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Abstract

A fundamental question in ecology is the generation and maintenance of biodiversity. Classical approaches consider multi-species
communities with Lotka-Volterra ODE models where inter- vs. intra-species interactions are key. Typically in high-dimensional
systems, analysis is hard and model reduction is needed. Here, we describe and study a new system of multi-type interactions
that arise in co-colonization, and develop a useful model reduction framework based on slow-fast dynamics under quasi-neutrality.
We show that in a multi- type, Susceptible-Infected-Susceptible (SIS) system with co-colonization, neutral coexistence dynamics
between N closely related strains occurs on a fast timescale, based on mean trait values, whereas the non-neutral selective forces
act on a slow timescale, driven by the variance and asymmetries of the co-colonization interaction matrix. The explicit N equations
for relative type frequencies on the slow manifold enable efficient computation of complex multi-strain dynamics, and provide
analytical insight into high-dimensional community ecology, with potential applications to other multi-body systems.
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Introduction

A fundamental question in ecology and evolutionary biol-
ogy relates to how biodiversity is generated and maintained
[1, 2, 3, 4]. Many factors have been shown to be important, in-
cluding inter- vs. intra-species interactions [5], population size
[6], number and functional links with resources [7], and move-
ment in space [8]. Most research in this field has considered
multi-species interactions with classical Lotka-Volterra models
or with evolutionary game theoretic approaches.

In this Letter, we describe and study a new system of multi-
type interactions that arise in the epidemiological dynamics of
co-colonizing strains of the same microbial species. An ex-
ample of such a system could be polymorphic Streptococcus
pneumonia bacteria. We generalize a previously- introduced
Susceptible-Infected-Susceptible (SIS) framework for 2 circu-
lating strains with co-colonization [16, 9], to the context of N
strains. We show that an explicit reduced system emerges from
a time scale separation, expressing the total dynamics as a fast
plus a slow component, related to broken symmetries in co-
colonization interactions.

In our system, microbial strains can infect a host simulta-
neously, and here we concentrate only on the case of up to 2
strains co-colonizing a host, whereby single colonization by a
resident strain alters the susceptibility to incoming strains, (in-
creasing or decreasing it) by a factor Ki j, relative to uninfected
hosts, without acquired immunity. The transmission and clear-
ance rates of all strains are equal, except for the interactions
in co-colonization given by an N × N matrix. In earlier the-
oretical studies such interaction has been studied in a slightly
different context in models considering arbitrary infection mul-

tiplicity [10]. Later evolutionary frameworks have also con-
sidered vulnerability to co-infection [11]. In the experimental
literature, for example in microbiota studies, the phenomenon
of colonization resistance has been reported [12]. In pneumo-
coccal bacteria, more relevant to our model, carriage of one
serotype has been shown to alter the acquisition rate of a sec-
ond serotype [13]. Some studies have shown how this trait at the
host-pathogen interface impacts disease persistence [14], coex-
istence and vaccination effects [15, 16], and contributes to di-
versity in other traits, e.g. virulence [17] and antibiotic resis-
tance [18].

Yet, robust mathematical frameworks to analyze the full
spectrum of eco-epidemiological patterns emerging exclusively
from co-colonization interactions among a high number of
strains remain undeveloped. Here, we fill this gap. We model an
arbitrary number of closely-related strains, and show that in the
N-strain system with altered susceptibilities in co-colonization,
neutral coexistence dynamics between types occurs on a fast
timescale, whereas the non-neutral selective forces act on a
slow timescale, driven explicitly by trait variation in the co-
colonization interaction space. These dynamics can be very
complex, and are nonlinearly modulated by global parameters
such as overall transmission intensity R0, and mean interaction
coefficient between strains. We derive a closed analytic solution
for relative type frequencies over long time-scales in a changing
fitness landscape.

