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ABSTRACT 22 

The composition of the gut microbiome is impacted by a complex array of factors, from 23 

nutrient composition and availability, to physical factors like temperature, pH, and flow 24 

rate, as well as interactions among the members of the microbial community. Many of 25 

these factors are affected by the host, raising the question of how host genetic variation 26 

impacts microbiome composition. Though human studies confirm this type of role for 27 

host genetics, its overall importance is still a subject of debate and remains difficult to 28 

study. The mouse model, by allowing the strict control of genetics, nutrition, and other 29 

environmental factors, has provided an excellent opportunity to extend this work, and 30 

the Diversity Outbred (DO) mice in particular present a chance to pinpoint host genetic 31 

variants that influence microbiome composition at different levels of generality. Here, we 32 

apply 16S rRNA gene sequencing to fecal samples of 247 DO male mice to estimate 33 

heritability and perform taxon-specific QTL mapping of microbial relative abundances 34 

revealing an increasingly heterogeneous picture of host function and microbial taxa at 35 

the host-microbiome interface. We present the first report of significant heritability of 36 

phylum Tenericutes in mice, and find novel QTL-spanning genes involved in 37 

antibacterial pathways, immune and inflammatory disease, and lipid metabolism.  38 
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INTRODUCTION 39 

The gastrointestinal tract of all vertebrates, including humans, harbors a complex 40 

ecological community of highly diverse microbes referred to as the gut microbiota. The 41 

microbiota colonizes the gut for the first time during the birth of the host, and its 42 

composition is influenced by many factors during the host’s life such as disease, diet, 43 

and antibiotics (FRANCINO 2016; BATTAGLIOLI AND KASHYAP 2018; DUDEK-WICHER et al. 44 

2018; DASH et al. 2019). Variation in the human gut microbiome composition has also 45 

already been associated with host immune responses (ROUND AND MAZMANIAN 2009; 46 

GARRETT et al. 2010; VEIGA et al. 2010), metabolic phenotypes (TURNBAUGH et al. 2009; 47 

RIDAURA et al. 2013), and diseases such as obesity (LEY et al. 2005), heart disease 48 

(FAVA et al. 2006), and diabetes (WEN et al. 2008). Given the roles of the gut 49 

microbiome in complex human diseases, it is important to characterize the factors that 50 

impact microbiome composition.  51 

While it is clear that the gut microbiome composition is strongly impacted by 52 

environmental exposures (ROTHSCHILD et al. 2018), the role of host genetics has only 53 

recently been implicated (GOODRICH et al. 2014; BLEKHMAN et al. 2015; GOODRICH et al. 54 

2016). Studies have identified multiple genetic variants significantly associated with 55 

specific bacterial taxon abundances (DAVENPORT et al. 2015; BONDER et al. 2016; 56 

TURPIN et al. 2016; WANG et al. 2016; GOODRICH et al. 2017; IGARTUA et al. 2017; 57 

ROTHSCHILD et al. 2018) despite the observation that generally the primary determinants 58 

of microbiome composition are non-genetic (ROTHSCHILD et al. 2018). The relationship 59 

between genetic and non-genetic determinants is complex, as in the case of diet, which 60 

can influence the variability of complex traits by reshaping the gut microbiome 61 
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(VOROBYEV et al. 2019). Overall, it is clear that host-microbiome relationships are 62 

impacted by interactions between genetics and environment to drive both community 63 

composition and host traits (KURILSHIKOV et al. 2020). Human genetic studies have 64 

significant limitations for accurate assessment of genetic effects on the microbiome, 65 

including accessibility to large and diverse sample populations as well as a general lack 66 

of control over confounding variables like diet, thus only detecting the strongest genetic 67 

effects. This lack of experimental control can be circumvented through studies in model 68 

organisms, which would allow us to better characterize host-microbiome relationships 69 

and increase our chances of identifying genetic effects. 70 

The mouse model, with the ability to control diet, provides a better opportunity to 71 

dissect genetic and environmental factors impacting microbiome composition and has 72 

been successful in this endeavor using inbred strains. Quantitative trait locus (QTL) 73 

mapping efforts show that gut microbiota composition is a polygenic trait, with clearly 74 

mappable genetic factors influencing the gut microbiome composition (BENSON et al. 75 

2010; MCKNITE et al. 2012; SNIJDERS et al. 2016). Standard QTL mapping approaches 76 

have low mapping resolution, however, and advanced intercross lines provide one 77 

excellent means of improving mapping resolution. BELHEOUANE et al. (2017) performed 78 

genetic and 16S rRNA gene analysis of skin microbiomes of a collection of 15-79 

generation advanced intercross lines, and demonstrated that the improved mapping 80 

resolution also improved the specificity and significance of genetic associations. It is 81 

clear that the mouse model will provide further opportunities to dissect the means by 82 

which the host genome can modulate microbiome composition. A logical next step is a 83 
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mapping experiment to identify portions of the genome that influence functional 84 

pathways that modulate the microbiome. 85 

Here we extend the analysis of the link between the host genome and microbiome 86 

using the Diversity Outbred mouse model. The Diversity Outbred (DO) population is a 87 

heterogeneous mouse stock derived from the same eight progenitor lines (A/J, 88 

C57BL/6J, 129S1/SvImJ, NOD/ShiLtJ, NZO/HlLtJ, CAST/EiJ, PWK/PhJ, and WSB/EiJ) 89 

used to establish the Collaborative Cross (CC) (COLLABORATIVE CROSS CONSORTIUM 90 

2012). Mice from the CC lines at early stages of inbreeding were used to establish the 91 

DO population, which is maintained by randomized outbreeding among 175 mating 92 

pairs. The result is each individual DO mouse represents a unique combination of 93 

segregating alleles drawn from the original eight progenitor lines. The advantages of 94 

this outbreeding include normal levels of heterozygosity — similar to the human genetic 95 

condition — and substantially increased genetic resolution (CHURCHILL et al. 2012). Both 96 

the DO mice and their founder progenitor lines have already proven to be successful in 97 

identifying genetic associations with intestinal microbiome composition (O'CONNOR et al. 98 

2014, KEMIS et al. 2019). 99 

In this study, motivated by the high level of environmental control of the laboratory 100 

mouse and the improved mapping resolution of the Diversity Outbred mouse system, 101 

we identified genetic underpinnings of the gut microbiota of 247 Diversity Outbred mice. 102 

We uncover evidence of host genetic factors influencing the composition of many 103 

specific attributes of the gut microbiome (Figure 1). These included not only 104 

associations between specific host genetic variants and abundances of particular 105 

bacterial taxa, but also associations with functional molecular pathways. 106 
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 107 

Figure 1. Data flow schematic. Each of the 247 mice in this study represents a unique combination of 108 

segregating alleles, whose genome is a unique sampling from the original eight progenitor lines (founder 109 

mice). The SNP genotype of each mouse is represented by an eight-founder state probability. Microbial 110 

16S rRNA from fecal pellets from each DO mouse provided bacterial relative abundances, which were 111 

aggregated at each taxonomic level and used as separate phenotypes/traits.  112 
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MATERIALS AND METHODS 113 

Animal population and sample collection 114 

Male mice from the Diversity Outbred Mouse Panel were obtained from The 115 

Jackson Laboratory (Bar Harbor, ME, USA) at 6 weeks of age. Experiments were 116 

performed at the University of Pennsylvania, Center for Sleep. Mice were group-housed 117 

