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ABSTRACT 

Cornichon homolog-3 (CNIH3) is an AMPA receptor (AMPAR) auxiliary protein that traffics 

AMPARs to the postsynaptic membrane and potentiates AMPAR signaling. AMPARs are key 

components of hippocampal synaptic plasticity and memory formation, however the role of CNIH3 

in memory has yet to be elucidated. To study the role of CNIH3 on mouse behavior, we bred and 

characterized a line of Cnih3-/- mice from C57BL/6 Cnih3tm1a(KOMP)Wtsi mice obtained from the 

Knockout Mouse Project (KOMP). In agreement with previous studies of CNIH3 in the brain, we 

observed concentrated expression of Cnih3 in the dorsal hippocampus, a region associated with 

spatial learning and memory. Therefore, we tested Cnih3+/+, Cnih3+/-, and Cnih3-/- mice in the 

Barnes maze paradigm to measure spatial memory. We observed no change in spatial memory 

in male Cnih3+/- and Cnih3-/-  mice compared to male Cnih3+/+ controls, however, Cnih3-/- female 

mice made significantly more primary errors, had a higher primary latency, and took less efficient 

routes to the target in the maze compared to Cnih3+/+ female mice. Next, to investigate an 

enhancement of spatial memory by Cnih3 overexpression, specifically in the dorsal hippocampus, 

we developed an AAV5 viral construct to express wild-type Cnih3 in excitatory neurons. Female 

mice overexpressing Cnih3 made significantly fewer errors, had a lower primary latency to the 

target, and took more efficient routes to the maze target compared to YFP expressing control 

females. No change in spatial memory was observed in male Cnih3 overexpression mice. This 

study, the first to identify sex-specific effects of the AMPAR auxiliary protein CNIH3 on spatial 

memory, provides the groundwork for future studies investigating the role of CNIH3 on sexually 

dimorphic AMPAR-dependent behavior and hippocampal synaptic plasticity.  
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INTRODUCTION 

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) are 

glutamatergic neurotransmitter receptors found abundantly throughout the brain which mediate a 

wide range of neural processes such as synaptic plasticity, learning and memory behaviors 

(Cheng et al., 2012). In particular, AMPAR activity in the hippocampus plays a key role in spatial 

memory (Lee et al., 2003; Matsuo et al., 2008), and AMPAR auxiliary proteins are critical actors 

underlying AMPAR-dependent learning and memory mechanisms (Volk et al., 2010; Gandhi et 

al., 2014; Li et al., 2017). Cornichon homolog (CNIH) proteins are an important class of auxiliary 

proteins for AMPARs in the brain. Cornichon homologs 2 and 3 (CNIH2 and CNIH3) function as 

AMPAR chaperones from the endoplasmic reticulum (ER) and golgi to the post-synaptic density 

(PSD) (Shi et al., 2010; Harmel et al., 2012; Brockie et al., 2013). At the postsynaptic membrane, 

CNIH proteins also act to potentiate AMPAR glutamate sensitivity (Coombs et al., 2012; Haering 

et al., 2014), improve ion channel permeability (Coombs et al., 2012; Brown et al., 2018), reduce 

decay of AMPAR excitatory post-synaptic currents (EPSCs) (Boudkkazi et al., 2014), and slow 

receptor deactivation by delaying internalization (Coombs et al., 2012; Mauric et al., 2013; Shanks 

et al., 2014; Challenor et al., 2015). 

However, little is known about the effect of CNIH proteins on AMPAR-associated 

mammalian behavior or pathology. A correlative study of post-mortem human brain tissue found 

abnormal expression of CNIH1, CNIH2, and CNIH3 in the brains of patients diagnosed with 

schizophrenia compared to the brains of non-schizophrenic patients (Drummond et al., 2012). A 

2012 case study reported a deletion of CNIH2 in a patient with dysmorphic features and 

intellectual disability (Floor et al., 2012). Recently, we and our colleagues performed a genome-

wide association study (GWAS) that found several single-nucleotide polymorphisms (SNPs) in 

the noncoding region of human CNIH3 significantly associated with decreased risk for opioid 

dependence (Nelson et al., 2016). We have also reported the significance of AMPARs in opioid-

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 14, 2019. ; https://doi.org/10.1101/724104doi: bioRxiv preprint 

https://doi.org/10.1101/724104
http://creativecommons.org/licenses/by-nc/4.0/


associated memory in mice (Morón et al., 2007; Billa et al., 2009; Billa et al., 2010; Xia et al., 

2011), therefore we hypothesized a potential link between the AMPAR auxiliary protein CNIH3 

and memory.  

