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Abstract 

Gene regulation networks allow organisms to adapt to diverse environmental niches. However, the 

constraints underlying the evolution of regulatory phenotypes remain ill-defined both theoretically 

and experimentally. Here, we show that the concept of partial order identifies such constraints, and 

test the predictions by experimentally evolving an engineered signal-integrating network in multiple 

environments. We find that populations: 1) expand in fitness space along the Pareto-optimal front 

predicted by conflicts in regulatory demands, by fine-tuning binding affinities within the network, 2) 

expand beyond this constraint by changes in the network structure, thus allowing access to new fitness 

domains. Strikingly, the constraint predictions are based on whether the network output increases or 

decreases in response to the different signals, and do not require information on the network 

architecture or underlying genetics. Overall, our findings show that limited knowledge on current 

regulatory phenotypes can provide predictions on future evolutionary constraints. 
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Introduction 

Regulatory networks that integrate multiple environmental cues enable organisms to proliferate in 

diverse environments1,2. For instance, bacteria can tolerate highly diverse conditions by recognizing 

specific combinations of stressors such as pH and osmotic pressure3, and plants can elongate above 

dense canopies by responding to particular combinations of light intensity and wavelength4. However, 

it is not straightforward to establish whether a particular regulatory network is able to optimally 

respond to the multiplicity of signals presented by a complex environment5-9, and consequently how 

evolutionary constraints limit the range of tolerated environments. Constraints on the adaptation 

abilities of regulatory networks have been studied both experimentally, by targeted mutagenesis or 

knock-out of its constituent components7,10,11, and computationally, by varying parameters in kinetic 

models12-14. The common denominator for these approaches is their need for detailed information on 

the network topology and the functioning of its parts, which is lacking for many phenotypes. For 

instance, evolutionary constraints have been mostly studied for regulatory networks that control 

developmental programs15, but they remain little explored for networks that are involved in 

competition and selection in variable environments5,16. To address these issues, we developed a novel 

method to identify constraints in signal integration phenotypes that only requires information on 

current responses, and subsequently tested the predictions using synthetic networks in E. coli. 

 

Results 

The order of expressed phenotypes. 

Central to our approach is partial order, which is a concept used in combinatorial optimization 

problems, such as task scheduling or algorithmic verification17, but also in decision making for 

engineering applications18. This concept allows us to categorize signal integration networks that 

produce monotonic responses to individual input signals — shown to represent a major class of 

biochemical networks19. What we propose is best explained with an example. Consider a phenotype 

P, controlling the fitness of an organism, repressed by an environmental signals s1 and activated by a 

second environmental signal s2 (Fig. 1a). The vector S = (s1, s2) defines the environment and P(s1, s2) 

the response. We consider four environments where these two signals that may be either absent (0) 

or present (1), and the four corresponding levels of P expression (P00, P10, P01, and P11) (Fig. 1b). When 

switching from an environment S = (1,0) to an environment S = (0,1), the repressing signal s1 decreases 

and the activating signal s2 increases. As a consequence of its monotonous response, P must increase 

(from P10 to P01, Fig. 1c). This is the case for any shape of the activation or suppression response, 
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regardless whether its strength or sensitivity is modulated, or how the two signals are integrated, as 

long as s1 suppresses and s2 activates P. Thus, for evolutionary processes that modify any of the 

activation characteristics of the two signals, one can identify the following constraint on P, namely: 

P01>P10. This indicates that when considering phenotypic responses P10 and P01, what is constrained is 

their order. 

However, not all environmental switches impose such order. Specifically, it contrasts with situations a 

switch from an environment S = (0,0) to an environment S = (1,1), where both s1 and s2 increase. For a 

single genotype, the order in the two corresponding phenotypes P00 and P11 may be P00 > P11 as 

represented in Fig. 1c – this is the case when the suppressing effect of s1 dominates over the activating 

effect of s2. However, this is not necessarily the case, as the activating effect may dominate for some 

other genotypes. Thus, even when monotonicity is preserved for individual responses, the order 

between P00 and P11 is not necessarily a constraint during evolution.  

