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Uncertainty is intrinsic to perception. Neural circuits which process sensory information must therefore
also represent the reliability of this information. How they do so is a topic of debate. We propose a view
of visual cortex in which average neural response strength encodes stimulus features, while cross-neuron
variability in response gain encodes the uncertainty of these features. To test our theory, we studied spiking
activity of neurons in macaque V1 and V2 elicited by repeated presentations of stimuli whose uncertainty
was manipulated in distinct ways. We show that gain variability of individual neurons is tuned to stimulus
uncertainty, that this tuning is invariant to the source of uncertainty, and that it is specific to the features
encoded by these neurons. We demonstrate that this behavior naturally arises from known gain-control
mechanisms, and derive how downstream circuits can jointly decode stimulus features and their uncertainty
from sensory population activity.

Sensory systems offer a window onto a world that cannot be
known perfectly. Uncertainty about the world can arise exter-
nally, when sensory cues are incomplete or contradictory, or
internally, when noise corrupts neural representations. Ideal
perceptual systems take this uncertainty into account: if a sen-
sory cue is ambiguous, prior experience guides its interpreta-
tion1, and when multiple cues are available, they are combined
in proportion to their reliability2. When humans and other an-
imals perform perceptual tasks, they often follow these norma-
tive predictions3–6.

These behavioral effects imply that the neural circuits which
mediate perception assess the uncertainty of sensory informa-
tion. How they do so is unclear. A prominent hypothesis is that
the same neurons that encode a stimulus feature also encode
the uncertainty about this feature7–9. However, which aspect
of neural activity represents uncertainty remains a topic of de-
bate. Response variability is a promising candidate: in visual
cortex, it is maximal in the absence of a stimulus10, and de-
clines with contrast11, aperture size12, and attention13,14. Since
each of these factors is associated with increased information
about the visual environment, response variability might rep-
resent stimulus uncertainty9.

Here, we incorporate this hypothesis in the canonical model
of neural coding. We propose that, while average response
magnitude encodes stimulus features, variability in response
gain encodes the uncertainty of these features. We formalize
this proposal in a doubly stochastic response model in which
spikes arise from a Poisson process whose rate is the product of
a deterministic response mean and a stochastic response gain.
The mean response is governed by a parametric function com-
monly referred to as the classical receptive field. We introduce
a second function, the uncertainty receptive field, which deter-
mines the variance of the response gain.

To test our theory, we studied responses of individual
orientation-selective neurons in macaque visual cortex, driven
by repeated presentations of stimuli whose orientation uncer-

tainty was manipulated in two different ways. As predicted,
we found that gain variability selectively depends on stimulus
uncertainty, and that this selectivity was invariant to the source
of uncertainty. This appears to be a general property of visual
coding: we find that the gain variability of texture-selective
neurons in V2 systematically increases with an image’s textu-
ral uncertainty. To identify the neural computation that gives
rise to this behavior, we developed a probabilistic model of di-
visive normalization in which driving input is divided by noisy
suppressive inputs. This model quantitatively matches the ef-
fects of stimulus uncertainty on response variability.

Finally, we asked whether our coding scheme permits down-
stream circuits to quickly decode the information needed for
perceptual tasks. We find that neuronal gain exhibits slow dy-
namics, not fast. Consequently, gain variability cannot be read-
ily decoded from individual neurons. We derived the optimal
decoder of neural population activity, and used model simu-
lations to investigate its performance. We show that stimulus
orientation and gain variability can be jointly decoded from
a brief V1-population response and that gain variability faith-
fully predicts the accuracy of orientation decoding. Together,
these results establish cross-neuron variability in response gain
as a candidate currency of uncertainty in sensory cortex.

RESULTS
In primary visual cortex (V1), neurons are tuned for local im-
age orientation, making this area well suited to inform percep-
tual orientation estimates. The optimal estimation strategy is
to consider the probability of each possible orientation given
the V1 population response, and select the value that is most
likely. However, because of internal and external noise, this
likelihood function and the resulting orientation estimates vary
from trial to trial (Fig 1a, left). The lower the signal-to-noise
ratio, the greater the uncertainty, and the greater the variance
of the optimal estimate (Fig. 1a, right).

Many perceptual tasks require that the uncertainty of per-
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ceptual estimates be assessed on a moment-by-moment basis.
How can downstream circuits instantaneously assess the reli-
ability of V1 orientation reports? Since this reliability varies
systematically with certain features of the stimulus such as the
size and contrast of a local image patch, we hypothesize that
V1 neurons might encode reliability through a separate chan-
nel tuned to these features. Specifically, let us assume that a
neuron’s response is in part governed by a deterministic func-
tion of the stimulus f(S) (the ‘classical receptive field’) and in
part by noise (Fig 1b, top branch). Previous work has shown
that spiking activity is well described by a modulated Poisson
process whose rate is the product of f(S) and a stochastic re-
sponse gain G15. In particular, if the gain G has a unit mean
and varies on a time-scale which is slow relative to the mea-
surement interval ∆t, spike count variance can be decomposed
as:

Var[N |S,∆t] = f(S)∆t+ σ2
G (f(S)∆t)

2

The first term is the variance due to the Poisson process, the
second is due to variability in the firing rate and grows with the
variance of the gain σ2

G. Whereas this gain variance was origi-
nally assumed to be stimulus-independent15, we propose that it
systematically depends on the stimulus via an ‘uncertainty re-
ceptive field’ u(S) (Fig 1b, bottom branch). If the uncertainty
receptive field is selective for stimulus features that induce un-
certainty, gain variability may provide a useful assay for the
reliability of V1 orientation reports.