(5 animals per cage) for 2 weeks of post-travel acclimation, and then single-housed at 118 

identical conditions with lights on/lights off at 7:00 AM/7:00 PM with a lux level of 60 and 119 

temperature 23-25˚C. Bedding used in home cages was Bed-o Cobs 1/8” (The 120 

Andersons Inc., Maumee, OH). Mice were fed ad libitum Laboratory Autoclavable 121 

Rodent Diet 5010 (Lab Diet, St. Louis, MO). Fecal pellets from 249 mice were collected 122 

at 3 months old (two samples were later discarded, leaving a final analyzed dataset of 123 

247 mice). The pellets were collected from the mouse cage at 10:00 AM, i.e., 3 hours 124 

after lights on. Pellets were stored in Eppendorf tubes placed on dry ice and moved to a 125 

-80°C freezer until shipping and processing at Cornell University (Ithaca, NY, USA). 126 

Microbial DNA extraction, 16S rRNA gene PCR, and sequencing 127 

Microbial community DNA was extracted from one single frozen pellet per sample 128 

using the MO BIO PowerSoil-htp DNA Isolation Kit (MO BIO Laboratories, Inc., cat # 129 

12955-4), but instead of vortexing, samples were placed in a BioSpec 1001 Mini-130 

Beadbeater-96 for 2 minutes. We used 10-50 ng of sample DNA in duplicate 50 µl PCR 131 

reactions with 5 PRIME HotMasterMix and 0.1 µM forward and reverse primers. We 132 

amplified the V4 region of 16S rRNA gene using the universal primers 515F and 133 

barcoded 806R and the PCR program previously described CAPORASO et al. (2011), but 134 
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with 25 cycles. We purified amplicons using the Mag-Bind® E-Z Pure Kit (Omega Bio-135 

tek, cat # M1380) and quantified with Invitrogen Quant-iT™ PicoGreen® dsDNA 136 

Reagent, and 100 ng of amplicons from each sample were pooled and paired end 137 

sequenced (2x250bp) in two separate sequencing runs on an Illumina MiSeq instrument 138 

at Cornell Biotechnology Resource Center Genomics Facility. 139 

16S data processing 140 

We performed demultiplexing of the 16S rRNA gene sequences and OTU picking 141 

using the open source software package Quantitative Insights Into Microbial Ecology 142 

(QIIME) version 1.9.0 with default methods (CAPORASO et al. 2010). The total number of 143 

sequencing reads was 15,149,384, with an average of 61,334 sequences per sample 144 

and ranging from 17,658 to 135,803. Open-reference OTU picking at 97% identity was 145 

performed against the Greengenes 8_13 database. 12% of sequences failed to map in 146 

the first step of closed-reference OTU picking. The taxonomic assignment of the 147 

reference sequence was used as the taxonomy for each OTU. ‘NR’ within taxa names 148 

represents New Reference OTUs defined as those with sequences that failed to match 149 

the reference and are clustered de novo. Random subsamples were used to create a 150 

new reference OTU collection and ‘NCR’ represents New Clean-up Reference OTUs 151 

that failed to match the new reference OTU collection (RIDEOUT et al. 2014). 152 

For the non-rarefied data, read count was used as an additional covariate during 153 

QTL mapping to reduce the effect of sequencing depth. A rarefied dataset was also 154 

used for heritability estimates and QTL mapping, as explained in File S1. Two extreme 155 

outliers were omitted from further analysis, yielding a total of 247 samples. To 156 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 5, 2021. ; https://doi.org/10.1101/722744doi: bioRxiv preprint 

https://doi.org/10.1101/722744
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

differentiate the non-rarefied taxa from the rarefied taxa, we use ‘NonR’ to represent the 157 

non-rarefied dataset and ‘R’ to represent the rarefied dataset.  158 

For heritability estimates and QTL mapping, a filter was applied across all 247 159 

samples that removed any taxon that was not present in more than 50% of the samples. 160 

Relative abundance of reads (number of reads clustered to each taxa divided by the 161 

total number of reads in a given sample) was used as the tested phenotype. Relative 162 

abundances were rank Z-score transformed using R-package DOQTL (GATTI et al. 163 

2014). 164 

Stacked bar plots of the most abundant taxa within each taxonomic level were 165 

plotted with R-package ggplot2. A box-plot was first generated for each taxonomic level 166 

depicting the relative abundances of the taxa within that taxonomic level across the 247 167 

samples (Figure S1). The top ten taxa with the highest average relative abundances 168 

are selected to be plotted in the stacked bar plot, ordered by the most abundant taxon. 169 

A heatmap that correlates similarities between taxa from the non-rarefied and rarefied 170 

datasets based on the Pearson correlation coefficient was plotted using the R-package 171 

corrplot (Figure S3). 172 
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SNP genotyping 173 

SNP genotyping was done at the Jackson Laboratories on each of the 247 mice 174 

using The Mega Mouse Universal Genotyping Array (MegaMUGA). A total of 57,973 175 

SNPs passed QC metrics and were used in the heritability and mapping analysis 176 

reported here.  177 

Heritability estimation 178 

Heritabilities of the various bacterial taxa were quantified and calculated on 179 

autosomes using a linear mixed model as implemented in R-package lme4qtl via the 180 

relmatLmer() function (ZIYATDINOV et al. 2018) (https://github.com/variani/lme4qtl). This 181 

linear mixed model enables us to decompose variability into genetic and environmental 182 

components. The variance of the genetic component is expected to be 𝜎!"𝐾, where 𝐾 is 183 

a kinship matrix normalized as proposed in (KANG et al. 2010). The kinship matrix is 184 

specified via the “relmat” argument in relmatLmer(). To account for the potentially 185 

confounding effects of shared cages during acclimation (as noted above under Animal 186 

population and sample collection), we also included cage as a random effect in our 187 

model. Thus, the model included estimates of variance of the genetic component (𝜎!") 188 

and the cage component (𝜎#$!%" ), and the residual variance due to unspecified 189 

environmental factors (𝜎&'" ). The narrow sense heritability was then estimated as: 190 

ℎ" =
𝜎!"

𝜎!" 	+ 	𝜎#$!%" 	+ 	𝜎&'"
	191 

Sequencing run was included as a covariate in both non-rarefied and rarefied 192 

datasets. For our non-rarefied dataset, narrow sense heritabilities were calculated using 193 

the number of read counts as an additional covariate. Significance of heritability 194 
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estimates was assessed by conducting a restricted likelihood ratio test using the 195 

exactRLRT() function in the R-package RLRsim (SCHEIPL et al. 2008), as applied in 196 

Supplementary Note 3 in ZIYATDINOV et al. (2018). We calculated standard errors for the 197 

heritability estimates following code posted on the lme4qtl GitHub page: 198 

https://github.com/variani/lme4qtl/blob/master/demo/se.R. This script uses the 199 

deltamethod() function in the R-package msm (https://github.com/chjackson/msm) to 200 

approximate standard errors using the delta method. Proportion variance estimates for 201 

kinship and cage for all taxa and their taxonomic level for rarefied data are presented in 202 

Figure S4. A comparison of heritability estimates and standard error between non-203 

rarefied and rarefied data can be seen in Figure S5. 204 

QTL Mapping 205 

For QTL mapping, rank Z-score transformed relative abundances were mapped 206 

using a linear mixed model in R-package lme4qtl::relmatLmer() (ZIYATDINOV et al. 2018) 207 

