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Abstract

Purpose: It has been shown previously that for the conventional Stejskal-Tanner pulsed

gradient, or linear tensor encoding (LTE), as well as planar tensor encoding (PTE) and in

tissue in which diffusion exhibits a ’stick-like’ geometry, the diffusion-weighted MRI signal

at extremely high b-values follows a power-law. Specifically, the signal decays as a 1/
√
b

in LTE and 1/b in PTE. Here, the direction-averaged signal for arbitrary diffusion encoding

waveforms is considered to establish whether power-law behaviors occur with other encoding

wave-forms and for other (non-stick-like) diffusion geometries.

Methods: We consider the signal decay for high b-values for encoding geometries ranging

from 2-dimensional planar tensor encoding (PTE), through isotropic or spherical tensor en-

coding (STE) to linear tensor encoding. When a power-law behavior was suggested, this was

tested using in-silico simulations and in-vivo using an ultra-strong gradient (300 mT/m) Con-

nectom scanner.

Results: The results show that using an axisymmetric b-tensor a power-law only exists for

two scenarios: For stick-like geometries, (i) the already-discovered LTE case; and (ii) for pure

planar encoding. In this latter case, to first order, the signal decays as 1/b. Our in-silico and

in-vivo experiments confirm this 1/b relationship.

Conclusion: A complete analysis of the power-law dependencies of the diffusion-weighted

signal at high b-values has been performed. Only two forms of encoding result in a power-law

dependency, pure linear and pure planar tensor encoding and when the diffusion geometry is

’stick-like’. The different exponents of these encodings could be used to provide independent

validation of the presence of stick-like geometries in-vivo.
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1 Introduction

Pathological disorders happen at the cellular level, therefore, it is important to obtain information
on the micrometer scale. Diffusion MRI provides a tool to study brain microstructure based on
the Brownian motion of water molecules [1] and it is therefore sensitive to the changes in the mi-
crostructure of the tissue [2, 3, 4]. Different mathematical representations are proposed to describe
this relationship between the diffusion signal and the changes in the microstructure [5, 6, 7] the
most prominent are the bi-exponential [8, 9, 10, 11, 12], the stretched exponential [13] and the
power-law [14, 15, 16, 17]. The mathematical forms of these approaches are quite different. In the
bi-exponential approach, the large b-value behavior is assumed to be dominated by the intracellular
compartment. For stretched exponentials, the signal relationship with the b-value is exp [−(kb)a],
where k is a constant and a < 1 is the stretching parameter. In the statistical model developed by
Yablonskiy et al. [14], the signal decays as 1/b for large b, while the other studies [15, 16, 17],
have reported that the signal at high b-value, decays as 1/

√
b.

The aforementioned studies all used single diffusion encoding. Since the development of the
Pulsed Gradient Spin Echo sequence [18], there have been many works aimed at maximizing
the information that can be obtained from a dMRI experiment by exploring different acquisition
protocols [19, 20]. One such modification is the addition of multiple gradient pairs. We can use
two pairs of pulsed-field gradients to obtain a Double Diffusion Encoding [21, 22]. It has been
shown that double diffusion encoding, as well as other multiple encoding schemes such as triple
diffusion encoding [23], provide information that is not accessible with single diffusion encoding
[24].
This approach has been utilized by several groups for extracting microstructural information [25,
26, 27, 28, 29]. A framework was recently proposed [30] to probe tissue using different q-space
trajectory encodings which can be described by a second-order b-tensor. Single, double and triple
diffusion encoding can be characterized by b-tensors, with one, two and three non-zero eigen-
values, respectively. In this framework, single diffusion encoding is also called Linear tensor
encoding (LTE), double diffusion encoding with perpendicular directions is called planar tensor
encoding (PTE) and triple diffusion encoding with equal eigenvalues is called spherical tensor
encoding (STE). Herberthson et al. provided exact expressions for the direction-averaged signal
obtained via general gradient waveforms [31]. They have shown that there is a power-law relation-
ship for planar tensor encoding (S ∝ b−1).
In this study, we investigate the effect of different b-tensor encodings on the diffusion signal at
high b-values. To remove the effect of fiber orientation distribution [32], the acquired signal is av-
eraged over all diffusion directions for each shell. This so-called powder-averaged signal [33, 34]
has less complexity than the direction-dependent signal. Powder averaging yields a signal whose
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orientation-invariant aspects of diffusion are preserved but with an orientation distribution that
mimics complete dispersion of anisotropic structures.
We studied the power-law for different b-tensor shapes: i) to use it as cross-validation for the stick-
like geometry. There is some combination of environments that give a power-law scaling using for
example LTE but not necessarily using PTE. ii) to find the range of b-values that we observe this
power-law scaling, iii) to investigate if the signal amplitude that we have in that range of b-value
(7000 < b < 10000s/mm2) is considerable compared to the noise.
We also, studied the effect of the number of directions on this power-law scaling, for LTE and PTE
schemes. One application of this study is to utilize the power-law representation of the LTE and
PTE together to disentangle the intra-axonal signal fraction and the intra-axonal diffusivity from
each other. Working in different range of b-values we can filter out some compartments based on
the speed of the decay.