The classical receptive field is associated with two key prop-
erties: it endows sensory neurons with a particular selectivity
and a particular invariance. For example, the firing rate of V1
complex cells reports the total amount of energy at a particular
orientation, irrespective of the image’s polarity or precise loca-
tion within the receptive field16. We hypothesize that the com-
putations underlying the uncertainty receptive field achieve a
similar effect. Specifically, we expect that the gain variabil-
ity of sensory neurons reports the total amount of uncertainty
about the features they represent, while being invariant to the
source of this uncertainty.

Testing the theory in visual cortex
To test our theory, we analyzed responses of neurons in
macaque visual cortex elicited by mixtures of sinusoidal grat-
ings (Fig. 2a; a model-based analysis of these data concerned
with mechanisms of orientation selectivity has been previously
published17). These stimuli are Gaussian-distributed in the ori-
entation domain, hence the perceptual uncertainty about their
orientation depends on only two factors: the total amount of
stimulus energy (contrast), and its dispersion (spread). Indeed,
increasing stimulus spread increases perceptual discrimination
thresholds because it acts as external orientation noise18. Re-
ducing stimulus contrast has the same effect because it exposes
internal noise19.

These behavioral effects are mirrored by changes in coding
capacity at the level of individual neurons. Consider the orien-
tation information encoded in the response of an example neu-
ron to a narrowband stimulus. Reducing stimulus contrast from

100 to 33% approximately halved this neuron’s mean response
(Fig. 2b). To determine the impact of this loss of responsivity,
we estimated the Fisher information associated with both con-
ditions (Iθ, see Online Methods). This statistic quantifies the
amount of orientation information that can be extracted from
the neuron’s responses by an optimal decoder. Its inverse pro-
vides a lower bound on the variance of the optimal estimate20,
and we use it here as a proxy for orientation uncertainty. For
the high-contrast stimulus, the Fisher information was 7.03;
for the low-contrast stimulus, it was 2.46 (Fig. 2b). For this
neuron, the contrast reduction thus led to a substantial increase
in orientation uncertainty. Increasing stimulus spread had the
same effect, which was evident both at high and low contrast
(Fig. 2c).

Are these changes in stimulus uncertainty reflected in the
neuron’s gain variability? We used the modulated Poisson
model to estimate gain variability for each stimulus family
separately (Online Methods). For the narrow-band stimulus,
gain variability was greater at low contrast than at high con-
trast (Fig. 2d; σG = 0.10 at high contrast, σG = 0.25 at low
contrast). Moreover, gain variability also increased with stim-
ulus spread, irrespective of the contrast level (Fig. 2e). Across
all stimulus families, orientation uncertainty and gain variabil-
ity exhibited a striking quantitative relationship (r = 0.90, P <
0.001; Fig. 2f).

The dependency of gain variability on stimulus uncertainty
was evident across the population of V1 and V2 neurons.
There was some heterogeneity in the effects of the stimulus
manipulations on neurons’ responses, but overall, both manip-
ulations substantially increased orientation uncertainty (stimu-
lus contrast: P < 0.001, F1,783 = 48.18, ANCOVA; stimulus
spread: P < 0.001, F1,783 = 188.72). This can be clearly seen
in the stimulus uncertainty estimates, averaged across neurons
(Fig. 3a). Moreover, the uncertainty manipulations did not
interact significantly (P = 0.86, F1,783 = 0.03; Fig. 3a), sug-
gesting that they induce stimulus uncertainty for different rea-
sons. The average gain variability was monotonically related
to the average uncertainty value (Fig. 3b). This suggests that
gain variability represents the total amount of stimulus uncer-
tainty, regardless of the source of this uncertainty. Closer ex-
amination of the behavior of individual neurons revealed that
for most units, orientation uncertainty and gain variability are
positively correlated (median r = 0.49, P < 0.001, Wilcoxon
signed rank test; Fig. 3c).

Finally, we asked whether the gain variability of individual
neurons is tuned to stimulus uncertainty per se, or to a subset
of the stimulus features that induce uncertainty. We singled
out the most extreme stimulus manipulations, both of which
induced substantial amounts of uncertainty (minimal spread at
low contrast and maximal spread at high contrast). Could it
be that different subsets of neurons are selective for each of
these manipulations? This would question the existence of a
monolithic uncertainty receptive field. We summarized each
neuron’s selectivity for these manipulations by measuring the
change in gain variability relative to the baseline condition
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(minimal spread at high contrast, see Online Methods). This
statistic equals one if the stimulus manipulation increases gain
variability by a factor of ten, and zero if the stimulus manip-
ulation has no effect on gain variability (negative values indi-
cate a decrease in gain variability). Interneuronal differences
in selectivity for both manipulations were highly correlated (r
= 0.69, P < 0.001; Fig. 3d). This invariance to the source of
uncertainty suggests that a single mechanism could account for
the uncertainty selectivity exhibited by cortical neurons.

Representation of uncertainty across the visual hier-
archy
We have, thus far, found evidence for our proposed coding
scheme in the relationship between orientation uncertainty and
the gain variability of orientation-selective neurons. Our the-
ory is not limited to orientation coding, but holds that as new
features are encoded along the visual hierarchy, so is their as-
sociated uncertainty. In area V2, neurons are selective for the
features of visual texture, a property lacking from their V1 in-
puts21. Our framework therefore predicts that the gain variabil-
ity of V2 cells, but not V1 cells, will depend on the uncertainty
about stimulus texture. To test this prediction, we analyzed re-
sponses of individual neurons in macaque V1 and V2 elicited
by a set of naturalistic textures and a set of unstructured noise
stimuli (Fig. 4a–b; data collected by ref.22). The noise stimuli
were devoid of distinctive textural features and hence induce
maximal textural uncertainty – just like a uniformly dispersed
stimulus would induce maximal orientation uncertainty. As
predicted, noise stimuli typically elicited more gain variabil-
ity than texture stimuli in V2 (median selectivity of gain vari-
ability for textural uncertainty in V2 = 0.063, P < 0.001; Fig.
4c-d). Neurons in V1 showed no such effect (median selec-
tivity of gain variability in V1 = 0, P = 0.31; Fig. 4d). We
conclude that, as neurons’ mean firing rates become selective
for increasingly complex features of the visual environment, so
does their gain variability for the associated uncertainty.

