
1 
 

Identification and characterization of constrained non-exonic bases lacking 
predictive epigenomic and transcription factor binding annotations 

Olivera Grujic1,2, Tanya N. Phung3, Soo Bin Kwon2,3, Adriana Arneson2,3, Yuju Lee1, Kirk E. 
Lohmueller3,4,5, Jason Ernst1,2,3,6,7,8* 

1 Computer Science Department, University of California, Los Angeles, Los Angeles, California, USA. 

2 Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, California, USA. 

3 Interdepartmental Program in Bioinformatics, University of California, Los Angeles, Los Angeles, 
California, USA. 

4 Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, 
California, USA. 

5 Department of Human Genetics, University of California, Los Angeles, Los Angeles, California, USA. 

6 Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at University of 
California, Los Angeles, Los Angeles, California, USA. 

7 Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California, 
USA. 

8 Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, USA. 

 

*Correspondence: J.E. (jason.ernst@ucla.edu) 

Abstract 

 Genome-wide maps of epigenomic marks and transcription factor binding provide cell 

type and condition specific information for annotating genomes and interpreting genetic 

variation. Predictions of evolutionarily constrained bases provide an orthogonal genomic 

annotation of potentially important bases in the genome. Evolutionary constrained non-exonic 

bases that are not effectively predicted from large-scale epigenomic and transcription factor 

binding data could suggest noteworthy gaps in the coverage of such data. To investigate this, 

we developed the Constrained Non-Exonic Predictor (CNEP), and applied it to the human 

genome using over ten thousand features defined from large-scale epigenomic and transcription 

factor binding data to score the evidence of each base being in a constrained non-exonic 

element from such data. We find that a large subset of constrained non-exonic bases is well 

predicted by CNEP, but another large subset is not and the predictive power for bases varies 

substantially with their ConsHMM conservation state annotations. Human genetic variation 

provided evidence to support that a set of called constrained non-exonic bases with low CNEP 

scores are under selection, but to a lesser extent than those with high scores. We analyzed the 

potential biological role of constrained non-exonic bases with low CNEP scores using regulatory 
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sequence motifs, mouse epigenomic data, and additional prospectively considered human data. 

These analyses highlight how a subset of these bases may have specialized regulatory roles 

related to embryonic development, the brain, or response to stimuli not well annotated by 

commonly used compendia of epigenomic and transcription factor binding data.  

Introduction 

A large majority of genetic variation associated with common disease falls into non-

exonic regions of the human genome(Hindorff et al., 2009). Genome-wide maps of histone 

modifications and variants, transcription factor (TF) binding, open chromatin, and chromatin 

state annotations have become important resources for interpreting and prioritizing potential 

phenotype associated genetic variants in the non-coding genome(Claussnitzer et al., 2015; 

ENCODE Project Consortium, 2012; Ernst et al., 2011; Maurano et al., 2012; Roadmap 

Epigenomics Consortium et al., 2015). However, these resources are specific to the condition 

and cell or tissue type in which the experiments underlying them were conducted. Downstream 

conclusions about genetic variants based on such data can thus be missed or biased due to the 

specific experiments that have or have not been conducted. It is therefore important to have an 

understanding of the extent to which large-scale compendia of epigenomic and TF binding data 

are capturing putatively important genome bases and the nature of putatively important bases 

not captured by them. 

Evolutionarily constrained elements provide an orthogonal genome annotation, which 

does not depend on the specific cell or tissue types or the experimental mark chosen for 

mapping(Davydov et al., 2010; Garber et al., 2009; Lindblad-Toh et al., 2011; Siepel et al., 

2005). Supporting the importance of these annotations, heritability analyses have suggested 

they are heavily enriched for disease associated variants(Finucane et al., 2015). Furthermore, 

annotations of evolutionarily constrained elements and scores have been an important feature 

to integrative methods for prioritizing potentially deleterious non-exonic mutations(Huang et al., 

2017; Kircher et al., 2014; Zhou and Troyanskaya, 2015). Non-exonic evolutionarily constrained 

bases that lack informative annotations from epigenomic and TF binding data can suggest an 

incomplete coverage of the latter types of data. As a specific example of this, a previous study 

highlighted how mutations in evolutionarily constrained bases in a gene distal region associated 

with pancreatic agenesis did not show enhancer activity based on a large panel of datasets from 

the ENCODE and Roadmap Epigenomic projects(Weedon et al., 2014). However, epigenome 
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mapping experiments specifically in the disease relevant human embryonic stem cell-derived 

pancreatic progenitor cells did show enhancer activity for the relevant bases. 

Previous work has analyzed the overlap of evolutionary constrained bases and 

biochemical based genomic annotations(ENCODE Project Consortium et al., 2007; Ernst et al., 

2011; Kellis et al., 2014; Lindblad-Toh et al., 2011; Margulies et al., 2007; Rands et al., 2014; 

Ward and Kellis, 2012). However, such work generally focused on analyzing the overlap of 

individual annotations or had relatively ad hoc approaches to jointly considering multiple 

annotations. With thousands of datasets across hundreds of cell types now available, one can 

expect to find at least one dataset with a peak of signal called at most genomic positions just by 

chance. Therefore, more systematic approaches are needed to distinguish constrained bases in 

the genome supported by large compendiums of epigenomic and TF binding data, versus those 

that lack such support. To address this, we developed the Constrained Non-Exonic Predictor 

(CNEP), which takes a supervised machine learning approach to produce a score for each base 

of the genome reflecting the probability that the base is in a constrained non-exonic element, 

given the information in large-scale compendia of epigenomic and TF binding data.  We focus 

specifically on non-exonic bases since they comprise a much larger portion of the genome and 

are less well annotated compared to exons. Also, constraint in such bases can be expected to 

be largely associated with distinct patterns of epigenomic marks and TF binding relative to that 

found in exons. 

A number of methods integrate epigenomic, TF binding, comparative genomics, and 

other types of data and annotations to provide scores for variant prioritization (Huang et al., 

2017; Ionita-Laza et al., 2016; Kircher et al., 2014; Ritchie et al., 2014). In contrast to these 

methods, the only features we use in our predictions are from large compendia of epigenomic 

and TF binding data, as we want our score to exclusively reflect the extent to which the 

information in such compendia provides evidence that a location is in a constrained non-exonic 

base. Such a score can complement scores that use comparative genomic features to prioritize 

bases in the genome, since when a variant is prioritized based on comparative genomic 

information there still remains the problem of determining the mechanism by which such a 

variant exerts influence. Epigenomic and TF binding data can give insights into potential 

mechanisms, but it is useful to first know whether the prioritization of a variant based on 

constraint can even be explained by information in the compendium of epigenomic and TF 

binding data considered, or whether additional experimental data would be needed to do so. 

Another related method, FitCons(Gulko and Siepel, 2018; Gulko et al., 2015), is primarily 
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designed to use epigenomic information in conjunction with polymorphism and divergence 

information to provide cell type specific estimates of fitness. In contrast, the primary goal of our 

method is to estimate a single score, without respect to cell type, that reflects the probability that 

a base will be in an evolutionarily constrained non-exonic element from information within data 

from thousands of experiments. Other work has attempted to predict constrained elements 

based on sequence features, but did not consider experimental data for the prediction(Li et al., 

2017). 

We applied CNEP to provide a score for each base of the human genome, summarizing 

the probability of a base being in a constrained non-exonic element based on more than ten 

thousand features defined from a large compendium of epigenomic and TF binding data. A 

large portion of bases in constrained non-exonic elements was relatively well predicted, but 

another large portion was not. We analyzed the constrained non-exonic bases that were not 

well predicted by CNEP in the context of other annotations, including the recently developed 

ConsHMM conservation state annotations(Arneson and Ernst, 2019) and human population 

genetics data. These analyses suggest that a subset of bases in calls of constraint receiving low 

CNEP scores likely represent false constraint calls, but there also exists a subset of bases that 

truly appear to be under constraint. We conducted additional analyses using regulatory 

sequence motif annotations, chromatin accessibility data from mouse, and large-scale 

prospectively considered human epigenomic and TF binding data to provide insights into the 

potential role of constrained non-exonic bases not captured by commonly used compendia of 

epigenomic and TF binding data.   

