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SUMMARY 

The Initiation of RNA interference (RNAi) by topically applied double stranded RNA (dsRNA) has 

potential applications for plant functional genomics, crop improvement and crop protection.  The 

primary obstacle for the development of this technology is efficient delivery of RNAi effectors.  The plant 

cell wall is a particularly challenging barrier to the delivery of macromolecules.  Many of the transfection 

agents that are commonly used with animal cells produce nanocomplexes that are significantly larger 

than the size exclusion limit of the plant cell wall.  Utilizing a class of very small nanoparticles called 

carbon dots, a method of delivering siRNA into the model plant Nicotiana benthamiana and tomato is 

described.  Low-pressure spray application of these formulations with a spreading surfactant resulted in 

strong silencing of GFP transgenes in both species.  The delivery efficacy of carbon dot formulations was 

also demonstrated by silencing endogenous genes that encode two sub-units of magnesium chelatase, 

an enzyme necessary for chlorophyll synthesis.  The strong visible phenotypes observed with the carbon 

dot facilitated delivery were validated by measuring significant reductions in the target gene transcript 

and/or protein levels.  Methods for the delivery of RNAi effectors into plants, such as the carbon dot 

formulations described here, could become valuable tools for gene silencing in plants with practical 

applications in plant functional genomics and agriculture. 

 

INTRODUCTION 

 

RNAi is composed of inter-related pathways that mediate transcriptional gene silencing (TGS) via 

methylation of genomic sequences, post-transcriptional gene silencing via the cleavage of targeted RNA 

sequences, or translational repression of targeted transcripts (Matzke and Matzke, 2004, Frizzi and 

Huang, 2010).  In plants, these pathways have a role in resistance to pathogens (Rosa et al., 2018a) and 

are also required for normal development (Carrington and Ambros, 2003).  The use of RNAi to silence 

specific genes has been a valuable tool in plant functional genomics (McGinnis, 2010, Kumar and Salar, 

2017).  There have also been a number of applied biotechnology applications of RNAi (Frizzi and Huang, 

2010).  This includes improving the nutritional composition of crops (Huang et al., 2004, Mroczka et al., 

2010, Chawla et al., 2012) and providing resistance to various plant pathogens that can significantly 
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reduce crop yield and quality (Rosa et al., 2018b).  Applications for the control of insect pests have also 

been developed (Baum et al., 2007). 

The first uses of gene silencing in plant biology involved stable transformation with “antisense” 

or “co-suppression” constructs.  With a better understanding of the RNAi pathway, more efficient 

methods were developed that utilize dsRNA hairpins (Smith et al., 2000) and artificial microRNAs 

(Schwab et al., 2006).  Another important advancement in RNAi technology has been the development 

of methods for transient gene silencing, such as virus-induced gene silencing (VIGS) (Burch-Smith et al., 

2004, Watson et al., 2005, Becker and Lange, 2010) and Agrobacterium infiltration (Johansen and 

Carrington, 2001).  These transient silencing systems allow for the rapid testing of gene function.  Both 

VIGS and Agrobacterium infiltration require the preparation of constructs for the expression of the RNAi 

effector and containment of the pathogen infected plants.  Efficient delivery of topically applied RNAi 

effectors would be another valuable tool for plant functional genomics and may have some practical 

applications in agriculture. 

Because of the potential for therapeutic applications, delivery of RNAi effectors has been 

extensively studied in animal systems.  Many nanoparticle-based transfection agents that enhance 

delivery into animal cells have been described (Kozielski et al., 2013).  Common classes of these 

transfection agents include lipid nanoparticles, cationic polymers, cell-penetrating peptides, and 

inorganic nanoparticles.  The nanocomplexes that are formed by the interaction of these transfection 

agents with nucleic acids provide some protection from nucleases and facilitate cellular uptake by 

endocytosis or membrane fusion.  There have been a number of reports describing the use of 

transfection agents for delivery to plant cells (Unnamalai et al., 2004, Cheon et al., 2009, Eggenberger et 

al., 2011, Lakshmanan et al., 2013, Numata et al., 2014, Ziemienowicz et al., 2015, Kimura et al., 2017, 

Golestanipour et al., 2018, Miyamoto et al., 2019).  The efficiency of many transfection agents, however, 

may be limited by delivery barriers that are unique to plants (Figure 1).  The plant cell wall is a 

particularly challenging barrier for the delivery of RNA or other macromolecules.  The dense 

polysaccharide matrix of the cell wall has a size exclusion limit that is between 3 and 10 nm in diameter 

(Carpita et al., 1979, Baron-Epel et al., 1988, Carpita and Gibeaut, 1993).  While many of the 

nanocomplexes used to transfect nucleic acids, have a size in the range of 100 to 200 nm.  This is 10 to 

20-fold larger than the size exclusion of the plant cell wall.  Recently, there have been several reports of 

using smaller nanostructures such as single-walled carbon nanotubes (Demirer et al., 2019, Kwak et al., 

2019) and DNA nanoparticles (Zhang et al., 2019) for delivery of nucleic acids into plant cells. 
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There are additional classes of nanoparticles that may be well suited for plant delivery.  