2 Theory

In multi-dimensional diffusion MRI, the b-matrix is defined as an axisymmetric second order ten-
sor, B = b/3(1 − b∆)I3 + bb∆gg

T , where g is the diffusion gradient direction and the b-value, b,
is defined as the trace of the b-matrix. The eigenvalues of the b-matrix are b||, b

(1)
⊥ and b(2)

⊥ where
b

(1)
⊥ = b

(2)
⊥ = b⊥ and b|| is the largest. b∆ is defined as b∆ = (b|| − b⊥)/(b|| + 2b⊥). Changing b∆,

we can generate different types of b-tensor encoding. For LTE, PTE, and STE, b∆ = 1,−1/2, and
0 respectively [23].
For the powder-averaged signal, the diffusion attenuation is a function of the orientation-invariant
aspects of the diffusion and the encoding. The compartment diffusion attenuation is (Eq. (34) in
[35]):

S(b) =

√
πe−

b
3

(D||+2D⊥−b∆(D||−D⊥)) erf(
√
bb∆(D|| −D⊥))

2
√
bb∆(D|| −D⊥)

(1)

where S is the normalized diffusion signal and D|| and D⊥ are the the parallel and perpendicular
diffusivities respectively. We use the subscript ”e” and ”a” to denote the parameters of the extra-
and intra-axonal compartments respectively.
Here, we study the effect of axisymmetric b-tensor shape on the diffusion-weighted signal at high
b-values.
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2.1 Linear, Planar and Spherical Tensor Encoding

In linear tensor encoding, b∆ = 1 and assuming stick-like geometry, D⊥ = 0 in Eq. (1), therefore
Sic ∝ b−1/2. The sensitivity of MR to axon radius would alter the b−1/2 scaling [36] because there
will be a perpendicular diffusivity and the exponential term in Eq. (1) will not be zero.
In planar tensor encoding, b∆ = −1/2 and Sic has the following form:

SPTEic (b) =

√
πe
−bDa||

2 erfi(
√
bDa

||/2)

2
√
bDa

||/2
(2)

For large b-values, bDa
|| � 1, therefore the diffusion signal can be approximated by the following

equation (see Appendix A):

SPTEic (b) ≈ 1

bDa
||

N∑
k=0

(2k − 1)!!

(bDa
||)k

(3)

where !! denotes the double factorial and N depends on the bDa
|| value (Fig. 1 and Table 1.

For large b-values, the extra-axonal signal decays exponentially faster than the intra-axonal com-
partment, exp (−bDe

⊥)� 1, and can be neglected.
The asymptotic expansion of erfi(x) in Eq. 10 (see Appendix A) is valid when x → ∞, but large
values of bDa

|| would suppress the signal to immeasurable levels, and therefore there are practical
bounds on the value of bDa

|| that can be achieved. Therefore, we compared the original signal in
Eq. 2 and the approximated signal using Eq. 3 for different values of N and bDa

|| (Fig. 1 and
Table 1).We use a normalized error to compare the original (Eq. 2) and the approximated signal
(Eq. 3):

Normalized error =
|S − Ŝ|
S

= |1− Ŝ

S
| (4)

where S is the original signal obtained from Eq. 2 and Ŝ is the approximated signal from Eq. 3.
In spherical tensor encoding, b∆ = 0 and Sic = exp (− b

3
Da
||). For large b-values, both intra- and

extra-axonal signals decay exponentially fast, exp (− bDa||

3
) � 1, exp (− b(De||+2De⊥)

3
) � 1 and

both of them are negligible. Therefore, the spherical tensor encoding does not provide a consider-
able signal for large b-values in a two-compartment model.
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2.2 General Case of Axisymmetric B-tensor

Here, we consider the general case of axisymmetric b-tensor b∆ 6= 0, to cover all b-tensor shapes
between b∆ = −0.5 (PTE) to b∆ = 1 (LTE).