 

Figure 1 Partial order of phenotypes identify conflicting regulatory objectives and constraint.  a) Schematic 

diagram of the system studied. An organism exhibits a phenotype P that controls fitness F, in response to two 

environmental signals s1 and s2. Here, expression of P is suppressed by s1 and activated by s2. b) Considered 

environmental conditions, which alternate in time. The two signals s1 and s2 can be either present at a particular 

concentration (1) or absent (0), resulting in four possible values for phenotype P. c) Diagram indicating the order 

of expressed phenotypes corresponding to panels a-b. P01 is highest because P is not suppressed (by s1) and only 

stimulated (by s2), while P10 is lowest because P is only suppressed and not stimulated. P00 and P11 are both higher 

than P10 and lower than P01, as they are neither fully stimulated, nor fully repressed. The arrows indicate this 

order in expressed phenotypes. In contrast, the order between P00 and P11 is not defined because it remains 
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undetermined whether P is more activated or more suppressed. d) Hasse diagram representing the partial order 

described in panel c. Phenotypes are represented as nodes, their order by connecting lines. The order is partial 

because some phenotypes are ordered while others are not. The phenotype P can vary between the minimum 

(min) and the maximum value (max). This partial order is an evolutionary constraint: it remains identical for 

mutations that change any property of the activation or suppression, as long as the same signals continue to 

activate or repress. e-f) Prediction of conflicts, trade-offs, Pareto-optimal front, and its dimensionality. Consider 

regulatory evolution driven by mutations and selective pressure. Generally, each of the four alternating 

environments may select either to increase (maximize) or decrease (minimize) expression of P. A partial order 

analysis predicts constraints in this adaptation. e) Set of four selective environments that do not pose a constraint 

for this response and partial order (depicted in panel c). Given the selection (arrows, left), all nodes can be 

optimized without conflict (middle), resulting in a single optimum phenotype in fitness space (right, schematic 

representation). f) Set of four environments that impose a single conflict, between and P10 and P00. They cannot 

cross given the partial order constraint, even though selection favors it. The optimum is then that they are equal 

(nodes overlap). If P10=P00 increases, F00 increases but at the expense of decreases in F10. The conflict thus 

identifies a cross-environmental tradeoff. The resulting Pareto front is a one-dimensional line (right, schematic 

representation), independent of the dimensionality of the fitness space. g) Set of four environments that impose 

two conflicts, and resulting two-dimensional Pareto surface (right, schematic representation). 

 

Partial order constraints and their graph representation. 

The absence of order between some pairs of phenotypic values seems to imply that phenotypic order 

will not always lead to the identification of a constraint. However, the notion of partial order provides 

an approach to capture the available information on order, which can be represented in graphs called 

Hasse diagrams20. The nodes of the graph represent the phenotypes P(S) for different environments S 

(Fig. 1d). The node with the highest value of P is displayed at the top, the one with the lowest value of 

P at the bottom. Any two nodes that exhibit a specific order are connected by vertices. Here the 

resulting Hasse diagrams is diamond-shaped (Fig. 1d). Mutations affecting characteristics like 

activation and repression strength can move nodes up and down, but cannot alter the connectivity or 

topology of the graph. The graph is a partial order graph, as it defines both the order and lack of order 

that is present. 

Under a given evolutionary pressure, the partial order graphs can be reduced to simpler graphs that 

represent the optimal values for the phenotypes P(S). For instance, consider the four environments to 

alternate in time, with low P favored only in S = (0,1), and high P in the other environments (see up or 

down arrows in Fig. 1e, left). In this problem, all four nodes can optimize to the minimum and 

maximum P values, without encountering conflicts between the posed selective objectives. The 

solution to this problem (Fig. 1e, middle) is that P00, P01 and P11 take the maximum possible value, and 

P10 the minimum. This single phenotype determines a single point in fitness space (Fig. 1e, right).  

This situation differs from conditions that favor a low P only in S = (0,0) (Fig. 1f, left), as the latter now 

conflicts with the selection objective of node S = (0,1) (Fig. 1e, middle). The order constraint P00 > P01, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 1, 2019. ; https://doi.org/10.1101/722520doi: bioRxiv preprint 

https://doi.org/10.1101/722520
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

here means that the nodes cannot ‘cross’ (as this would result in P00 < P01), and hence not all objectives 

can be fulfilled. Here, it is optimal to merge the P00 and P01 nodes, meaning P00 = P01. Hence, the system 

can either optimize P01 (by increasing P00 = P01), or optimize P00 (by decreasing P00 = P01), but not both. 

In other words, in the absence of the repressing signal (s1=0), the network cannot always produce the 

optimal phenotype (for both values of the activating signal: s2=0 and s2=1).  

Conflicting objectives, trade-offs, and Pareto fronts. 