Quantum dots are very small nanoparticles that have shown good efficacy in the transfection of animal 

cells (Yezhelyev et al., 2008).  A significant disadvantage to quantum dots is that they are most often 

made from heavy metals.  In recent years, carbon dots have received a considerable amount of 

attention as a “green” alternative to the heavy metal containing quantum dots (Reckmeier et al., 2016, 

Yao et al., 2019).  Much of the interest in carbon dots has evolved around their optical properties, which 

have practical applications for bioimaging, photocatalysis, photovoltaic cells, and in light-emitting diodes.  

There are reports on the use of carbon dots for transfection of plasmids, long dsRNA, and siRNA into 

animal cells (Liu et al., 2012, Wang et al., 2014, Das et al., 2015, Pierrat et al., 2015).  The uptake of 

carbon dots in plants has been studied (Li et al., 2016, Li et al., 2018, Qian et al., 2018), but their use for 

delivery of nucleic acids into plant cells has not yet been reported.  Because of their small size, it was 

hypothesized that carbon dots may be useful for the delivering dsRNA through the plant cell wall and 

subsequent barriers.   

 

RESULTS 

 

Preparation and purification of carbon dots 

Carbon dots can be synthesized by a “top down” approach, which involves decomposition of 

structured carbon precursors such as graphene.  Alternatively, the “bottom-up” approach begins with 

carbonization of simple carbon precursors such as organic acids, sugars, or amino acids (Yao et al., 2019).  

The bottom-up methods for producing carbon dots usually involve a hydrothermal reaction or pyrolysis 

of the carbon precursor to produce nanoparticles with sizes that are typically between 1 and 10 nm.  

Surface functionalization/passivation of the carbon dots can increase the colloidal stability and allow for 

the binding of various ligands.  Functionalization with amines produces particles with a positive charge, 

that can bind with the negative charges of the phosphate backbone in nucleic acids.  Polyethyleneimine 

(PEI) is a commonly used cationic polymer for the functionalization of carbon dots.  Citrate derived 

carbon dots that have been functionalized with branched PEIs (bPEIs) have been used to deliver plasmid 

DNA and siRNA to animal cells (Liu et al., 2012, Pierrat et al., 2015).   

Functionalization of carbon dots with PEI is often done in a “one-pot” synthesis where 

carbonization of the precursor and functionalization occur at the same time.  This is possible because 

aqueous solutions of PEI are relatively thermostable.  It has been reported that H2O2 can assist in the 

formation of carbon dots directly from PEI (Zhou et al., 2015, Wang et al., 2017).  In these examples, PEI 
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served as both the carbon source for the core and the nitrogen source for surface passivation.  In the 

work described here, carbon dots were produced directly from bPEIs of various molecular weights by 

heating solutions in a mixture of chloroform and methanol to 155 °C for a relatively short time.  The 

product of these reactions displayed the characteristic color development of carbon dots.  The PEI 

derived carbon dots had an absorption max of 363 nm and produced a characteristic blue fluorescence 

with an emission maximum at 460 nm (Figure S1). 

Carbon dot preparations may contain a heterogenous mixture of precursors, by-products, and 

nanoparticles with different sizes and physical properties.  Therefore, the preparations were 

fractionated by size exclusion chromatography (Figure 2A) and the size distribution of the nanoparticles 

within the primary peaks was determined by dynamic light scattering (Figure 2B).  Based on the size 

exclusion chromatography and dynamic light scattering measurements, the relative size of the carbon 

dots correlates well with molecular weight of the PEI precursors.  The smallest PEIs used in this study, 

with average molecular weights of 1200 and 1800, produced the smallest carbon dots.  The carbon dots 

produced from 5 KD, 10 KD, or 25 KD bPEIs were progressively larger. 

 

Carbon dots provide protection form nucleases 

  The binding of a 124-base pair dsRNA to carbon dots and protection from nuclease activity was 

demonstrated by agarose gel electrophoresis (Figure 3).  The absence of a band after formulation with 

carbon dots indicates binding of dsRNA, which can subsequently be released by the addition of sodium 

dodecyl sulfate (SDS).  Resistance to nucleases was tested by treatment of dsRNA alone or dsRNA bound 

to carbon dots with RNase III from E. coli.  In assays with the dsRNA alone, significant degradation was 

observed after one minute and the dsRNA was almost completely degraded by 15 minutes.  While the 

dsRNA that was formulated with the carbon dots, was still intact after a 60-minute incubation with 

RNase III.  The enhanced resistance to nucleases could significantly enhance efficacy in plants, which 

contain high levels of RNase activity in the extracellular apoplast (Sangaev et al., 2011). 

 

Carbon dot formulations are efficacious in silencing GFP in the 16C line of N. benthamiana 

The Green Fluorescent Protein (GFP) expressing 16C line of Nicotiana benthamiana is an often-

used model for the study of RNAi (Ruiz et al., 1998, Dalakouras et al., 2016, Bally et al., 2018).  In wild 

type plants, chlorophyll in the leaves displays a strong red fluorescence under UV or blue lights.  In the 

GFP transgenic lines, this red fluorescence is masked by the green fluorescence.  Silencing of the GFP is 

then easily detected by the un-masking of the red chlorophyll fluorescence.  For the silencing 
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experiments in this study, 22-mer siRNAs were used.  Several lines of research have demonstrated that 

the initiation of silencing with 22-mer siRNAs may result in greater secondary siRNA production, which 

can enhance RNAi phenotypes (Mlotshwa et al., 2008, Dalakouras et al., 2016, Taochy et al., 2017, 

Hendrix et al., Manuscript in preparation).  The sequence of the GFP targeting 22-mer and other siRNAs 

used in this study are shown in Table S1. 