2.2.1 0 < b∆ ≤ 1

As noted above, in this range the error function in Eq. (1) goes to 1 for high b. To have a power-
law relationship between the signal and the b-value, the exponential term exp[−b(D|| + 2D⊥ −
b∆(D||−D⊥))/3] should go to one and therefore D||+ 2D⊥− b∆(D||−D⊥) = 0. If D|| = 0 then
2D⊥ + b∆D

⊥ = 0 and therefore b∆ = −2 which is not in the range of plausible b∆ values. For
D|| 6= 0, D⊥/D|| = (b∆−1)/(b∆ +2) which is only physically plausible (i.e. the ratio of diffusion
coefficients has to be ≥ 0) for b∆ − 1 ≥ 0, but the maximum value that b∆ can take is one, and
therefore D⊥ has to be zero i.e. the geometry has to be that of a stick, and the b-tensor has to be a
pure LTE to have a power-law relationship.

2.2.2 −0.5 ≤ b∆ < 0

Conversely, in the range −0.5 ≤ b∆ < 0, as in Eq. (2), the error function becomes imaginary.
Similar to the first scenario, to have a power-law relationship the exponential term has to be one.
By replacing the first term of the approximation in Eq. (10) into Eq. (1), we have:

S(k = 0) ≈ e
−b
3

[(D||+2D⊥)−b∆(D||−D⊥)]−bb∆(D||−D⊥)

−2bb∆(D|| −D⊥)
(5)

To have the exponential equal to one:

D⊥

D||
≈ 2b∆ + 1

2b∆ − 2
(6)

where the right side of the equation is negative for−0.5 < b∆ < 0 which is not physically plausible
for the left side of the equation (i.e. ratio of diffusivities). Therefore, the only possible case is to
have D⊥ = 0 which again means stick-like geometry and b∆ = −0.5 which is pure PTE. Clearly
the exponential term will become zero if and only if b∆ = −0.5, and thus the 1/b signal form will
occur if and only if the b-tensor shape has just 2 non-zero eigenvalues, i.e. pure PTE. Thus, for
stick-like geometries, there are only two b-tensor shapes for which a power-law exists: pure linear
and pure planar. As the above equations show, we do not observe a power-law for non-stick-like
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geometries.
The S ∝ b−1 dependence is valid for an intermediate range of diffusion weightings and the asymp-
totic behaviour of the signal decay is determined by a steeper decay [37].

3 Method

3.1 Simulations

Synthetic data were generated with 60 diffusion encoding gradient orientations uniformly dis-
tributed on the unit sphere [38, 39] and 21 b-values spaced in the interval [0, 10000 s/mm2] with
a step-size of 500 s/mm2. The noise is considered Rician with SNR = 150 for the b0 image,
which is practically feasible using the Connectom scanner with an echo time of 88ms [40]. A
three-compartment model with a Watson orientation distribution function is used:

S/S0 = f1

∫
S2

W (n)Scyl(n)dn + f2

∫
S2

W (n)Sec(n)dn + f3Ssph(Rs) (7)

where f1, f2 and f3 are the intra-axonal, extra-axonal and the sphere signal fraction respectively,
W (n) is the Watson ODF, Sec is the extra-axonal signal, Scyl is the signal attenuation of the imper-
meable cylinders [41] and Ssph is the restricted diffusion inside the spherical compartment in the
presence of b-tensor encoding [42] (Appendix B). The ground truth parameter values defined by a
set of parameters [f1 = 0.65, Da

|| = 2 µm2/ms, D||e = 2 µm2/ms, D⊥e = 0.25, 0.5, 0.75 µm2/ms

and κ = 11] and axon radius ri, come from the bins of the histograms in [43]. We average the sig-
nal over all ris weighted by r2

i . In histology, there is a possibility of tissue shrinkage. To account
for this change, the axon radius values are multiplied with three shrinkage factors η = 0, 1, 1.5

[43, 44]. The η = 0 case simulates the effect of zero-radius axons.
The third compartment is simulated as a sphere with zero radius (dot) and a sphere with radius
Rs = 8µm to consider the effect of combining the environments on the power-law scaling.
The noisy diffusion signal is modeled according to the following:

Sn =
√

(S +Nr(0, σ))2 +Ni(0, σ)2 (8)

where Sn and S are the noisy and noise-free signal respectively and Nr and Ni are the normal dis-
tributed noise in the real and imaginary images respectively with a standard deviation of σ [45, 46].
The Matlab code for the simulation is available on GitHub (https://github.com/maryamafzali/
PTE_Cylinder-)
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3.2 In vivo Data