The above conflicts in objectives reflect a trade-off: the fitness in one environment can at some point 

only increase further by changes that at the same time decrease fitness in another environment. The 

set of such best possible values of P are referred to as the Pareto front21. One may note that a certain 

variable environment does favor a specific location on this Pareto front: the full Pareto front indicates 

all potential optimal solutions – rather than the single optimum resulting from a specific variable 

environment. We have just described how, in the presence of a single conflict, the optimum then 

becomes a line instead of a point in fitness space. Note that the specific curvature of the line depends 

on the non-linearity of the relation between expression and fitness in each environment (Fig. 1f, right). 

In the same way, the Pareto front is a surface for two conflicts (Fig. 1g) and so on. We have previously 

shown theoretically that this approach allows to reduce a large set of potential constraints into a 

Pareto optimal set of much smaller dimension, starting from arbitrary numbers of signals and 

monotone responses (Supplementary Fig. 1)17. The resolution algorithm developed for this purpose 

processes the Hasse diagram in order to identify conflicting regulatory objectives, the number of which 

predicts the dimensionality of the Pareto front (see Supplementary Information).  

Experimental evolution in different environments 

We tested these predictions by random mutagenesis of a network, and competitive selection in 

different consecutive environments that correspond to a variety of objectives (Fig. 2). We engineered 

a genetic network responding to the inducers doxycycline (dox) and isopropyl-β-D-galactopyranoside 

(IPTG), which define s1 and s2 respectively (Fig. 2a; Methods; Supplementary Table 1). The network 

controlled a selection cassette22, whose expression level defined P. In this manner, the network output 

P was coupled to the growth rate (F), on which selection acts (Fig. 2a).  

Selection was designed to work as follows. To select for increased P, a chloramphenicol-containing 

medium was used, resulting in a growth rate Fup. Increased expression of chloramphenicol 

acetyltransferase (cmR) within the cassette provides resistance and hence faster growth. The relation 

between P and Fup can be quantified22 (Fig. 2b, left), which shows that Fup is close to zero when P is low, 

and increases to about 1.7 doublings per hour (db/hr) when P is high. To select for decreased P, a 

sucrose-containing medium was used, resulting in a growth rate Fdown. Because the polymerization of 
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sucrose by the levansucrase enzyme (SacB) is toxic, decreased expression of the cassette then 

produces faster growth. Quantification of the relation between P and Fdown indeed shows that Fdown is 

about 2 dbl/hr when P is low and decreases to negative values when P is high (Fig. 2b, right)22. 

The regulatory behavior of the network corresponds to the example of Fig. 1a. Increases in s1 (dox) 

should relieve repression by the upstream TetR repressor, of the downstream LacI repressor, which in 

turn represses the network output P. On the other hand, increases in s2 (IPTG) should relieve repression 

of P. Thus, s1 should suppress, while s2 should activate P (Fig. 1a). Using enhanced yellow fluorescent 

protein (eYFP) reporter, we verified that this was indeed the case (Fig. 2d). The dynamic range was 

small however: even the lowest P (P10) was near the end of the range of P values (2.4-fold change, Fig. 

2e).  To validate the experimental evolution protocol, we first aimed to select for a lower P10. 

The network (i.e. the TetR and LacI coding sequences, their promoters and their operator sites) was 

randomly mutated by error-prone PCR with on average 3 mutations per gene, and subsequently 

inserted into a vector containing the selection cassette. This resulting pool of mutant networks was 

transformed into E. coli and selected in a medium with chloramphenicol, but without any inducers, 

which corresponds to an upward pressure for P00. After this the population was transferred to a 

medium with dox, without IPTG, and containing sucrose (Methods), which corresponds to a downward 

pressure on P10. This dual selection provided a counter-selection for TetR knock-out mutants, which 

can be achieved by a wide range of mutations, and indeed would decrease P10, but also fully abolish 

the response to dox. Finally, isolates of the resulting population were characterized using an eYFP 

reporter gene for the network output (Fig. 2d). This indicated that P10 had indeed decreased 

significantly (Fig. 2e, 14-fold change of the response after selection) while the response to dox 

remained intact.  
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Figure 2 Experimental evolution in multiple consecutive environments. a) Engineered genetic network and 

selection cassette. Expression of selection cassette (P) is controlled by two environmental signals dox (s1) and 