Results 

Constrained Non-Exonic Predictor 

 We developed the Constrained Non-Exonic Predictor (CNEP) to make a probabilistic 

prediction based on features defined from large-scale epigenomics and TF binding data as to 

whether a base in the human genome will be in a constrained non-exonic element previously 

called based on comparative genomics sequence analysis (Fig. 1). We applied CNEP with 

10,836 features derived from overlap of peak calls in experiments mapping TF binding, histone 

modifications, and chromatin accessibility, as well as TF binding footprint calls from Digital 

Genomic Footprinting, and chromatin state annotations from ChromHMM (Supplementary 

Table S1-2; Methods). For simplicity of presentation we refer to TF binding to also include 

general factor binding that is not necessarily sequence specific. The features are based on data 
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produced by the Roadmap Epigenomics and ENCODE consortia, or data previously included as 

part of the portion of the ReMap database that curates TF binding data from the Gene 

Expression Omnibus and ArrayExpress (ENCODE Project Consortium, 2012; Griffon et al., 

2015; Roadmap Epigenomics Consortium et al., 2015).  

CNEP trains an ensemble of logistic regression classifiers to discriminate between 

bases overlapping evolutionarily constrained elements outside of a GENCODE annotated exon 

and those bases in the rest of the genome (Methods). For each chromosome, CNEP trains a 

separate set of classifiers based on subsamples of positions from all chromosomes except the 

target chromosome. CNEP then makes a probabilistic prediction between 0 and 1 for each base 

on the target chromosome based on the input features that the base is in a constrained non-

exonic element. We applied CNEP with constrained element sets previously produced by four 

different methods: PhastCons (Rosenbloom et al., 2014; Siepel et al., 2005), GERP++ 

(Davydov et al., 2010), SiPhy-pi and SiPhy-omega (Garber et al., 2009; Lindblad-Toh et al., 

2011) (Methods). The PhastCons constrained element set was called based on a 100-way 

vertebrate alignment, while the other constrained element sets were derived based on a subset 

of mammals.  

Predictions based on training on any two different constrained element sets were all 

highly correlated, with correlations ranging from 0.91 to 0.96 (Supplementary Fig. S1). We 

therefore averaged the predictions to derive a single score, which we termed the CNEP score 

(Fig. 2a, Supplementary Fig. S2). We confirmed that the CNEP score, based on averaging the 

four predictions, was even more highly correlated with the individual predictions with 

correlations ranging between 0.97 and 0.99 (Supplementary Fig. S1).  

CNEP score associates with signatures of regulatory activity 

 We next investigated the relationship between CNEP scores and the input features to 

CNEP. For each input feature, we computed the observed genome-wide average CNEP score 

of bases overlapped by the feature and compared it to the expected average CNEP score 

computed based on the proportion of the feature’s bases overlapping with constrained non-

exonic elements on average for the four element sets (Methods, Supplementary Table S2, 

Fig. 2b). Even though the CNEP score is based on more than ten thousand input features, we 

found that the observed and expected average CNEP score for these features are very strongly 

correlated (pearson correlation 0.997) (Fig. 2b). We also confirmed that the genome-wide 
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observed average CNEP score of 0.041 matched the expected average score of 0.041 based 

on the average genome coverage of the four constrained element sets. 

We next investigated whether bases that received a higher CNEP score were more likely 

to show signatures of regulatory activity in more experiments or cell and tissue types, which are 

subsets of input features to CNEP. We analyzed a set of 350 DNase I hypersensitivity 

experiments from the Roadmap Epigenomics project, and computed the average number of 

these experiments in which a base would be covered by a peak as a function of the CNEP 

score (Fig. 2c). Bases that received a higher CNEP score tended to be in a DNase I 

hypersensitivity peak in more experiments. For example, bases with a CNEP score of 0.050 

were in a DNase I hypersensitive peak in 1.6% of the experiments while those with a score 

0.500 were in a peak in 25.7% of the experiments on average. We saw a similar pattern when 

considering the chromatin state frequency from a chromatin state model defined across 127 cell 

and tissue types as a function of the CNEP score, which showed on average a greater presence 

of candidate enhancer or promoter chromatin states for larger CNEP scores (Fig. 2d).  

CNEP score is partially predictive of bases in constrained non-exonic elements  

We next analyzed the extent to which the CNEP score is able to predict bases in non-

exonic constrained elements using Receiving Operator Characteristic (ROC) curves and 

precision-recall curves (Fig. 2e,f, Supplementary Fig. S3). We obtained area under the ROC 

curves in the range 0.75 to 0.82 depending on the constrained element set being predicted, with 

the area under the curve (AUC) values for PhastCons elements being lower than the other three 

element sets. The lower AUC for PhastCons might be related at least in part to this being the 

only element set of the three defined using alignment information that included non-mammalian 

vertebrates, which can make it more vulnerable to possible alignment errors, or due to the 

higher resolution at which these elements are defined (Arneson and Ernst, 2019). At false 

positive rates of 5%, 10% and 20%, the CNEP score predicts 30-39%, 41-53%, and 55-68% of 

bases in constrained non-exonic elements, respectively, where the specific value in each range 

depends on the constrained element set. 

These results demonstrate that while a substantial portion of bases covered by 

constrained non-exonic elements is relatively well predicted by CNEP, another substantial 

portion is not. We next sought to better understand constrained non-exonic bases receiving a 

low CNEP score. To facilitate that, we defined six sets of bases for each constrained element 

set: (1) CNE (constrained non-exonic) - non-exonic bases covered by a constrained element; 
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(2) Low_CNE - bases in CNE that received a CNEP score of 0.05 or less; (3) High_CNE - bases 

in CNE that are not in Low_CNE; (4) notCNE - bases that are not in a constrained element and 

also not in an exon;  (5) Low_notCNE - bases in notCNE that received a CNEP score of 0.05 or 

less; (6) High_notCNE - bases in notCNE that are not in Low_notCNE (Fig. 2a, Supplementary 

Fig. S2, Supplementary Table S3). From these definitions, 1.0-2.0% of bases in the genome 

were in the Low_CNE set. This range corresponds to 34-47% of CNE bases falling into the 

Low_CNE set, thus a substantial fraction of constrained non-exonic bases called based on 

sequence constraint had a low CNEP score. For comparison, 15.2-16.5% of the bases in the 

genome were in the High_notCNE set. These bases received a higher CNEP score than all 

Low_CNE bases, despite the former not overlapping a base in a constrained element. However, 

as we investigate below, many High_notCNE bases would be expected simply because of the 

lower resolution of epigenomic and TF binding data relative to constrained elements. The 

specific value in these ranges depended on the constrained element set being considered. 

CNEP score’s ability to predict bases in constrained non-exonic elements varies with 

ConsHMM conservation state  

The previous analysis treated all bases in a constrained element set and those not in a 

constrained element set as two homogenous sets. However, there is additional information in 

the multiple species sequence alignment, which might associate with how well the CNEP score 

can predict CNE bases. To investigate this, we leveraged an annotation of the human genome 

into 100 conservation states based on the combinatorial and spatial patterns of which species 

match and align the human genome that was recently produced using the ConsHMM method 

applied to a 100-way vertebrate alignment(Arneson and Ernst, 2019). We previously showed 

that the enrichment of bases in constrained elements for specific individual epigenomic datasets 

can vary substantially depending on the conservation state(Arneson and Ernst, 2019).  

Consistent with our previous analyses of enrichments for individual datasets, the CNEP 

scores’ ability to recover CNE bases can vary drastically depending on the conservation state 

they overlap (Fig. 3, Supplementary Fig. S4-5). For example, for PhastCons, while the overall 

AUC for predicting bases in CNE was 0.75, the AUC was as high as 0.88 when considering 

CNE bases in ConsHMM state 2, which is a state associated with high frequency of all 

vertebrates except fish aligning to and matching the human reference genome. This state 

contains 11.9% of all CNE bases. In contrast, the AUC was less than 0.65 for 64 states, 

generally having low align frequencies for many mammals, and comprising 20.4% of all CNE 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 2, 2019. ; https://doi.org/10.1101/722876doi: bioRxiv preprint 

https://doi.org/10.1101/722876
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 
 

bases. We note that state 1, the only state associated with high aligning and matching 

frequencies for all vertebrates, had an AUC of 0.80, which was less than the AUC value for 

some other states. We hypothesized that bases being proximal to, but outside exons, could 

explain the lower AUC for this state. Such bases could be expected to still be constrained, for 

example because of a role in splicing, but at the resolution the epigenomic and TF binding data 

was available such bases would not be expected to show a distinct pattern from neighboring 

bases in exons. We thus repeated the analysis, but when computing the ROC curves and AUC 

values extended exons to include 200bp of flanking regions on each side. Consistent with our 

expectations, we saw the AUC for state 1 increase from 0.80 to 0.91, becoming the largest AUC 

value for any state (Fig. 3b, Supplementary Fig. S4, S6).  