N-strain SIS model with co-colonization

We consider a multi-type infectious agent, transmitted
via direct contact, following susceptible-infected-susceptible
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(SIS) epidemiological dynamics, with the possibility of co-
colonization. The number of potentially co-circulating strains
is N. With a set of ordinary differential equations, we describe
the proportion of hosts in several compartments: susceptibles,
S , hosts colonized by one type Ii, and co-colonized hosts Ii j,
with two types of each combination, independent of the order
of their acquisition. We have:


Ṡ = m(1 − S ) − S

∑N
j=1 F j,

İi = FiS − mIi − Ii
∑

j Ki jF j, 1 ≤ i ≤ N
İi j = IiKi jF j − mIi j, 1 ≤ i, j ≤ N

(1)

where Fi = β
(
Ii +

∑N
j=1

1
2 (Ii j + I ji)

)
gives the force of infec-

tion of strain i. Remark that here we assume that hosts col-
onized with a mixture of two subtypes i and j transmit either
with equal probability. For more information and interpretation
of parameters see Table 1 (Supplementary materials 1). Notice
that S = 1 −

∑
(Ii + Ii j), thus the dimension of the system is

indeed N + N2. In practice, Ii j and I ji cannot be distinguished
so the dimension is effectively N + N(N − 1)/2. For the special
case of N = 2, this model has been described and analyzed else-
where [16, 9]. We study pathogen diversity only in relation to
how strains interact with each other upon co-colonization (Ki j),
assuming equivalence in transmission β and clearance rate γ
(although extension to further asymmetries in these traits is
ongoing). The coefficients Ki j can be above or below 1, in-
dicating facilitation or competition between any two types in
co-colonization. In the above notation m = γ + r, encapsulat-
ing both clearance rate γ of colonization episodes and recruit-
ment rate of susceptible hosts r, equal to the mortality rate from
all compartments (r = d). For a model summary diagram see
Fig.1a-b.

Figure 1: Model summary diagram. a. Epidemiological model structure. The
force of infection for each strain i is Fi, and governs the transition from sus-
ceptible to singly-colonized state, and from singly-colonized to co-colonized
state. Clearance happens at equal rate for single and co-colonization, back to
the susceptbile state. Co-colonization rate by strain j of singly-colonized hosts
with i is altered by a factor Ki j relative to uncolonized hosts. b) Considering
Ki j = k + εαi j, the global epidemiological dynamics can be decomposed in a
fast and slow component. On the fast time-scale (o(1/ε)), strains follow neutral
dynamics, driven by mean parameters, where S , I and D are conserved. On a
slow time-scale, εt, complex non-neutral dynamics between strains takes place,
depicted here by the constituent variations within the blue and green.

Results

Re-writing the system in aggregated form
In order to derive a reduced model for such a general N strain

system, displaying complicated dynamics (Fig. 1b), we use the
following notation:

Ji = Ii +

N∑
j=1

1
2

(Ii j + I ji) and T =
∑

i

Ii +
∑

i

Iii +
∑
i, j

Ii j. (2)

for the prevalence of strain i in the population, and the total
prevalence of all strains, respectively. Total prevalence satisfies
T =

∑
i Ji and the forces of infection are: Fi = βJi. With these

notations, the system (1) reads :

Ṡ = m(1 − S ) − βS T,
Ṫ = βS T − mT,

İi = βJiS − mIi − βIi

N∑
j=1

Ki jJ j, 1 ≤ i ≤ N

J̇i = (βS − m)Ji +
β
2

N∑
j=1

(
IiKi jJ j − I jK jiJi

)
, 1 ≤ i ≤ N

İi j = IiKi jβ jJ j − mIi j, 1 ≤ i, j ≤ N
(3)

This system of 2 + N + N2 equations admit a triangular struc-
ture: i) First we describe block of 2 equations (S ,T ). ii) Next,
we study the block of 2N equations (Ii, Ji), which is the most
complicated. iii) Lastly, we deal with the block of the N2 equa-
tions of Ii j, which is simple once the dynamics of Ii and Ji are
known. In the following we describe briefly these three blocks.

The 1st part (S ,T ).Ṡ = m(1 − S ) − βS T,
Ṫ = βS T − mT

.

