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Abstract

Cheyne-Stokes respiration (CSR) is a sleep-disordered breathing characterized by

recurrent central apneas alternating with hyperventilation exhibiting a

crescendo-decrescendo pattern of tidal volume. This respiration is reported in patients

with heart failure, stroke or damage in respiratory centers. It increases mortality for

patients with severe heart failure as it has adverse impacts on the cardiac function.

Early stage of CSR, also called periodic breathing, is often undiagnosed as it only

provokes hypopneas instead of apneas, which are much more difficult to detect. This

paper demonstrates the proof of concept of a new method devoted to the early detection

of CSR. The proposed approach relies on a signal demodulation technique applied to

ventilation signals measured on 15 patients with chronic heart failure whose respiration

goes from normal to severe CSR. Based on a modulation index and its instantaneous

frequency, oscillation zones are detected and classified into three categories: CSR,

periodic breathing and no abnormal pattern. The modulation index is used as an

efficient biomarker to quantify the severity of the pathology for each patient. Results

show high correlation with experts’ annotations with sensitivity and specificity values of

July 28, 2019 1/19

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 2, 2019. ; https://doi.org/10.1101/723502doi: bioRxiv preprint 

https://doi.org/10.1101/723502
http://creativecommons.org/licenses/by/4.0/


87.1% and 89.8% respectively. A final decision leads to a classification which is

confirmed by the experts’ conclusions.

1 Introduction 1

Cheyne-Stokes respiration (CSR) is a type of sleep-disordered respiration characterized 2

by a crescendo-decrescendo pattern of ventilation, alternating hyperventilation and 3

central hypopneas/apneas. CSR is mainly prevalent in patients with severe heart failure 4

(left ventricular ejection fraction less than 30%) and can be associated with a worse 5

prognosis [1, 2]; but it can also be found in patients with history of stroke, exposure to 6

high altitude or damages in respiratory centers. Previous investigations have shown that 7

Central Sleep Apnea (CSA) associated to CSR is a strong independent marker of 8

mortality in patients with heart failure [1], and there is an intense need for developing 9

better diagnostic and prognostic tools in order to generate personalized medicine with 10

new and effective treatments [3]. 11

The home respiratory polygraphy (HRP) is probably the most used ambulatory test 12

to identify sleep disorders such as CSR. HRP requires a portable device to record 13

multiple physiological parameters throughout the night, such as blood oxygen 14

saturation, heart rate, airflow, thoracic effort, abdominal effort and body position. HRP 15

is often used as an alternative to an in-hospital test where the overnight multi-channel 16

polysomnography (PSG) [4] is recognized as the reference method to identify patients 17

with periodic breathing (PB) preceding CSR and apnea. This multiparametric test 18

monitors many other body activities such as brain activity (electroencephalogram), eye 19

movements (electrooculogram), muscle activity or skeletal muscle activation 20

(electromyogram) and heart rhythm (electrocardiogram) during sleep. Unfortunately, its 21

average cost is about five times more expensive than HRP. 22

Several clinical studies have assessed and compared HRP and PSG in order to 23

diagnose CSR. In 2004, a clinical trial applied to 75 patients showed that HRP had a 24

high sensitivity and specificity for the diagnosis of sleep-disordered breathing associated 25

with heart failure [5]. In [6], authors carried out another clinical study over about 350 26

patients and confirmed that HRP was an efficient alternative to polysomnography in 27

patients with suspected sleep apnoea-hypopnoea syndromes. Nevertheless, 28
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Alonso-Álvarez et al. emphasized in [7] that HRP was indeed a reliable approach for the 29

diagnosis of obstructive sleep apnea but more research is required for the diagnosis of 30

mild syndromes. In another study published in 2014, Tan et al. [8] also revealed that 31

apnea-hypopnea index (AHI), the standard measure to evaluate CSR or periodic 32

breathing, is underestimated in HRP and that the disparity of HRP and PSG indexes 33

can significantly affect clinical management decisions, particularly in children with mild 34