We also directly contrasted the enrichment of Low_CNE to CNE bases and contrasted 

the enrichment of High_notCNE to notCNE bases in each state. We observed similar results as 

with the AUC analysis. For example, state 2 had the greatest depletion for Low_CNE bases 

relative to CNE bases while having the greatest enrichment for High_notCNE compared to 

notCNE bases (Fig. 3a,b, Supplementary Fig. S4). These results highlight that the CNEP 

score is more predictive for a subset of constrained element calls that are likely to have fewer 

false positives. However, even for CNE bases in ConsHMM states for which CNEP was most 

predictive, there was still a substantial subset of bases receiving low scores. For example, for 

PhastCons, states 2, 4, and 5 all had greater than six fold enrichment for Low_CNE bases and 

contained 21% of Low_CNE bases. 

CNE bases with low CNEP scores and notCNE bases with High CNEP scores are partly 

explained by proximity to exons and CNE bases 

To further understand the extent to which CNE bases with low CNEP scores could be 

explained by proximity to exons, we computed the prevalence and enrichment of Low_CNE 

bases as a function of distance to nearest exon (Fig. 4a,b, Supplementary Fig. S7). For 

PhastCons CNE bases, we found a 1.6-fold enrichment for bases immediately next to an exon, 

with the enrichment decreasing further away from the exon. The cumulative enrichment at 

200bp away from the nearest exon was 1.2 fold and contained 9.5% of Low_CNE bases. We 

saw similar results for the other constrained element sets. Therefore, while enriched proximal to 

exons, the large majority of Low_CNE bases are not explained by proximity to exons. 

Limitations in the resolution of the epigenomic and TF binding data relative to the 

resolution at which constrained elements are defined can also cause notCNE bases that are 
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near a CNE base receiving a high CNEP score to also receive a high score. This would cause 

other sites with CNE bases to have relatively lower CNEP scores than they otherwise should. 

To investigate the extent to which High_notCNE bases can be explained by proximity to CNE 

bases, we computed the prevalence and enrichment of High_notCNE bases as a function of 

distance to the nearest CNE (Fig. 4c,d, Supplementary Fig. S8). For PhastCons High_notCNE 

bases, we found a 2.7 fold enrichment immediately next to a CNE and decreasing as the 

distance increases (Fig. 4c,d). Among the set of High_notCNE bases, 55% were within 200 

base pairs of a CNE base at a 1.8 fold enrichment. We saw similar results for the other 

constrained element sets. These results indicate that a substantial fraction High_notCNE bases 

are likely a result of the coarser resolution of the epigenomic and TF binding data. However, 

there are still many High_notCNE bases that are not proximal to a CNE base, but receive higher 

CNEP scores than Low_CNE bases. 

Low_CNE bases show evidence for purifying selection within humans 

 To test whether the set of Low_CNE bases are still enriched for bases under purifying 

selection in humans despite the limited support from the epigenomics and TF binding data 

considered, we turned to human population genetics data. Specifically, we considered a set of 

105 unrelated individuals of the Yoruba in Ibadan (YRI) population from the 1000 Genomes 

Project and first examined the proportional site frequency spectrum (SFS) (Methods). 

Comparing Low_CNE bases to High_notCNE bases, we observed that there is a significant 

difference in the distribution (p<10-15), with a greater proportion of low-frequency variants for 

Low_CNE bases, especially singletons and doubletons, and a lower proportion of common 

variants (Fig. 5a, Supplementary Fig. S9a,c,e, comparing orange and purple bars). The skew 

towards low-frequency variants and the deficit in high-frequency variants suggest stronger 

purifying selection in the Low_CNE bases relative to High_notCNE bases. As an additional 

evaluation of whether purifying selection has been stronger in the Low_CNE bases as 

compared to High_notCNE bases, we examined the absolute SFS normalized by the number of 

base pairs and an estimated average mutation rate (Carlson et al., 2018) (Methods). We found 

that there are fewer SNPs at the Low_CNE bases relative to High_notCNE bases across all 

bins of allele frequencies (Fig. 5b, Supplementary Fig. 9b,d,f, comparing orange and purple 

bars). These results further suggest that the Low_CNE bases have experienced stronger 

purifying selection than the High_notCNE bases. We verified that similar results were obtained 

when controlling for differences in estimated background selection in different sets (McVicker et 

al., 2009) (Methods, Supplementary Fig. S10). 
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We also observed that High_CNE relative to Low_CNE bases and High_notCNE relative 

to Low_notCNE bases had reduced common variation (Fig. 5a,b, Supplementary Fig. S9). 

However, these differences were generally smaller than the differences of CNE to notCNE 

bases. Additionally, we compared SFS of Low_CNE bases to subsets of High_notCNE bases 

that satisfied more stringent thresholds on the CNEP score than 0.05 (Supplementary Fig. 

S11), which suggested that the Low_CNE are under stronger purifying selection in humans than 

notCNE bases that receive substantially higher CNEP scores.           

Low_CNE bases show enrichments for TF binding motifs 

Since human population genetics data still supported the importance of Low_CNE bases 

despite the low CNEP score, we investigated whether regulatory sequence motif analysis, which 

is cell type and condition invariant, provides evidence of a regulatory role for Low_CNE bases. 

For each constrained element set, we computed individual motif enrichments of Low_CNE 

bases relative to control motif instances from a compendium of 1,646 regulatory motifs, and did 

the same for the other five sets above (Fig. 5c, Supplementary Fig. S12, Methods). We then 

analyzed the distributions of these motif enrichments relative to those obtained from 

randomizing the motif instances. Both the Low_CNE and High_notCNE sets have motif 

enrichments that are above background, though less than High_CNE bases. The motif 

enrichments for the Low_CNE bases were substantially stronger than compared to the 

High_notCNE and notCNE bases. To place the motif enrichments of Low_CNE bases in 

additional context, we compared them to High_notCNE defined at more stringent thresholds 

(Supplementary Fig. S13). Similar to what we saw with the SFS analysis, the Low_CNE bases 

had greater enrichment for motifs than High_notCNE at more stringent thresholds of the CNEP 

score, with the specific thresholds depending on the constrained element set being considered. 

To understand the specific motifs driving the overall motif distribution enrichments of the 

Low_CNE and High_CNE bases, we investigated directly the enrichments of individual motifs 

(Fig. 5d, Supplementary Fig. S14, Supplementary Table S4). Motifs that had the greatest 

increase in log2 fold enrichments for High_CNE compared to Low_CNE bases included motifs 

for the promoter associated NRF1 and E2F TFs (Ernst and Kellis, 2013), RFX family of TFs, 

and the extensively mapped CTCF. While globally the High_CNE bases had stronger motif 

enrichments than Low_CNE bases, we did observe some motifs that showed enrichment for 

Low_CNE bases and for which the enrichment was greater than for High_CNE bases. Among 

the motifs which had a log2 enrichment for Low_CNE greater than 0.5, the greatest difference in 
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log2 enrichments relative to High_notCNE included motifs corresponding to CUX1, ESRR family 

of TFs, and the NR5A family of TFs. We conducted a Gene Ontology (GO) enrichment for TFs 

corresponding to the set of motifs that had at least a log2 fold enrichment of 0.5 in High_CNE or 

Low_CNE bases broken down into three sets: (i) ‘High_CNE strongly preferred’ - those motifs 

for which difference for High_CNE and Low_CNE bases was greater than 0.5; (ii) ‘High_CNE 

moderately preferred’ - the difference was between 0.5 and 0, which by definition all still showed 

enrichment for Low_CNE bases; (iii) ‘Low_CNE preferred’ - which had a greater enrichment for 

Low_CNE bases than High_CNE bases (Supplementary Table S5). TFs associated with 

‘High_CNE strongly preferred’ motifs showed significant enrichment for protein dimerization 

activity and core-promoter GO terms. TFs associated with ‘High_CNE moderately preferred’ 

motifs showed enrichment for development related GO terms. Finally, TFs associated with 

‘Low_CNE preferred’ motifs showed enrichment for lipid binding and response to stimulus 

related GO-terms (corrected p-values <0.05). These results suggest that some of the CNE 

bases that are more difficult to predict from the epigenomic and TF binding data considered are 

associated with sites that might only be active in specific developmental stages or under specific 

stimuli. 