(fit using maximum likelihood (ML), REML=F) on autosomes with kinship included as a 208 

random effect to account for genetic relatedness among animals. For the bacterial taxa 209 

from the five taxonomic levels, we generated QTL mappings with the taxa designated 210 

as the phenotype. Sequencing run (fixed effect) and cage (random effect) were included 211 

in both non-rarefied and rarefied datasets. We included read count as an additional 212 

covariate (fixed effect) for our non-rarefied dataset. Significant and suggestive 213 

associations were identified in a two-step procedure. First, we applied likelihood ratio 214 

tests comparing models with and without genotype. P-values derived from these tests 215 

were adjusted for multiple testing across SNPs (within a given taxon) using R function 216 

p.adjust() with method “BH” (BENJAMINI AND HOCHBERG 1995). In the second step, we 217 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 5, 2021. ; https://doi.org/10.1101/722744doi: bioRxiv preprint 

https://doi.org/10.1101/722744
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 

conducted permutation tests (1000 permutations) for taxa that had associations with 218 

adjusted p-value < 0.1 in the maximum likelihood analysis. Due to the computational 219 

cost of performing permutation tests for each taxa/peak combination, we further filtered 220 

the permutation candidates by only querying the peak with the lowest likelihood p-value 221 

in regions with peak overlaps. This resulted in permutation p-values for 4 taxa and 4 222 

peaks (Table 2). Annotated genes found within QTL regions with permutation p-value < 223 

0.1 can be found in Table S5. Although p-values are corrected within each trait, no 224 

additional adjustment is made for the search across traits. 225 

For every bacterial taxon from the five taxonomic levels with a statistically 226 

significant QTL association, we mapped the OTUs belonging to that taxon. We applied 227 

a 50% zero cut-off filter to only retain common OTUs and generated QTL mappings and 228 

assessed significance as described above for the five taxonomic levels.  229 

When necessary for comparison, genomic coordinate spans from other 230 

publications were translated from human hg19 assembly to mouse mm10 assembly 231 

using LiftOver (UCSC). Particularly in the case of small spans or single nucleotides, 232 

LiftOver might require expanding the window being mapped. In our case, we iteratively 233 

increased the window by adding a padding of 0, 10,100,1000,10000, and 100000 bps 234 

on each side of the region of interest until a mapping was achieved. All mapped entries 235 

listed include the final span of the genomic coordinates used including padding (Table 236 

S7D). 237 
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Gene Set Pathway Analysis 238 

We used Ingenuity Pathway Analysis (IPA®, QIAGEN Redwood City, CA) software 239 

to conduct gene set pathway analysis on the protein-coding non-predicted genes within 240 

our QTL regions. Genes were uploaded as NCBI Gene IDs for ease of mapping across 241 

IPA’s source databases. All analyses were constrained to consider only direct 242 

relationships and exclude any annotation predictions. Additionally, we used IPA’s 243 

stringent filter to constrain the analysis to Mouse annotation while considering all 244 

Tissues and Cell Lines. IPA by default shows uncorrected p-values for enrichment 245 

analyses. We customized all charts and tables to indicate Benjamini-Hochberg False 246 

Discovery Rate instead. In total, we submitted 6 gene lists for parallel analyses, all of 247 

which were filtered to exclude predicted genes and non-protein coding genes: (1) all 248 

genes within any significant QTL region at any taxonomic level, (2) Bacillales only, (3) 249 

Bacteroidales only, (4) Mollicutes only (5) Ruminococcaceae only, and (6) 250 

Staphylococcus only. Many taxonomic groups result in similar-enough QTLs that their 251 

gene sets are identical, these groups are the result of picking the lowest taxon for any 252 

identical gene sets while covering all the taxa studied (for instance, phylum Tenericutes 253 

is excluded as it matches the results of class Mollicutes).  254 

Data Availability 255 

Our study was performed on a subset of Diversity Outbred mice from the Allan 256 

Pack Sleep Study; the genotypes can be downloaded from the Jackson Lab Diversity 257 

Outbred Database (DODB) website (https://dodb.jax.org). QIIME demultiplexed fastq 258 

files with microbiome data are available in the NCBI SRA, BioProject ID: PRJNA639769 259 

(https://www.ncbi.nlm.nih.gov/bioproject/639769). All Supplemental Materials (File S1, 260 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 5, 2021. ; https://doi.org/10.1101/722744doi: bioRxiv preprint 

https://doi.org/10.1101/722744
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 
 

Figures S1-S5, and Tables S1-S9) have been uploaded to GSA FigShare under 261 

“Supplemental Material for Schlamp et al., 2020”, and a description of each can be 262 

found at the end of the manuscript. 263 

RESULTS 264 

Variation of gut microbiota 265 

High-throughput sequencing of fecal samples from 247 three month old male mice 266 

from the Diversity Outbred Mouse Panel generated 15,149,384 16S rRNA gene 267 

sequences that passed the quality filtering criteria after demultiplexing (see Materials 268 

and Methods). On average, 61,334 sequences were obtained per sample (ranging 269 

from 17,658 to 135,803 sequences). Sequences were sorted into 57,014 operational 270 

taxonomic units (OTUs) at 97% identity against the Greengenes 8_13 database using 271 

open-reference OTU picking (Table S1A). Next, OTUs were summarized at five levels 272 

of taxonomy (phylum, class, order, family, genus) (Table S2A). In order to focus on the 273 

most abundant microbes, only the taxa present in at least 50% of samples (i.e. present 274 

in 124 samples or more) were used for all following analysis, leaving a total of 75 taxa to 275 

test at the five levels of taxonomy (6 phyla, 8 classes, 11 orders, 20 families, and 30 276 

genera). The most predominant taxa at the phylum level were Firmicutes (average 277 

relative abundance = 48.64%) and Bacteroidetes (46.41%), which is consistent with 278 

previous findings in mice (BENSON et al. 2010; MCKNITE et al. 2012; ORG et al. 2015). 279 

The relative abundances of these taxa were highly variable, with Firmicutes ranging 280 

from 11% to 94%, and Bacteroidetes ranging from 1% to 88% (Figure 2, Figure S1). 281 
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282 

Figure 2. Relative abundances of top ten most abundant phyla across the 247 DO mice. Relative 283 

abundances shown, mouse samples sorted by phylum Firmicutes, the most abundant phylum.  284 

The top 8 most abundant genera were present in at least 99% of the samples. The 285 

two most abundant genera were an unidentified genus within Bacteroidales family S24-286 

7 (average relative abundance = 43.89%, ranging from 1% to 88%) and another 287 

unidentified genus within Clostridiales (32.35%, ranging from 4% to 78%), consistent 288 

with previous findings in mice (SHIN et al. 2016).  289 

When dealing with uneven sequence counts across samples, microbiome studies 290 

commonly normalize the data by rarefying sequence counts, which consists of randomly 291 

selecting from each sample an equal number of sequences without replacement (WEISS 292 

et al. 2017). It has been argued, however, that rarefaction is not an ideal approach due 293 

to valuable data being discarded (MCMURDIE AND HOLMES 2014). Therefore, we decided 294 

to present our analysis of the non-rarefied data using sequence counts per sample as a 295 

covariate, noting also that the rarefied data consisted of highly similar relative 296 
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abundances, and provided similar heritability and QTL results (see File S1 for a detailed 297 

breakdown of these metrics).  298 

Heritability estimation 299 

Each of the 247 individual DO mice used in this study represents a unique 300 

genomic combination of alleles from the original eight progenitor lines. The unit of 301 

inference for phenotypes was the rank Z-score transformed relative abundance of each 302 

taxon at each taxonomic level (phylum, class, order, family, genus) in each individual 303 

mouse, while the units of genetic inference were the SNP genotypes at each of 57,973 304 

sites for each mouse using the MegaMUGA mouse genotyping array (Figure 1). Each 305 