The uncertainty receptive field as a consequence of
stochastic divisive normalization
Which neural mechanism is general enough to support the rep-
resentation of uncertainty across the visual hierarchy? Divi-
sive normalization is a promising candidate for several rea-
sons. First, this computation is implemented by a wide range
of sensory and non-sensory circuits23. Second, normalization
directly controls neural response gain, and hence might also
control gain variability. Finally, divisive normalization can be
instantiated in image-computable models17,24,25, making this a
broadly testable hypothesis. We derived a stochastic formula-
tion of the standard divisive normalization model (Fig. 5a; a
related model was recently proposed in a separate context26).
The mean response of this model µ is identical to the determin-
istic version of the normalization model:

µ =

(
f(S)

β +
∑
j fj(S)

)p

where f(S) is some function of the stimulus, β is a stimulus-
independent constant, and p is a transduction-exponent. The
stimulus-dependent normalization factor

∑
j fj(S) reflects the

aggregate activity of a large number of nearby neurons. Neu-
ral activity is noisy. We therefore make the normalization term
subject to additive Gaussian noise with zero mean and variance
σ2
N . This makes the firing rate subject to stochastic gain fluctu-

ations, and yields a simple expression for gain variability (see
Online Methods):

σG =
σNp

β +
∑
j fj(S)

Under this stochastic normalization model, gain variability de-
pends on the same normalization factor as the mean firing rate,
and a single new parameter, the noise in the normalization sig-
nal σN .

Qualitatively, this model recapitulates the trends in our data.
Increasing stimulus contrast increases the normalization signal
and therefore decreases gain variability (Fig. 5b). Increasing
stimulus spread has the opposite effect: given a normalization
pool composed of narrowly tuned neurons, the normalization
signal decreases with spread, thereby increasing gain variabil-
ity (Fig. 5b).

To test whether this stochastic normalization model quan-
titatively captures the effects of stimulus uncertainty, we fit
the model to half of the data and evaluated its predictions on
the other half. Specifically, we fit the only free parameter σN
to the average gain variability measured for the high-contrast
stimuli (all other parameters were estimated from the neurons’
mean responses, see Online Methods). This single parameter
allowed the model to account for the dependency of gain vari-
ability on stimulus spread (Fig. 5c, full line; P = 0.17, two-
sided absolute goodness-of-fit test). Keeping this free parame-
ter constant, we predicted gain variability for the low-contrast
stimulus conditions. The model correctly predicted the mag-
nitude of the increase in gain variability (Fig. 5c, dashed line;
P = 0.57). Hence, the uncertainty receptive field may be the
functional consequence of a stochastic normalization compu-
tation.

Gain variability exhibits slow dynamics, not fast
Our analysis suggests that gain variability in visual cortex rep-
resents stimulus uncertainty. Does this variability arise from
a modulatory process with fast or slow temporal dynamics?
If the process is sufficiently fast, information about stimulus
uncertainty can be transmitted by individual neurons9. If the
process is slow, this information can only be transmitted by
the joint activity of a sufficiently large population of neurons.
Crucially, fast and slow modulatory processes have a differ-
ent statistical signature. If the dynamics are fast, the mea-
sured variance-to-mean relation will depend on the duration
of the counting window. The larger the counting window, the
more within-trial variability will be averaged out, reducing the
strength of measured gain fluctuations. This is not the case for
a modulatory process with slow dynamics27.
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To address this question, we assume that stimulus-
independent gain G is constant within temporal intervals of
duration ∆T , but varies independently across such intervals.
If this duration is longer than all measurement intervals ∆t
(hereafter “slow” dynamics), we recover the variance-to-mean
relationship described previously, which is independent of the
counting window:

Var[N |S,∆t] = µN + σ2
Gµ

2
N

where µN = E[N |S,∆t] is the mean spike count. In contrast,
when ∆T is smaller than the shortest counting window (here-
after “fast” dynamics), the quadratic term is dampened by the
counting window ∆t:

Var[N |S,∆t] = µN + σ2
Gµ

2
N

∆T

∆t

To determine whether gain fluctuations exhibit fast or slow
temporal dynamics, we fit these two different versions of the
modulated Poisson model to the same set of neuronal re-
sponses. We computed spike counts using differently sized
counting windows (Fig. 6a), and then fit the resulting family
of variance-to-mean relations imposing either fast or slow dy-
namics (Fig. 6b). We measured the goodness-of-fit of each
model by computing its log-likelihood, and then compared
both models. A recovery analysis revealed that this method
distinguishes fast from slow dynamics with an accuracy of
90.15% (see Online Methods). Each unique stimulus family
constitutes one point of comparison for each neuron, yielding
a total of 780 data points (78 neurons x 10 stimulus families).
Variance-to-mean relations were typically best described as be-
ing independent of counting window. This is evident from the
responses of an example neuron. For example, notice how the
fast gain dynamics model misses all the data measured with
the largest counting window (Fig. 6b, right panel, blue color).
The distribution of log-likelihood differences across the popu-
lation supports the same conclusion (Fig. 6c; slow dynamics
preferred for 89.10% of conditions, median difference = –23.4,
P < 0.001, Wilcoxon signed rank test). In sum, gain variabil-
ity seems much more likely to arise from a slow modulatory
process than from a fast one.

