacillus subtilis Gram + 4,134 12,00 % 0,89 %
Cryptococcus neoformans Yeast 18,599 2,00 % 0,00089 %
Enterococcus faecalis Gram + 2,965 12,00 % 0,00089 %
Escherichia coli Gram - 5,140 12,00 % 0,089 %
Lactobacillus fermentum Gram + 2,012 12,00 % 0,0089 %
Listeria monocytogenes Gram + 3,008 12,00 % 89,1 %
Pseudomonas aeruginosa Gram - 6,592 12,00 % 8,9 %
Saccharomyces cerevisiae Yeast 11,864 2,00 % 0,89 %
Salmonella enterica Gram - 4,781 12,00 % 0,089 %
Staphylococcus aureus Gram + 2,838 12,00 % 0,000089 %
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Assembler Version Type Incidence profile
MetaSPAdes SPAdes v3.13.0 Short-reads

assembler
RAM memory error

Megahit MEGAHIT v1.1.4-2-
gd1998a1

Short-reads
assembler

No incidence reported

Minia Minia 2.0.7 Short-reads
assembler

No incidence reported

Meraga --- Short-reads
assembler

Several errors ocurred when
running the pipeline. Lack of an

understandable manual for
working with metagenomic data

Velour Velour-0.1 Short-reads
assembler

Several errors ocurred when
running the pipeline. Lack of an

understandable manual for
working with metagenomic data. 

Velvet Velvet 1.2.10 Short-reads
assembler

Several errors occurred when
running the pipeline. No

understandable error messages.

Canu Canu snapshot v1.8 +106
changes

Long-reads
assembler

No incidence reported

Flye Flye 2.4-ga60a338 Long-reads
assembler

No incidence reported

HINGE --- Long-reads
assembler

Lack of an understandable
manual for modifying the config

files necessary to run the
software

Miniasm Miniasm 0.3(r179) Long-reads
assembler

Failed to run with the 6 Gbps Log
datasets

Unicycler Unicycler v0.4.8-beta Short-, long-
and hybrid

reads
assembler

Failed to run with the 3 Gbps Log
datasets

Wtdbg2 wtdbg2 2.5 Long-reads
assembler

No incidence reported

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 1, 2019. ; https://doi.org/10.1101/722405doi: bioRxiv preprint 

https://doi.org/10.1101/722405
http://creativecommons.org/licenses/by-nc-nd/4.0/


ORIGINAL DATASET NEW DATASET
Gb Gbps Number of

reads
Mean read

length
Mean read

quality
Gb Gbps Number of

reads
Mean read

length
Mean read

quality

Even GridION 14 14.007 3,491,078.0 4,012.3 8.4 3 3.042 747,682.0 4,069.5 8.9

Log GridION 16 16.032 3,667,007.0 4,372.0 8.0 3 3.053 685,926.0 4,451.0 8.7

Even PromethION 146 146.291 36,527,376.
0

4,005.0 7.3 3 2.979 748,367.0 3,981.0 8.2

Log PromethION 148 148.028 35,118,078.
0

4,215.2 7.6 3 2.990 711,524.0 4,203.3 8.3

Even GridION 14 14.007 3,491,078.0 4,012.3 8.4 6 6.092 1,495,377.0 4,073.9 8.8

Log GridION 16 16.032 3,667,007.0 4,372.0 8.0 6 6.094 1,371,820.0 4,442.4 8.5

Even PromethION 146 146.291 36,527,376.
0

4,005.0 7.3 6 5.970 1,496,919.0 3,988.8 8.2

Log PromethION 148 148.028 35,118,078.
0

4,215.2 7.6 6 5.956 1,422,918.0 4,185.8 8.2
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