SNP genotype is represented by an eight-founder state probability that corresponds to 306 

the probabilities contributed by each founder at each SNP (SVENSON et al. 2012) and 307 

those eight-founder probabilities are used to fit the linear models (see Material and 308 

Methods). 309 

We estimated narrow-sense “SNP” heritability (h2) using a linear mixed model in R-310 

package lme4qtl (ZIYATDINOV et al. 2018). A linear mixed model was used to predict 311 

whether the effects of the autosomal genotype on the phenotype is proportional to the 312 

genetic similarity between the mice, after adjustment for known factors. Thus, 313 

calculations were based on the kinship matrix (genetic similarity; also called genetic 314 

relatedness matrix (GRM)), expression of a phenotype (taxon relative abundance) 315 

across all samples, and additional covariates (such as sequencing run, read counts, 316 

and cage effect). Significance was assessed by a restricted likelihood ratio test using R-317 

package RLRsim (SCHEIPL et al. 2008). More details can be found in Materials and 318 

Methods. Heritability estimates ranged from 0% to 40%. In total, 23 of the 75 tested 319 
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taxa were significantly heritable (RLRT p-value < 0.05); we additionally note multiple-320 

hypothesis normalized Benjamini-Hochberg (BH) False Discovery Rates (Figure 3, 321 

Table S3A). We hypothesized that higher-level taxa would be found to be more 322 

heritable than lower level taxa, assuming strong functional relatedness between 323 

members of the same taxonomic group, but found that there is no consistent trend 324 

between the taxonomy level and heritability. Our most heritable taxon, the class 325 

Mollicutes (40%, RLTR p-value of 0.0017, BH p-value of 0.0884) had a higher 326 

heritability estimate than any clade below it (genus Anaeroplasma with 29% and an 327 

unclassified genus in order RF39 with 35%). In contrast, the heritability estimate of class 328 

Bacilli (25%), is surpassed by its subclade, the order Lactobacillales (33%), which is in 329 

turn surpassed by its genus Lactobacillus, our second most heritable taxon (36%, RLTR 330 

p-value of 0.0076, BH p-value of 0.1035). Proportion variance estimates for kinship and 331 

cage for all taxa and their taxonomic level are presented in Figure 3. 332 
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Figure 3. Proportion of variance estimates for kinship and cage for all taxa. Proportion of variance 334 

estimates for kinship (green), cage effects (orange), and unexplained residual effects (blue) for each 335 

taxon. The kinship proportion of variance is an estimate of narrow sense heritability. Heritability 336 

percentages are shown on the left. Heritability standard errors are shown with black horizontal lines. 337 

Designations p_, c_, o_, f_, and g_ are for phylum, class, order, family, and genus, respectively. When 338 

results are identical across taxa in the same phylogenetic branch, only the lowest (most specific) taxa are 339 

shown and the rest are shaded out. Heritability significance is marked with one plus (+, RLTR p-value < 340 

0.05) and BH FDR is shown in parentheses next to heritability percentages. Taxa marked with a red 341 

asterisk have statistically suggestive QTL (⭑, adj. p-value < 0.1). Complete table of heritability results, 342 

including rarefied data, can be found in Table S3. 343 

QTL Mapping 344 

QTL mapping of the bacterial taxa at the five taxonomic levels revealed findings 345 

that suggest statistically significant associations between host genotype and relative 346 

abundances of certain taxa. QTL regions on autosomes were found using the R-347 

package lme4qtl (ZIYATDINOV et al. 2018). Significance was assessed first by 348 

comparison of models with and without genotype via a likelihood ratio test, followed by a 349 

genome-wide permutation test. The reported p-values were corrected for multiple 350 

testing across SNPs (but not across taxa). In total, genetic associations with the 351 

abundance of family Ruminococcaceae, family Staphylococcaceae, and genus 352 

Staphylococcus were found to be statistically significant (adj. p-value < 0.05), and 353 

additional genetic associations with phylum Bacteroidetes, order Bacteroidales, order 354 

Bacillales, and class Mollicutes were statistically suggestive (adj. p-value < 0.1). QTLs 355 

of order Bacteroidales, genus Staphylococcus, and family Ruminococcaceae were also 356 

statistically suggestive at a permutation p-value < 0.1 (Table S5).  357 
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QTL regions are defined by all contiguous SNPs with LODs above significance 358 

threshold of adjusted p-value < 0.1, as illustrated in Figure 4C. Multiple QTL for various 359 

taxa overlapped with the QTL regions for their parent taxa, such as a QTL hit for genus 360 

Staphylococcus (a genus in the family Staphylococcaceae) overlapping the QTL hit for 361 

family Staphylococcaceae (Table 1). The relationship between loci and microbial 362 

abundance is treated as an independent association analysis per taxa. An example of 363 

how these parallel analyses detect similar genomic regions across related taxa is further 364 

illustrated in Figure 5.  365 
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Table 1. QTL regions for taxa at five taxonomic levels. Only showing ranked results with adj. p-value < 366 

0.1 (statistically suggestive). Results with adj. p-value < 0.05 (statistically significant) are bolded. When 367 

results were overlapping across taxa in the same phylogenetic branch (such as phylum Bacteroidetes 368 

and order Bacteroidales), permutations were calculated only for the lowest (most specific) taxon. 369 

Complete table of QTL results, including rarefied data, can be found in Table S4. 370 

 371 
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 372 

Figure 4. QTL scores for abundance of class Mollicutes. (A) LOD score profile of genome-wide QTL 373 

mapping for relative abundance of class Mollicutes shows a significant QTL region (in red) on chr1. 374 

Horizontal axis shows genome physical location by chromosome, vertical axis shows LOD score at each 375 

site. Horizontal dashed red line marks the significance threshold at adjusted p-value < 0.1. (B) Chr1 376 

zoomed in shows the significant QTL region in red (chr1:120.24-125.15 Mbp). (C) Further zoom into the 377 

area of interest shows in clearer detail how the QTL region is determined by a collection of contiguous 378 

significant SNPs (above significance threshold). (D) Mus musculus protein-coding genes within the QTL 379 

region are colored in blue. 380 
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OTU level analysis 381 

Next, we decided to increase the specificity of the taxonomic classifications to 382 

operational taxonomic units (OTUs) by compiling all OTUs identified within taxa that had 383 

statistically suggestive QTL (Table 1). We filtered out OTUs that were present in less 384 

than 50% of the samples, resulting in 362 OTUs. QTL mapping performed on these 385 

selected OTUs resulted in 28 OTUs with at least one statistically significant association 386 

(adj. p-value < 0.05), and 33 additional OTUs with at least one statistically suggestive 387 

association (adj. p-value < 0.1) (Table S6).  388 

QTL associations to OTUs sometimes overlapped with QTL regions associated to 389 

taxa at higher taxonomic levels, with the most significant ones corresponding to wider 390 