True leaves 3 and 4 from 17-day old plants (Figure S2) were treated by adaxial spray of 

formulations with 0.4% BREAK-THRU® S 279, a non-ionic spreading surfactant.  This allows entry of the 

formulation into plants by stomatal flooding, which is a commonly used method for delivery of 

agrochemicals into leaf tissue.  A typical concentration of siRNA used was 12 ng/μL with an estimated 

application volume of 3.8 μL/cm2.   These application parameters give an approximate siRNA use rate of 

45 ng/cm2.  In the initial screen for efficacy, carbon dots produced from different molecular weights PEIs 

were tested (Figure 4).  With the lowest molecular weight PEI precursors (Mw 1200 and 1800), there 

was little or no visible GFP silencing.  A limited amount of the silencing was observed for carbon dots 

derived from the largest PEI tested (Mw 25 KD).  Much higher levels of silencing were observed with the 

carbon dots that were produced from the 5 KD bPEI or the 10 KD bPEI. 

Because unmodified PEIs are one of the most often-used transfection agents for delivery to 

animal cells, the unmodified 5 KD bPEI was also tested for delivery and silencing efficacy with the 16C 

line (Figure S3).  With these buffer conditions, the unmodified 5 KD bPEI was not an effective 

transfection agent for delivery to intact plant cells.  Improved delivery efficiency can be achieved with 

unmodified PEIs when a high concentration of an osmoticum is included in the formulations(Zheng et al., 

Manuscript in preparation). 

In the initial screen, some differences were observed in the delivery efficacy of fractions from 

the same preparation.  Fraction 6 from the 10 KD preparation, for example, displayed much higher 

silencing efficacy than fraction 4 from the same preparation (Figure 4).  As part of the optimization 

process, additional fractions from the 5 KD bPEI preparation (CD-5K) were tested for efficacy in silencing 

GFP in the 16C line.  Based on the image analysis, fraction #5 from the CD-5K preparation was the most 

efficacious (Table 1 and Figure S4).  Later fractions, which contain smaller carbon dots, were less 

efficacious in silencing GFP.  While a small size may be a prerequisite for delivery through the plant cell 

wall, it does not appear to be the only factor affecting delivery and silencing efficiency. The particle 

characteristics optimal for movement through the cell wall may not be optimal for other barriers to 

delivery.  Endocytosis of nanoparticles in animal cells can be affected by size, surface chemistry, shape, 

and rigidity (Zhang et al., 2015).   

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 1, 2019. ; https://doi.org/10.1101/722595doi: bioRxiv preprint 

https://doi.org/10.1101/722595
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
7 

 

For molecular validation of gene silencing, the CD-5K_FR5 was used (Figure 5).  Application of a 

carbon dot formulation with a non-target siRNA did not impact the typical green fluorescence of the 16C 

line under blue lights.  While plants that were sprayed with a formulation containing a GFP targeting 22-

mer siRNA displayed a strong red fluorescence that covered most of the leaf.  The level of GFP transcript 

reduction, measured by qRT-PCR, was 84%.  Western analysis showed a similar reduction in GFP protein 

levels.  This level of GFP silencing was sufficient to initiate systemic spread of silencing.  By 12 days after 

treatment, GFP silencing in newly emerging leaves became apparent (Figure S5). 

 

Carbon dot formulations are efficacious in silencing endogenous genes in N. benthamiana 

The silencing of endogenous genes was tested by targeting genes encoding the H and I sub-units 

of Magnesium Chelatase (MgChe), an enzyme necessary for chlorophyll synthesis.  True leaves 3 and 4 

from 17-day old N. benthamiana plants were sprayed with carbon dot formulations containing a non-

target siRNA, an siRNA targeting MgCheH, or an siRNA targeting MgCheI (Figure 6A).   Leaves that were 

sprayed with formulations targeting either the H or I sub-units, displayed spots and patches of bleaching 

that is indicative of reduced chlorophyll accumulation.  Over several experiments, the bleaching 

phenotype was strongest on the younger leaf four and with the formulation targeting the MgCheH gene.  

Analysis of MgCheH transcript levels by qRT-PCR showed a 79% reduction in the phenotypic tissues at 

five days after treatment (Figure 6B).  The bleaching phenotype persisted for the duration of the 

experiments on the application leaves, which was up to 20 days after treatment (Figure S6). 

The MgCheH silencing phenotype was used to evaluate the stability of carbon dot formulations.  

A single batch of formulation with the MgCheH targeting 22-mer was sprayed on plants 1 day, 1 week, 

or 2 weeks after preparation.  Plants were imaged 5 days after treatment (Figure S7).  With the spray 

application at one week, there did not appear to be a significant loss in efficacy of the formulation.  