Decoding stimulus features and uncertainty from
sensory responses
Organisms have to interpret the environment almost immedi-
ately. Sensory circuits must therefore report stimulus features
and their associated uncertainty on a moment-to-moment ba-
sis. Given that neuronal gain fluctuates slowly, does our pro-
posed coding scheme enable both to be decoded quickly from
sensory population activity? We investigated this using model
simulations based on our experimental findings. Specifically,
we simulated the activity of a population of V1 neurons that
were tuned for orientation and organized in functional subpop-
ulations (cf. cortical columns, Fig. 7a). All neurons within a
column had the same stimulus selectivity f(S), resulting from
linear filtering followed by divisive normalization (see Online

Methods, Fig. 7b). Spikes were generated by a slowly mod-
ulated Poisson process whose gain variability was controlled
by an uncertainty receptive field u(S). For simplicity, the un-
certainty receptive field of all neurons had the same tuning,
arising from a stochastic normalization computation (Fig. 7c).
The model population thus instantiates an idealized version of
the neurons we recorded from.

Consider the population response to a briefly presented si-
nusoidal grating (Fig. 7d). Stimulus orientation θ is encoded
in the neurons’ average response magnitudes {µi}, and stim-
ulus uncertainty is represented by cross-neuron variability in
response gain σG. The optimal way to decode this informa-
tion from noisy population activity is to compute the maxi-
mum likelihood estimate of both parameters. In the presence
of gain fluctuations, these estimators can no longer be com-
puted in closed form, but require an iterative estimation pro-
cedure. Given that neurons within a cortical column share
the same stimulus selectivity however, super-Poisson inter-
neuronal variance within each subpopulation can be directly
attributed to gain variability. This estimate σ̂G can be derived
by maximum-likelihood, or using a simple, biologically plau-
sible heuristic (Fig. 7e, see Online Methods). Equipped with
this estimate of stimulus uncertainty, we can straightforwardly
compute the maximum-likelihood estimate of stimulus orien-
tation θ̂ML (Fig. 7f, see Online Methods). These estimates, σ̂G
and θ̂ML, provide a useful indication of how much information
regarding stimulus orientation and uncertainty is contained in
the population response.

We varied stimulus orientation and uncertainty via a contrast
manipulation across trials and asked how well each could be
decoded from the population response on a trial-by-trial basis.
For a population of 250 neurons, stimulus orientation could be
decoded near perfectly when stimulus contrast was high (Fig.
8a, black symbols), but less so when contrast was low (Fig.
8a, grey symbols). This difference in performance was tracked
by the simultaneously decoded gain variability. Specifically,
when gain variability estimates were low, the error in orien-
tation decoding tended to be small (Fig. 8b). But when gain
variability estimates were high, the error in orientation decod-
ing could be substantial (Fig. 8b). Gain variability estimates
thus provide an instantaneously available assay of the reliabil-
ity of the V1 orientation report.

In the example we considered, the decoder had access to
population activity realized over a one-second stimulus epoch.
Moreover, all gain variability was statistically independent
across neurons, in keeping with our decoder’s assumption. De-
coding conditions will often be less favorable: fixations typi-
cally last only a few hundred milliseconds28, and gain fluctua-
tions can be partly shared across neurons15,29,30. We wondered
whether decoded gain variability would still be associated with
stimulus uncertainty when read-out time is limited and gain-
fluctuations are correlated. Figure 8c illustrates the evolution
of this association with read-out time, split out for different lev-
els of gain correlation. As expected, limiting read-out time and
increasing gain correlations both weaken the relation between
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gain variability estimates and orientation uncertainty. Yet even
under the most challenging conditions –read-out time = 100 ms
and two thirds of gain variance is shared across neurons– the
relation remained substantial (Fig. 8c). We conclude that our
coding scheme enables to decode stimulus features and their
uncertainty from sensory population activity under physiolog-
ically realistic conditions.

DISCUSSION
We have introduced a new perspective on the neural code. In
our view, sensory neurons report the features of the environ-
ment and the reliability of this message through two different
communication channels: the mean spike count and its vari-
ance. For example, a change in stimulus orientation might al-
ter the mean firing rate of a V1 neuron, but it will not change
its gain variability. A change in orientation noise will alter
the neuron’s gain variability, but need not change its mean re-
sponse. We thus propose that cortical neurons behave as if
two different receptive fields underlie these response statistics.
While this is a new conceptualization of the neural code, we
find that this behavior naturally arises from known gain con-
trol mechanisms. Gain dynamics are slow relative to behav-
ioral time-scales, hence gain variability cannot be communi-
cated quickly by individual neurons. Nevertheless, we have
shown through model simulations that our coding scheme en-
ables sensory populations to rapidly report stimulus features
and their uncertainty to downstream circuits, even when gain
variability is highly correlated across neurons.

Our view of the representation of uncertainty in cortex sits
in between existing theories. Probabilistic population codes
(PPC) postulate that the first volley of feedforward spikes im-
plicitly encodes a parametric distribution over stimulus fea-
tures7. We share this view and extend it by proposing that not
just the mean activity but also inter-neuronal variance constrain
the parameters of this distribution. The simplicity of paramet-
ric, feedforward encoding makes both schemes amenable to
straightforward decoding. The addition of a separate uncer-
tainty channel makes our representation richer than traditional
PPC, allowing the integration of uncertainty stemming from
sources that don’t change the mean response into the represen-
tation. There is some evidence that sensory systems exploit this
extra bandwidth. For example, when an observer pays atten-
tion to a visual stimulus, perceptual uncertainty can be greatly
reduced31. In early visual cortex, this behavioral effect is asso-
ciated with a mild increase in mean response32, and a compar-
atively strong reduction in response variability14. Moreover,
visual attention appears to achieve these effects by employ-
ing sensory normalization mechanisms33,34, and specifically
reduces neural gain variability30,35.