QTL regions (Table 2). These results are interesting because if the overlapping QTL 391 

region associated with the broader taxonomic group is narrower and more specific than 392 

the region seen on an individual OTU, this might suggest a cumulative effect of multiple 393 

sub-taxonomies driving a stronger signal at the broader taxonomic level. For example, 394 

QTL for OTU 338796 (chr2:169.64-171.00Mbp) and NCR OTU 170146 (chr5:32.27-395 

35.85Mbp) within family Ruminococcaceae were both statistically significant (Table 2) 396 

and overlapped with QTL regions for Ruminococcaceae (chr2:170.51-170.66Mbp and 397 

chr5:32.27-33.36Mbp, respectively) (Table 1), but the QTL regions for the OTUs were 398 

both wider, as shown in Figure 5. Note that factors such as the local recombination 399 

intensity profile and SNP density will affect the width of the QTL regions equally across 400 

taxonomies, since the relative abundance of each taxon at each taxonomic level is 401 

considered as a single phenotype queried against the same static, underlying set of 402 

SNPs. 403 
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Table 2. QTL regions for OTUs. Only showing OTUs with adj. p-value < 0.1 (statistically suggestive) and 404 

with a QTL region overlapping QTL from higher-level taxonomies. Results with adj. p-value < 0.05 405 

(statistically significant) are bolded. Permutations were calculated only for peaks with the lowest likelihood 406 

p-value in regions with peak overlaps. OTU numbers are assigned by Greengenes database, ‘NR’ 407 

prefixes denote “New Reference” OTUs defined as those with sequences that failed to match the 408 

reference and are clustered de novo. ‘NCR’ prefixes denote “New Clean-up Reference” OTUs that failed 409 

to match the new reference OTU collection and are assigned a new random number. Complete table of 410 

QTL results for OTUs can be found in Tables S6. 411 

 412 
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 413 

Figure 5. Overlap of QTL regions across taxa in the same phylogenetic branch. (A) LOD score 414 

profile of genome-wide QTL mapping for relative abundance family Ruminococcaceae (top panel), and 415 

two OTUs found within family Ruminococcaceae: OTU 338796 (middle panel), and NCR OTU 170146 416 

(bottom panel). (B) Zoom into the area of interest in chr2 shows overlap in QTL regions between family 417 

Ruminococcaceae (170.51-170.66Mbp, top panel) and OTU 338796 (169.64-171.00Mbp, middle panel). 418 

(C) Zoom into the area of interest in chr5 shows overlap in QTL regions between family 419 

Ruminococcaceae (32.27-33.36Mbp, top panel) and NCR OTU 170146 (32.27-35.85Mbp, bottom panel). 420 

Horizontal axis shows genome physical location by chromosome, vertical axis shows LOD score at each 421 

site. Horizontal dashed red line marks the significance threshold at adjusted p-value < 0.1. 422 
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Comparison to other studies 423 

Results from other published studies on heritabilities of the various bacterial taxa in 424 

the gut microbiome of mice, pigs, and humans were compiled and compared with our 425 

results (Figure 6, Table S7). We find new evidence of heritability of bacterial taxa in 426 

mice only previously seen in human studies. For example, we observed significant 427 

heritability in the phylum Tenericutes as well as several of its subclades, including 428 

genus Anaeroplasma and order RF39. These results were consistent across both our 429 

rarefied and non-rarefied datasets, and had not been seen in any other mouse studies, 430 

either because they did not detect these taxa in their studies or their results failed to 431 

identify significant heritability. This novel result is similar to previous host-microbe 432 

associations seen in human studies where significant heritabilities for this taxonomic 433 

lineage were identified in phylum Tenericutes (h2 = 0.34 (GOODRICH et al. 2016) and 434 

0.23 (LIM et al. 2017)), class Mollicutes (h2 = 0.32 (GOODRICH et al. 2016) and 0.23 (LIM 435 

et al. 2017)), and order RF39 (h2 = 0.31 (GOODRICH et al. 2016)).  436 

In some instances, taxa that we did not identify as being significantly heritable — 437 

and in fact have some of our lowest heritability scores — are reported to have high 438 

heritability in other studies. We show some examples of this in Figure 6: families 439 

Clostridiaceae and Lachnospiraceae as well as the entire phylum Verrucomicrobia. 440 

Interestingly, both of these families have significantly heritable subclades, whereas the 441 

entire branch of phylum Verrucomicrobia had low heritability estimates. We see a very 442 

low heritability estimate in both our non-rarefied and rarefied datasets for the genus 443 

Akkermansia (h2 = 0.02) and every taxonomic level up to phylum Verrucomicrobia, yet 444 

estimates for mice in other studies were as high as h2 = 0.92 (ORG et al. 2015), and h2 = 445 
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0.62 (O'CONNOR et al. 2014). This discrepancy between heritability estimates for 446 

Akkermansia is not mouse specific, as human microbiome studies see similarly 447 

conflicting results in their heritability estimates for this same genus: Reporting 448 

significantly high (h2 = 0.30 (TURPIN et al. 2016)), significantly low (h2 = 0.14 (GOODRICH 449 

et al. 2016)), and close to zero and not significant estimates (h2 = 0, 0.01 (DAVENPORT et 450 

al. 2015), and 0.06 (LIM et al. 2017)). 451 

 452 

Figure 6. Comparison of taxon heritabilities across mouse, human, and pig studies. The green 453 

shading over heritability estimates ranges from each study’s lowest heritability estimate (white) to each 454 

study’s highest heritability estimate (green) to highlight the relative heritability of each taxa per study. 455 

Statistically significant results are shown in bold font when significance is reported. For our Diversity 456 

Outbred study, we report both non-rarefied (nonR) and rarefied (R) results. For ORG et al. (2015) we 457 
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report results using all mice (All), just males (M), just females (F), an average per strain (Avg), and a 458 

single mouse per strain (One). ORG et al. (2015) and O'CONNOR et al. (2014) did not report significances. 459 

For GOODRICH et al. (2016) the estimates are calculated by the ACE model, bold values indicate 460 

estimates with a 95% confidence interval not overlapping 0. For DAVENPORT et al. (2015) the estimates 461 

are the proportion of variance explained (PVE) estimates (“chip heritability”), we report winter (W), 462 

summer (S), and combined seasons (C) datasets, and bold values indicate estimates with a standard 463 

error not overlapping 0. For TURPIN et al. (2016) and LIM et al. (2017) estimates are polygenic heritability 464 

(H2r). For CAMARINHA-SILVA et al. (2017) and HUGHES et al. (2020) estimates are narrow-sense heritability 465 

(h2). Grey indicates that the taxon was not observed or excluded in a given study. Figure adapted from 466 

GOODRICH et al. (2016). Comparisons relevant to the text are shown here, with the full comparison found 467 

in Table S7. 468 

In addition to comparing our heritability estimates with other studies, we also 469 

contrasted our QTL mapping results of the gut microbiome with those from previous 470 