After two weeks of storage at room temperature, there appears to be only a small reduction in efficacy 

of the formulation; indicating that the siRNA is mostly intact, and that the formulation has good colloidal 

stability.   

 

Carbon dot formulations are efficacious for siRNA delivery and silencing in tomato 

The efficacy of carbon dot formulations for siRNA delivery and silencing in tomato was tested 

with a line expressing an enhanced Green Fluorescent Protein (eGFP).  Plants treated with a formulation 

containing a non-target siRNA displayed a strong green fluorescence (Figure 7A).  With formulations 

containing a eGFP targeting 22-mer, silencing is apparent as spots and patches at the lower siRNA 
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concentrations (2 and 4 ng/μL).  At an siRNA concentration of 8 ng/μL, the silencing phenotype covers 

most of the leaf area.  By Western blot analysis of whole leaf extracts, an 88% reduction in GFP protein 

levels was observed (Figure 7B and 7D). 

Stomatal flooding works well with fully expanded leaves.  In younger leaves, spray application of 

carbon dot formulations results in strong silencing towards the tip with more limited silencing at the 

base (Figure 8).  In basipetal plants, such as tomato, functional stomates develop first at the leaf tip.  The 

limited silencing at the base of the young leaves is likely due to reduced flooding where stomates have 

not yet fully developed.  With the limitations in stomatal flooding, other methods maybe more 

amenable for silencing genes in very young tissues.  Delivery methods for DNA or RNA that rely on 

physical disruption of barriers have also been used  (Shang et al., 2007, Dalakouras et al., 2016).  These 

physical delivery methods appear to be most effective with young tissues and could be complementary 

to the method described here. 

 

An alternative method for production of carbon dots 

Given the high level of activity observed with CD-5K, a method was developed to produce 

carbon dots from glucose with 5 KD bPEI functionalization in a “one-pot” synthesis.  These carbon dots, 

which were produced at a lower temperature and in an aqueous solution, showed the same high levels 

of activity for the silencing of target genes in N. benthamiana and tomato (Figure 9).  With the lower 

temperature and the aqueous solvent used for production of the glucose carbon dots, methods could be 

developed for their production that would require less specialized lab equipment. 

 

DISCUSSION 

 

Transient gene silencing methods, such as VIGS or Agrobacterium infiltration, have been 

important tools for studying the functions of plant genes.  The development of delivery methods for 

topically applied siRNA would be another valuable tool in the RNAi toolbox.  In addition to simplicity, 

topical dsRNA methods would not require containment of the treated plants.  As discussed in the 

introduction, transfection agents that are used in animal systems may have limited efficacy in plants due 

to the cell wall size limitations.  Recently, there have been several reports describing the use of 

nanostructures for delivery of nucleic acids into plant cells (Mitter et al., 2017, Demirer et al., 2019, 

Kwak et al., 2019, Zhang et al., 2019).  Another class of small nanoparticles called carbon dots have been 

used in animal systems for bio-imaging, delivery of various drugs, and the delivery of nucleic acids.  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 1, 2019. ; https://doi.org/10.1101/722595doi: bioRxiv preprint 

https://doi.org/10.1101/722595
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
9 

 

Based upon their small size, it was hypothesized that carbon dots may readily pass through the cell wall 

and provide an effective delivery method for plant cells.   

With a short reaction time and moderate temperatures, carbon dots could be produced directly 

from bPEIs in a solution of chloroform and methanol.  An alternative method of producing carbons dots 

from glucose and bPEIs in an aqueous solution and at a lower temperature is also described.  Amongst 

the PEI precursors used, carbon dots produced from the 5 KD bPEI displayed the highest level of activity 

for delivery.  Purification of the carbon dots by size exclusion chromatography was an important step in 

the optimization.  Components of a preparation that can bind RNA but are less efficacious for delivery 

would likely reduce silencing activity by sequestering the siRNA.  With a low-pressure spray application, 

carbon dot formulations showed good efficacy in the delivery of siRNA to N. benthamiana and tomato 

leaves.  Strong visible leaf phenotypes were observed when silencing GFP transgenes or endogenous 

genes necessary for chlorophyll synthesis.  This gene specific silencing was validated by molecular 

characterization of the target gene transcript and/or protein levels.  Considering the concentration of 

siRNA in the formulation and the volume used, silencing was achieved with relatively low rates of siRNA.  

Further development of nanoparticle delivery methods, such as carbon dots, could be a valuable tool for 

basic research in plant biology and may have agricultural applications. 

 

EXPERIMENTAL PROCEDURES 

 

Plants and growth conditions 

The plants used in this study included the 16C GFP expression line of N. benthamiana (Voinnet 

and Baulcombe, 1997) and a tomato line with constitutive expression of an enhanced GFP (eGFP).  The 

tomato eGFP expression line was supplied by Seminis Vegetable.  Constitutive expression of an 

enhanced GFP (eGFP) gene in tomato was accomplished with the TraitMaker tm technology developed by 

Mendel Biotechnology (Ratcliffe et al., 2008).  The HP375 line of tomato was transformed with a 

construct expressing a LEXA DNA binding domain fused to a GAL4 activation domain under the control 

of a 35s promoter.  Another transgenic line was generated in the same tomato background with the 

enhanced GFP transgene and an upstream LexA operator (opLEXA) sequence.  The two lines were 

crossed and a line that was homozygous for both insertions was selected in a subsequent generation.  