Our interpretation of response variance bears similarity to
the other major theory of uncertainty representation, which
holds that neural activity represents a sample from the poste-
rior distribution over stimulus features9,36. However, we differ
by stating that neural activity does not represent an arbitrar-
ily flexible posterior distribution, but rather the peak and width

of a simple distribution determined by the classical and un-
certainty receptive fields. This conceptual simplicity allowed
us to straightforwardly fit the uncertainty receptive field to V1
spiking data (Fig. 5c). The notion of a population-based repre-
sentation of uncertainty also differentiates our view from time-
based sampling models9,36. Although our model explains the
structure of sensory response variability found during passive
viewing, behavioral requirements may induce additional task-
specific variability37–39, and sampling models have explained
that component of neural response variability36. A complete
account of neural uncertainty representation might thus require
combining our feedforward coding scheme with a recurrent,
sampling-based one –an approach that has been shown to com-
bine the advantages of both in machine systems40.

To test our theory, we relied on stimulus manipulations that
impair perceptual orientation judgments, and we verified that
they reduced the coding capacity of orientation-selective neu-
rons (Fig. 2c, Fig. 3a). This approach can directly be extended
to other stimulus features, visual areas, and sensory systems
to investigate the generality of the uncertainty receptive field.
As a first step, we have shown that V2 cells, whose mean fir-
ing rate is selective for textural properties21, modulate their
gain variability according to uncertainty in visual texture. Cru-
cially, V1 cells, which lack this selectivity, also fail to report
this uncertainty. This suggests that, along a sensory processing
cascade, selectivity for novel stimulus features and an assess-
ment of their reliability jointly emerge. Why is this so? The
sensory neurons that are the first in the hierarchy to represent a
particular feature are uniquely positioned to judge the quality
of the evidence for that feature. Downstream areas can inherit
the feature report, but neural stochasticity entails that uncer-
tainty about this feature can only grow along the hierarchy.
Consistent with this, visual areas downstream of V1 exhibit
orientation selectivity, but this selectivity is accompanied by
systematically increasing levels of gain variability15.

Our results offer a novel view of the structural organization
of sensory cortex. Its columnar organization has been known
for many decades16,41,42, yet the computational benefit of this
structure has remained elusive43. In our coding scheme, esti-
mating inter-neuronal gain variability is greatly facilitated by
the presence of sub-populations of sensory neurons that share
the same stimulus selectivity. In particular, this allows a de-
coder to infer stimulus uncertainty without detailed knowl-
edge of the sensory neurons’ classical receptive field. Whether
downstream circuits actually employ this read-out scheme can
only be ascertained from an awake, behaving paradigm that re-
quires taking stimulus uncertainty into account. A recent study
of this kind found that orientation uncertainty represented by
V1 populations (estimated using a flexible, model-agnostic ap-
proach) does indeed inform animals’ choice behavior44. We
believe that this paradigm can be leveraged to test our and other
theories, and ultimately will uncover which aspect of neural
activity informs perceptual uncertainty estimates.

Finally, our results reveal a strong connection between bio-
logical and machine inference under uncertainty. Recent years
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have witnessed the development of a new class of highly scal-
able artificial inference methods45,46. Like our coding scheme,
these methods forfeit exact inference which often requires
costly iterative procedures47 in favor of simple, parametric dis-
tributions that can be computed in a feedforward manner. The
resulting efficiency and scalability has enabled solving highly

complex real-world problems such as scene understanding48,
autonomous driving49, and robotic manipulation50. Biological
systems face similarly complex tasks and environments, and
may therefore also have opted for inference methods that are
simple and powerful.
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METHODS
Physiology
The data analyzed here were previously published, and the
full methods are provided there (see ref.17 for the orientation
experiment, and ref.22 for the texture experiment). In brief,
all recordings were made from anesthetized, paralyzed, adult
macaque monkeys. Surgical preparation methods are reported
in detail in ref.51. Anesthesia was maintained with infusion of
sufentanil citrate (6-30 g kg−1h−1) and paralysis with infusion
of vecuronium bromide (Norcuron; 0.1 mg kg−1h−1) in iso-
tonic dextrose-Normosol solution. All experiments were con-
ducted in compliance with the NIH’s Guide for the Care and
Use of Laboratory Animals, and with approval of the New York
University Animal welfare committee. Extracellular record-
ings from individual neurons were made with quartz-platinum-
tungsten microelectrodes (Thomas Recording), advanced me-
chanically into the brain through a craniotomy and small duro-
tomy. V1 was distinguished from V2 on the basis of depth from
the cortical surface and changes in the receptive field location
of the recorded units.

Visual Stimulation
In the orientation experiment, stimuli consisted of Gaussian
orientation mixtures, created by summing nine sinusoidal grat-
ings whose orientations were spaced at 20◦ intervals and whose
orientation-dependent contrasts followed a circular Gaussian
profile centered on a particular orientation (spread 0–55◦). The
drift rate of each stimulus component was selected at random
from a Gaussian distribution centered on the preferred rate,
with an SD equal to 1/5 this value, resulting in an incoherently
drifting mixture. In total, ten stimulus families (five spread lev-
els x two contrast levels) were presented at 16 different orien-
tations.