QTL and GWA studies (Figure 7, Table S7).  471 

We identified statistically significant QTL associations for the order Bacillales as 472 

well as for the family Staphylococcaceae and the genus Staphylococcus within 473 

Bacillales in chr19; another mouse study also found statistically significant QTL 474 

associations for all of the same taxa but on chr17 (MCKNITE et al. 2012). A human 475 

microbiome study found statistically significant QTL regions for the class Bacilli, which 476 

comprise the above mentioned order and families (BLEKHMAN et al. 2015). 477 

Family Ruminococcaceae has been previously found to have significant QTL 478 

associations both in mice (chr12 (BENSON et al. 2010) and 3 (BELHEOUANE et al. 2017)) 479 

and humans (BLEKHMAN et al. 2015, HUGHES et al. 2020). In our study, 480 

Ruminococcaceae was identified as associated with chromosomes 2 and 5. We also 481 
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identified a QTL hit for the phylum Bacteroidetes in chr5 while another mouse study 482 

identified a significant hit in chr14 (WANG et al. 2015). Within Bacteroidetes, even 483 

though we did not find any significant QTL results for the genus Bacteroides, many 484 

other mouse studies have (chr1 (WANG et al. 2015, BELHEOUANE et al. 2017), 4 485 

(MCKNITE et al. 2012), 9 (LEAMY et al. 2014), 11 (BUBIER et al. 2018), 16 (LEAMY et al. 486 

2014), and 18 (LEAMY et al. 2014)) as well as a human study (BLEKHMAN et al. 2015). 487 

Phylum Tenericutes had a significant hit in chr1 in both our non-rarefied and 488 

rarefied datasets, and family Lachnospiraceae had a statistically suggestive QTL in 489 

chr10 in our rarefied dataset but not in our non-rarefied dataset. Both of these taxa had 490 

significant QTL hits in a human study (BLEKHMAN et al. 2015). 491 

Finally, we did not observe any QTL overlaps with KEMIS et al. (2019) (Table S7), 492 

which also used the Diversity Outbred mice population in their microbiome association 493 

study. This lack of overlap is likely due to the highly different diet used in their 494 

experiments (high-fat, high-sucrose), and further highlights the strong impact of diet 495 

alone in microbiome composition.  496 
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 497 

Figure 7. Comparison of taxa with QTL associations across mouse and human studies. 498 

Associations with each taxon are marked in dark blue if statistically suggestive and bolded in white if 499 

statistically significant, or light blue if not significant. Gray indicates that the taxon was not observed or 500 

excluded in a given study. The chromosome numbers where the QTL were found are denoted in each 501 

box. For our Diversity Outbred study, we report both non-rarefied (nonR) and rarefied (R) results. In the 502 

human studies, the corresponding syntenic mouse chromosome was added in parenthesis. Figure 503 

adapted from GOODRICH et al. (2016). Selected comparisons shown, full comparison found in Table S7. 504 

Gene level analysis 505 

Examining the QTL mapping results from previous studies, it was apparent that 506 

although different studies might all have found significant QTL regions for a particular 507 

bacterial taxon, they identified different genomic positions as showing associations. In 508 

order to identify common functions and diseases associated with the genes within our 509 

QTL regions, we used Ingenuity Pathway Analysis (IPA®, QIAGEN Redwood City, CA) 510 

to run a cumulative gene set enrichment analysis on all 1423 genes associated with 511 

non-rarefied microbiome abundance spanning 7 significant QTL and 11 suggestive QTL 512 

across the five taxonomic levels (phylum, class, order, family, genus) (Table S4) and 54 513 
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significant QTL and 232 suggestive QTL at the OTU level (Table S6). All genes found 514 

within each QTL region were included. When QTL regions overlapped across taxa of 515 

the same phylogenetic branch (as illustrated in Figure 5), overlapping genes were only 516 

counted once. Additionally, we ran taxon-specific enrichment analysis to profile the 517 

specific functions and diseases associated with genes in the QTL regions associated 518 

with relative abundance of phylum Firmicutes (n = 23 genes), class Mollicutes (n = 9), 519 

order Bacteroidales (n = 10), family Ruminococcaceae (n = 15), and genus 520 

Staphylococcus (n = 8), excluding OTU-specific QTL regions. 521 

Through the cumulative gene set analysis, we found 25 networks each containing 522 

subsets of our genes. We can try to characterize the biological significance of these 523 

networks by measuring the enrichment of disease and functional annotations in the 524 

genes of each network (Table S8). We find remarkable functional signatures in the 525 

highest-ranked of these 25 networks, with enrichment in the broad categories of 526 

Immunological Disease and Inflammatory Response (Network 1, Figure 8A), Lipid 527 

Metabolism and Molecular Transport (Network 2, Figure 8B), and Connective Tissue 528 

Development and Function (Network 3, Figure 8C). These associations are highly 529 

concordant with increasingly well-understood roles in host-microbiome interaction 530 

studies. In Network 1, we find the most enriched specific functions relate to microbiome 531 

associated phenotypes, namely hypersensitive reactions (BH-FDR = 7.56e-4), allergies 532 

(BH-FDR = 1.39e-3), and atopic dermatitis (BH-FDR = 6.35e-3). Additionally, we find 533 

that despite lack of overlap between the gene membership of these four highest-ranked 534 

networks, they all have a significant enrichment for functions in both Gastrointestinal 535 

Disease (BH-FDRs between 1.26e-3 and 2.47e-3) and Digestive System Development 536 
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and Function (BH-FDRs between 3.41e-3 and 3.34e-2). Interestingly, we also find 537 

consistent significant enrichment of cancer annotations across all four networks with 538 

varying overlap of tissues: prostate and renal cancers (Network 1), metastasis and 539 

colorectal cancer (Network 2), and breast, ovarian, and gastrointestinal cancer (Network 540 

3). Only liver cancer appeared to be enriched in all three networks. A full exhaustive list 541 

of significantly enriched categories, diseases, and functions can be found in Table S9.  542 
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 543 

Figure 8. Ingenuity Pathway Analysis (IPA) three highest-ranked interaction networks generated 544 

from cumulative gene set analysis. Genes circled in color are all associated with disease and 545 

functional annotations as specified below. Nodes marked with an asterix belong to closely associated 546 

genes added by IPA that were not in the input dataset. (A) Network 1 shows genes associated with 547 

Immunological Disease (circled in red) and Inflammatory Response (blue). (B) Network 2 shows genes 548 

associated with Lipid Metabolism (green) and Molecular Transport (purple). (C) Network 3 shows genes 549 

associated with Connective Tissue Development and Function (orange).  550 
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Through taxon-specific enrichment analysis we find a consistent enrichment in 551 

development of adenocarcinoma (FDRs between 0.00% and 2.87%) in what are 552 

otherwise heterogeneous functional profiles (Figure S2A-E). We observe an 553 

enrichment of lipid metabolism pathway annotation through genes ASAH2, VLDLR, and 554 

SGMS1 in the phylum Firmicutes (FDRs 0.31% to 2.73%) all of which are again 555 

detected in its subclade, the genus Staphylococcus (FDRs 0.22% to 2.98%) (Figure 556 

S2A,B). We also observe an enrichment in breast and ovarian cancer annotations in 557 

phylum Firmicutes (FDRs 0.31% to 2.73%), which is shared with its larger subclade, the 558 

family Ruminococcaceae (FDRs 0.34% to 2.95%) (Figure S2A,C).  559 

Finally, in both the cumulative and taxon-specific gene sets we find genes 560 

canonically tied to the commensal microbiome and pathogen-host interactions. The 561 

gene MARCO, which lies within a QTL for the abundance of class Mollicutes, encodes a 562 

pattern recognition receptor which is part of the innate antimicrobial immune system, 563 

binding both Gram-positive and Gram-negative bacteria. We consistently find genes 564 

associated with bacterial response in these gene sets, including TLR2, a membrane 565 

protein that recognizes bacterial, fungal and viral molecules and has been shown to 566 

have benign associations when binding a protein produced by the gut microbiome 567 