IPTG (s2). The genetic network (black) is mutated using error-prone PCR, yielding a mixed population of different 

network variants. The selection cassette22 contains beta-galactosidase fragment LacZ to measure expression 

levels, the chloramphenicol resistance gene cmR to select for increasing P. The levansucrase gene sacB confers 

toxicity in sucrose media. b) Quantification of selection in two types of environment (from ref. 22). Measured 

growth rates as function of P. For this quantification purpose, P is here varied by induction, rather than by 

mutations22. In a chloramphenicol-containing medium (left), cells with high P grow faster and hence are favored, 

due to their high levels of resistance. In a sucrose-containing medium, cells with lower P grow faster and hence 

are favored, due to reduced toxicity. c) Illustration of the experimental evolution protocol (see Methods). A 

mutant population is successively grown in two indicated environments, which couples the input signals to a 

selection for P. d) Measured values for the initial network (‘WT’, purple), and after selection (blue) to lower P10, 

while at the same time preventing TetR knockouts to occur by selecting for high P00. Consistently, P10 decreased, 

and sensitivity to dox is retained. e) Measured increase in the dynamic range, as the fold change between highest 

and lowest P value. 

 

Fitness domains constrained by partial order 

To test the partial order approach, we focused on the case of conflicting objectives (Fig. 1f). This 

scenario corresponded to a downward selection of P00, an upward selection of P10, P01, and P11 (Fig. 

3a), and hence a conflict between P00 and P01 (Fig. 3a, dashed line). Using the predicted optimum under 

partial order constraints (Fig. 1f, middle) and the measured Fdown(P) and Fup(P) (Fig. 2b), we determined 

the shape of the predicted 1-dimensional Pareto front (Fig. 3b, orange line). We could further 

determine the accessible 4-dimensional fitness space in the 4 environments (Supplementary Fig. 2), 

here visualized in 3 dimensions by averaging the fitness of P10 and P11 (Fig. 3b). In this fitness space, 

each possible network genotype corresponds to a single point. Note that the plotted dots in Fig. 3b are 

measured experimental phenotypes obtained after the selection protocol described in the next 

section. In this same space, the Pareto front represents a collection of networks. The two extreme 

ends of this Pareto line are two archetypal regulatory responses (Fig. 3b), following Shoval et al.23. 

These respectively correspond to P00 and P01 being low, while P10 and P11 are both high, and P00, P10, 

P01, and P11 all high (Fig. 3b). The leveling off of Fdown(P) and Fup(P) at low and high P (Fig. 2b) define the 

lower and upper limit of the Pareto line (Fig. 3b). The other corners of the fitness boundaries in Fig. 3b 

correspond to other archetypal regulatory phenotypes that are not optimal under this selective regime 

(Supplementary Fig. 2). Altogether, the regulatory archetypes and the line which connect them limit a 

domain of fitness that is accessible under the defined partial order constraints, while the space beyond 

it is predicted to be inaccessible. 

Experimental evolution with conflicting objectives 

The initial network (Fig. 2a) was found to map to a corner of this fitness domain (Fig. 3c, grey dot) and 

to correspond to an archetypal response. This position is consistent with the empirical observation 
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that P was high in all four environments (Fig. 2d). Next, we mutated the network by error-prone PCR 

and performed selection in different environments, with a protocol similar to the one described in Fig. 

2c, but with the selective pressures as indicated in Fig. 3a. We found that the resulting isolated 

genotypes remained confined within the fitness domain predicted by the partial order. Moreover, they 

scattered along a line within the multi-dimensional fitness space, which coincided with the predicted 

Pareto front (Fig. 3b, black dots along the orange line, Supplementary Fig. 3a). These selected 

genotypes showed increased F00, at the expense of decreased F01, while little affecting F10 and F11 (Fig. 

3b), consistent with the single conflict identified between the nodes P00 and P01 (Fig. 3a). 

A second round of mutagenesis and selection was performed, using one of the selected isolates as a 

founder (Fig. 3c, red dot). Consistent with the previous round, many of the progeny that were present 

in the population after selection in multiple environments, were again found scattered along the 1-

demensional Pareto front (Fig. 3c). Some of the progeny however, had moved outside the predicted 

fitness domain (Fig. 3c). These isolates were scattered along a line that bridged the Pareto front and 

the theoretical fitness optimum (green dot, Fig. 3c, Supplementary Fig. 3b), where growth rates are as 

high as they can be in all environments. These findings could, at least in principle, indicate a problem 

with our predictions, or rather indicate the emergence of genetic variants that resolved the conflict 

between the P00 and P01 objectives, and hence overcame the partial order constraints. 
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Figure 3 Experimental evolution of conflicting objectives. a) Left: Partial order graph with (conflicting) selective 

pressures indicated by arrows (as in Fig. 1f). Dashed line indicates a single conflict between P10 and P00, which 