Two healthy participants who showed no evidence of a clinical neurologic condition were scanned
in this study that was conducted with approval of the Cardiff University School of Medicine ethics
committee. Diffusion-weighted images were acquired with 60 gradient directions for planar tensor
encoding (PTE) on a 3T Connectom MR imaging system (Siemens Healthineers, Erlangen, Ger-
many). Twenty axial slices with a voxel size of 4mm isotropic (given the strong signal attenuations
investigated here, a low resolution of 4 mm isotropic was used) and a 64×64 matrix size, TE = 88
ms, TR = 3000 ms, were obtained for each individual.
Diffusion data were acquired for 10 b-value shells from 1000 to 10000 s/mm2 with a step size of
1000 and each shell had the same 60 diffusion encoding gradient orientations uniformly distributed
on the unit sphere. One b0 image was acquired between each b-value shell as a reference.
The data were corrected for Gibbs ringing [47], eddy current distortions and subject motion [48].
To remove the Ricain noise ’Non Local Spatial and Angular Matching’ method [49] was used. We
normalized the direction-averaged signal based on the b0 signal in each voxel.

4 Results

Fig. 1 shows Ŝ/S for 3 < bDa
|| < 20 and 4 < N < 21. The selected range of bDa

|| is com-
patible with the range of b-values that we can obtain from the Connectom scanner and also the
range of Da

|| that exist in the brain [50]. Based on Fig. 1 the number of terms in Eq. 7 should
be smaller than or equal to the bDa

|| (N ≤ bbDa
||c where b...c denotes the floor function) to have

the minimum error (Ŝ/S is close to one). As the number of terms goes beyond the bDa
||, the error

increases. Table 1 shows the minimum number of terms, N , for different error threshold values
(0.01-0.06). When the error threshold is 0.02, we can approximate Eq. 2 with the first term in Eq.
3 if bDa

|| ≥ 14. For the error threshold of 0.06, the maximum bDa
|| to approximate the signal with

the first term is 3.
Diffusion MRI is an inherently low SNR measurement technique, particularly when strong diffu-

sion weightings are utilized. To reach the level that enables us to approximate the planar diffusion
signal in Eq. 2 with the first term of Eq. 3, we need to use relatively high b-values (bDa

|| ≥ 14).
One of the challenges with the high b-values is the noise, as the signal amplitude can be close to
the noise floor. Therefore, here we find the maximum value of bDa

|| that we can use before hitting
this rectified noise floor (see Appendix C).
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Figure 1: The approximated signal over the original PTE signal (Ŝ/S), for different N values.

The noise in complex MR data is normally distributed, whereas the noise in magnitude images is
Rician distributed [45, 46]. Here, we select a minimum SNR value equal to 2 (see Appendix C).
By setting the diffusion-weighted intensity to the mean background signal, we obtain the b-value
that makes the signal equal to the noise floor.
Fig. 2 shows the maximum bDa

|| as a function of SNR for different encoding schemes and different
noise floors. The maximum value of bDa

|| that can be used while staying above the noise floor in-
creases when SNR increases, but the rate of this change is different for different encoding schemes.
The maximum bDa

|| value (bDa
||max) is proportional to the square of SNR, (bDa

||max ∼ SNR2)
for LTE, where this relationship is linear for PTE (bDa

|| ∼ SNR) and it is logarithmic for STE
(bDa

|| ∼ ln (SNR)). Based on this plot, if SNR = 50 the values of bDa
||max for linear, planar

and spherical tensor encoding schemes are around 312, 21 and 9 respectively. The SNR in our
data is around 250 [51] therefore the measured signal values in our experiment are higher than the
noise level. For this SNR, the bDa

||max for linear, planar and spherical tensor encoding schemes
are around 15625, 100 and 16 respectively.

Fig. 3 shows the simulated direction-averaged PTE signal (f3 = 0) as a function of 1/b for
three different perpendicular diffusivities and three different shrinkage factors. The result of the
power-law fit (S = βb−α) is represented by the red dashed line and the α and β values are reported
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SNR, (bDa

|| ∼ SNR2) for LTE, where this relationship is linear for PTE (bDa
|| ∼ SNR) and it is

logarithmic for STE (bDa
|| ∼ ln (SNR)).