Clearly, if the basic reproduction number R0 =
β
m > 1, then

(S ,T ) →
(

1
R0
, 1 − 1

R0

)
. Hence, without loss of generality, we

consider that (S ,T ) =
(

1
R0
, 1 − 1

R0

)
.

The 2nd block of equations (Ii, Ji). If we reduce the system to
the invariant manifold (S ,T ) = (S,T) =

(
1

R0
, 1 − 1

R0

)
, we obtain

the following sub-system of 2N differential equations:
İi = m(Ji − Ii) − βIi

N∑
j=1

Ki jJ j

J̇i =
β
2

N∑
j=1

(
I jK jiJi − IiKi jJ j

) , 1 ≤ i ≤ N (4)

together with:
∑N

i=1 Ji = 1 − 1
R0

=
β−m

m . The dynamics of (4) are
complex and we use a slow-fast approach to analyze it.

The co-colonization block Ii j. This is the simple system

İi j = βIiKi jJ j − mIi j, 1 ≤ i, j ≤ N (5)

Once it is known that (Ii, J j) → (I∗i , J
∗
j ), then (5) implies Ii j →

β
m I∗i Ki jJ∗j . Thus, once the dynamics (4)-(5) are explicit, so are
the dynamics of (1).
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Slow-fast representation of (4)
Since we model N closely-related strains, we can write each

co-colonization coefficient as: Ki j = k+εαi j, where 0 ≤ ε << 1.
Replacing these in (4), and re-arranging, we obtain:

İ = m(T − I) − βkT ∗I − εβ
N∑

i=1

N∑
j=1

Iiαi jJ j

İi = m(Ji − Ii) − βkTIi − εβIi

N∑
j=1

αi jJ j

J̇i =
βk
2 (IJi − IiT) +

εβ
2

N∑
j=1

(
I jα jiJi − Iiαi jJ j

)
, (6)

where 1 ≤ i ≤ N, and I =
∑

I j.

Neutral system
If ε = 0, then from above, we obtain the Neutral model

İ = mT − (m + βkT)I
İi = mJi − (m + βkT)Ii

J̇i =
βk
2 (IJi − IiT)

, 1 ≤ i ≤ N (7)

The first equation gives I(t) = I + e−t(m+βkT)(I(0) − I) → I :=
mT

m+βkT . Co-colonization prevalence is simply derived as: D =

T − I. Fixing I = I, yields the (degenerate) linear system:(
İi

J̇i

)
=

(
−(m + βkT) m
−
βkT

2
βkI
2

) (
Ii

Ji

)
= A0

(
Ii

Ji

)
. (8)

Matrix A0 has the two eigenvalues 0 and −ξ = tr(A0) < 0, and

eigenvectors V0 =

(
I
T

)
, Vξ =

(
2T
D

)
. We define Hi and zi as:

(
Hi

zi

)
=

(
2T I
D T

)−1 (
Ii

Ji

)
. (9)

We have Ḣi = −ξHi

żi = 0
.

Thus
Hi =

IT
2(T)2 − DI

[ Ii

I
−

Ji

T

]
tends to zero, and

zi =

( Ii

I

)
+

2(T)2

2(T)2 − DI

( Ji

T
−

Ii

I

)
,

remains constant in a neutrally stable manner. Hi measures the
difference between the part of strain i on the single infected
versus the part of the strain i on the total number of infected.
Thus, Hi → 0 means that the proportion of strain i in single
colonization, tends to be the same as the proportion of strain i in
the total mass of all colonization. This implies it also tends to be
equal to the proportion of strain i in co-colonization. Because
on the slow manifold, we have Hi = 0, we can infer that during
fast dynamics zi tends to:

zi =
Ji

T
=

Ii

I
, (10)

whereby on the slow manifold zi describes exactly the fre-
quency of strain i among all hosts that are colonized, with∑

zi = 1.