and moderate obstructive sleep apnea. Those recent studies emphasize the difficulty to 35

detect early patterns of sleep disorders like CSR. 36

The recurring problem is to detect significant amplitude oscillations among the 37

respiratory signals. Some methods have been proposed to quantify the amplitude of the 38

oscillations. For example, a spectral decomposition algorithm of the instantaneous 39

minute ventilation is proposed in [17–19] where periodic breathing has to be previously 40

detected to be quantified. A method based on a standard amplitude demodulation 41

scheme based on filters is presented in [16]. Those two methods can be noise-sensitive 42

and only bring information on the amplitude of the modulation but does not specify any 43

pattern characteristics such as the instantaneous frequency of the oscillation, thus 44

cannot confirm a CSR pattern. 45

The objective of this paper is to propose a novel computational method able to 46

better detect and classify early patterns of CSR in respiratory signals in order to 47

improve an early diagnosis and to propose an index to quantify the severity of the 48

pathology. The proposed algorithm does not need to previously detect periodic 49

breathing to quantify it. The whole respiratory signal is processed and the algorithm is 50

able to specify zones of interest. Our contribution relies on a signal amplitude 51

modulation technique which is well suited to the crescendo-decrescendo pattern of CSR. 52

The estimated modulation index is used as a biomarker to estimate the CSR stage. A 53

panel of 15 patients with chronic heart failure was used to demonstrate the proof of 54

concept. To assess the performances of the local detection and final classification, the 55

results obtained by the new method were compared to those given by eAMI [16] and the 56

opinion of CSR experts. 57

The remainder of the paper organized as follows. Section 2 describes the respiration 58

model based on amplitude modulation for the estimation of our indices. Then, the 59

details of the proposed computational method are presented in Section 3. The results 60
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obtained on a panel of fifteen patients are presented in Section 4 and compared with 61

sleep experts. They are discussed in Section 5. Finally, conclusions are drawn in 62

Section 6. 63

2 Amplitude modulation-based model of 64

Cheyne-Stokes Respiration 65

Amplitude modulation is mainly used in radio transmission for broadcasting and 66

communication. Two signals are used to create a modulated signal: the carrier wave, 67

which is a high frequency signal and the information-bearing modulation signal of lower 68

frequency. A modulated signal is obtained by varying the amplitude of the carrier wave 69

with the modulation signal. In the case of CSR, the ventilation can be modeled as 70

follows (see Figure 1 for a graphical illustration): 71

• the carrier wave represents the respiration signal and is considered as a sinusoidal 72

signal xc(t) whose frequency fc goes from 0.25 Hz to 0.33 Hz in the case of CSR 73

(from 15 to 20 respirations per minute for adults): 74

xc(t) = Ac cos(2πfct), (1)

where t denotes the time variable and Ac the carrier amplitude; 75

• the modulation signal which stands for the enveloppe of the respiration, is either 76

constant for a normal respiration or oscillating for a CSR pattern. Similarly, it is 77

also assumed to be a sinusoidal signal xm(t) whose frequency goes from 8 mHz to 78

30 mHz (a cycle of CSR typically lasts from 30 s to 2 min): 79

xm(t) = Am cos(2πfmt+ φm) (2)

where Am is the modulation amplitude and φm is the phase; 80
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(b) Modulation wave kxm(t) representing the amplitude variation of the global respiration

0 200 400 600 800 1000 1200

-1

-0.5

0

0.5

1
(a)

0 200 400 600 800 1000 1200

-1

0

1

(b)

0 200 400 600 800 1000 1200

Time (s)

-2

-1

0

1

2

(c)

(c) Modulated signal y(t)

Fig 1. Modeling of Cheyne-Stokes Respiration via amplitude modulation. The
modulated signal in (c) shows a normal respiration for the first two minutes, then an
early stage of Cheyne-Stokes Respiration (h = 0.5) and a severe form of Cheyne-Stokes
respiration (h = 1.5) at t = 660 s = 9 min.