In the texture experiment, stimuli were generated using the
texture analysis-synthesis procedure introduced by Portilla and
Simoncelli52. Fifteen different grayscale photographs of visual
texture served as prototypes. From each of these source im-
ages, two times 15 samples were synthesized (one set of "natu-
ralistic textures", and one set of "unstructured noise stimuli").
The synthetic textures preserved the second-order statistics as
well as some of the higher-order statistics of the source images;
the noise stimuli only preserved the second-order statistics22.

In both experiments, stimuli were presented in random order
for either 1,000 ms (orientation experiment) or 100 ms (tex-
ture experiment), and typically repeated 10 times (orientation
experiment) or 20 times (texture experiment).

Data Analysis
For all analyses of the orientation experiment but one, we
counted spikes within a 1,000 ms window following response
onset. One analysis sought to compare spiking models with
slow vs fast gain dynamics (fig. 6). Here, we used five dif-
ferent counting windows (62.5, 125, 250, 500, and 1,000 ms).
For the analysis of the texture experiment, we computed spike
counts using a 100 ms window aligned to the response onset.

Quantifying neural stimulus uncertainty
Using standard tools from information theory20, we quantified
neural stimulus uncertainty in the orientation domain as the
inverse of a neuron’s Fisher Information for a given stimulus
family. If neural responses arise from a Poisson process, this
statistic can be simply written as a function of the measured
tuning curve, h(θ):

1

Iθ
= Eθ

[
h(θ)

h′2(θ)

]

where h′(θ) is the derivative of the tuning curve53. This statis-
tic has the benefit that its value only depends on the measured
mean responses, and is independent of the level of gain fluctu-
ations. Associations between gain variability and stimulus un-
certainty (Fig. 2f, Fig. 3b,c) can thus not arise for trivial rea-
sons. This is not true of alternative estimators of uncertainty
which rely on empirical measurements of response variance
rather than a Poisson assumption.

Measuring gain variability
We measured gain variability using the method introduced by
ref.15. Specifically, we described responses of individual neu-
rons with a model in which spikes are generated by a Poisson
process whose rate is the product of a stimulus dependent drive
and a stimulus independent gain. We assumed that gain is con-
stant within a trial and distributed across trials according to a
gamma distribution with mean 1 and variance σ2

G. We esti-
mated this parameter by maximizing the likelihood of the full
set of observed spike counts for a given stimulus family under
a negative binomial distribution15 (Fig. 2d, Fig. 4c).

We computed the selectivity of gain variability for induced
stimulus uncertainty (Fig. 3d, Fig. 4d) by taking the common
logarithm of the ratio of two σG estimates: one measured in
the presence of the uncertainty-inducing manipulation (numer-
ator), and one measured in its absence (denominator). For the
texture experiment, we performed a significance test on this
statistic (Fig. 4c, inset). For each neuron, we obtained a null-
distribution by first estimating gain variability from the combi-
nation of all stimulus conditions. Next, we used this value and
the empirically observed mean responses to simulate 100 syn-
thetic data-sets. We then separately estimated gain variability
for the subset of synthetic responses to texture and noise stim-
uli, respectively. We used these values to compute the expected
distribution of the selectivity-index if there were no underlying
difference in gain variability between texture and noise stimuli.
We deem the empirically obtained selectivity value significant
if it falls outside of the central 95 percent interval of this dis-
tribution (estimated from 10,000 samples per neuron).

Analysis of gain dynamics
We sought to determine whether neural gain fluctuations are
better described as having fast or slow dynamics. For a slow
modulatory process, the variance-to-mean relationship is in-
dependent of counting window; for a fast process, this rela-
tion changes in a predictable manner with window size (see
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equations in Results). To leverage this insight, we counted
the same set of spikes with windows of different duration, and
then fit both a fast- and a slow-dynamics model to the result-
ing data-set. The largest counting window (1,000 ms) con-
tributes one observation per trial; the smallest window (62.5
ms) contributes sixteen observations per trial. To determine
the log-likelihood of the models for an entire data-set, we treat
all observations as being statistically independent. This is not
strictly correct, as each spike is counted multiple times (ex-
actly once per window size). To assess the effectiveness of our
model comparison procedure, we performed a recovery anal-
ysis. For each measured variance-to-mean relation (one per
neuron per stimulus family), we synthesized 1,000 data-sets
imposing slow gain dynamics, and 1,000 data-sets imposing
fast gain dynamics. The generating parameters were the empir-
ically observed mean counts as measured with a 62.5 ms win-
dow, and the gain variability estimate obtained under a 1,000
ms window. We then fit the slow- and fast-dynamics model
to each synthetic data-set, and compared their goodness-of-
fit in exactly the same manner as we did for the real data.
When the ground-truth was slow dynamics, the slow dynam-
ics model was preferred in 99.51% of cases; when the ground-
truth was fast dynamics, the fast dynamics model was preferred
in 80.78% of cases. We deem our method to be fairly sen-
sitive, and slightly biased in favor of slow dynamics. If slow
and fast dynamics were equally probable in the population, our
method would identify the slow dynamics model as the winner
in 59.37% of cases. This number is larger than 50%, but much
smaller than the empirical outcome (slow dynamics favored in
89.10% of cases).