Transactivation of the opLexA::eGFP by the LEXA/GAL4 fusion protein resulted in constitutive expression 

of the eGFP reporter protein.   
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Plants were kept in a growth chamber maintained at 25°C with a light intensity of 150 

μmol/m2/s and a day length was 16 hours. The relative humidity was not controlled and fluctuated 

according to irrigation frequency and plant density in the chambers at any given time.  Plants were 

grown in a 2.5-inch pots that were irrigated by an ebb and flow system with Peters professional 20-20-

20 fertilizer. 

 

Synthesis and purification of carbon dots from polyethyleneimines 

The polyethyleneimine (PEI) used in this study included a 25 KD bPEI (Sigma-Aldrich, St. Louis, 

MO).  Branched PEIs (bPEIs) with average Mw of 1200, 1800, and 10 KD were obtained from 

Polysciences (Warrington, PA).  The 5 KD bPEI, Lupasol G100, from BASF was supplied as a 50% solution 

(w/w)—prior to carbon dot preparation the water was removed by lyophilization.  Carbon dots were 

produced by a solvothermal reaction of the bPEIs in a solution of chloroform and methanol (4:1).  Using 

a microwave synthesizer (Monowave 50, Anton Paar, Austria) 375 mg of bPEI in 5 mL of the solvent was 

heated to 155 °C with a ramp time of 5 minutes and then held at 155 °C for an additional 7 minutes.  The 

reaction products were dried under nitrogen and then resuspended in water.  Any residual chloroform 

was separated from the aqueous solution of carbon dots by centrifugation at 7500 g for 5 minutes.  The 

pH of the carbon dot solution was adjusted to 8.0 with 4N HCl and the final volume was adjusted to 5 mL 

with water.  For visible and fluorescence spectra, an aliquot was diluted 1 to 16 in water. 

An alternative method was developed to produce highly efficacious carbon dots from glucose 

and 5 KD bPEI that does not require the use of chloroform.  For the PEI functionalized glucose carbon 

dots, a 5 mL solution containing 37.5 mg/mL glucose and 75 mg/mL 5 KD bPEI was adjusted to pH 8.0 

with 4N HCl and degassed under vacuum.  The solution was then heated in a microwave synthesizer to 

100 °C over 3 minutes and then held at 100 °C for an additional 5 minutes. 

 

FPLC fractionation of carbon dot preparations 

Carbon dot preparations were purified by size exclusion chromatography.  A 2.5 x 20 cm Econo-

column (Bio-Rad, Hercules, CA) filled with Sephadex G-50 superfine (GE Healthcare, Chicago, IL) was run 

on a Bio-Rad BioLogic Duo Flow FPLC system equipped with a QuadTec detector.  The column was eluted 

at 2 mL/minute with 50 mM NaCl.  Elution of the carbon dots was monitored at 360 nm.  Five mL 

fractions were collected starting after 30 mL. 

 

RNase protection assay 
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For RNase protection assays, a 124 bp dsRNA was formulated with and without carbon dots in 

Rnase III buffer, which consisted of 20 mM Tris-HCl pH 8.0, 0.5 mM EDTA, 5 mM MgCl2, 1 mM DTT, 140 

mM NaCl, 2.7 mM KCl, and 5% glycerol (w/v).  Digests contained 320 ng of dsRNA and 60 ng RNase III in 

a total volume of 20 μL.  At the indicated times, digestions were stopped with the addition of EDTA to a 

final concentration of 10 mM and SDS to a final concentration of 1% (w/v).  Any precipitate was 

removed by centrifugation at 20,000 g for 5 minutes.  The digests were run on a 1.5% TBE agarose gel. 

 

Formulation of carbon dots 

The final concentration of siRNA in the formulations was 12 ng/μL or less.  At higher 

concentrations siRNA aggregation can occur, which can reduce the silencing efficacy of formulations.  A 

similar observation has been made with the carbon dot formulations used to deliver plasmid DNA to 

animal cells  (Pierrat et al., 2015).  The optimal concentration of carbon dots was determined empirically.  

Generally, a mass ratio of 40-50 for carbon dots/siRNA worked well.  The siRNA and the carbon dots 

were added separately to two tubes containing 10 mM MES buffer pH 5.7 and 20 mM glycerol.  The two 

tubes were then combined with vortex mixing.  Formulations were then left at room temperature for at 

least one hour.  Longer incubations at room temperature (up to a week) or at 4°C did not significantly 

decrease the efficacy of the formulations.  

 

Spray application 

The spreading surfactant BREAK-THRU S279 was added to a final concentration of 0.4% within 

an hour of spraying.   The spray application was done with an Iwata HP M1 airbrush with approximately 

12 PSI and the fluid adjustment knob was set to 1.5.  With a slight depression of the airbrush trigger, a 

very light coat of the formulation was applied to the adaxial side of N. benthamiana leaves or the abaxial 

side of tomato leaves.  Efficient “flooding” of the formulation was apparent by a subtle change in the 

shade of green.  