• the modulated signal can be expressed as:

y(t) = xc(t)[1 + kxm(t)] (3)

= Ac[1 + kAm cos(2πfmt+ φm)] cos(2πfct) (4)

= env(t) cos(2πfct), (5)

where k ∈ R is a constant and h = kAm is the modulation index. The enveloppe 81

signal is defined as follows: 82

env(t) = Ac[1 + h cos(2πfmt+ φm)]. (6)

The modulation index h ≥ 0 is a key parameter of the amplitude modulation. It 83

varies between 0 and 1 and graduates the amplitude level of the periodic breathing as 84

indicated in Figure 1. Over-modulation (h > 1) creates a distortion of the signal, but 85

this case is not considered here because it cannot happen for respiration. However, 86
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apnea can occur and the modulated signal is modified to: 87

y(t) = env(t)H(env(t)) cos(2πfct), (7)

where H(t) is the Heaviside function defined by H(t) = 1 for t > 0 and H(t) = 0 88

otherwise. Note that the function H(·) in (7) is effective only when h > 1, otherwise it 89

is equal to 1. When h > 1, the duration δ of the apnea period can be computed from h 90

and fm: 91

δ =
π − arccos(− 1

h )

πfm
. (8)

Figure 1 shows an apnea zone around t = 800 s corresponding to h = 1.5. 92

3 Proposed algorithm 93

The proposed computational method can be decomposed into four successive steps: 94

(i) computation of the envelope of the ventilation signal; (ii) estimation of the 95

modulation index and its instantaneous frequency; (iii) detection of potential CSR or 96

periodic breathing zones; and (iv) final classification for each patient in three different 97

categories: CSR, periodic breathing or non-CSR. These steps are thoroughly described 98

in the next section. 99

3.1 Envelope computation 100

This part of the method is composed of two stages: (1) detection of breathing cycles in 101

the ventilation signal and (2) reconstruction of the envelope. 102

Detection of breathing cycles 103

Change point analysis (CPA) [20] is used to detect breath-by-breath respiration from 104

the ventilation signal. Let us denote by x ∈ RN the respiration signal to be analyzed. 105

We assume that some statistical properties of x change abruptly at instants t1, . . . , tK , 106

called change points. In CPA methods, the aim is to estimate the segmentation 107

t̂ = {t̂1, t̂2, . . .} through the minimization of a cost function C which represents the sum 108

of squared residuals. When the number of changes K is unknown, a penalty term 109
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Fig 2. Reconstruction of the ventilation envelope for a patient with severe
Cheyne-Stokes respiration. Results of change point detection for breathing cycles are
plotted with red stars and the envelope of the ventilation signal with the red line.

(regularization) is added to the residual error. The approach tend to minimize: 110

K−1∑
i=1

C[x(t̂i : t̂i+1)]) + βK, (9)

with β > 0 is a tuning parameter that controls the number of change points K [23]. In 111

our case, a change point represents a peak or a trough in the signal (inspiration and 112

expiration events) and the statistical properties used are slope and mean. Once all 113

change points are detected, slope is computed for all sections and those lower than a 114

threshold (experimentally set to 10−3) are discarded and considered as noise. Finally, 115

only peaks whose section duration is greater than one second are conserved (biological 116

prior knowledge: the respiratory rate is between 15 and 20 cycles per minute). An 117

example of segmentation is given in Figure 2. 118

Reconstruction of the envelope 119

Interruption of ventilation is detected if the time difference between two breaths is 120

greater than three times the median of the distances between peaks. In this case, the 121

envelope is set to zero until the next breath (see also Figure2). Finally, the signal is 122

linearly interpolated and then evenly resampled. 123

3.2 Parameter estimation of the CSR model 124

Once the envelope of the ventilation signal is extracted, the goal is to estimate the

parameters Ac, fm, φm and h of the CSR envelope model presented in (6). As the
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envelope is modeled as a sinusoidal process, we used a subspace-based method called