Low_CNE bases show some enrichments for mapped mouse DNase I hypersensitive 

sites 

 As mouse experiments can potentially have coverage of cell or tissue types and 

developmental stages not represented in human data, we investigated the extent to which 

DNase I hypersensitive sites (DHS) in mouse mapped to the human genome enriched for 

Low_CNE bases. Specifically, we analyzed a set of 156 DNase I hypersensitivity experiments 

from the mouse ENCODE project(Vierstra et al., 2014; Yue et al., 2014). For each experiment, 

we mapped the set of mouse DHS to the human genome and did the same for datasets where 

we first randomized the location of the peaks in mouse (Methods). For each constrained 

element set, we then computed the enrichment of Low_CNE bases for the actual dataset 

relative to the randomized dataset, and also did the same for CNE, High_CNE, High_notCNE, 

Low_notCNE, and notCNE bases.  

 We found that for all element sets, the Low_CNE bases showed enrichment for the 

mapped DHS at least for a subset of the experiments (Fig. 5e, Supplementary Fig. S15). 

These enrichments were modest, not exceeding 2-fold for any DHS experiment or constrained 

element set, and were lower than what was seen for CNE and High_CNE bases. However, the 
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enrichments were greater than for Low_notCNE and notCNE bases and comparable to 

High_notCNE bases for at least the most enriched experiments. We observed that the DHS 

experiments that tended to have the greatest enrichment for Low_CNE bases were either for 

whole brain or cerebrum or conducted in mouse embryos at day 11.5 (Fig. 5f, Supplementary 

Fig. S16, Supplementary Table S6). For example, for PhastCons, the 32 DHS experiments 

with the greatest enrichment included all 25 experiments done on whole brain and cerebrum 

and six of eight experiments from mouse embryos at day 11.5. The only additional experiment 

in the top 32 was conducted in retina at the newborn-1 day stage. Of the eight experiments in 

mouse embryos conducted at day 11.5, the six experiments in mesoderm, forelimb bud, and 

hindlimb bud were in the top 32, while the two experiments for a headless embryo were ranked 

much lower. These results provide evidence to suggest that a limited portion of Low_CNE bases 

are regulatory active in corresponding positions in available mouse samples, particularly related 

to the brain or embryonic development. 

Additional information to predict CNE bases in specialized human datasets 

 The CNEP predictions were based on only datasets that were available by 2015. Since 

then, many additional datasets have become available or more accessible. We leveraged large 

collections of additional human datasets to conduct a prospective analysis to identify datasets 

that provide additional marginal additive information predictive of CNE bases, beyond the 

information already summarized in the CNEP score. Identifying such datasets will highlight 

types of datasets that are underrepresented in commonly used compendiums of data relative to 

the information they provide about CNE bases in the genome.  

 Specifically, we analyzed 31,901 datasets of peak calls from ChIP-atlas, which provides 

a uniform processing of Short Read Archive data(Leinonen et al., 2011; Oki et al., 2018), 1,755 

datasets of peak calls of TF binding from ReMap 2018(Chèneby et al., 2018), and 16,711 peak 

calls from the ENCODE portal(Davis et al., 2018; ENCODE Project Consortium, 2012). CNEP’s 

use of the ReMap database was limited to the 395 datasets of peak calls from the 2015 version 

of curated public data, and CNEP’s use of ENCODE data was limited to data from the second 

phase of the project(ENCODE Project Consortium, 2012). In contrast, here we used all human 

ChIP-seq and DNase-seq peak calls available on the ENCODE portal as of May 2018. We note 

that differences in data processing procedures between databases lead to differences in the 

sets of peak calls between databases in addition to differences in the underlying data they use. 
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For each dataset, we computed the observed average CNEP score for bases in each 

peak, and the expected average CNEP score based on its overlap with constrained element 

calls, as we did in Fig. 2b  (Supplementary Fig S17, Supplementary Table S7). We observed 

overall high correlations, with correlations in the range of 0.97-0.99 for sets of peaks covering at 

least 200kb. We then compared the distribution of the difference between the expected and 

observed CNEP score to the distribution obtained if we shuffled the location of the peaks within 

each set of peak calls (Fig. 6a-c). We also compared these distributions to the distribution that 

would be obtained if instead of the observed CNEP score we used the genome-wide expected 

average CNEP score when computing the difference. There was a relatively large gap in 

distribution based on using the observed CNEP score instead of genome-wide expected 

average CNEP score when computing the difference, highlighting that the CNEP score captures 

a relatively large amount of information about CNE bases. There is a difference in distributions 

between using the CNEP score on the actual peaks and a shuffled version of the peaks, though 

it was much smaller. These results suggest that CNEP captures most of the marginal 

information contained in any peak call dataset about the expectation on the frequency of CNE 

bases. However, there are some datasets that capture some additional marginal information on 

CNE bases than given by the CNEP score. 

To better understand datasets that overlap CNE bases more than is expected by the 

CNEP score, we defined the CNEP underestimation value for a dataset as the difference 

between the expected and observed average value of the CNEP score for bases overlapping a 

peak in the dataset. We then plotted this quantity as a function of the number of bases the 

peaks overlap, for those datasets with a positive CNEP underestimation value (Fig. 6d). 

Particularly informative datasets for explaining CNE bases beyond what is in the CNEP score 

would have a large value for the CNEP underestimation and also cover many bases of the 

genome. As controls, we did the same for features directly provided to CNEP and shuffled 

versions of each dataset (Supplementary Fig. S18). We observed datasets with greater 

underestimation values for the same genomic coverage than in both controls, demonstrating 

additional marginal additive information about CNE bases in these datasets. However, in most 

cases the CNEP underestimate for a dataset was relatively small (<~0.01) or only applied to 

relatively few bases, indicating that the additional marginal information in those datasets is 

limited.  

Among the exceptions was a dataset of narrow peak calls from a DNase I 

hypersensitivity experiment in spinal cord of a 59-day embryo that covered 71.6 million bases 
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and had an underestimation value of 0.066. No experiment that covered more than 4.5 million 

bases had a greater underestimation value than this dataset. A broader set of peak calls for this 

same experiment covered 179.5 million bases and had an underestimation value of 0.054 

bases, which was the largest underestimation value of any dataset covering more than 71.6 

million bases. Excluding these two peak calls sets and additional version of the peak calls from 

this same experiment, a peak call set for a DNase I hypersensitivity experiment in the 

embryonic brain covering 57.3 million bases had a higher underestimate value than any dataset 

covering more than 11.6 million bases. Other peak call sets or experiments of DNase I 

hypersensitivity of embryonic spinal cord, brain, eye and retina also had notably high 

combinations of underestimate values and genome coverage (Fig. 6d).  

  In Fig. 6d, we highlight selected experiments for TF binding that had relatively high 

underestimate values for their genome coverage. Some of these had even higher CNEP 

underestimate values than observed in the embryonic DNase I hypersensitivity experiments, 

though covered a smaller fraction of the genome. These include PDX1 and ONECUT1 in 

pancreatic progenitor cells from the study which previously showed the specific relevance of an 

enhancer highly specific to this cell type to pancreatic agenesis (Weedon et al., 2014), as well 

as other experiments mapping PDX1 (Teo et al., 2015; Wang et al., 2015). Experiments for TFs 

including PHOX2B, HOXC9, and TEAD4 in neuroblastoma cell lines, BEC2 or CLB-GA, also 

had high underestimate values(Boeva et al., 2017; Rajbhandari et al., 2018; Wang et al., 2013). 

Experiments mapping AR and HOXB13 in LHSAR cells, a prostate epithelium cell line, with 

overexpression of HOXB13, were other experiments with relatively high underestimate values 

for their genome coverage (Pomerantz et al., 2015; Yin et al., 2017). CDX2 in colon carcinoma 

(Colo320) (Salari et al., 2012) and HOXA9 in Human Embryonic Kidney cells (HEK293) (Rio-

Machin et al., 2017) were two additional experiments that both covered at least 300kb and had 

an underestimate value greater than 0.10. We also leveraged the ChIP-atlas cell type class 

metadata annotations to determine if there were specific cell type classes which had datasets 

significantly enriched with underestimate values greater than 0.02, restricted to those datasets 

covering at least 200kb (Supplementary Table S8). We found enrichment of datasets of 

pluripotent stem cell, pancreas, and neural to be the most significantly enriched (corrected p-

value <0.01). 

We also compared the underestimate values and coverage of these datasets to new 

exons added to GENCODE between v19 and v28. New exons in GENCODE covered 12.3 

million bases with an underestimate of 0.038. These values, while greater than those seen for 
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many experiments, were still less than a single set of peak calls for both TEAD4 and ONECUT1 

in terms of both genomic coverage and underestimate value and substantially less than some of 

the embryonic DNase I hypersensitivity experiments.  