in each plot. The trust-region-reflective algorithm is used for optimization with a fixed initial value
(α = 1 and β = 0.2). The goodness of fit is evaluated using the Bayesian information criterion
(BIC) [52], fully aware of how unreliable blind goodness-of-fit criteria is. In our simulation, f =
0.65, Da

|| = 2 µm2/ms, therefore if the approximation in Eq. 3 is valid, β ≈ 0.325 and α ≈ 1

indicate that the fit approximately matches the theory.
Szczepankiewicz et al. [53] showed that PTE needs less number of directions (15-20 directions

for b <= 4000s/mm2) compared to LTE (20-32 directions b <= 4000s/mm2), to provide a ro-
tationally invariant signal powder average, making it more efficient for powder averaging. Here
we use a higher range of b-values 7000 < b < 10000s/mm2, therefore, the minimum number of
directions for powder averaging is 45. Fig. 4 (a) shows the minimum number of directions for
a rotationally invariant signal powder average for different b-values from 1000 to 10000 s/mm2

using LTE compared to PTE. Fig. 4 (b) illustrates the changes of exponent α using LTE compared
to PTE. An insufficient number of diffusion directions in powder averaging may cause the break
of power-law scaling. Therefore, we have to consider this when we use very high b-values.
Still water compartment or ’dot compartment’ has close to zero diffusivity. The presence of this
compartment can affect power-law scaling. Fig. 4 (c) shows the changes of the power-law scal-
ing (α) versus ’still water’ signal fraction for PTE compared to LTE on the simulated data with
D⊥ = 0.75(µm2/ms). Note that the α in PTE is more sensitive to the still water contribution than
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Figure 3: Simulated direction-averaged PTE signal for 7000 < b < 10000s/mm2 and the results
of the power-law fit.

LTE.
Fig. 4 (d) shows the changes in the exponent α in the presence of spherical compartment with the
radius of Rs = 8µm. The range of α values is close to the estimated values in gray matter (Fig.
5) which shows the combination of stick and sphere can represent the signal decay in gray matter
[54]. Fig. 5 illustrates the normalized direction-averaged diffusion signal of the in vivo data for dif-
ferent b-values (7000 ≤ b ≤ 10000) in a few slices. For high b-values (7000 < b < 10000s/mm2)
the amount of the signal is considerable compared to the noise and the white matter structure is
completely clear in the images because of high SNR.
The last three rows of Fig. 5 show the FA and α map, the power-law fit over white matter voxels,
the histogram of the α values in white matter, gray matter, CSF and the PTE gradient waveform.
The PTE signal of the white matter voxels, the mean value, the standard deviation of the signal
and the result of the power-law fit over the range of b-values investigated is shown in Fig. 5. The
results show that the data are well described by power-law behavior, with α ≈ 1 which confirms
the validity of the signal approximation using the first term in Eq. 3.
To segment the brain image into different tissues, we used FAST (FMRIB’s Automated Segmenta-
tion Tool) in FSL [55]. In the WM, the α value is close to one, supporting the theory. In grey matter
and CSF, the exponent is larger (1.5 and 2, respectively). According to the theory outlined above,
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Figure 4: (a) The minimum number of directions for a rotationally invariant powder average signal
in different b-values, (b) the changes of power-law scaling versus number of gradient directions,
(c) the changes of the power-law scaling (α) versus ’still water’ signal fraction, and (d) the changes
of the power-law scaling (α) versus sphere signal fraction for PTE compared to LTE.

this would be consistent with a lack of pure ’stick-like’ geometry in these tissue components. The
spatial resolution of the data must be recognized, i.e., at 4 mm isotropic voxels, obtaining a ’pure’
GM signal and ’pure’ CSF signal is challenging. It is likely that the intermediate exponent in the
GM between that of the WM and CSF is partly attributable to a partial volume effect, and partly at-
tributable to the inadequacy of the model for grey matter architecture. The exponent in gray matter
is similar to the one obtained using the combination of ’stick + sphere’ [54]. Further investigation
of this phenomenon in grey matter is beyond the scope of this work.

Table 2 shows the mean and the standard deviation of exponent α in white matter, gray matter
and CSF for two different subjects. The mean value in WM is around one, in gray matter it is
around 1.5 and for CSF around 2.
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5 Discussion