Matrix Pencil [21, 22]. First, let us express the envelope as a weighted sum of complex

exponentials:

env(t) = Ac[1 + h cos(2πfmt+ Φm)] (10)

= a1e
j2πf1t + a2e

j2πf2t + a3e
j2πf3t, (11)

with frequencies f1 = 0, f2 = fm, f3 = −fm and complex amplitudes a1 = Ac, 125

a2 = Ach
2 ej2φm , a3 = Ach

2 e−j2φm , where j =
√
−1. These parameters are then estimated 126

by the Matrix Pencil method over a sliding window. The window size tw has to be small 127

enough for the stationarity assumption (the sinusoidal model with locally constant 128

parameters) to hold. Here it is set to 2 minutes and no difference was found for 129

tw ∈ [2, 4]. The overlapping ratio ρw between two successive windows is set to 80%. 130

3.3 Detection of CSR zones 131

According the value of ĥ = 2|â2|/â1 and f̂m = f̂2 (the hat symbol indicates estimated 132

quantities), a decision is made to decide whether the envelope is constant or oscillating. 133

Through ROC analysis using experts annotations, a threshold of h0 = 0.12 was used to 134

detect a modulation of breathing sufficiently present to be pathological. In parallel, f̂m 135

has to belong to the interval [8, 30] mHz in which Cheyne-Stokes pattern is typically 136

pathological. If both ĥ and f̂m are classified as pathological for at least 1 minute, then a 137

zone of CSR pattern is detected and the value of ĥ specifies the severity of the 138

pathology. The one-minute window decision is used to avoid artifacts triggered by short 139

false positives. 140

3.4 Severity classification of the CSR pathology 141

Based on the American Academy of Sleep Medicine (AASM) recommandations [24], a 142

final classification rule can be applied to each patient to assign a diagnosis: 143

• if the duration of breathing oscillation is longer than 10 minutes with ĥ greater 144

than 1 (at least 5 cycles) with minimum one episode lasting at least 6 minutes (3 145

consecutive cycles) then the patient is classified as CSR-CSA (severe CSR pattern 146
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with apneas); 147

• if it is longer than 10 minutes but ĥ is less than 1 with minimum one episode 148

lasting at least 6 minutes (3 consecutive cycles) then the patient exhibits an early 149

stage of CSR and the value of ĥ can be interpreted as an indicator of severity of 150

the pathology; 151

• if it is shorter than 10 minutes with no episode lasting more than 3 consecutive 152

cycles, the patient is classified as non-CSR. 153

4 Database and results 154

4.1 Study design 155

This study is a retrospective analysis of data, which included adult patients referred to 156

a sleep laboratory (University Hospital CHRU Nancy) for evaluation of suspected sleep 157

disordered breathing. The study was approved by the Local Ethics Committee of the 158

University Hospital of Nancy and informed consent was obtained from all subjects 159

before they commenced participation. It involves a group of fifteen patients all 160

presenting severe heart failure (LVEF1<30%). Patient characteristics are listed in 161

Table 1. Subjects were seated comfortably on a chair in a quiet room, in a condition of 162

relaxed wakefulness for about 30 minutes of recording. They breathed room air through 163

a low-dead-space face mask (Hans Rudolph mask, 7400 oro-nasal series, small or 164

medium size, Hans Rudolph, Kansas City, KS) connected to a pneumotachograph 165

(MediGraphics Prevent pneumotachograph, Medical Graphics, St. Paul, MN). 166

Inspiratory and expiratory flows were measured, and the respiratory gas was 167

continuously sampled from the pneumotachograph for the measurement of expired CO2 168

and O2 partial pressure. Oxygen and CO2 concentrations were determined by rapidly 169

responding O2 and CO2 analyzers (Datex analyzers, Medical Graphics, St. Paul, MN). 170