Fitting the stochastic normalization model
The canonical divisive normalization model describes the fir-
ing rate λi of a neuron i in response to a stimulus S as some
function of the stimulus drive fi(S) divided by the sum of
stimulus-dependent drive to j neighboring neurons

∑
j fj(S)

and a stimulus-independent constant β, with transduction ex-
ponent p:

λi =

(
fi(S)

β +
∑
j fj(S)

)p
Because neighboring neurons are stochastic, we modeled
the aggregate stochasticity of the normalization pool with
stimulus-independent additive Gaussian noise ε ∼ N (0, σ2

N ):

λi =

(
fi(S)

β +
∑
j fj(S) + ε

)p
If the magnitude of the noise ε is sufficiently small, we can use
a Taylor expansion to obtain the mean and standard deviation
of the firing rate:

E[λi] =

(
fi(S)

β +
∑
j fj(S)

)p
Std[λi] = σN

fi(S)p(
β +

∑
j fj(S)

)p+1

Equating these expressions to those obtained from the modu-
lated Poisson model (recall E[λi] = f(S), Std[λi] = f(S)σG)
results in an expression of gain variability:

σG =
Std[λi]

E[λi]
=

σN · p
β +

∑
j fj(S)

Although the noise term σN is stimulus-independent, divi-
sive normalization causes gain variability to depend on the
stimulus through the denominator of this expression. We inves-
tigated the adequacy of this equation by fitting the stochastic
normalization model to the average gain variability measured
for the high-contrast mixture stimuli. We opted to constrain the
model as much as possible. Rather than fitting the transduction
exponent p and the stimulus-independent normalization con-
stant β to these data, we used the average estimates of both pa-
rameters obtained by fitting the neurons’ mean responses with
a divisive normalization model17 (p = 2, β = 0.64). The
stimulus-dependent normalization

∑
j fj(S) was computed by

simulating responses of a fixed pool of neurons with a diverse
set of tuning properties17. The final free parameter, σN , was
estimated by minimizing the sum of squared error between pre-
dicted and observed σG (Fig. 5c, full line).

Decoding orientation and its uncertainty
Stimulus uncertainty and orientation were decoded on a trial-
by-trial basis from a simulated population of 250 V1-like neu-
rons whose tuning curves evenly tiled the orientation domain
(n = 10 subpopulations of m = 25 units each). Within a
subpopulation i, all neurons j had the same orientation selec-
tivity fi(S). All neurons had the same uncertainty receptive
field whose shape was determined by parameters fit to neural
data (σN = 0.34, p = 2, β = 0.64), resulting in a single value
σG for the gain variability of the entire population. We de-
code orientation S and uncertainty σG by first evaluating their
likelihood, given a collection of n ∗m spike counts {kji } from
a population of independent, modulated Poisson neurons with
gamma-distributed gain:

log p({kji }|S, σG) = log
n∏
i=1

m∏
j=1

p(kji |S, σG)

=
n∑
i=1

m∑
j=1

log Γ(kji + 1/σ2
G)− log Γ(kji + 1)

− log Γ(1/σ2
G) + kji log(σ2

Gfi(S))

− (kji + 1/σ2
G) log(1 + σ2

Gfi(S))

Although the maximum likelihood estimators of S and σG are
not available in closed form, they can be obtained using an iter-
ative, gradient-based procedure. This procedure can be simpli-
fied given that neurons within a column share the same firing
rate, which can be estimated by averaging over these neurons:

fi(S) ≈ µ̂i =
1

m

m∑
j=1

kji
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with the approximation becoming exact in the limit of a large
sub-population size m. Finding the optimal value of the gain
variability then reduces to a one-dimensional problem:

σ̂G = arg max
σG

n∑
i=1

m∑
j=1

log p(kji |µ̂i, σG)

This is the decoded gain variability reported in Fig. 8. How-
ever, its expression can be further simplified into a heuris-
tic estimator by noticing that, because neurons within a sub-
population are identically tuned, inter-neuronal variance can
be directly attributed to gain variability:

fi(S) + σGfi(S)2 ≈ σ̂2
i =

1

m− 1

m∑
j=1

(kji − µ̂i)
2

with the approximation becoming exact in the limit of a large
sub-population size m. This leaves us with a simple estima-
tor σ2

G,i for the gain variability within a sub-population, which
can be straightforwardly extended to the entire population by
summing statics across sub-populations:

σ̂2
G,i =

σ̂2
i − µ̂i
µ̂2
i

σ̂2
G =

∑n
i=1 σ̂

2
i − µ̂i∑n

i=1 µ̂
2
i

For the conditions reported in Fig. 8, this heuristic estimator
closely approximates the maximum-likelihood estimate.

Equipped with an estimate σ̂G of the gain variability, com-
puting the maximum-likelihood estimate of orientation reduces
to another one-dimensional problem:

Ŝ = arg max
S

n∑
i=1

m∑
j=1

log p(kji |S, σ̂G)

To assess the quality of uncertainty and orientation decoding,
we measured the orientation decoding error on a trial-by-trial

basis (Fig. 8a). Each simulation included 5 repetitions of 20
different contrasts and 10 different orientations, yielding a to-
tal of 1000 trials. We sorted and binned the trials according to
the estimated gain variability σ̂G. Within each bin, we com-
puted the mean squared error across trials, and compared it to
the average gain variability estimate of that bin (Fig. 8b). The
reported association between these two quantities (Fig. 8c),
is their Pearson correlation, appropriately averaged across 100
repeats of the simulation.

To assess the effect of interneuronal gain correlations, we
varied the amount of gain correlation while keeping the to-
tal amount of gain variability constant. Specifically, we cre-
ated two gain variables Gs and Gp that were shared and pri-
vate respectively, both of which had unit mean and a variance
equal to σ2

G. Each neuron was modulated by its own gain
G = λGs + (1 − λ)Gp where λ ∈ [0, 1]. When λ = 0, all
gain variability is statistically independent across the popula-
tion, when λ > 0, interneuronal gain fluctuations are positively
correlated. We chose λ ∈ {0, 0.67} to span a physiologically
plausible range15, 54.
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panel). The variance of the optimal estimate σ2