The slow-fast dynamics
In (6) I plays a role in the order 0 term of the last two equa-

tions. Thus, we use the ansatz: I(t) = I + εX(t) + O(ε), and
rewrite (6) (for details see Supplementary Materials 2). After
some algebraic manipulations, using newly defined variables
we obtain the explicit slow-fast system:

Ẋ = −(m + βkT)X − βQ(H, z) + O(ε)
Ḣi = −ξHi + O(ε)
żi = εδ

(
gi,2(H, z) + T(DHi + Tzi)X + O(ε)

) , (11)

for 1 ≤ i ≤ N, where δ =
β

2(T)2−ID > 0 is a constant.
If ε → 0 then zi remains constant and (X(t),H(t)) → (φ(z), 0)
(shown in detail in S2). However, on the slow time scale τ = εt
in (11) , zi is not constant, and letting ε → 0, one obtains the
slow dynamics on zi, given by the N-dimensional system:

żi = δ
(
gi,2(0, z) + T2ziφ(z)

)
, 1 ≤ i ≤ N

which reads explicitly

żi = Θzi


N∑
j=1
j,i

[
µ(α ji − αi j) + α ji

]
z j + αiizi − q(z)

 , (12)

for 1 ≤ i ≤ N, where the constants Θ, µ > 0 are:

Θ =
βTID

2T2 − ID
; µ =

I
D

=
1

k(R0 − 1)
,

and the term q(z) is given by:

q(z) =
∑

1≤k, j≤N

αk jzkz j.

The constant Θ is the rate that sets the tempo of multi-strain
"motion" on the slow manifold towards an equilibrium. No-
tice that Θ depends specifically on the absolute transmission
rate of the pathogen β, but also on mean traits R0 and k, via
the conserved aggregated quantities T, I, D. The quantity µ on
the other hand represents the ratio between single colonization
and co-colonization prevalence from the neutral system, a fac-
tor that amplifies the importance of type asymmetry.

The function q(z) represents the time-changing impact of all
the strains on their environment, which in turn modifies the fit-
ness landscape for each in an equal manner. A more explicit
way to see q(z) is in terms of relative change in ‘effective’ mean
interaction coefficient between all extant types in the system,
which if negative, indicates a global trend toward more compe-
tition in co-colonization, and if positive, indicates a global trend
toward more facilitation. At this stage, we can apply quasi-
stationarity methods (see [19, 20, 21, 22] ) to show that the
solution of (11) tends to the solution of (12) as ε → 0 locally
uniformly in time on [t0,+∞[ for some t0 > 0.
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Link with pairwise invasion fitnesses λ j
i

Next, we provide another equivalent very useful representa-
tion of the model by using the notion of pairwise invasion fit-
ness [23]. Let λ j

i be the exponential growth rate of the strain
i evaluated when introduced at the trivial endemic equilibrium
of the strain j alone. If the fitness λ j

i > 0, strain i will invade,
and viceversa. By considering the rate of growth of strain i in
an equilibrium set by j (dzi/dt (12) in the special case where
all zk = 0 for k , j), we find the exact formulation of pairwise
invasion fitness is given by:

λ
j
i = µ(α ji − αi j) + α ji − α j j. (13)

We can thus recast the system (12) using only these fitness no-
tations (for details see Supplementary Material 3) :

d
dτ

zi = Θzi ·

∑
j,i

λ
j
i z j −

∑∑
1≤k, j≤N

λk
jz jzk

 (14)

The above can be made more compact by denoting Λ = (λ j
i )i, j

the pairwise invasion fitness matrix, and using vector notation:

d
dτ

z = Θz ·
(
Λz − ztΛz

)
. (15)

It is this matrix Λ that defines all ‘edges’ of the rescaled in-
teraction network between N strains. For N = 2, similar to
the classical Lotka-Volterra model, in our model, as already
shown [9], there are only four possible outcomes between 2
strains (edge linking 1 and 2): i) λ2

1 > 0 , λ1
2 > 0 : stable co-

existence of 1 and 2; ii) λ2
1 < 0 , λ1

2 < 0: bistability of 1-only

and 2-only; iii) λ2
1 > 0 , λ1

2 < 0 : 1-only competitive exclusion;

iv) λ2
1 < 0 , λ1

2 > 0: 2-only competitive exclusion. Knowing all
pairwise invasion fitnesses between each couple of strains, via
(15) we can reconstitute the ultimate dynamics of the full sys-
tem with N types and co-colonization.