The main finding of this paper is a theoretical derivation, and confirmation in silico and in vivo of
a power-law relationship between the direction-averaged DWI signal and the b-value using planar
tensor encoding, as given by Eq. 3, for b-values ranging from 7000 to 10000 s/mm2. In white
matter, the average value of the estimated exponent is around one.
For smaller b-values, this behavior must break down as the DWI signal of PTE cannot be ap-
proximated by Eq. 3 (Fig. 1) and also we cannot neglect the contribution of the extracellular
compartment. It could also fail for very large b-values, if there were immobile protons that con-
tributed a constant offset to the overall signal or if there is any sensitivity to the axon diameter [36].
Besides, if we do not have a sufficient number of diffusion directions for powder averaging, this
power-law scaling can break.
The exponent of approximately one for white matter using PTE is consistent with the large b-value
limit predicted for a model of water confined to sticks Eq. 3, which is used to describe the diffusion
dynamics of intra-axonal water. Our results confirm this relationship between the diffusion signal
and the b-value (Fig. 5 and table 2.
The b−1/2-scaling has previously been suggested by [17, 16] for linear tensor encoding. Two other
proposed models predict power law signal decay, for large b-values using a linear tensor encoding.
One of these is the statistical model [14], where the signal decays as 1/b for large b. Some other
models [56, 57, 58], assume a gamma distribution for the diffusion coefficients and a family of
Wishart distributions [59]. However, in this case, the exponent does not have a universal value, it
depends on the distribution.
This work interprets the diffusion-weighted MRI signal decay at high b-values in the form of
S ∼ b−1 for planar tensor encoding, this power-law relationship is also reported by Herberthson et
al. [31]. An important application of this finding is using the combination of linear and planar ten-
sor encodings to characterize the intra-axonal diffusivity and the signal fraction as it is proposed by
[60] using triple diffusion encoding. PTE provides some information that is not available in STE. If
we consider two different scenarios with the same mean diffusivity and different anisotropy where
in the first one the perpendicular diffusivity is not zero while in the second one the perpendicular
diffusivity is zero. Spherical tensor encoding gives the same signal for both scenarios while planar
tensor encoding can distinguish these two from each other. Therefore, It is important to study the
existence of power-law for planar tensor encoding which shows the presence of stick-like geome-
tries. The amplitude of the signal that we get from STE for stick model in high b-values is less
than the one that we get from PTE because the signal decay in STE is exponential while it is not
exponential for PTE.
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6 Conclusion

This work explores the diffusion-weighted MRI signal decay at high b-values for planar, and spher-
ical tensor encoding complementing and extending previous works on linear tensor encoding. By
exploring diffusion averaged signals, we conclude that the signal from STE decays exponentially
for all the range of b-values. The intra-axonal signal does not decay exponentially as a function
of b for linear and planar tensor encoding in high b-values. The direction-averaged DWI signal of
PTE and LTE decreases with increasing b-values as a power law, for b-values ranging from 7000
to 10000 s/mm2. In white matter, the exponent characterizing this decrease is close to one-half,
for LTE and one for PTE, which is consistent with the large b-value limit of a model in which
intra-axonal water diffusion is confined to sticks. Obtaining an exponent of -1 for PTE and -1/2
for LTE could provide useful cross-validation of the presence of stick-like geometries in tissue. A
complete analysis of the power-law dependencies of the diffusion-weighted signal at high b-values
has been performed. Only two forms of encoding result in a power-law dependency, pure linear
and pure planar tensor encoding. The different exponents of these encodings could be used to
provide independent validation of the presence of stick-like geometries in vivo where, due to the
slower decay, LTE is the most SNR efficient method. Any deviation from the power-law could
indicate the deviation from stick-like geometry with both LTE and PTE encoding, as exploited by
[36] for estimating the effective radius of axons. Again, for such applications of the power-law, the
LTE approach is to be favored over the PTE approach, on account of the higher SNR per unit time.

A Planar Tensor Encoding

In planar tensor encoding, b∆ = −1/2 and Sic has the following form:

SPTEic (b) =

√
πe
−bDa||

2 erfi(
√
bDa

||/2)

2
√
bDa

||/2
(9)

Asymptotic expansion of erfi(x) is as follows:

erfi(x) =
ex

2

x
√
π

∞∑
k=0

(2k − 1)!!

(2x2)k
(10)

where x→∞ and (−1)!! = 1.
bDa

|| � 1 for large b, therefore we have:

SPTEic (b) =
1

bDa
||

N∑
k=0

(2k − 1)!!

(bDa
||)k

(11)
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where N depends on the bDa
|| value (Fig. 1 and table 1.