θ̂
is larger than or equal to the inverse of the Fisher information Iθ 20. (b) Schematic

summarizing the proposed model. Spikes arise from a Poisson process whose rate is the product of a deterministic drive f(S) and
a stochastic gain G. f(·) governs the mapping of stimulus features onto drive and hence controls response mean; u(·) governs
the mapping of stimulus uncertainty onto gain variability and hence controls response variance.
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averaged across a population of V1 and V2 neurons. (b) Orientation uncertainty as a function of gain variability, averaged across
a population of V1 and V2 neurons. (c) Distribution of the correlation between gain variability and orientation uncertainty for
individual neurons. The triangle indicates the median value. (d) Selectivity of gain variability for stimulus spread as a function of
selectivity of gain variability for stimulus contrast. Confidence intervals indicate +- 1 s.e.; *** P < 0.001
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Figure 4 Gain variability of V2 neurons represents texture uncertainty. (a) Two example images with well defined textural properties
(i.e. honeycomb, left; flies, right). (b) Noise images with ill-defined textural properties. Perceptually, the texture images are more
distinct than the noise images (C.M Ziemba, J. Freeman, E.P Simoncelli, J.A Movshon, Soc Neurosci. Abstr. 573.13,2012). This
differential perceptual sensitivity is reflected in the stimulus selectivity of V2 neurons, but not of V1 neurons 21. (c) Variance-to-
mean relation of an example V2 cell for a set of texture images (red points), and matched noise images (white points). Lines
illustrate the predictions of the modulated Poisson model, fit separately to the texture and noise stimuli. The inset shows the
selectivity of gain variability for textural uncertainty expected under the null-model (grey histogram), and the selectivity estimated
from the real data (red triangle). (d) Distribution of selectivity of gain variability for textural uncertainty for a population of V1 (top)
and V2 (bottom) neurons. The dotted line illustrates the median value of the null-model. Filled bars represent cases that were
significantly different from the null-model (two-sided test, α = 0.05). The triangle indicates the median value. n.s. not significant;
*** P < 0.001
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Figure 5 A stochastic normalization model accounts for the effects of stimulus uncertainty on gain variability. (a) Top: Model
diagram. The response of a spatial filter is divided by the summed activity of neighboring units, an additive constant, and a noise
source. The normalized signal is passed through a nonlinearity to obtain a firing rate which serves as input for a Poisson process.
Bottom: equations for the mean response and gain variability under this model. (b) Mean response (top) and gain variability
(bottom) as a function of stimulus contrast for a narrowband (red) and a broadband (blue) stimulus. (c) Measured gain variability
compared with the prediction of the stochastic normalization model. The model was fit to average gain variability measured for
high contrast stimuli (opaque points), but not to the low-contrast conditions (transparent points).
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Figure 6 Comparison of models with fast and slow gain dynamics. (a) For every unique stimulus condition, we computed re-
sponses using five different spike count windows, spanning 62.5, 125, 250, 500, and 1,000 ms respectively. (b) Variance-to-mean
relation for one stimulus family for an example V1 neuron. Responses are shown for three different counting windows: 62.5 ms
(black points), 250 ms (grey points), and 1,000 ms (blue points). We fit two models to these data: one with slow gain dynamics
(left panel), and one with fast gain dynamics (right panel). Slow gain dynamics predict the same variance-to-mean relationship
for different counting window sizes. Fast gain dynamics predict that the variance-to-mean relationship becomes more linear with
longer counting windows. We measured goodness-of-fit by computing the log likelihood of the data under each model, yielding
a value of –7950 for the slow dynamics model, and of –8078 for the fast dynamics model. (c) Distribution of the difference in log
likelihood under both models for a population of V1 and V2 neurons.

13

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 3, 2019. ; https://doi.org/10.1101/724021doi: bioRxiv preprint 

https://doi.org/10.1101/724021


−90 0 90
0

20

60

R
es

po
ns

e 
(ip

s)

Orientation (deg)

ba c

0 50 100
0.25

1.0

G
ai

n 
va

ria
bi

lit
y 

(σ
G

 )

Stimulus contrast (%)

0.1 10 1,000
0.1

10

1,000

Va
ria

nc
e 

(s
pi

ke
s2 )

Mean (spikes)

e

σG 

V1

0 500 1,000
1

63

125

N
eu

ro
n 

in
de

x

Time (ms)

d

0.50

0.7540

−90 0 90

Lo
g 

lik
el

ih
oo

d 
(a

.u
.)

Orientation (deg)

f

ML estimate
orientation

0

10

30

20
ˆ

ML

ˆ

Figure 7 Decoding population activity. (a) We simulated the activity of a population of 125 V1-like neurons (5 subpopulations of 25
neurons each, loosely based on the concept of cortical columns). (b) All neurons within a subpopulation had the same orientation
tuning function. (c) All neurons in the population had the same tuning of gain variability to stimulus contrast. The data points
recapitulate our empirical observations. (d) Simulated population response for a single trial. Color indicates subpopulation. (e)
Variance-to-mean relation for a single trial. Points summarize responses grouped by subpopulation, the line shows the predicted
relation under the inferred level of gain variability. (f) The log-likelihood function of orientation for the same trial, given the estimated
gain variability.
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Figure 8 Quantitative performance of uncertainty decoding. (a) Estimated orientation as a function of stimulus orientation mea-
sured at high stimulus contrast (black points) and low contrast (gray points) for an example population (n = 250 neurons, integration
time = 1,000 ms, shared gain fluctuations = 0%). (b) Top: orientation estimation error plotted against gain variability estimates.
Each symbol represents a single trial. Orientation decoding error was manipulated by varying stimulus contrast across trials.
Bottom: orientation estimation variance plotted against gain variability estimates. Each symbol summarizes 100 trials; trials were
grouped based on their gain variability estimates (percentile 0–10, 11–20, etc.). (c) Effects of integration time and shared gain
fluctuations on uncertainty decoding.
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