Discussion 

 In this work we developed and applied the Constrained Non-Exonic Predictor (CNEP) to 

provide a score for each base of the human genome that reflects the probability that the base 

overlaps a CNE from information in large-scale collections of epigenomic and TF binding data. 

We used information from more than ten thousand features derived from epigenomic and TF 

binding data spanning a wide range of cell and tissue types. We showed that a substantial 

portion of constrained non-exonic bases is relatively well predicted by CNEP. However, despite 

the large number of features used, a substantial portion of CNE bases was not well predicted. 

For example, for PhastCons, at a CNEP score threshold of 0.05, 47% of CNE bases would not 

be predicted, while 16.5% of the genome in notCNE bases would be. 

 To better understand the nature of CNE bases that were not well predicted by CNEP, 

Low_CNE bases, we conducted analyses with a number of other types of data. We showed that 

there was an enrichment for Low_CNE bases near exons receiving low scores, but this provides 

only a limited explanation for some of the disagreement. Using the recently developed 

ConsHMM conservation state annotations we observed that Low_CNE bases were less likely to 

be found in conservation states with robust alignment patterns compared to CNE bases in 

general. However, even in states with robust alignment patterns through distal vertebrates, we 

observed a substantial percentage of Low_CNE bases. Using human population genetic 

variation data, we provided evidence to suggest that the Low_CNE bases are under constraint 

in humans, though to a lesser extent than the High_CNE bases. Consistent with the trends of 

the human population variation data, regulatory sequence motifs also showed enrichment in 

Low_CNE bases, though to a lesser extent than in the High_CNE bases. We found 

development related TFs to be associated with motifs that enriched in Low_CNE bases and 

showing only moderately stronger enrichment in High_CNE bases. Stimulus response TFs were 

associated with motifs that had stronger enrichments in the Low_CNE set of bases than the 

High_CNE. Mouse DHS mapped to human also showed enrichment for Low_CNE bases, 

particularly for brain and embryonic development related samples. 

 We also identified a substantial fraction of the genome that received high CNEP scores, 

but were not in constrained elements, High_notCNE bases. A simple explanation for many 
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High_notCNE bases was their proximity to constrained elements, and the finer resolution at 

which constrained elements are defined compared to the resolution of the epigenomic and TF 

binding data. However, there was also a substantial fraction of High_notCNE bases not 

proximal to constrained elements. High_notCNE bases showed greater enrichment for 

regulatory motifs and less genetic variation compared to Low_notCNE bases, though this was 

not the case when comparing to CNE or even Low_CNE bases. A subset of High_notCNE 

bases might correspond to bases that are under evolutionary constraint in humans, but not 

actually in a constrained element call, which was supported by the conservation state 

enrichments for High_notCNE bases. Another subset of High_notCNE bases may correspond to 

recently evolved bases with a potentially important regulatory role that share  epigenomic marks 

and TF binding patterns associated with CNE bases. 

 One route for improving CNEP predictions of CNE bases would be to incorporate 

additional epigenomic and TF binding data, particularly data distinct from that well covered by 

the compendia of data already used. To provide a perspective of the marginal information 

available in additional experimental datasets we evaluated the overlap of peaks in additional 

datasets with CNE bases and compared it to the CNEP score at those bases. We found most 

datasets offered at most very small additional marginal additive information than the information 

already in the CNEP score to predict CNE bases, though we did identify some additional 

datasets that would provide more substantial additional information. These datasets included 

DNase I hypersensitivity datasets for embryonic spinal cord, brain, and eye as well as some 

specialized TF binding experiments. We saw an enrichment of datasets with relatively 

informative additional marginal information categorized as being from pluripotent stem cell, 

pancreas, or neural cell type classes. While specific, these additional datasets could provide 

important information in the context of certain diseases. For example, these datasets included 

some that were previously shown to provide unique information for studying pancreatic 

agenesis(Weedon et al., 2014). Also, chromatin accessibility data from fetal brain has been 

implicated to give specific information relevant to neuropsychiatric diseases(de la Torre-Ubieta 

et al., 2018). In addition to information from the assays considered here in additional cell types 

and conditions, it is also possible different types of assays would enable improved prediction of 

CNE bases. 

 Another route for improving CNEP predictions of CNE bases is to have more accurate 

calls of CNE bases. Of the four constrained element sets considered the only one that 

considered non-mammalian vertebrates and used the largest set of mammal sequences 
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actually had a lower AUC. This suggests potential room for improvement in defining CNE bases, 

and consistent with that we showed that the predictability of CNE bases depends heavily on the 

ConsHMM conservation state to which it is assigned. We note, however, that the quality of a 

constrained set of predictions should not be evaluated solely on how well they can be predicted 

from epigenomic and TF binding data, since the resolution for defining constraint is finer than 

that at which predictions based on epigenomic and TF binding data can make meaningful 

distinctions. 

 The objective of the CNEP score is different and complementary from those scores that 

integrate epigenomic, comparative genomic, and other annotations to prioritize variants. Since 

the set of features CNEP uses is more restricted and notably does not include comparative 

genomics information it would not be expected to be competitive at variant prioritization tasks. 

However, by only using features from epigenomic and TF binding data in a compendium, the 

CNEP score provides a way to assess whether the datasets in a compendium provides 

evidence to support a variant potentially prioritized because of non-exonic constraint at a 

genomic position. Additionally, the CNEP score is learned based on many more epigenomic and 

TF binding features than used to derive other scores, and thus might become a useful feature 

for integrative methods that produce scores based on a more limited, but more diverse set of 

annotations and other scores. 

This work highlights that available compendia of epigenomic and TF binding data 

contain information to explain a substantial fraction of CNE bases. However, there are also 

subsets of CNE bases that are difficult to predict from such compendiums. The importance of a 

subset of such bases is supported by orthogonal evidence, thus also highlighting the remaining 

challenge to a comprehensive understanding of the non-exonic genome. 

Methods 

Availability of CNEP scores and CNEP software 

 The CNEP scores and software are available from https://github.com/ernstlab/CNEP. 

Genome assembly and gene annotations 

 All predictions and analysis were done on human genome assembly hg19 and were 

restricted to chr1-22 and chrX. For gene annotations we used the GENCODE v19 annotations 

obtained from 
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ftp://ftp.sanger.ac.uk/pub/gencode/Gencode_human/release_19/gencode.v19.annotation.gtf.gz. 

Exon annotations include exon bases that are non-coding. 

Constrained element sets 

 We used four different constrained element sets based on the PhastCons(Siepel et al., 

2005), GERP++(Davydov et al., 2010), SiPhy-omega, and SiPhy-pi (Garber et al., 2009; 

Lindblad-Toh et al., 2011) methods. The PhastCons constrained elements were based on the 

human hg19 100-way vertebrate alignment and obtained from the UCSC genome 

browser(Rosenbloom et al., 2014). The SiPhy-omega and SiPhy-pi elements were called based 

on a 29-way mammalian alignment and were the hg19 version obtained from 

https://www.broadinstitute.org/mammals-models/29-mammals-project-supplementary-info. The 

GERP++ elements were called based on the mammalian subset of the UCSC genome browser 

hg19 46-way vertebrate alignment obtained from   

http://mendel.stanford.edu/SidowLab/downloads/gerp/. 

Epigenomics and TF binding features 

We used 10,836 binary features defined from functional genomics data. The sources of 

the features are found in Supplementary Table S1 and a list of features can be found in 

Supplementary Table S2. The features were derived from ChIP-seq data of histone 

modifications, TFs including general factors, DNase I hypersensitivity data, and FAIRE data. 

The data was produced by the ENCODE consortium during its second phase(ENCODE Project 

Consortium, 2012), Roadmap Epigenomics consortium(Roadmap Epigenomics Consortium et 

al., 2015), and part of the ReMap public dataset(Griffon et al., 2015), which is a reprocessing of 

non-ENCODE ChIP-seq data of TFs from the Gene Expression Omnibus and ArrayExpress. 

The peak calls for the Roadmap Epigenomics data was based on the unconsolidated datasets. 