(OTTMAN et al. 2017). These gene sets also include both FCGR1A and FCER1G, 568 

fragments of the high affinity IgE Receptor, Spondin2, a cell adhesion protein that binds 569 

directly to bacteria and their components as an opsonin for the macrophage 570 

phagocytosis of bacteria, BPIFA1, an antimicrobial protein that inhibits the formation of 571 

biofilm by Gram negative bacteria, and both PGLYRP3 and PGLYRP4, both 572 
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peptidoglycan recognition proteins that bind to murein peptidoglycan of Gram-positive 573 

bacteria. 574 

DISCUSSION 575 

There exists a complex and multifaceted relationship between the gut microbiome 576 

and its host’s genome, where recent studies are beginning to show the true magnitude 577 

of these connections. Our results seek to further understand this relationship by 578 

measuring the heritability of bacterial relative abundance phenotypes and by 579 

categorizing the functional and disease pathways that may be associated with specific 580 

bacterial abundances in the mouse gut microbiome.  581 

We detect the first instance of statistically significant heritability in the phylum 582 

Tenericutes in a mouse model. Specifically, we see that its subclade, class Mollicutes, 583 

is our most heritable taxon (40% BH p-value of 0.088). Dramatic increases in Mollicute 584 

abundance have been observed in mice when subjected to a high-fat, high-sugar diet in 585 

comparison to a plant polysaccharide-rich diet. This Mollicute bloom seems to come at 586 

the expense of Bacteroidetes abundance and an overall lower diversity in murine 587 

microbiomes (TURNBAUGH et al. 2017). Understanding the heritable aspects of Mollicute 588 

abundance could help elucidate the host-genetic determinants of body weight control 589 

and the etiology of obesity, which has been thus far extremely challenging with host-590 

genome GWAS alone (MÜLLER et al. 2018, SPEAKMAN et al. 2018).  591 

Our second most heritable taxon is genus Lactobacillus (36% BH p-value of 592 

0.103), which shares a similarly strong but benign association to body weight control in 593 

the literature. The genus Lactobacillus contains several species with strains commonly 594 
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used as probiotics. In contrast to the Mollicute lineage, Lactobacilli have been used in 595 

mouse models of hyperlipidemia to show an increase of abundance of Bacteroidetes 596 

and Verrucomicrobia, and improving their lipid metabolism (CHEN et al. 2014). The 597 

function of these clades as a whole is, however, not clear-cut: Lactobacillus is a large 598 

genus containing species and strains with differing roles and probiotic effects in humans 599 

(MCFARLAND et al. 2018) and members of the class Mollicutes may have strain-specific 600 

positive effects on gastrointestinal disease in mice, rather than a negative phenotype as 601 

a whole (ZHAI et al. 2019).    602 

These examples present a microbiome-host interaction landscape in which 603 

associations between host health and microbiome abundance can be extremely taxon-604 

specific, displaying functional heterogeneity at the species level. Building a baseline 605 

understanding of the resolution at which genetic associations change for different 606 

lineages is vital to build an understanding of health, function, and coevolution in 607 

microbe-host models.  608 

We perform parallel analyses to find specific associations between genetic loci and 609 

individual taxonomic groups, treating sub-clades as independent phenotypes from their 610 

parent taxa during QTL calculations. This setup allows us to contextualize significant 611 

QTL across the bacterial taxonomy, and we find similarities in both the genomic regions 612 

detected and the functional annotation of covered genes for taxa in the same clade. We 613 

also greatly benefit from the type of QTL analysis facilitated by the DO mouse model, 614 

where the genotype for specific loci can be calculated and contrasted consistently 615 

across all samples, eliminating the need for the windowed confidence intervals which 616 

are common in this type of analysis.  617 
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We find functional associations in the gene sets identified by the QTL results that 618 

span disease and development phenotypes beyond obesity. We find QTL regions 619 

spanning genes with annotations for various phenotypes that are already widely studied 620 

in the context of host-microbiome interactions. Among them we see cancer-associated 621 

annotations, both in the more obvious gastrointestinal categories like colorectal cancer 622 

(CHEN et al. 2012; AHN et al. 2013, ZACKULAR et al. 2014; ERICSSON et al. 2015) and the 623 

surprising, but well-studied, breast (YANG et al. 2017; FERNÁNDEZ et al. 2018; ZHU et al. 624 

2018), ovarian (XU et al. 2020), and liver cancers (YU AND SCHWABE 2017). We also see 625 

an expected plethora of immune and inflammatory pathways, including some 626 

microbiome-associated disease hallmarks, including colitis (KNOX et al. 2019), allergic 627 

response (Pascal et al. 2018), and atopic dermatitis (KIM AND KIM 2019). Beyond 628 

pathology, we see an enrichment of lipid metabolism pathways, coherent with the gut 629 

microbiome’s direct and indirect role in host lipid modulation (GHAZALPOUR et al. 2016; 630 

HEAVER et al. 2018; BROWN et al. 2019; JOHNSON et al. 2019). 631 

The relationship between a host’s health and their microbiome seems increasingly 632 

complex. Links to host development, disease, and metabolism are still being found 633 

across body sites and a wealth of bioinformatic and modelling strategies continue to 634 

emerge (MALLA et al. 2019). These results are a promising and heavily funded target for 635 

precision medicine (PROCTOR et al. 2019), identifying potential biomarkers for 636 

predisposition to type 1 diabetes (UUSITALO et al. 2016) and asthma (DURACK et al. 637 

2018) in children, and colorectal cancer in adults (SHAH et al. 2018). As we move 638 

forward to understand the mechanisms underlying host-health modulation by the 639 

microbiome, it is imperative that we understand which parts of host genomes might 640 
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have underlying associations with microbial species, both to understand the limitations 641 

of animal models as a relevant human proxy, and to determine whether host genetics 642 

plays a causal role. 643 

Currently, there is a scarcity of studies discussing heritabilities and QTL mappings 644 

of bacteria within the gut microbiome. Despite the potential and funding of this field, 645 

there is still an absence of a standardized methodology for performing these studies 646 

that leads to the use of different procedures and analytical methods, making it 647 

increasingly difficult to compare results across studies (GOODRICH et al. 2017; 648 

KURILSHIKOV et al. 2020). We see this in our comparisons of results with previous 649 

studies, as we do not observe consistent overlap in the estimated heritabilities and QTL 650 

associations in any one taxa. Depending on the study, we see differences in which 651 

covariates are able to be included, which databases or mapping algorithms are used to 652 

determine OTUs, and the manner in which results are reported. One salient example is 653 

our use of both the kinship matrix and co-housing as a random effect in our analysis, 654 

which required a tailored approach that extended the standard DO mice pipeline, which 655 

usually only allows a kinship matrix as random effect. Ultimately, the current state of the 656 

field for profiling different characteristics of the gut microbiome is still rapidly evolving 657 

and as it matures and more studies are undertaken, it will become easier to compare, 658 

validate, and aggregate results. 659 

Although our results support the claim that host genetics can impact the gut 660 

microbiome composition in ways that are relevant to the health of the host, our study 661 

has some limitations. There is significant room for improvement in the statistical power 662 

of this study design through an increase in sample size (currently n = 247 DO mice). 663 
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Conducting QTL mapping with small sample sizes may lead to the ‘Beavis effect’ which 664 

is a failure to detect QTL of small effect sizes as well as an overestimation of effect size 665 

of the QTL that are discovered (MILES AND WAYNE 2008). Our study is also subject to the 666 

trade-offs inherent in the Diversity Outbred design: since the genome of each mouse is 667 

a unique mixture of the 8 strains from the CC population, the genotype of each DO 668 

mouse is independent from other DO mice, and is irreproducible. This hampers the 669 

ability to generate biological replicates relative to inbred models, which in turn makes 670 

replicating results from the DO population limited to replication of marginal genetic 671 

effects. However, this limitation can be partially circumvented by using the CC lines as a 672 

form of validation, since they can provide reproducible genotypes (SVENSON et al. 2012). 673 