SPTEic (b) =
1

bDa
|| (1 +

1

bDa
|| +

3

(bDa
||)2

+ ...) (12)

B Signal Attenuation in a Cylindrical and Spherical Pore Us-
ing PTE

The signal attenuation of the impermeable cylinders [41] using PTE is generated using the follow-
ing equation [42]:

Scyl = Scyl
||S⊥cyl (13)

Scyl
|| = e−

b
2
Da||(1−(g.n)2) (14)

ln (S⊥cyl) = −2γ2G2(1 + (g.n)2)R6

(Da
||)2

∞∑
n=1

An
α6
n(α2

n − 1)
(15)

where αn is the root of the derivatives of the first order Bessel function J ′1(αn) = 0 and

An =
2α2

nDa
||δ

R2
− 2 + 2Ln(δ)− Ln(∆− δ) + 2Ln(∆)− Ln(∆ + δ) (16)

and
Ln(t) = e−

α2
nDa

||t
R2 (17)

SSph is the restricted diffusion in spherical pore using planar tensor encoding [42]:

ln SPTEsph = −2γ2G2R6
s

D2

∞∑
n=1

2An
β6
n(β2

n − 2)
(18)

where βn is the root of the derivatives of the first order spherical Bessel function j′1(βn) = 0.
For the diffusivity of the water molecules inside the spherical pore (D), we use a constant value
1700µm2/s.
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C SNR and Error

Let us assume that a real signal S follows a Rician distribution with parameters A and σ

S ∼ R(A, σ) (19)

with PDF [45]

p(x|A, σ) =
x

σ2
e−

x2+A2

2σ2 I0

(
Ax

σ2

)
u(x), (20)

where A is the (absolute value) of the original signal (without noise) and σ2 is the variance of the
complex Gaussian noise. It can be seen as

S =
√

(A+Nr(0, σ))2 +Ni(0, σ))2. (21)

The question in MRI of how low can we go with the signal (i.e., when do we reach the noise floor)
will always depend on the application and on the estimator we are using. However, we can always
consider a lower bound to the SNR related to the error of the measured signal.
To calculate an SNR threshold independent of the particular application, we can use two different
definitions of error: (1) the Mean Square Error (MSE) or (2) the mean error (ME). We define the
MSE as

MSE = E
{

(S − A)2
}

(22)

where S is the measured signal and A is the original signal. We use the mean value to assure that
this error is a statistical property and not an isolated measure. The ME is alternatively define as:

ME = E {S − A} . (23)

For the SNR calculation, we will consider that the error committed is a percentage of the original
signal (to make it signal dependent), i.e.

E
{

(S − A)2
}

< ε · A2

E

{(
S

A
− 1

)2
}

< ε.

Alternatively, for the ME:

E {S − A} < ε · A

E

{
S

A
− 1

}
< ε.
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Assuming a Rician distribution of parameters A and σ, the errors become:
The MSE:

E

{(
S

A
− 1

)2
}

= 2 +
2

SNR2 −
√

2π
1

SNR
L1/2

(
−SNR2

2

)

The ME:

E

{
S

A
− 1

}
=

√
π

2

1

SNR
L1/2

(
−SNR2

2

)
− 1.

For the sake of simplicity, in this paper, we will consider ME as an error measure, since MSE is
more restrictive. The relation between ME and SNR for different errors can be seen in Table 3.
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[35] Eriksson Stefanie, Lasič Samo, Nilsson Markus, Westin Carl-Fredrik, Topgaard Daniel. NMR
diffusion-encoding with axial symmetry and variable anisotropy: Distinguishing between
prolate and oblate microscopic diffusion tensors with unknown orientation distribution The

Journal of chemical physics. 2015;142:104201.

[36] Veraaart J., Fieremans E., Rudrapatna U., Jones D.K., Novikov D.S.. Breaking the power law
scaling of the dMRI signal on the Connectom scanner reveals its sensitivity to axon diameters
in Proceedings of the 26th Annual Meeting of ISMRM, Paris, France 2018.

20

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 12, 2019. ; https://doi.org/10.1101/722421doi: bioRxiv preprint 

https://doi.org/10.1101/722421


[37] Özarslan Evren, Yolcu Cem, Herberthson Magnus, Knutsson Hans, Westin Carl-Fredrik. In-
fluence of the size and curvedness of neural projections on the orientationally averaged dif-
fusion mr signal Frontiers in physics. 2018;6:17.

[38] Jones Derek K, Horsfield Mark A, Simmons Andrew. Optimal strategies for measuring
diffusion in anisotropic systems by magnetic resonance imaging Magnetic Resonance in

Medicine: An Official Journal of the International Society for Magnetic Resonance in

Medicine. 1999;42:515–525.

[39] Caruyer Emmanuel, Lenglet Christophe, Sapiro Guillermo, Deriche Rachid. Design of mul-
tishell sampling schemes with uniform coverage in diffusion MRI Magnetic resonance in

medicine. 2013;69:1534–1540.

[40] Jones Derek K, Alexander Daniel C, Bowtell Richard, et al. Microstructural imaging of the
human brain with a ?super-scanner?: 10 key advantages of ultra-strong gradients for diffusion
MRI NeuroImage. 2018;182:8–38.