 

Imaging and analysis 

The leaves were photographed using a custom-built imaging station equipped with a Cannon 

EOS 70D camera with an EFS 18-55mm macro 0.25m/0.8ft lens and a high intensity blue LED light source 

(SL3500-D equipped with a 460 nm filter from Photon System Instruments, Czech Republic).  Images 

were acquired using the Cannon EOS utility 2 software with tethered image acquisition.  For the GFP 

imaging, 58 mm Tiffen Green #11 and Yellow #12 filters were used in combination to exclude 
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wavelengths less than ~480 nm and greater than ~600 nm.  An ISO of 800, a 0.25 second exposure time, 

and a F stop of 4.5 were typical camera settings for GFP image acquisition. 

The images were processed using ImageJ (https://imagej.nih.gov/ij/index.html). Briefly, the 

program operator utilized the threshold color panel to highlight a border around each leaf. A border 

image was overlaid onto the leaf image and the pixel number within the leaf border was quantitated by 

the software. The quantitated number of pixels represented the total leaf area. A similar thresholding 

process was used to highlight a border around the GFP silencing phenotype. The GFP silenced areas 

were calculated by dividing the phenotypic area in pixels by the total leaf area in pixels. 

 

Validation of gene silencing 

For qRT-PCR analysis, total RNA was extracted from phenotypic leaf tissue collected 5 days after 

treatment using Trizol reagent (Invitrogen) following manufacturers protocol. The RNA was dissolved in 

water, and the concentration was measured using Quant-iT RNA assay kit (Invitrogen, Carlsbad, CA). The 

total RNA samples were diluted to 5 ng/µl and 50 ng of total RNA was used to synthesize random-

primed, first-strand cDNA using the High-Capacity Reverse transcription kit (Applied Biosystems, Foster 

city, CA). The reverse transcription products were used as template for qPCR. The qPCR reaction 

mixtures consisted of 2 µl cDNA, 3 µl of a primer/probe mix (0.5 µM each primer and 0.25 µM probe 

final concentration), and 5µl Taqman Universal PCR Master Mix (Applied Biosystems, Foster city, CA). 

The sequences for the primer-probe sets are provided in Table S2. The reactions were performed using 

an Applied Biosystems 7900HT Fast Real-Time PCR System with 40 cycles of two-step cycling at 95 °C for 

15s and 60 °C for 60s. Target gene expression was expressed relative to a reference gene, Protein 

Phosphatase 2a (Nbv6.1trP16930; http://benthgenome.qut.edu.au/).   Expression values were 

calculated using the comparative CT method: 2 -(Ct Target  –  Ct Reference).   

For Western analysis of N. benthamiana or tomato, whole leaves were frozen and then ground 

to a fine powder.  Approximately 200 mg of ground tissue was homogenized in 300 μL of ice cold buffer 

containing 20 mM Tris-Cl pH 8.0, 150 mM NaCl, 0.1% Triton X-100, and a protease inhibitor cocktail.  The 

insoluble debris was removed by centrifugation. The protein concentration was quantified by Bradford 

assays and 10 μg of total protein for each sample was run on a 12.5% Criterion™ Tris-HCl protein gel 

(3450014, Bio-Rad, Hercules, CA).  Following electrophoresis, proteins were transferred onto a PVDF 

membrane and then blocked overnight with 5% skim milk in Tris buffered saline + 0.1% Tween 20 (TBST).  

For GFP detection, a HRP conjugated antibody directed against the full-length GFP protein (sc-8334, 

Santa Cruz Biotechnology, Santa Cruz, CA) was diluted 1:1000 in TBST and 5% skim milk and incubated 
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with the blot for 1 hour.  The blot was then washed four times with TBST for 10 minutes.  Pierce ECL plus 

western substrate (32132, Thermo Scientific Pierce Protein Biology) was used for chemiluminescent 

detection of GFP.  Band intensity for each sample was quantified by imageJ. 
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SUPPORTING INFORMATION 

 

Figure S1.  Spectroscopic characterization of carbon dots produced from polyethyleneimines.   

 

Figure S2.  N. benthamiana 17 days after sowing at the time of treatment.   

 

Figure S3.  Silencing assays with unmodified 5 KD bPEI.  Using the same buffer that was used for the 

carbon dot formulations, the PEI was tested at N/P ratios of 5, 10, and 20.  Where the N/P ratio refers to 

the ratio of nitrogen atoms in the PEI relative to the phosphates from the nucleic acid backbone.     

 

Figure S4.  The efficacy of 5 KD bPEI (CD-5K) fractions from size exclusion chromatography.  The 

concentration of the 22-mer targeting GFP was 8 ng/μL. 

 

Figure S5.  Systemic silencing of GFP is initiated in 16C with carbon dot formulations. GFP silencing on 

the application leaves was monitored at 5 days after treatment.  Systemic spread to the newly emerging 

leaves was monitored at 12 days after treatment. 

 

Figure S6.  Persistence of MgCheH silencing phenotype in N. benthamiana.  
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Figure S7.  The colloidal stability and efficacy of a carbon dot formulation with the 22-mer targeting 

MgCheH was tested.  The final concentration of siRNAs in the formulations was 12 ng/μL.  Leaves 3 and 

4 were sprayed after storage of the formulation for 24 hours, 1 week, or 2 weeks at room temperature.  