Respiratory flow, PO2 and PCO2 were digitized at 200 Hz for breath-by-breath 171

calculation of expiration and pulmonary gas exchange. Oxygen saturation, thoracic belt 172

respiration and blood pressure were also simultaneously recorded. Sleep experts were 173

asked to classify each minute of the ventilation signal, based only on visual inspection, 174

1Left Ventricule Ejection Fraction.
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into three categories: (1) CSR or PB, (2) No abnormal pattern and (3) Erratic 175

breathing possibly PB. As a second task, experts had to establish diagnosis following 176

international guidelines using all available signals. Four patients had severe CSR, one 177

patient exhibited a periodic breathing preceding CSR-CSA and ten patients were 178

classified as non-CSR breathing. Among the non-CSR class, three patients were marked 179

with a suspicion of periodic breathing typically preceding CSR-CSA but the experts 180

were not able to confirm this diagnosis on the basis of the available signals. No patient 181

was on opioids. 182

4.2 Diagnostic criteria for Cheyne-Stokes Respiration 183

Cheyne-Stokes respiration was defined by the presence of the classical pattern of 184

waxing/waning in the tidal volume associated with central hypopneas/apneas. Central 185

hypopnea was defined as a reduction of tidal volume of at least 30% along with a drop 186

of 3% in oxygen saturation – if no flow limitation or obstructive apnea is observed. 187

Central apnea was defined as a cessation of tidal volume for at least 10 seconds without 188

any respiratory efforts. 189

4.3 Competing methods 190

The eAMI method [16] is the closest proposition to ours in the literature: both methods 191

rely on amplitude modulation but differ in the employed techniques and the computed 192

indexes. It has been completely implemented in MATLAB R2018a for comparison with 193

the proposed method. Figure 3 illustrates the scheme used in [16] for the computation 194

of the eAMI index with the value of each parameter. Using a filter bank, a modulation 195

index is estimated; it indicates an apnea when its value is close to one and can take 196

negative values in the absence of periodic breathing. It requires five main steps and a 197

set of several parameters including the cut-off frequency of each filter, and only a part 198

of them is specified in [16]. In comparison, our method requires three steps that may 199

require more computation resources but with more easily determinable parameters: the 200

set of cut-off frequencies would depend on the nature of the signals while our only 201

critical parameters are the window size and overlapping ratio which are related to the 202

cut-off frequency of the last low-pass filter in eAMI algorithm. 203
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Both eAMI and the proposed method involve a threshold parameter to classify 204

respiration intervals using the computed indexes. They are determined through ROC 205

analysis using experts’ annotations on the first two classes CSR/PB or no abnormal 206

pattern. The parameters selected to assess the performance of zones detection are: 207

• Sensitivity (Se): Se = TP
TP + FN · 100% 208

• Specificity (Sp): Sp = TP
TP + FP · 100% 209

where TP, FP and FN stand for the number of true positives, false positives and false 210

negatives, repectively. A true positive correspond to a minute correctly detected by the 211

algorithms as an oscillation zone. A false positive correspond to a minute detected part 212

of zone meanwhile it is not labeled the same by experts. A false negative correspond to 213

a minute undetected by the algorithms. Finally, the global performance is assessed by 214

computing a confusion matrix for both methods. 215

Band-pass
filter with
fc =

[0.125; 0.4]
Hz

|.|
Low-pass
filter with
fc = 0.1 Hz

High-pass
filter with
fc =

0.005 Hz

|.|2
Low-pass

filter
(N = 100fs)

High-pass
filter with
fc =

0.005 Hz

|.|2
Low-pass

filter
(N = 100fs)

1 + 0.5 log(.)
x[n] eAMI[n]

Fig 3. Scheme, taken from [16], used to compute eAMI index. The input x stands for
the respiratory signal and the output eAMI for the computed index.