Going back to the original N + N(N − 1)/2 variables
Recall the original system with N strains is given by the SIS

model with co-colonization interactions (1). While the decom-
position Ki j = k + εαi j is mathematically non-unique, and can
be applied with respect to any reference k, provided that the re-
sulting ε is small, a possible convenient choice is to define k as
the average of the original interaction matrix entries Ki j:

k =

∑
i, j Ki j

N2 , (16)

and to define deviation from neutrality, ε, as the root mean
square distance of the Ki j from the mean interaction coefficient:

ε =

√∑
i, j(Ki j − k)2

N2 ,

thus representing the standard deviation of the Ki j traits. The
direction of deviation from neutrality (bias) for the interaction
between strain i and j is then obtained as:

αi j =
Ki j − k
ε

.

Figure 2: Example dynamics of our model for N = 6. a) The matrix of
interaction coefficients in co-colonization, generated randomly, with mean k =

1, and standard deviation ε = 0.1. b) The corresponding pairwise invasion
fitness matrix for assumed R0 = 2. c) The network where each edge displays
the outcome of pairwise competition between any couple of strains. d) Slow
epidemiological dynamics resulting from these interactions. A dynamic display
of the trajectory is shown in Supplementary Movie 1.

Thus, the matrix A =
(
αi j

)
1≤i, j≤N

is the standardized interaction

matrix, with ‖A‖2 =
√∑

1≤i, j≤N α
2
i j = N. This matrix A, and

the ratio µ, determine the pairwise invasion fitness matrix (13),
which contains nearly all the qualitative information about the
non-neutral dynamics (15). So far, we have shown that provided
the deviation from neutrality, ε, is small, the behavior of (12)
describes very well the long term dynamics of (1). To recover
the original variables, after solving for strain frequencies zi on
the slow manifold, as the dynamics of (1) are well approached
by those of (12), we can use the relations:

S (t) = S :=
m
β

=
1

R0
, T (t) = T := 1 − S = 1 −

1
R0
,

I(t) :=
mT

m + βkT
=

T
1 + R0kT

,

to obtain the total prevalence of susceptibles S , total prevalence
of colonized individuals T , and prevalence of single coloniza-
tion I. The prevalence of co-colonization is simply D = T − I.
Further, to recover strain-specific single colonization, and co-
colonization prevalences, we apply:

Ii(t) := Izi(εt), Ii j(t) = k
IT
S

zi(εt)z j(εt).

where the slow time scale is τ = εt, and the slow variables
z(τ) = (zi(εt))i verify

∑
i zi(εt) = 1 and follow dynamics (15).
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Figure 3: Accuracy of our approximation over time a) Error between the
neutral model and the full system, starting from random initial conditions. We
summarize simulations for different ε, where for each ε, 20 co-colonization
matrices of different size (N ∈ [2, 15]) were randomly generated, together with
initial conditions. On a fast time-scale (o(1/ε)) the neutral model is a very good
approximation to the real system. b) Error of the neutral and the slow dynamics
approximation, starting from the slow manifold (10). The error (mean over all
model variables) between the original system trajectories and the neutral vs.
slow dynamics. We generated random co-colonization matrices (N ∈ [2, 15])
for 3 values of ε (10−1,10−2,10−3) while keeping mean k = 1. The Ki j were
drawn from the normal distribution N(k, ε2). On the slow manifold, the slow-
dynamics approximate well the original system, unlike the neutral model.

In Figure 2 and in Supplementary Movie 1, we provide illus-
trations of the modeling framework and some dynamics that
are possible for an arbitrary number of strains. Some further
illustrations for other values of parameters are given in Supple-
mentary Figure 1 and Supplementary Movie 2.