results from incompatibilities between the selective pressures and the partial order graph. Right: Pareto optimal 

solution. b) Predicted accessible fitness domain for four environments and isolates after the first round of 

evolution. The fitness values of two environments are averaged for visualization purposes. Corners indicate 

predicted optimal archetypal regulatory phenotypes, connecting edges represent intermediate regulatory 

phenotypes. Edges are drawn using the indicated changes in the values of P (which here all move between the 

minimum and maximum values), the defined selective pressures (panel a), and the corresponding measured 

relations between P and fitness (Fig. 2b). The orange line is the one-dimensional Pareto-optimal front. The grey 

dot represents the initial regulatory phenotype and is close to an archetypal phenotype where expression is 

maximum in all environments. During experimental evolution, a population of cells with randomly mutated 

networks is exposed to selection in multiple sequential environments. Black dots are isolates of the resulting 

population and scatter along the predicted Pareto front. c) Predicted accessible fitness domains and isolates after 

the second round of experimental evolution. Some isolates continue to scatter along the Pareto front. Others 

moved away from it, suggesting the constraint is broken by changes in the partial order. Green lines: predicted 

accessible space for adjusted partial orderings. Isolates approached the optimum (zero-dimensional Pareto front, 

green dot). The orange dot represents the most optimal regulatory phenotype measured. The green dot 

represents the most optimal phenotype reachable in theory. d) Adjusted partial order with conflict resolved. P10 

and P00 now crossed and swapped places, consistent with the selective pressure (arrows). P01 and P11 also 

crossed, as dox is now a suppressing signal. 

 

Breaking order constraints with changes in network structure 

We aimed to assess if the partial order framework was consistent with the movement outside the 

fitness domain (Fig. 3c). If so, and a conflict was thus resolved, the partial order should have changed 

from the original to a new one. Originally, the objectives of decreasing P00 while increasing P01 
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conflicted with the phenotype order P00 > P01 (Fig. 3a). This conflict would be resolved by a changed 

order: P01 > P00 (Fig. 3d). If this hypothesis is correct, it should be manifested by a corresponding change 

in the underlying network structure. The predicted new partial order (Fig. 3d) can be the result of a 

several potential changes in the network, representing the various ways in which the signal s1 (dox) 

would no longer suppress P but rather activate it (Fig. 4a, from top to bottom): 1) the upstream TetR 

repressor becomes an activator, 2) the downstream LacI becomes sensitive to dox, 3) dox becomes a 

co-repressor of TetR, and 4) the upstream TetR becomes a direct repressor of the output, like LacI. In 

these solutions, not only the order between P00 and P01 changes, but also the order P10 > P11 reverses 

to P11 > P10 as in Fig. 3d. For networks with both order reversals, the corresponding fitness domain is 

directly adjacent to the original one, and indeed contains the network variants that moved away from 

the initial Pareto constraint (Fig. 3c, green lines). 

In order to distinguish between the different options (Fig. 4a), we sequenced and characterized the 

responses of the most optimal network variants after round 1 and 2 (Supplementary Fig. 4, 

Supplementary Table 2). The sequences revealed point mutations in the evolved tetR and lacI coding 

sequences, but not in the regions controlling DNA or ligand binding, nor in non-coding regulatory 

regions. Solutions involving altered ligand binding, which could make LacI sensitive to dox (Fig. 4a, 

second from the top), and altered TetR binding sites on the DNA, which could enable an activator TetR 

variant (Fig. 4a, top), or allow TetR to repress the output directly (Fig. 4a, bottom), thus seem unlikely. 

To further test this hypothesis, we functionally characterized the most optimal TetR variants at the end 

of the first and second rounds, by measuring the expression of a fluorescent protein that they 

controlled directly (Methods). These data showed that fluorescent protein expression increased with 

increasing dox for the wild-type TetR, as expected for an induced repressor (Fig. 4b). Expression 

became low and insensitive to dox after the first round. However, after the second round, expression 

was high for low dox and then decreased with increasing dox (Fig. 4b). These data suggest that dox has 

become a co-repressor of TetR (Fig. 4a, third from the top). The expression P as a function of dox and 

IPTG concentrations (Fig. 4c) was indeed improved; from a nearly insensitive response to dox before 

the second round of selection (Fig. 4c, top), to a regulatory phenotype (Fig. 4c, bottom) in which P00 is 

minimized and P10, P10, P11 are maximized. In fact, the observed mutation R49G (Supplementary Table 