4.4 One-minute estimation results 216

Figures 4 and 5 present the estimation results for two patients with different profiles. 217

Each figure shows the raw ventilation signal and the values of ĥ and f̂m estimated over 218

the sliding window. In Figure 4, a patient with severe CSR exhibits a modulation index 219

above 1, which highlights the presence of apnea and its modulation frequency belongs to 220

the pathological interval of CSR. Combined together, ĥ and f̂m clearly indicate that the 221

patient’s ventilation oscillates with apnea at a pathological frequency during all 222

recording: a zone is detected and classified as CSR. eAMI method also detects correctly 223

CSR even if it stagnates around 0.5 and does not reach the apnea threshold of 1. In 224

Figure 5, ĥ is above the oscillation threshold and f̂m is included in the pathological 225

interval for parts of the recording. The two parameters enable to conclude that the 226
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Fig 4. Patient with severe Cheyne-Stokes respiration.

patient’s ventilation shows a modulation in amplitude at a pathological frequency and 227

can be classified as periodic breathing typically preceding CSR. When the envelope of 228

the ventilation signal remains constant, ĥ goes under the oscillation threshold: the 229

patient’s ventilation shows no pathological modulation. Concerning eAMI index, it 230

correctly detects the normal episode of respiration but does not perform well for the 231

modulation from t = 1000 s. Using all patients, our method achieves a specificity of 232

89.8% and a sensitivity of 87.11% when compared to experts for the classification on the 233

minute ventilation for the two first classes (CSR/PB or no CSR/PB). For comparison, 234

eAMI achieves a specificity of 78.41% and a sensitivity of 76.44%. Note that, as for the 235

proposed method, the threshold used for eAMI classification is also determined through 236

ROC analysis. 237

4.5 Confusion matrix 238

The classification outcomes are described by the confusion matrices presented in 239

Table 2. Each row represents the instance of a predicted class by one of the two 240

algorithms while each column represents the actual class given by experts. If an 241
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Table 1. Clinical characteristics of a group of 15 patients
with severe heart failure.

Units Median Mean ± SD

Age years 58 58 ± 9.3
Height cm 173 174.4 ± 5.3
Weight kg 81.5 81.75 ± 11.39
BMI kg/m2 26.6 26.8 ± 4.12
LVEF % 25 24.77 ± 5.95

pH 7.47 7.75 ± 0.03
SaO2 % 96.3 95.65 ± 1.98
BP systolic mmHg 120 116 ± 13.52
BP diastolic mmHg 60 64.66 ± 8.33

Dyslipidemia % 73.3
Myocardial infarction % 53.3
Hypertension % 40
Diabetes % 20
Hyperthyroidism % 13.3
Stroke % 6.66

BMI: Body Mass Index. LVEF: Left Ventricule Ejection Fraction.
BP: Blood Pressure. Sex: all male.
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Fig 5. Patient with periodic breathing preceding Cheyne-Stokes respiration.
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Table 2. Comparison of confusion matrices of our method and the eAMI algorithm [16]
on a group of 15 patients.

Experts

Our algorithm CSR PB Non-CSR

CSR 4 0 0
PB 0 1 3
Non-CSR 0 0 7

Experts

eAMI CSR PB Non-CSR

CSR 4 0 0
PB 0 1 7
Non-CSR 0 0 3

CSR: Cheyne-Stokes respiration.
PB: Periodic Breathing typically preceding CSR.

algorithm performs perfectly with experts, only the diagonal of the matrix will have 242

non-zero values; otherwise, non-zero values outside of the diagonal will specify the class 243

involved in the misclassification. Patients with CSR-CSA are clearly well detected. 244

Patient with diagnosed PB (periodic breathing) is correctly detected so as patients with 245

non-CSR respiration. The interesting fact is that our algorithm classified the 246

undiagnosed three patients in PB. 247

5 Discussion 248

The prevalence of sleep-disordered breathing (SDB) in adults is important and the 249

diagnosis can be challenging as symptoms can be confused with or masked by other 250

pathologies typically associated with SDB. Concerning patients with severe heart failure, 251