Accuracy of the approximation and simulation speed
The slow-fast model being a good approximation of the orig-

inal system, more precisely, means that there exists t0 > 0
such that for any T > t0 and any ε > 0 small enough, there
is M > 0 such that for any τ ∈ (t0,T ), the error between the two
is small: ‖S

(
τ
ε

)
− S‖+

∑N
i=1 ‖Ii

(
τ
ε

)
− Izi(τ)‖+

∑
1≤i, j≤N ‖Ii j

(
τ
ε

)
−

IT
S zi(τ)z j(τ)‖ ≤ Mε. We confirm this with numerical simula-

tions in Figure 3a)-b), where the neutral model is shown to be a
good approximation of the original system in a fast time-scale,
and the slow-dynamics reduction a good approximation on the
longer time-scale. Furthermore, we verify that the slow-fast ap-
proximation enables exploration of dynamics in a much more
computationally efficient manner over a very large number of
strains N (Fig.4), which is difficult with the original system.

Discussion

In this study, we investigated how co-colonization interaction
networks drive coexistence in a system with N closely related
types. We derived a slow-fast decomposition for the dynamics,
which links explicitly variation in the interaction matrix with
the slow time scale under which multi-type selective dynam-
ics unfold. Model reduction for small deviations from neutral-
ity allowed us to express strain frequencies on the slow man-
ifold via only N equations (instead of N + N(N − 1)/2 equa-
tions in the full system). These can be easily re-mapped to the
more complex epidemiological variables of the original system.

The slow variables zi (1 ≤ i ≤ N), describing relative strain
frequencies in the host population, necessarily equal in single
and co-colonization, could be used as a practical test for quasi-
neutrality, when strain prevalence data are available.

Our focus here was on presenting the timescale decompo-
sition method for this system. The wider and more complete
ecological picture, as well as the analysis of diversity-stability
relationships in coexistence will be the focus of another paper
[24]. We believe this work makes a crucial step towards the full
characterization of conservative multi-type SIS dynamics.

The slow-fast framework allows to reduce the complexity of
multi-strain systems, and understand transient and long-term
coexistence on conserved manifolds near neutrality. We expect
our results to stimulate further progress for the investigation of
coexistence and evolution in multi-strain epidemiological sys-
tems such as the one of pneuomococcal bacteria [25], where
explicit mathematical results linking neutral and niche mecha-
nisms, for N large, are thusfar missing. Although motivated by
such a pathogen with altered susceptibilities in co-colonization,
the global transmission dynamics captured here have broader
implications. As an example, information on the resilience of
a group of strains may be derived from the sign of q(z) in our
system (12): if q(z) > 0 then each strain is less competitive
within the group but the overall community is more resistant
to invasion by a new strain. Our model’s generality and closed
analytical form for relative type dynamics provide a new bridge
between epidemiology and community ecology, invite compari-
son with the classical Lotka-Volterra model, and offer extension
to other multi-body problems in physics and genetics.

We acknowledge support by the University of Tours and EU-
RAXESS for an invited researcher stay of Erida Gjini at IDP, in
Tours during 2019.

Figure 4: Computation speed of the approximation. Computation time in-
creases as a function of number of strains N in the full system (black dashed
line) but not in the slow-fast dynamic aproximation (blue solid line) for T =

5000 time units. The line shows the mean over 20 random matrices for each N,
with ε = 0.1, k = 1 and R0 = 2. For details see Supplementary Figure 2.
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SUPPLEMENTARY MATERIAL

Co-colonization interactions drive explicit frequency-dependent dynamics among N-
types

by Sten Madec and Erida Gjini

1. Table of illustrative model parameters for a biological system (e.g. pneumococcus bacteria transmission)

Table S1: Model parameters and their biological interpretation.