[41] Vangelderen P, DesPres D, Vanzijl PCM, Moonen CTW. Evaluation of restricted diffusion
in cylinders. Phosphocreatine in rabbit leg muscle Journal of Magnetic Resonance, Series B.

1994;103:255–260.

[42] Almeida Martins Joao P, Topgaard Daniel. Two-dimensional correlation of isotropic and di-
rectional diffusion using NMR Physical review letters. 2016;116:087601.

[43] Aboitiz Francisco, Scheibel Arnold B, Fisher Robin S, Zaidel Eran. Fiber composition of the
human corpus callosum Brain research. 1992;598:143–153.

[44] Caminiti Roberto, Ghaziri Hassan, Galuske Ralf, Hof Patrick R, Innocenti Giorgio M. Evo-
lution amplified processing with temporally dispersed slow neuronal connectivity in primates
Proceedings of the National Academy of Sciences. 2009:pnas–0907655106.

[45] Aja-Fernández Santiago, Vegas-Sánchez-Ferrero Gonzalo. Statistical analysis of noise in
MRI Switzerland: Springer International Publishing. 2016.

[46] Jones Derek K, Basser Peter J. Squashing peanuts and smashing pumpkins”: how noise dis-
torts diffusion-weighted MR data Magnetic Resonance in Medicine: An Official Journal of

the International Society for Magnetic Resonance in Medicine. 2004;52:979–993.

[47] Kellner Elias, Dhital Bibek, Kiselev Valerij G, Reisert Marco. Gibbs-ringing artifact removal
based on local subvoxel-shifts Magnetic resonance in medicine. 2016;76:1574–1581.

21

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 12, 2019. ; https://doi.org/10.1101/722421doi: bioRxiv preprint 

https://doi.org/10.1101/722421


[48] Andersson Jesper LR, Sotiropoulos Stamatios N. An integrated approach to correction
for off-resonance effects and subject movement in diffusion MR imaging Neuroimage.

2016;125:1063–1078.
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|| ∼ SNR) and it is
logarithmic for STE (bDa

|| ∼ ln (SNR)).
Figure 3. Simulated direction-averaged PTE signal for 7000 < b < 10000s/mm2 and the results
of the power-law fit.
Figure 4. (a) The minimum number of directions for a rotationally invariant powder average signal
in different b-values, (b) the changes of power-law scaling versus number of gradient directions,
(c) the changes of the power-law scaling (α) versus ’still water’ signal fraction, and (d) the changes
of the power-law scaling (α) versus sphere signal fraction for PTE compared to LTE.
Figure 5. Direction-averaged diffusion signal for different b-values (b = 7000 to 10000 s/mm2)
in PTE, FA, Parametric map of the exponent α. The plot of the diffusion signal vs 1/b for in vivo
white matter voxels using planar tensor encoding. The blue curve with the error bar shows the
mean and the std of the average signal and the red line shows the power-law fit. The parameters,
α and β are reported in the figure. α = 1 shows the power-law relationship between the diffusion
signal and the b-value. The histogram of α values and the PTE gradient waveform.
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Table 1: The minimum number of terms for reconstructing the PTE signal for different error
threshold values.

bDa
||

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E
rr

or
th

re
sh

ol
d

0.06 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.05 - 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1
0.04 - 1 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1
0.03 - 1 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
0.02 - 1 - 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1
0.01 - - - 2 3 3 3 3 3 3 2 2 2 2 2 1 1 1

Table 2: The mean and the standard deviation of the exponent α in white matter, gray matter and
CSF

WM GM CSF BIC
subject 1 1.1054 ± 0.085 1.5716 ± 0.1009 1.9004 ± 0.2968 -29.9676
subject 2 1.1100 ± 0.1447 1.6617 ± 0.1836 2.0469 ± 0.2250 -30.293

Table 3:

Error < 0.005A < 0.05A 0.1A 0.2A < 0.5A
ME SNR> 10 SNR> 3.21 SNR> 2.30 SNR> 1.67 SNR> 1.05
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Figure 5: Direction-averaged diffusion signal for different b-values (b = 7000 to 10000 s/mm2)
in PTE, FA, Parametric map of the exponent α. The plot of the diffusion signal vs 1/b for in vivo
white matter voxels using planar tensor encoding. The blue curve with the error bar shows the
mean and the std of the average signal and the red line shows the power-law fit. The parameters,
α and β are reported in the figure. α = 1 shows the power-law relationship between the diffusion
signal and the b-value. The histogram of α values and the PTE gradient waveform.27
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