Plants were imaged 4 days after treatment. 

 

Table S1.  siRNA sequences used in this study.   When annealed the 22-mers contained a 3’ 2-nucleotide 

overhang. 

 

Table S2.  Oligonucleotide and probe sequences for qRT-PCR analysis of transcript levels. 
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FIGURE AND TABLE LEGENDS 

 

Figure 1.  Strategy for topical RNAi in plants.  The first barrier for delivery is the cuticle, a water 

impermeable layer, that covers all above ground parts of the plant.  Stomates, the pores that allow for 

gas exchange, can be a point of entry for formulations.  With a spreading surfactant, formulations can 

flow across the leaf surface and “flood” stomates for delivery to the mesophyll cells.  Once in the leaf 

apoplast, nanocomplexes containing the siRNA cargo would need to diffuse through the cell wall to 

reach the plasma membrane.  The relatively small size exclusion limit of the cell wall (< 10 nm) would 
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likely restrict the movement of larger nanocomplexes.  Smaller nanocomplexes are able to reach the 

plasma membrane and facilitate cellular uptake by endocytosis.  Escape from the endomembrane 

vesicles is achieved by a phenomenon called the “proton-sponge” effect, which causes osmotic swelling 

and lysis of the vesicles (Behr, 1997).  The siRNA cargo is now accessible to the RNAi machinery.  For 

post-transcriptional gene silencing (PTGS), the guide strand is loaded into the RISC complex allowing for 

specific cleavage of mRNAs with complementary sequences. 

 

Figure 2. Purification and size characterization of carbon dots.  (A) Carbon dots were produced from 

different molecular weight polyethyleneimines and purified by size exclusion chromatography.  The 

elution of the carbon dot preparations was monitored at 360 nm. (B) The particle size distribution within 

the purified fractions was determined by dynamic light scattering (DLS). 

 

Figure 3.  Carbon dots can bind dsRNA and provide protection from nucleases.  Agarose gel 

electrophoresis with dsRNA alone or dsRNA formulated with carbon dots (lanes 1 and 2).  Formulation 

with the carbon dots prevents migration into the gel and binding of ethidium bromide.  After binding to 

carbon dots, dsRNA can be released by the addition of SDS (lane 3).  Rnase III was incubated with naked 

dsRNA (lanes 4-8) or dsRNA that was bound to carbon dots (lanes 9-13) for the indicated times to 

determine if carbon dots can provide protection from degradation.  Prior to electrophoresis, SDS was 

added to release the dsRNA from the carbon dots. 

 

Figure 4. GFP silencing observed with carbon dots produced from different molecular weight PEIs.    

Silencing efficacy of fractions corresponding to the primary peaks from each of the different molecular 

PEI precursors were tested for activity with a 22-mer targeting GFP at a concentration of 12 ng/μL.  At 

five days after treatment, the GFP Fluorescence was visualized under a strong blue light.  The 

appearance of red chlorophyll fluorescence under the blue lights is indicative of GFP silencing.  

Representative leaf images for each of the carbon dot preparations are shown in the figure.  The percent 

silencing area below each picture was measured digitally with 4 leaves for each treatment.  Fraction #6 

from the 10 KD bPEI preparation, which eluted after the primary peak was included in the analysis, 

because it displayed better silencing activity than the fraction from the primary peak. 

 

Figure 5.  Molecular validation of GFP silencing in the 16C line on N. benthamiana.  Leaves 3 and 4 

were sprayed with carbon dot formulations containing a non-target siRNA (NT) or a 22-mer siRNA 
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targeting the GFP transgene.  The final concentration of siRNAs in the formulations was 12 ng/μL.  (A) 

Silencing of GFP was monitored by fluorescence under blue lights at 5 days after treatment.  (B) The 

silencing of GFP was validated by qRT-PCR analysis of transcript levels P-value=0.00048. (C) Western blot 

of GFP protein.  (D) For the Coomassie stained image, the same protein extracts were run on a separate 

gel to demonstrate similar loading. (E) Quantification of band intensity with ImageJ.  Error bars are 

standard error of the mean (SEM).  The reduction in GFP protein was statistically significant with a P-

Value=0.0000651 

 

Figure 6.  Silencing of the Magnesium Chelatase (MgChe) H or I sub-units in N. benthamiana.  (A) 

Bleaching phenotype in treated leaves.  Leaves 3 and 4 were sprayed with carbon dot formulations 

containing a non-target siRNA, a 22-mer targeting MgCheI, or a 22-mer targeting MgCheH.  The final 

concentration of siRNAs in the formulations was 12 ng/μL.  Images were taken 4 days after treatment. 

(B) Transcript analysis of MgCheH.  At five days after treatment, the tissue was sampled for qRT-PCR 

analysis.  Error bars are SEM.  The reduction in MgCheH transcript was statistically significant with a with 

a P-Value=3.48E-06 

 

Figure 7.  GFP silencing in fully expanded tomato leaves.  True leaves 3 and 4 received an abaxial spray 

of carbon dot formulations containing a non-target siRNA or a 22-mer siRNA targeting GFP.  The final 

concentration of siRNAs is shown on the figure.  (A) The GFP fluorescence was imaged at 5 days after 

treatment.  (B) Western blot analysis of GFP protein levels from whole leaf extracts.  (C) Coomassie 

stained gel to demonstrate equal loading. (D) Quantification of band intensity with ImageJ.  Error bars 

are SEM.  The reduction in GFP protein was statistically significant with a P-Value =0.00041 

 

Figure 8. Silencing in younger tomato leaves.  Fluorescence image of tomato leaves 5 days after 

treatment with a carbon dot formulation containing the eGFP targeting 22-mer at 8 ng/μL.   