In total 5,579 features were based on peak calls. For these features the data was encoded as a 

‘1’ if the corresponding base overlapped a peak and ‘0’ otherwise. Additionally, we had 42 

features defined based on the position of Digital Genomics Footprints(Neph et al., 2012; 

Roadmap Epigenomics Consortium et al., 2015). For these features the data was encoded as a 

‘1’ for those bases overlapping a footprint and a ‘0’ otherwise. We also had 5,215 features 

defined based on chromatin state calls from three different ChromHMM models(Ernst and Kellis, 

2012). The three models were: (1) a 15-state model defined across 9-ENCODE cell types based 

on eight histone modifications and CTCF; (2) the 15-state ‘core’ model based on 5-histone 

modifications defined across 127-reference epigenomes based on consolidated data processed 
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by the Roadmap Epigenomics consortium (111 reference epigenomes were derived from data 

produced by the Roadmap Epigenomics project and 16 from the ENCODE project); (3) a 25-

state model based on imputed data for 12-chromatin marks (10 histone modifications, H2A.Z, 

and DNase I hypersensitivity) defined across the same 127 reference epigenomes(Ernst and 

Kellis, 2015). For each model we had a separate feature for each chromatin state and cell type 

or reference epigenome combination. A feature value was encoded as a ‘1’ if a base overlapped 

the chromatin state in the cell type or reference epigenome and a ‘0’ otherwise. 

CNEP method 

 The CNEP scores are generated by first training an ensemble of logistic regression 

classifiers. For a given constrained element set and a set of binary functional genomics 

features, CNEP trains logistic regression classifiers to discriminate between bases in a 

constrained element that are outside of all exons as a positive set from all other bases as a 

negative set. For generating CNEP scores on one chromosome based on one constrained 

element set, CNEP trained ten logistic regression classifiers using different 1,000,000 randomly 

sampled positions from the other 22 chromosomes. We repeated this for each of the 

constrained element sets and 23 chromosomes thus training in total 920 logistic regression 

classifiers. CNEP used the Liblinear v.2.1(Fan et al., 2008) software to train the logistic 

regression classifiers using L1 regularization (-s 6) with a bias term (-B 1), with the default 

regularization parameter value of 1 (-c 1). The exclusive use of binary features allowed us to 

make efficient use of the sparse representation of the data in Liblinear. For generating genome-

wide predictions based on one constrained element for each chromosome, CNEP computed 

and averaged the probabilistic predictions from its ten corresponding logistic regression 

classifiers and then outputted the predictions to the nearest 0.001 value. To generate the CNEP 

score we then averaged the outputted predictions based on each of the four constrained 

element sets. 

Computing observed and expected average CNEP scores for features and genome-wide 

 For computing the observed average CNEP score for a feature, we computed the 

average CNEP score in all bases in the genome where the feature was defined as being 

present. For computing the expected average CNEP score for a feature, we computed the 

average over the four constrained element sets of the number of bases for which the feature 

was present and overlapped a constrained non-exonic element divided by the total number of 
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bases in which the feature was present. We computed the genome-wide observed and 

expected CNEP scores the same way except all bases in the genome were included. 

Analysis of CNEP score’s relationship to Roadmap Epigenomics DNase I hypersensitive peak 

coverage 

 For computing the relationship between CNEP score and average fraction of Roadmap 

Epigenomics DNase I hypersensitivity experiments in a peak (Fig. 2c), we used 350 

narrowPeak call files with ‘ChromatinAccessibility’ in the file name available from 

http://egg2.wustl.edu/roadmap/data/byFileType/peaks/unconsolidated/narrowPeak/. For each 

value of the CNEP score computed to the nearest 0.001 value covering at least 1000 bases, we 

took all bases in the genome having that score and determined the average fraction of the 350 

experiments in which the bases are overlapped by a peak call. 

Analysis of CNEP score’s relationship to chromatin states 

 For the analysis of the relationship between CNEP score and chromatin state annotation 

(Fig. 2d), we used the 25-state ChromHMM chromatin state annotations defined across 127 

epigenomes based on imputed data for 12-chromatin marks (Ernst and Kellis, 2015).  For each 

CNEP score, which were computed to the nearest 0.001 value, we took all bases in the genome 

having that score and determined the average fraction of the 127 epigenomes in which each of 

the 25-states overlapped the base. We then stacked bar graphs with fractions starting from the 

state with the greatest state number (25_Quies) to the lowest state number (1_TssA) with the 

state numbers and colors from (Ernst and Kellis, 2015). In the plot we did not differentiate 

between different states that were previously given the same color and thus the graph provides 

information on the 14-state groups that were colored differently. 

Defining sets of bases for analyses 

 For each of the four constrained element sets considered, we defined the following set of 

bases used in some analyses: (1) CNE – bases in a constrained element that do not overlap a 

GENCODE exon; (2) Low_CNE – bases in a constrained element that have a CNEP score less 

than or equal to 0.05; (3) High_CNE – bases in a constrained element that have a CNEP score 

greater than 0.05; (4) notCNE – bases not in a constrained element and do not overlap a 

GENCODE exon; (5) Low_notCNE – bases not in a constrained element and do not overlap a 

GENCODE exon and have a CNEP score less than or equal to 0.05; (6) High_notCNE – bases 
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not in a constrained element and do not overlap a GENCODE exon and have a CNEP score 

greater than 0.05 (Supplementary Table S3). 

Conservation state analysis 

 The ConsHMM conservation state annotations were the 100-conservation state 

annotations for hg19 from (Arneson and Ernst, 2019). These conservation state annotations 

were defined on the same 100-way vertebrate alignment for which the PhastCons bases we 

used were defined. Fold enrichments for CNE, Low_CNE, notCNE, and High_notCNE bases in 

the conservation states were computed using the OverlapEnrichment command of ChromHMM 

v1.17 with the options ‘-b 1 -lowmem’ specified. Conservation state assignments to chrY were 

excluded from the background in this analysis, as the CNEP scores were not defined on this 

chromosome. The per state ROC and AUC values for the CNEP score were computed by 

considering a positive base a CNE in a specific conservation state and a negative base any 

base in the genome that was not in a CNE. Bases in the CNE set that were in a different 

conservation state were excluded when generating the ROC and computing the AUC. The ROC 

and AUC based on extending exons 200bp in each direction was computed in the same way, 

except first adjusting the exon start and end positions.  

Positional enrichment analysis relative to exons and CNE bases 

 For computing the enrichment of Low_CNE bases in proximity to exons we computed for 

each base in the genome the distance to the nearest base of any exon. The enrichment of 

Low_CNE at a specific distance to the nearest exon was defined as the ratio of the fraction of 

Low_CNE bases whose nearest exon was at that distance to the fraction of all bases in the 

genome whose nearest exon was at that distance. A similar set of enrichments was computed 

for High_notCNE bases in relation to their distance to the nearest CNE base. 

Human variation analysis 

 The human variation analysis was conducted on a set of 105 unrelated individuals from 

the Yoruba in Ibadan (YRI) population part of the 1000 Genomes Project. We focused on this 

population for analyzing the effects of selection since it is associated with greater genetic 

diversity and has a simpler demographic history than non-African populations (Gutenkunst et 

al., 2009). We selected high quality sites by applying a mask from 1000G where a site was 

defined as high quality if its depth (DP) is within 1.5x the mean DP across all sites (1000 

Genomes Project Consortium et al., 2015). For this analysis, we restricted it to the autosomes 
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and variant calls that were bi-allelic. For each set of coordinates analyzed, we computed a count 

cn of how many of the variants occurred in exactly n individuals for each value of n=1,…,10 (low 

and intermediate frequency variants) and also a count c>10 of how many occurred in greater 

than 10 individuals (common variants). We then computed the proportional site frequency 

spectrum (SFS) as each of these individual counts divided by the sum of all of the counts. We 

assessed the statistical significance between pairs of coordinate sets by applying a chi-square 

test to the 11 count values.   

The absolute SFS contains the numbers (rather than proportions) of SNPs at particular minor 

allele counts. Because the count of SNPs is affected by the number of base pairs analyzed 

(more base pairs would lead to more SNPs) as well the mutation rate (higher mutation rates 

lead to more SNPs), we normalized for both of these factors. To do this, first we obtained 

mutation rate estimates from http://mutation.sph.umich.edu/hg19/ (Carlson et al., 2018). We 

associated each base with a single mutation rate by averaging its three mutation rates, each 

corresponding to a mutation from the reference nucleotide to an alternative nucleotide. For a 

coordinate set, we computed the sum of the mutation rates at all bases that were high quality 

sites as defined above and had a mutation rate available. This sum is equivalent to the number 

of base pairs analyzed in a coordinate set times their average mutation rate. We computed the 

unnormalized count values as described above for the proportional SFS except excluded 

positions that did not have mutation rates available. We then divided these counts by the sum of 

the mutation rates.  