CSR has been proven to be a strong factor of higher mortality, thus an early detection 252

is crucial. Periodic breathing is considered to be the early pattern of CSR with small 253

and subtle manifestations tough to detect. 254

In the present study, the proposed detection method of CSR and PB patterns has 255

shown reliable results by our amplitude demodulation technique applied to patients 256

with severe heart failure. Modeling the ventilation envelope with amplitude modulation 257

leads to characterize its morphological aspect and provides an efficient numerical 258

biomarker of CSR severity. Combining the value of the modulation index h and the 259

modulation frequency fm allows to precisely describe the signal. If h is above the 260

pathological threshold experimentally set at h0 = 0.12 and if fm shows correlation by 261

being contained in the interval [8, 30] mHz for at least 10 minutes per hour, then a 262

pathological modulation is sufficiently present to be marked as CSR patterns. However, 263
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it is important to combine both parameters together, if h is above h0 but fm is out of 264

the interval or is not stable within, there is no oscillation zone marked. On the contrary, 265

if fm is contained within the interval but h is less than h0, there is no readable 266

modulation in the envelope. The right way to analyze the parameters is to read 267

carefully the values of h first. If it is steadily above h0 then a modulation is present but 268

we cannot conclude about its nature; if it is under h0, there is no modulation amplitude 269

in the signal. Then, read fm signal: if it is continuously contained in the pathological 270

interval, then an oscillation zone is detected; if fm is unstable (both within and outside 271

the interval for no more than one minute), no modulation is detected. Of course, if it is 272

clearly outside the interval, no modulation is detected. 273

Finally, if a CSR pattern is detected, the value of h is an indicator of severity of the 274

pathology. If h, the mean value of h during oscillation zones, is in the interval [h0, 1] 275

then a periodic breathing is present without apnea. The closer h is to 1, the more acute 276

is the pathology. If h is above 1, then the patient presents a CSR pattern with apnea. 277

The higher h > 1, the longer are the apneas and the more severe is the pathology. 278

Our method achieves better overall results than eAMI. Our final classification 279

accurately detected all patients presenting CSR patterns with or without apnea. It also 280

correctly classified non-CSR patients. Three patients were classified by the expert as 281

non-CSR but with possible early CSR patterns. Those three patients were classified by 282

the algorithm as periodic breathing preceding CSR. The algorithm highlighted the same 283

patients as the experts and allowed to clearly quantify and qualify their breathing to 284

confirm the suspicion of the experts. 285

The proposed method can be used to monitor periodic breathing through night to 286

determine its progression according to sleep stages or through different exams to 287

observe the evolution within months. It can be a powerful tracker to locate the patient 288

on the continuum of the pathology and help the expert to precisely estimate the 289

evolution of the patient’s symptoms. Also, as our index can be considered as a 290

continuous signal, precising the severity of the modulation through night, it has the 291

advantage over the AHI index that describes the whole process instead of computing the 292

sum of events. It is also an automatic method that does not require any human 293

intervention contrary to AHI estimation. 294

Finally, the algorithm is based on the same tools that the expert uses: morphology 295
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using h index that matches the crescendo-decrescendo pattern of periodic breathing and 296

temporal intervals with fm that specifies the exact frequency of the oscillation. 297

6 Conclusion 298

We presented a new computational method to detect early patterns of Cheyne-Stokes 299

respiration and to estimate severity levels of pathology from ventilation signals 300

measured on patients. All the components of the proposed method have been tested on 301

a panel of 15 patients. The change point analysis technique has proved to be efficient to 302

detect breathing cycles and the matrix pencil method has provided accurate estimation 303

of the CSR model parameters. Two of them were used to detect CSR zones and to 304

classify the seriousness of the pathology. The classification results showed promising 305

performances of the proposed solution and demonstrated the proof of concept since all 306

the predictions are consistent with experts’ conclusions. A short-term perspective will 307

focus on the possibility to adapt our method to be applied directly on electrocardiogram 308

signals. The mid-term goal is to carry out a clinical study to analyze the cost-efficiency, 309

validate the proposed solution in a larger panel of patients, and propose a robust tuned 310

threshold for the detection. 311
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