 

Figure 9.  Efficacy of 5K bPEI functionalized glucose-carbon dots.  (A) GFP silencing in tomato (B) GFP 

silencing in the 16C line of N. benthamiana (C) MgCheH silencing in N. benthamiana 

 

Table 1.  Percent silenced area with different fractions of CD-5K.  Different fractions of the CD-5K 

preparation were formulated with the GFP targeting 22-mer at a concentration of 8 ng/μL.  The percent 

silencing relative area relative to the entire leaf area was calculated digitally.  The connected letter 
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20 

 

report displays the percent silencing and a statistical comparison of silenced area produced with the 

different fractions.  In the LS-Means Student's t, the fractions not connected by a letter are statistically 

significant at a p-value of 0.05.  The images used for the analysis are included as Figure S4. 
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Figure 2. Purification and size characterization of carbon dots.
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Figure 3.  Carbon dots bind dsRNA and can provide protection from nucleases.
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Figure 4. GFP silencing with carbon dots produced from different molecular weight PEIs. 
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Figure 5.  Molecular validation of GFP silencing in the 16C line on N. benthamiana.
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Figure 6.  Silencing of the Magnesium Chelatase (MgChe) H or I sub-units in N. benthamiana
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Figure 7.  GFP silencing in fully expanded tomato leaves.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 1, 2019. ; https://doi.org/10.1101/722595doi: bioRxiv preprint 

https://doi.org/10.1101/722595
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 8. Silencing in younger tomato leaves.
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Figure 9.  Efficacy of 5K bPEI functionalized glucose-carbon dots.
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Fraction
Silenced area

(Least Sq Mean)

Fraction #5 A 43.56

Fraction #6 A 36.19

Fraction #7 A B 35.60

Fraction #8 A B 28.48Fraction #8 A B 28.48

Fraction #9 B 20.35

Fraction #10 C 4.89

Table 1. Percent silenced area with different fractions from CD-5K prep.
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Figure S1. Spectroscopic characterization of carbon dots produced from polyethyleneimines
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Figure S2. Spray application to N. benthamiana.
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Figure S3.  Silencing assays with unmodified 5 KD branched PEI.
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Figure S4.  The efficacy of CD-5K fractions from size exclusion chromatography.
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Figure S5. Systemic silencing of GFP is initiated in 16C with carbon dot formulations.
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14 DAT 20 DAT

Figure S6.  Persistence of MgCheH phenotype
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Figure S7.  Stability of carbon dot formulations.
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Sequences

Sequence name
Target 
gene 5'- 3' Sense strand 5'- 3' Antisense strand

Negative control no target GAUAUGGGCUGAAUACAAAUC UUUGUAUUCAGCCCAUAUCGU

16C_GFP 22-mer GFP GGCAUCAAAGCCAACUUCAAAA UUGAAGUUGGCUUUGAUGCCGU

Tom eGFP 22-mer eGFP GGCAUCAAGGUGAACUUCAAAA UUGAAGUUCACCUUGAUGCCGU

NB_MgCheH MgCheH AUCAUGGAAUUGGAGGCAAAAG UUUGCCUCCAAUUCCAUGAUCA

NB_MgCheI MgCheI GGGCCGUGUGAGUUGCAGUGA UCUGCAUCUCUCACGGUCCCCA

Table S1. siRNA sequences used in this study.
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Gene Forward Reverse Probe

Nb.PP2a AAC TAT GTG AAG CTG TCG GG 
TCT CGA AGC AAA CGG ACA 
TAG /5TET/AC TAG GAC G/Zen/G ATT TGG TGC CTG C/3IABkFQ/ 

16C_GFP
CGA CGG GAA CTA CAA GAC 
AC 

TTA AGC TCG ATC CTG TTG 
ACG 

/56-FAM/TC TCC CTC A/Zen/A ACT TGA CTT CAG CAC 
G/3IABkFQ/

GCT AAT GCT CAG GTA CGA CTC AAT CTC ACG AAC TCC /56-FAM/TGC ATC AAG /ZEN/CCT CAC AGT CTC 

Table S2. Oligonucleotide and probe sequences for qRT-PCR analysis of transcript levels.

Nb.CHeH
GCT AAT GCT CAG GTA CGA 
ACG

CTC AAT CTC ACG AAC TCC 
CTC

/56-FAM/TGC ATC AAG /ZEN/CCT CAC AGT CTC 
GG/3IABkFQ/

eGFP CAA CAT CGA GGA CGG CAG GGT AAT GGT TGTC GGG CAG SYBR

Tomato_MgCHL-H
TCT GAG ACT GTG AGG CTA 
GAT GCA

GTG GAC AGC ATG CCT TCA 
TAC C SYBR
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