To compute SFS controlled for background selection we used the version of B-values in hg19 

as part of the CADD annotation set, which are based on the B-values from (McVicker et al., 

2009). For the proportional SFS, we reweighted variant calls in each coordinate set so that the 

B-value distribution was effectively the same as the distribution of B-values at all non-exonic 

bases with a variant call. This analysis was restricted to non-exonic variants that had an 

estimated B-value available. The weighting for a variant with a B-value, x, was pa(x)/ps(x) where 

pa(x) and ps(x) are the proportions of variants with the B-value x among all variants considered 

and the subset in the coordinate set, respectively. For the absolute SFS density normalized by 

its average mutation rate, we reweighted bases in each coordinate set so the B-value 

distribution was effectively the same as the distribution of B-values at all non-exonic bases. This 

analysis was restricted to non-exonic bases that were in a high quality site and had both 

estimated mutation rates and B-values available. The weighting for a base with a B-value, x, 

was pc(x)/ps(x) where pc(x) and ps(x) are the proportions of variants with the B-value x among all 
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bases considered and the subset in the coordinate set respectively. The weighting was used in 

both counting variants and the sum of the mutation rates.  

Motif enrichment analysis 

 For the motif enrichment analysis (Fig. 5c,d, Supplementary Fig. S12-S14, 

Supplementary Table S4), we used motif instances from http://compbio.mit.edu/encode-

motifs/matches-with-controls.txt.gz (Kheradpour and Kellis, 2014). We used motif instances for 

a set of 1,646 motifs that excluded motifs that were in the compendium based on being 

discovered from ENCODE ChIP-seq data, so that the set of motifs we analyzed were 

independent of the features provided to CNEP. The motif instances were called outside of 

coding, 3’ UTR, and repetitive regions and called independent of conservation. For each motif, 

there were also a set of corresponding control motif instances called(Kheradpour and Kellis, 

2014), which control for biases from sequence composition or background. To compute the 

enrichment of a specific motif in a target set of bases, we computed the ratio of the fraction of 

motif instance bases that also overlapped the target set to the fraction of corresponding control 

motif instance bases that also overlapped the target set. For each of the four constrained 

element sets, these enrichments for individual motifs were reported for High_CNE and 

Low_CNE bases (Fig. 5d, Supplementary Fig. S14, Supplementary Table S4). For the 

analyses on the distribution of motif enrichments for a target set, we generated three 

randomized versions of the motif instance calls with controls. To generate a randomized version 

for each chromosome we performed column-wise random permutations where one column is 

the motif identifier and the other column contains the motif coordinates. For each target set 

considered, we computed the distribution of motif enrichments on each of the randomized motif 

instances, using the same procedure as the actual motif instances. We then ordered the 

enrichments separately for the actual and three randomized datasets. At each ranked position in 

the ordering we took the difference between the log2 value of the actual enrichment and the log2 

value of the median enrichment from the three randomized datasets. 

Gene Ontology analysis 

 Gene Ontology enrichment analysis for the TFs corresponding to sets of motifs was 

conducted using the STEM software v.1.3.11 with default settings (Supplementary Table S5) 

(Ernst and Bar-Joseph, 2006). The Gene Ontology and human gene annotations were 

downloaded using the STEM software on September 17, 2017. We used as a base set all TFs 
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corresponding to a motif in the compendium. The corresponding TF for a motif was taken to be 

the portion before the ‘_’ in the motif ID. 

Mouse DNase I hypersensitive site enrichment analysis 

 For the mouse DNase I hypersensitivity site (DHS) analysis (Fig. 5e,f, Supplementary 

Fig. 15-16, Supplementary Table S6), we used the 156 narrowPeak files from the University of 

Washington mouseENCODE group available from 

http://hgdownload.soe.ucsc.edu/goldenPath/mm9/encodeDCC/wgEncodeUwDnase/ and 

http://hgdownload.soe.ucsc.edu/goldenPath/mm9/encodeDCC/wgEncodeUwDgf/ (Vierstra et 

al., 2014; Yue et al., 2014). We also generated a randomized version of each set of DHS by 

randomly selecting a different position for each DHS in the original file on the same 

chromosome. We lifted over both the real and randomized versions of the DHS files from mm9 

to hg19 using the liftOver tool from the UCSC genome browser with the options ‘-bedPlus=3 -

minMatch=0.00000001’. The lower value for the minMatch parameter enables a more 

permissive mapping of peaks from mouse to human and thus an enrichment estimate that is 

more reflective of a background that includes all mouse DHS. For both the real and randomized 

version of each set of DHS, for each of the four constrained element sets considered, we 

computed enrichments for the six target sets: CNE, High_CNE, Low_CNE, notCNE, 

High_notCNE, and Low_notCNE. Enrichments for each set of DHS were computed by taking 

the ratio between the fraction of bases in human covered by a DHS that are in the target set to 

the fraction of bases in the genome that are in the target set. The reported enrichment for an 

experiment is the ratio of this enrichment for the real DHS compared to the corresponding 

enrichment for the randomized DHS.  

Analysis on additional human datasets 

For the analysis of additional human datasets we used data from ChIP-atlas(Oki et al., 

2018), ReMap 2018(Chèneby et al., 2018), the ENCODE portal(Davis et al., 2018; ENCODE 

Project Consortium, 2012), and updated exon annotations from GENCODE. For the ChIP-atlas 

we used all peaks called at the 10-5 threshold for hg19 available from 

http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/eachData/bed05/ on May 11, 2018. We 

excluded files that did not have any peaks called on the chromosomes we considered. For the 

ENCODE portal data we downloaded all files for the ChIP-seq or DNase-seq assay available in 

narrowPeak or broadPeak format for hg19 on May 11, 2018 produced by the ENCODE project 
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from https://www.encodeproject.org/. For the ReMap 2018 database we used the peaks in the 

hg19 files restricted to the ‘Public’ data (non-ENCODE). We note that some of the ChIP-atlas 

datasets were generated by the ENCODE project, but processed differently. We did not exclude 

any dataset for being based on the same experiment as used to generate the CNEP 

predictions. For the updated GENCODE exon annotations we used release 28 mapped to 

hg19/GRCh37 available from  

ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_28/GRCh37_mapping/genc

ode.v28lift37.annotation.gtf 

We excluded any base in an exon from release 19. For generating the shuffled data we used 

the shuffleBed command of BEDTools(Quinlan and Hall, 2010). 

For computing the cell type class enrichments, we used STEM software v.1.3.11 with user 

provided annotations treating each dataset as if it was a gene and the cell type class as the 

annotation category (Ernst and Bar-Joseph, 2006). The foreground for the enrichment were 

those ChIP-atlas datasets with peaks covering at least 200kb and having an underestimate 

value greater than 0.02. The background set for the enrichment analysis was all ChIP-atlas 

datasets with peaks that covered at least 200kb. We used default settings except changed the 

minimum number of genes parameter to 1 and multiple hypothesis testing correction to 

‘Bonferroni’. 
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Figures Legends  

Figure 1: Example of Constrained Non-exonic Predictor (CNEP) scores. An example 

genomic locus illustrating CNEP scores. The top line is the GENCODE gene annotation track 

followed by the CNEP score track. In general, the CNEP score ranges between 0 and 1, but in 

this image the y-scale is capped at 0.5. Below the CNEP score track is the PhastCons element 
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track, the PhastCons score track, the UCSC Genome Browser ENCODE TF binding summary 

track (Txn Fac ChIP V2), and the ENCODE DNase I summary track (DNase Clusters V3). 

These tracks are then followed by chromatin state annotation across 127 samples based on a 

previously defined 25-state ChromHMM annotation based on imputed data (Ernst and Kellis, 

2015). A color legend for the chromatin state annotations is also available in Fig. 2d.  

Figure 2: Properties of the CNEP score. (a) The graph shows the cumulative distribution of 

the CNEP score genome-wide (green), in PhastCons constrained non-exonic (CNE) bases 

(red), and bases that are not in PhastCons constrained elements and also not in exons 

(notCNE) (blue). (b) A scatter plot with each point corresponding to one feature that CNEP 

uses. The x-axis shows the average CNEP score in bases that have the feature present, while 

the y-axis shows the expected CNEP score based on the feature’s overlap with constrained 

non-exonic bases. Only features that cover at least 200kb are shown, which is 10,741 of the 

10,836 features. The full table corresponding to these values can be found in Supplementary 

Table S2. The diagonal line is the y=x line. The vertical line corresponds to the genome-wide 

average CNEP score. The horizontal line corresponds to the genome-wide expected average 

CNEP score. (c) A plot showing the average fraction of the 350 Roadmap DNase I experiments 

in which the base overlaps a called peak for each CNEP score value, rounded to the nearest 

0.001, covering at least 1000 bases. In total, there was 996 such values. (d) A plot showing the 

average fraction of bases assigned across the 127 epigenomes to each of 14-groups based on 

25 ChromHMM chromatin states previously assigned the same color for each CNEP score 

value, rounded to the nearest 0.001 (Ernst and Kellis, 2015). A color with the state abbreviations 

is displayed at the bottom of the panel. (e) A plot of the ROC curve for the CNEP score 

predicting PhastCons non-exonic bases. The area under this curve is 0.75. (f) A plot of the 

precision-recall curve for the CNEP score identifying PhastCons non-exonic bases. ROC and 

precision-recall curves for other constrained element sets can be found in Supplementary Fig. 