Parameter Interpretation Features Illustrative value Reference
β Transmission rate of pathogen β > 0 2.3 (month)−1 [16]
Ki j Interaction coefficient between

strains i and j in co-colonization
Alteration of susceptibility
to j when colonized by iKi j ∈ [0, 1] competition

Ki j > 1 facilitation

0.1 [13]

r Susceptible recruitment rate r > 0 0.02 (month)−1 [16]
d Natural host mortality rate d = r 0.02 (month)−1

γ Clearance rate of colonization γ > 0 0.8 (month)−1 [16]
m Net outflow rate from the coloniza-

tion state
Inverse duration of any col-
onization episode

m = r + γ

N Number of strains in the system Arbitrary, N > 1 30-60 [13]

R0 Basic reproduction number of the
pathogen, R0 = β/m, here assumed
equal among strains

R0 < 1 Disease extinction
R0 > 1 Persistence

2-3 [26],[16]

2. Derivation details for the slow-fast dynamics

Using the ansatz: I(t) = I + εX(t) + O(ε), system (6) reads
Ẋ = −(m + βkT)X − β

∑n
i=1

∑n
j=1 Iiαi jJ j + O(ε)

˙Ii

Ji

 = A

Ii

Ji

 +
εβk
2 XJi

01
 + εβWi(I, J) + O(ε)

wherein we have denoted:

Wi(I, J) =

(
−

∑
j Iiαi jJ j

1
2
∑

j I jα jiJi − Iiαi jJ j

)
The final slow fast form is given by using the new variables Hi and zi defined in (9). Hence, define(

hi,1(I, J)
hi,2(I, J)

)
=

(
2T I
D T

)−1 (
−2

∑
j αi jJ j∑

j I jα jiJi − Iiαi jJ j

)
and let us introduce the Gi = (gi,1, gi,2)T as 1

gi,s(H, z) = (2(T)2 − ID)hi,s
(
2TH + Iz,DH + Tz

)
, s = 1, 2.

and
Q(H, z) =

∑
i, j

αi, j (2THi + Izi)
(
DH j + Tz j

)
.

we have
Ẋ = −(m + βkT)X − βQ(H, z) + O(ε)

1Denoting G = (Gi)1≤i≤N and W = (wi)1≤i≤N , this simply means that G = φ−1 ◦W ◦ φ where φ(H, z) = (I, J) is the linear change of variables defined in (9).
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Finally, using these new unknows, one obtains the expression of the slow fast system (11):
Ẋ = −(m + βkT)X − βQ(H, z) + O(ε)
Ḣi = −µHi + O(ε)
żi = εδ

(
gi,2(H, z) + T(DHi + Tzi)X + O(ε)

) , 1 ≤ i ≤ N (17)

where δ =
β

2(T)2−ID is a positive constant. If ε→ 0 then zi remains constant and (X(t),H(t))→ (φ(z), 0) where:

φ(z) = −
βQ(0, z)
m + βkT

= −
βIT

m + βkT

∑
i, j

αi jziz j. (18)

On the slow time scale τ = εt in (11) , and letting ε→ 0, one obtains the slow dynamics
0 = −(m + βkT)X − βQ(H, z)
0 = −µHi

żi = δ
(
gi,2(H, z) + k(T)2ziX

) , 1 ≤ i ≤ N (19)

Taking (X,H) = (φ(z), 0) yields the slow dynamics reducted to the slow manifold

żi = δ
(
gi,2(0, z) + βkTφ(z)

)
, 1 ≤ i ≤ N

where

gi,2(0, z) = IT
N∑

j=1

[
Dziαi, jz j + T(z jα j,izi − ziαi, jz j)

]
= ITD

N∑
j=1

(
T
D
α j,i −

I
D
αi, j

)
ziz j

(20)

φ(z) is given by (18) and verifies

kT2φ(z) = −IT
kT2

m + βkT

∑
i, j

αi jziz j = −ITD
∑
i, j

αi jziz j

Denoting µ = I/D and Θ =
βTID

2(T)2 − ID
, the explicit slow dynamics is then given by system (12) which may be rewritten as

d
dτ

z = Θz ·
(
µ(At − A)z + Atz − ztAz

)
. (21)

Remark that we have:
d
dτ

∑
j

z j = Θ
∑
i, j

αi, jziz j

1 −∑
j

z j

 . (22)

which implies that the simplexe P =
{
z ∈ RN

+ ,
∑

z j = 1
}

is invariant under (12).