2) is consistent with a TetR inversion24. Fitting these data to a cascade model of biochemical rate 

constants suggests that the dissociation constants of both transcription factors have changed across 

the rounds of evolution (Table 1, Supplementary Fig. 5). Overall, we found that a molecular innovation 

resolved the conflict and allowed access into a new region of fitness space. 
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Figure 4. Breaking an order constraint with network innovations. a) Four possible network changes that all 

correspond to the adjusted partial order, in which the conflict (Fig. 3a, dashed line) resolved (Fig. 3d). In all cases, 

dox now activates P whereas it suppressed P originally (Fig. 2a). b) LacI expression level vs dox concentration for 

different TetR variants. LacI expression level is normalized by the highest measured value measured across all 

experiments (no dox, lowest panel). LacI expression is measured by fusing it with a fluorescent marker. Top: data 

for network as constructed. Dox relieves repression of LacI by TetR, and hence increases LacI expression. Middle: 

LacI expression after first round, of isolate that was transferred to the second round (Fig. 3d, red dot). Expression 

is now insensitive to dox, within detection limit. Bottom: LacI expression after the second round, of most optimal 

isolate (Fig. 3c, orange dot). Dox now decreases LacI expression. c) Measured P as a function of dox and IPTG, for 

the isolate transferred from round 1 (panel c, middle), and the most optimal isolate (panel c, bottom). These data 

are consistent with dox having become a co-repressor of TetR (panel a, bottom). 

 

Construct Figure 
kdox 

(ng/mL) 
KTetR kIPTG (mM) KLacI 

pNetwork-WT grey dot Fig. 3b 32 ±6 0.011 ±0.004 16 ±1 0.015 ±0.005 

pNetwork-M2 red dot Fig. 3c 25 ±10 0.05 ±0.01 2.5 ±0.5 0.04 ±0.01 

pNetwork-M3 orange dot Fig. 3c 0.23 ±0.07 3.3 ±0.17 2.5 ±0.5 0.04 ±0.01 

Table 1. Fitted values of dissociation constants in a biochemical model of the regulatory networks (See Methods): 

kdox quantifies the response of the TetR protein to dox, KtetR the binding of TetR to its target promoter (unitless 

because normalized by constitutive TetR concentration), kIPTG quantifies the response of the LacI protein to IPTG, 

and KlacI the binding of LacI to its target promoter (unitless because normalized by maximum LacI concentration).  

For the network as constructed, the fit was done with a TetR induction response; for the intermediates after the 

first and second rounds, the fit was performed with a TetR co-repression response (Methods). 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 1, 2019. ; https://doi.org/10.1101/722520doi: bioRxiv preprint 

https://doi.org/10.1101/722520
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

Discussion 

Pareto fronts have long been established as a powerful concept in disciplines ranging from economy 

to instrument design25-27. They allow one to consider possible solutions and their limits when pursuing 

multiple objectives. In biology, Pareto fronts are observed when mapping collections of species within 

multi-dimensional phenotype spaces28,29. It has been proposed that Pareto fronts can be detected by 

interpolating highly specialized phenotypes (also called archetypes)23. They thus provide insight in 

constraints arising from functional trade-offs in evolutionary adaptation. At the same time, it is a major 

challenge to mechanistically understand and predict such constraints3,5,10,30, in addition to observing 

them. Even framing the problem is not straightforward: to identify what aspect could be predictable 

and what not, and which information about the evolving system is then required, whether it be at the 

genetic, phenotypic, or fitness level.  

Here, we addressed these issues by developing a framework to predict constraints of networks that 

integrate multiple signals in monotonic fashion. We found that the notion of partial order identifies 

such constraints. Specifically, it defines the evolutionary limits of a network, in which functional 

properties such as transcription factor binding affinities can be altered, but their activating or 

repressive nature and the overall network topology remains unchanged. The partial order captures the 

limited amount of information that is needed, namely whether input signals activate or suppress the 

phenotype in question. Notably, not needed are typically poorly understood details like the actual 

topology, the number of regulatory proteins, how they function, or which mutations affect their 

function and how. Owing to its foundations in graph theory, the approach is well suited for more 

complex environments and regulatory objectives, and indeed can reveal the minimal core underlying 

conflicts between these objectives (for example see Supplementary Fig. 1)17.  