S3. 

Figure 3: CNE prediction depends on conservation state. (a) Heatmap representation of 

conservation state parameters of the ConsHMM conservation state model defined in (Arneson 

and Ernst, 2019). Rows correspond to different conservation states. The states were previously 

clustered into eight groups based on these parameters and colored accordingly. The left half 

indicates for each state the probability of each species having a nucleotide aligning the human 

reference genome, regardless of whether it matches the human reference. The right half 

indicates for each state the probability of each species having a nucleotide matching the human 
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reference genome. Individual columns correspond to species, the names of which are available 

in (Arneson and Ernst, 2019). The major groups of species are colored and labeled. Color scale 

for the heatmap is shown at the bottom. (b) The first column reports the genome % of each 

state excluding chrY. The second column contains the AUC of the CNEP score for predicting 

CNE bases in each state, where for this and the remaining columns the constrained elements 

are from PhastCons. CNE bases that are not in the target conservation state are excluded when 

computing the AUC. The next column reports the AUC when exons are first extended by 200bp. 

The next three columns contain the fold enrichment for CNE bases, Low_CNE bases, and the 

ratio of the enrichment of Low_CNE bases to CNE bases. The next three columns contain the 

fold enrichment for notCNE bases, High_notCNE bases, and the ratio of the enrichment of 

High_notCNE bases to notCNE bases. Adjacent pairs of columns on a red-white color scale are 

on the same color scale. The other columns are on a column specific color scale. The bottom 

row gives the base % of the genome for the four sets. Results based on all the constrained 

element sets can be found in Supplementary Fig. S4. (c) ROC curves for the CNEP score 

identifying PhastCons CNE bases in specific ConsHMM conservation states. Curves are 

colored based on their corresponding state, as shown in panel (a). (d) Plot showing the AUC 

values for each ROC curve in (c). The AUC values are displayed from left to right in decreasing 

value and positioned along the x-axis based on the cumulative fraction of PhastCons CNE 

bases they cover. The points are color-coded based on the conservation state coloring shown in 

(a). States with the highest AUC values are labeled. Similar plots to (c) and (d), but for 

additional constrained element sets can be found in Supplementary Fig. S5 and based on 

excluding bases within 200bp of exons can be found in Supplementary Fig. S6. 

Figure 4: Low_CNE bases enrichment near exons and High_notCNE bases enrichment 

near CNE bases. (a) The plot shows the cumulative fraction of PhastCons Low_CNE bases at 

each distance to the nearest exon, up to 3,000bp. (b) The plot shows the fold enrichment for the 

cumulative number of PhastCons Low_CNE bases being within each distance to the nearest 

exon, up to 3,000bp. Similar plots to (a) and (b) for other constrained element sets can be found 

in Supplementary Fig. S7. (c) The plot shows the cumulative fraction of PhastCons 

High_notCNE bases at each distance to the nearest CNE base up to 3,000 bp. (d) The plot 

shows the fold enrichment for the cumulative number of PhastCons High_notCNE bases being 

within each distance to the nearest CNE base, up to 3,000bp. Similar plots to (a) and (b) for 

other constrained element sets can be found in Supplementary Fig. S8. 
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Figure 5: CNEP score’s relationship to human variation, TF sequence motifs, and DNase I 

Hypersensitive Sites in mouse. (a) The plot shows for PhastCons High_CNE, CNE, 

Low_CNE, High_notCNE, notCNE, and Low_CNE bases the proportional site frequency 

spectrum based on a set of 105 unrelated individuals in the YRI population in terms of # SNPs 

per base pair eligible for a SNP to be called, normalized for the number of sites with a variant in 

each set (Methods). The last column includes all SNPs with minor allele count greater than 10. 

(b) Similar plot to (a), except showing the absolute site frequency spectrum per base pair 

eligible for a SNP to be called  normalized by estimated mutation rates. Corresponding plots for 

additional constrained elements can be found in Supplementary Fig. S9 and plots controlling 

for difference in background selection can be found in Supplementary Fig. S10. Plots at higher 

thresholds of the CNEP score for notCNE bases can be found in Supplementary Fig. S11. (c) 

The plot shows the difference of the distribution of motif enrichments relative to the distribution 

for a randomized set of the motifs for the PhastCons High_CNE, CNE, Low_CNE, 

High_notCNE, notCNE, and Low_CNE bases. The x-axis is the rank position of the motif among 

the 1,646 motifs. The y-axis is the difference between the log2 fold enrichment based on the 

actual motif calls and the median log2 fold enrichment from three randomized versions at the 

same rank position (Methods). Similar plots for other constrained elements can be found in 

Supplementary Fig. S12 and at other thresholds for defining notCNE high bases in 

Supplementary Fig. S13. (d) Scatter plot of individual motif enrichments. The x and y axes 

corresponds to the log2 fold enrichments in PhastCons Low_CNE and High_CNE bases 

respectively. The blue lines separate the three regions used for the GO enrichment analysis, 

High_CNE strongly preferred, High_CNE moderately preferred, and Low_CNE preferred, where 

at least one of the Low_CNE or the High_CNE log2 enrichment is greater than or equal to 0.5 

(Supplementary Fig. S4). The gray line is the y=x line where both Low_CNE and High_CNE 

log2 enrichments are less than 0.5. Similar plots based on other thresholds of the CNEP score 

can be found in Supplementary Fig. S14. Selected motifs are labeled. (e) The distribution of 

enrichments for DNase I Hypersensitive Sites (DHS) from 156 experiments in mouse, where the 

sites are mapped to human and enrichments are computed relative to enrichments for a 

randomized DHS, for PhastCons High_CNE, CNE, Low_CNE, High_notCNE, notCNE, and 

Low_CNE bases (Methods). Similar plots for other constrained elements can be found in 

Supplementary Fig. S15. (f) A bar graph corresponding to the enrichments shown in (e) for 

Low_CNE bases. Bars are colored to indicate if the experiment is of whole brain or cerebrum 

(red), embryonic day 11.5 (dark blue), or neither (gray). Similar plots for other constrained 
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elements can be found in Supplementary Fig. S16. A table of the enrichment values can be 

found in Supplementary Table S6.   

Figure 6: Analysis on additional human datasets. Plots for (a) ChIP-atlas (b) ENCODE 

portal, and (c) ReMap 2018 showing the distribution of prediction underestimate values for 

datasets with peaks covering at least 200kb. The prediction underestimate value for a dataset is 

the average difference between the expected CNEP score (Methods) and the prediction value 

for each base covered by a peak. Results are shown for prediction values based on the 

genome-wide average expected CNEP score (blue) and the CNEP score (red). Also shown is 

the distribution of using the CNEP score for the prediction values, but applied to a shuffled 

version of each dataset (green). (d) Scatter plot where each point corresponds to a dataset, the 

x-axis is the number of bases it covers, and the y-axis is the prediction underestimate value 

when using the CNEP score for prediction values. Selected datasets with a high combination of 

base coverage and underestimate values are labeled or placed in a box if they correspond to a 

DNase I hypersensitive experiment of embryonic brain, spinal cord, or eye. The color of the box 

corresponds to brain, spinal cord, or eye as indicated in the legend. The color and shape of the 

points are based on whether the point corresponds to a ChIP-atlas, ENCODE portal, or ReMap 

2018 dataset or the set of new GENCODE exons between v19 and v28. Only datasets with a 

positive underestimate value are shown. Datasets covering more than 200 million base pairs 

are not shown, but all had an underestimate value of less than 0.01. Three datasets that had an 

underestimate value greater than 0.13 are not shown, but all covered less than 9,000 base 

pairs. Versions of these plots based on the input features to CNEP and based on shuffled 

versions of the additional datasets can be found in Supplementary Fig. S18. 
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