3. Characterization of the model via invasion fitnesses

We focus on the trivial solutions of (12), which are the extreme competitive exclusion equilibria Ei = (δik)1≤k≤n where δik is the

Kronecker delta: δik =

1 if i = k,
0 if i , k.

In particular, we note λ j
i the invasion fitness of the strain i with respect to the trivial solution E j. More precisely, λ j

i is the per-
capita growth rate of the strain i evaluated at E j. Since the i-th line of the system reads d

dτ zi = zihi(z1, · · · , zn), we have the explicit
formula:

λ
j
i = hi(E j)

that is
λ

j
i = µ(α ji − αi j) + α ji − α j j.
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We have that the line i of (21) is

żi = zi


N∑
j=1
j,i

(
µ(α ji − αi j) + α ji

)
z j + αiizi −

N∑
j=1

N∑
k=1

αk jzkz j

 .
With the notations introduced above, this can be rewritten as:

żi = zi


N∑
j=1
j,i

λ
j
i z j +

N∑
j=1

α j jz j −

N∑
j=1

N∑
k=1

αk jzkz j

 . (23)

From
∑N

j=1 z j = 1, we infer

n∑
j=1

α j jz j −
∑
k, j

αk jzkz j =

N∑
j=1

z j(α j j −

N∑
k=1

αk jzk)

=

N∑
j=1

z j(α j j

N∑
k=1

zk −

N∑
k=1

αk jzk)

=

N∑
j=1

N∑
k=1

z j(α j j − αk j)zk

finally, the fact that
N∑

j=1

N∑
k=1

(α jk − αk j)z jzk = 0 yields

n∑
j=1

α j jz j −
∑
k, j

αk jzkz j = −
∑∑
1≤k, j≤N

λk
jz jzk.

Plugging this into (23), we obtain a new version of system (21), enterely parametrized by the fitnesses λ j
i :

d
dτ zi = Θzi ·

∑
j,i

λ
j
i z j −

∑∑
1≤k, j≤N

λk
jz jzk

, i = 1, · · · ,N

z1 + · · · + zN = 1.

(24)

or more shortly by noting λi
i = 0 and the pairwise invasion fitness matrix Λ = (λ j

i )1≤i, j≤N :
d
dτz = Θz ·

(
Λz − ztΛz

)
z1 + · · · + zN = 1.

(25)

3. Supplementary Figures and Movies
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Supplementary Movie 1. Here we illustrate the dynamic trajectory of the system (Figure 2 of the paper). A. Network of pairwise
invasion fitnesses between strains, where edges can be of 4 types: coexistence (red), bistability (blue), exclusion of i, exclusion of j
(directed gray arrows toward the winner). The system trajectory zi is shown as a movement in a 6-dimensional space. B. Trajectory
of the strain frequencies over time.

Figure S1: Illustration of more complex dynamics. Here we simulate the model in its reduced form for another set of parameters, leading to limit cycle
coexistence between 5 strains in an N = 6 system. See associated movie S2.
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Supplementary Movie 2. Here we illustrate the dynamic trajectory of the system (Figure 1 of the Supplements). A. Network
of pairwise invasion fitnesses between strains, where edges can be of 4 types: coexistence (red), bistability (blue), exclusion of i,
exclusion of j (directed gray arrows toward the winner). The system trajectory zi is shown as a movement in a 6-dimensional space.
B. Trajectory of the strain frequencies over time.

Figure S2: Supplementary Figure 2. Computation speed of the slow-dynamics approximation in detail. Here we plot the computation time as a function of
number of strains N, in terms of number of seconds on a PC to simulate the slow-fast dynamic aproximation (boxplots) for T = 5000 time units starting from the
slow manifold. The line shows the mean over 20 random matrices for each N, where ε = 0.1 and mean co-colonization coefficient k = 1 and R0 = 2.
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