The partial order framework may be used to predict the space of accessible phenotypes, provide the 

dimensionality of the Pareto-optimal front, its shape, identify extremal regulatory phenotypes 

(regulatory archetypes), and allow more targeted network engineering approaches. Interestingly, it 

also directly provides predictions on the dimensionality of the Pareto-optimal front, which equals the 

number of conflicts between (regulatory) objectives in different environments. This dimensionality of 

the Pareto front relates to diversity, as a zero-dimensional front indicates a single optimal phenotype, 

while additional dimensions indicate that diverse phenotypes can be equally optimal. Conceptually, 

one may see the partial order analysis to apply to regulatory networks in a similar fashion that Flux 

Balance Analysis31 applies to metabolic networks, where the mere knowledge of a graph structure 

constraints accessible fluxes, and optimality is used to predict evolutionary outcomes. We note that 

the approach is not valid for non-monotonic responses to signals, when unknown signals vary jointly 
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with considered signals, and when dynamical features such as oscillations are central to function and 

selective advantage. On the other hand, many regulatory responses are monotonic19. In addition, it 

has been shown that any biological regulatory networks can be decomposed into monotonic 

modules32, which may allow further generalization.  

The experiments presented here provided a direct test of these concepts, and illustrate which types of 

functional changes can modify the phenotype order. Experimental evolution in multiple environments 

revealed two modes of adaptation. In the first mode, solutions that emerge are those that obey the 

partial order constraints defined by the founding genotype, and are enriched at the predicted Pareto-

optimal front. The second mode involves a type of mutations that are rarer: those that confer 

functional innovations which are able to alter the partial order, and hence allow escape from these 

constraints. The findings thus identify qualitatively distinct evolutionary stages in regulatory strategies. 

The ability to define evolutionary constraints of regulatory phenotypes, as we have pursued here, will 

be central to arrive at a mechanistic understanding of evolution in complex niches. It can provide 

hypothesis on the compatibility of different regulatory objectives, or lack thereof, and on their 

evolutionary accessibility, as also illustrated by our data. Such regulatory limitations, and associated 

tradeoffs when occupying broad spectra of environmental conditions, can promote niche exclusion in 

the context of competition33, and hence play a role in species diversity and coexistence. 

 

Materials and Methods 

Constructs 

We modified a regulatory circuit in which the selection operon consisting of lacZα, cmR, and sacB genes 
driven by the promoter Ptrc is under control of the LacI transcriptional repressor22. Expression of LacI is 
under the control of TetR repressor via promoter PLtetO1. TetR itself is constitutively expressed via 
promoter PN25

22. This network harboring plasmid contains a kanamycin-resistance gene and a medium 
copy p15A origin of replication. Materials are available upon request. 
 
To measure the output from the network variants, various reporter constructs were used 
(Supplementary Table 1). The LacZ based assays utilized either constitutively expressed lacZω fragment 
via PlacI

Q to measure in cis, that constitute a functional LacZ together with lacZα encoded by the 
selection operon of the network,  or the full version of lacZ under the promoter Plac to measure in 
trans22. Whilst the fluorescent protein based readout assays utilized the plasmid encoding either lacI-
mCherry under the promoter PLtetO1 or eYFP under the promoter Ptrc 16. This reporter plasmid backbone 
contains an ampicillin-resistance gene and a medium copy colE1-rop origin of replication, which is 
compatible to co-reside with the network harboring plasmid in the same cell (Supplementary Table 1). 
 

Mutagenesis 

The mutations were introduced into the regulatory network sequence spanning tetR to lacI including 

the promoters of respective genes by error-prone PCR (Stratagene Genemorph II Random Mutagenesis 
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kit). The mutated PCR amplicons digested with DraIII (NEB), ligated into the vector backbone 

containing the intact selection cassette, and transformed into E. coli MC1061 strain by electroporation 

(Avidity EVB100). Routinely we obtained a pool size of half a million to ten billion. To determine the 

mutation rate, DNA isolated from randomly picked transformants was Sanger sequenced, revealing an 

average mutation rate of 3.0 mutations per kb (n=9). 

Selection 

Cells harboring mutant networks were grown at 37 oC with vigorous shaking in 20-40 mL of EZ Rich 
Defined medium (Teknova, Cat. M2105) supplemented with 0.2% glucose as a carbon source, 1 mM 
thiamine hydrochloride and 50 µg/ml kanamycin. The small-molecule inducers doxycycline or 
isopropyl-β-D-galactopyranoside (IPTG) were added 3 hours prior to the beginning of selection. After 
this pre-selection growth phase, chloramphenicol (40 µg/ml) or sucrose (0.25% w/w) were added for 
selection and cells were cultured for an additional 6 hours. This duration of the selection growth phase 
was chosen to obtain significant enrichment factors (of up to 104), while still maintaining the diversity 
of the population. During selection the optical density of the culture was monitored at regular intervals 
and diluted 500 times in pre-warmed medium whenever the optical density (OD) at 550 nm reached 
0.1 value. 
 