Finally, associations between host genetics, microbiome abundance, and functional 674 

pathways must be investigated experimentally to confirm mechanism and causality. 675 

This is particularly difficult in the overlap of microbiome and genetic association, as 676 

hypothesis generation is a challenging and often gene-specific approach which must 677 

account for variation in both host and microbial communities.  678 

Our results provide insight into the complex interplay between host genetics and 679 

the gut microbiome, and isolate associations between microbial taxa and QTL. Overall, 680 

this is a challenging analytical setup as we are trying to associate locus-specific 681 

variation with several inter-dependent phenotypes in a system with several covariates. 682 

Microbiome analyses are very sensitive to the traits, population, and environment under 683 

study, which we mitigate by taking into account co-housing and relatedness while also 684 

performing computationally intensive permutation tests to provide empirical p-values on 685 

our most significant QTL hits. As it stands, this method could be further utilized in a 686 
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study with a novel microbial colonization (or other microbiome perturbation), where 687 

measuring the same phenotypes, in a similar setup, could be used to estimate the 688 

heritability and identify QTL for the successful introduction of a new taxon (or response 689 

to some other perturbation). 690 

While most of the variation in the gut microbiome composition is not due to 691 

genetics but rather environmental factors (ROTHSCHILD et al. 2018), attributes of the gut 692 

microbiome that are clearly heritable may provide important insights about host-693 

microbiome interactions and the mechanisms that impact microbiome composition. As 694 

the microbiome field moves toward novel disease models, biomarkers, and treatments, 695 

it is imperative that we understand the host-genetic variation that might influence the 696 

appropriateness of our models, the accuracy of our biomarkers, and the efficacy of new 697 

treatments.  698 
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SUPPLEMENTAL MATERIAL 710 

File S1 - Analysis on rarefied data. Detailed breakdown of variation of gut microbiota, heritability 711 

estimates, and QTL association results for rarefied data. 712 

Figure S1 - Taxa relative abundance frequencies. Stacked bar plots and box plots depicting 713 

relative abundance frequencies of the top ten most abundant taxa for each of five taxonomic levels. 714 

Relative abundance frequencies are plotted for taxa levels from both the non-rarefied and the rarefied 715 

datasets. 716 

Figure S2 - Heatmaps showing the genes involved in any function that were found 717 

enriched by IPA gene set analysis. Taxon-specific analysis on genes in the QTL regions 718 

associated with relative abundance of phylum Firmicutes (A), genus Staphylococcus (B), family 719 

Ruminococcaceae (C), class Mollicutes (D), and order Bacteroidales (E). We only show annotations 720 

with a False Discovery rate under 3% after multiple-hypothesis correction. Filled-in cells indicate that 721 
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the gene listed at the top of that column is annotated with the function or disease of that row. Only 722 

genes in the gene set of interest are shown, these charts do not display all gene members of each 723 

pathway. 724 

Figure S3 - Correlation plot between non-rarefied and rarefied taxa. Heatmap 725 

depicting the Pearson correlations between the relative common taxa relative abundances in non-726 

rarefied (NonR) and rarefied (R) data, revealing that the same taxa from both non-rarefied and 727 

rarefied datasets always group closer together than with other taxa, followed by taxa belonging to the 728 

same clade. 729 

Figure S4 - Proportion of variance estimates for kinship and cage for all taxa in 730 

rarefied data. Proportion of variance estimates for kinship (green), cage effects (orange), and 731 

unexplained residual effects (blue) for each taxon. The kinship proportion of variance is an estimate 732 

of narrow sense heritability. Heritability percentages are shown on the left. Heritability standard error 733 

values are shown with black horizontal lines. Designations p_, c_, o_, f_, and g_ are for phylum, 734 

class, order, family, and genus, respectively. When results are identical across taxa in the same 735 

phylogenetic branch, only the lowest (most specific) taxa are shown and the rest are shaded out. 736 

Heritability significance is marked with one plus (+, RLTR p-value < 0.05) and BH FDR is shown in 737 

parentheses next to heritability percentages. Taxa marked with a red asterisk have statistically 738 

suggestive QTL (⭑, adj. p-value < 0.1). Complete table of heritability results, including non-rarefied 739 

data, can be found in Table S3. 740 

Figure S5 - Comparison of heritability estimates between non-rarefied and 741 

rarefied taxa. Circles with purple fill correspond to non-rarefied taxa with statistically significant 742 

heritabilities. Circles with green outlines correspond to rarefied taxa with statistically significant 743 

heritabilities. Standard errors are shown as horizontal blue lines for non-rarefied taxa and vertical 744 

orange lines for rarefied taxa. 745 

Table S1 - Relative abundance of OTUs. Relative microbial abundance at the OTU level for 746 

each DO mouse in non-rarefied data (A) and rarefied data (B). 747 
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Table S2 - Microbial relative abundance summarized at five levels of taxonomy. 748 

Relative microbial abundance summarized at five levels of taxonomy (phylum, class, order, family, 749 

and genus) for each DO mouse in non-rarefied data (A) and rarefied data (B). 750 

Table S3 - Heritability results at five taxonomic levels. Complete heritability 751 

measurements (h2) as well as their respective p-values, adjusted p-values, and standard errors for all 752 

tested taxonomies at the five taxonomic levels from the non-rarefied (A) and rarefied (B) datasets. 753 

Table S4 - QTL results at five taxonomic levels. QTL regions and their respective p-values, 754 

permutation p-values (when applicable), and genes found within the QTL interval at the five 755 

taxonomic levels from the non-rarefied (A) and rarefied (B) datasets. 756 

Table S5 - Genes within QTL regions with suggestive permutation p-value. Detailed 757 

annotations for all genes found within QTL regions with a permutation p-value <0.1 at the five 758 

taxonomic levels. 759 

Table S6 - QTL results at OTU level in non-rarefied dataset. QTL regions and their 760 

respective p-values, permutation p-values (when applicable), and genes found within the QTL interval 761 

at the OTU level from the non-rarefied dataset. 762 

Table S7 - Comparison of heritabilities and QTL with other studies. Comparison of 763 

taxa heritabilities and QTL from our analyses with other studies across mouse, human, and pig 764 

studies (A). Information on source studies for heritability values in (B) and for QTL/GWAS in (C). Full 765 

human to mouse synteny mapping results for human studies in (D).  766 

Table S8 - Gene network relationships from Figure 8. Annotated relationships between the 767 

genes in network 1 (A), network 2 (B), and network 3 (C) from Figure 8. 768 

Table S9 - Functional annotation table from IPA analysis. Detailed functional annotations 769 

from cumulative gene set enrichment analysis using IPA on 1423 genes associated with non-rarefied 770 

microbiome abundance.  771 
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