Measurement of network responses  

The output of an isolated network variant was measured by co-transforming with a suitable reporter 

encoding plasmid (Supplementary Table 1).  

 For LacZ based assays, 200 µl cultures were grown at 37 °C in EZ Rich Defined medium (Teknova, cat. 

M2105) with glucose as a carbon source and supplemented with 1 mM thiamine hydrochloride and 

the appropriate antibiotics, in a 96-well optical-bottom black color micro-titer plate (NUNC, Cat. 

165305), using Wallac Perkin Elmer Victor3 plate reader.  The OD at 600 nm was recorded at regular 

intervals of 4 minutes, and evaporation of the cultures were contracted by adding 9 µl of sterile water 

per well at an interval of 29 minutes. When most of the cultures were grown to 0.05 to 0.2 OD range, 

cells were fixed by adding 20 µl of fixation solution, which was freshly constituted before use by mixing 

109 µM fluorescein-di-β-D-galactopyranoside (FDG, MarkerGene, cat. M0250) substrate, 0.15% 

formaldehyde and 0.04% DMSO in sterile water. The development of the fluorescence from LacZ 

activity was measured at regular interval of 8 minutes by excitation at 480 nm and emission at 535 nm, 

in parallel to the OD600 measurement. This data was analyzed as described previously22.  

For fluorescent protein based assays, the cultures were grown in EZ Rich Defined medium early-

exponential growth phase, and then diluted into a final OD550 of 1x10-4 and transferred to a 96-well 

optical-bottom black color micro-titer plate (NUNC, Cat. 165305) in a total volume of 200 μL per well. 

The OD550 and fluorescence intensities from two distinct fluorescent reporter proteins (mCherry 

(excitation 580/20, emission 632/45) and eYFP (excitation 500/20, emission 535/25) were monitored 

in a Wallac Perkin Elmer Victor3 plate reader at regular intervals at 37 °C. The instrument was shaking 

(double orbital) and replenishing 9 μL of sterile water per well every 27 minutes. This data was analyzed 

as described previously16.  

Fitness computation 

The fitness as a function of the expression level 𝑃 was previously modeled and fitted22 and take the 

form: 

𝐹𝑢𝑝 =
1.65

1 + 0.085 (𝑐 − 8 − 𝑃 ∙ 10−5 + √1.28 ∙ 103 + (𝑐 − 8 − 𝑃 ∙ 10−5)2)
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where 𝐹𝑢𝑝 is the increasing fitness response as a function of increasing expression levels 𝑃, in the 

presence of a chloramphenicol concentration 𝑐 = 40 µg/ml in the medium, and 

𝐹𝑑𝑜𝑤𝑛 =
2.84

1 + 100 𝑟1.5
− 0.84 

with  

𝑟 = 2.7 ∙ 10−6 𝑃 (1 +
10

(𝑠 − 10 − 2.7 ∙ 10−6 𝑃) + √40𝑠 + (𝑠 − 10 − 2.7 ∙ 10−6 𝑃)2)
)⁄  

where 𝐹𝑑𝑜𝑤𝑛 is the decreasing fitness response to increasing expression levels P in the presence of a 

sucrose concentration 𝑠 = 0.25% (weight fraction) in the medium. Expression levels of the mutants 

of Figure 3 are reported in the Supplementary Information. 

 

Estimation of network parameters 

The binding constants of Table 1 were estimated by fitting the responses of the separate components 

(Supplementary Figure 5) assuming constant constitutive expression of TetR and using the following 

forms: 

i) TetR induction by dox: 

LacI(dox) =
1

1 + 1 (𝐾TetR⁄ (1 + dox/𝑘dox))
 

ii) TetR co-repression by dox: 

LacI(dox) =
1

1 + (1 + dox/𝑘dox) 𝐾TetR⁄
 

iii) YFP output as a function LacI induction by IPTG: 

P(dox, IPTG) =
𝑃max

1 + LacI(dox) 𝐾LacI(1/(1 + IPTG/𝑘IPTG))⁄
 

where 𝐾TetR is expressed in units of constitutively expressed TetR concentration, LacI and 𝐾LacI are 

both normalized to maximum LacI expression. Fitted curves shown in Supplementary Figure 5. For each 

regulatory network, the four dissociation constants where fitted to 31 experimentally measured data 

points which were measured in duplicate.  
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