AMPAR-mediated currents, receptor subunit configuration, post-translational 

modifications, synaptic membrane localization, and protein-protein interactions shape a wide 

range of learning and memory behaviors (Lee et al., 2003; Matsuo et al., 2008; Sanderson et al., 

2008; Penn et al., 2017). For example, the transmembrane AMPAR regulatory protein (TARP) 

stargazin is upregulated in the cerebellum following eye-blink conditioning in rats (Kim and 

Thompson, 2011). PSD-95, an excitatory synaptic scaffolding protein which aids in maintaining 

AMPARs at the synaptic membrane, plays a role in spatial memory, fear conditioning, and 

extinguished memory retrieval (Nagura et al., 2012; Gandhi et al., 2014; Li et al., 2017). Pick1 is 

involved in AMPAR removal from the synaptic membrane and is necessary for inhibitory 

avoidance memory (Volk et al., 2010). Post-translational modifications of these proteins, such as 

the phosphorylation of the TARP γ-8 by CAMKII is necessary for both context and cue-associated 

fear conditioning in mice (Park et al., 2016). Therefore, we hypothesize that CNIH3 similarly 

mediates AMPAR activity underlying memory processes in the hippocampus. 

In this study, we developed and characterized a line of Cnih3 knockout (KO) mice to study 

the role of CNIH3 on spatial memory. We found high CNIH3 expression in the dorsal 

hippocampus, a brain region where AMPAR activity plays a key role in the modulation of spatial 

memory (Tzakis et al., 2016; Torquatto et al., 2019). Therefore, we hypothesize that spatial 

memory is impaired in Cnih3-/- mice compared to Cnih3+/+ age-matched controls. Interestingly, we 

observed a distinct effect of Cnih3 expression on mouse performance in the Barnes maze spatial 

memory task dependent on the sex of the animal. We found that both global KO of Cnih3 and 

hippocampal overexpression of Cnih3 affect spatial memory only in female animals. This study 

builds on previous literature which found CNIH3 to play a key role in the maintenance of AMPAR 
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signaling and function and adds new knowledge about how sex may play a role in AMPAR-

associated spatial memory. 

 

MATERIALS AND METHODS 

Animals 

All experimental protocols utilizing animals were approved by the Institutional Animal Care 

and Use Committee at Washington University in St. Louis. Male and female mice between 8-12 

weeks of age were used for all experiments. Breeding for the Cnih3tm1a(KOMP)Wtsi and the Cnih3-/- 

mouse colonies are described in the Experimental Results and in Figure 1B. 

Real-time quantitative PCR 

Mice were euthanized and the dorsal hippocampi from individual mice were rapidly 

dissected and immediately frozen on dry ice for real-time quantitative PCR (RT-qPCR) analysis.  

Tissue was homogenized for RNA extraction using the RNeasy Mini Kit (QIAGEN). RNA quantity 

and quality were measured with a Nanodrop Spectrophotometer (Thermo Fisher Scientific). 500 

ng of RNA was used to synthesize cDNA via reverse transcription using iScript Reverse 

Transcriptase Supermix (Bio-Rad). Each reaction tube contained a volume of 10µL containing 

500 nM of forward and reverse primers, 5 µL PowerUp SYBR Green Master Mix (QIAGEN), and 

4 µL of purified cDNA diluted 1:2. The reaction was carried out in an Applied Biosystems Quant 

Studio 6 PCR system (Thermo Fisher Scientific). The Ct scores from each sample were 

normalized to the expression of β-actin and to wild-type (WT) or viral controls. The expression 

fold change in gene expression was calculated using Double Delta Ct Analysis (ddCt).  

Primer sequences 
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Primers used for RT-qPCR were obtained from Integrated DNA Technologies. Primer 

sequences are as follows: Cnih3 exon 4: 5’-TGGTGCTGCCCGGAGT-3’ (forward), 5’-

CCAGAAGTGATAGAAAAGCAGAG-3’ (reverse). Viral Cnih3 gene variant 2: 5’-

GCGCTGCGCTCATCTTTTTC-3’ (forward), 5’-CTTGAAATCCGTTCTTAGCTCGT-3’ (reverse). 

Cnih2: 5’-ATATTCCATCCACGGCCTCTTCTGTCTGA-3’ (forward), 5’-

AGAAGAAGGACAGCAGGTAGAAGGCGAGTTTG-3’ (reverse). 

β-galactosidase staining 

To visualize the anatomical distribution of the Cnih3tm1a(KOMP)Wtsi gene in the brain, we 

stained brains of homozygous male and female mice using a β-galactosidase staining assay 

(West et al., 2015; Trifonov et al., 2016) to identify expression of the lacZ cassette contained 

within the Cnih3tm1a(KOMP)Wtsi gene. Mice were transcardially perfused with ice-cold 4% 

paraformaldehyde (PFA) in phosphate-buffered saline (PBS) while deeply anesthetized with 

isofluorane. The whole brain was extracted and post-fixed overnight in 4% PFA before the brains 

were transferred for equilibration in 30% sucrose in PBS. Equilibrated brains were flash-frozen 

and the entire brain was sectioned into 40 µm slices using a cryostat. Floating slices were washed 

3x15 minutes with rinse buffer (0.1M PB, 2 mM MgCl2, 0.1% Triton X-100, 0.01% Deoxycholic 

Acid, and 1.25 mM EGTA, pH 7.4) and then placed in X-gal staining solution (1 mg/mL X-gal and 

0.4 mg/mL Nitrotetrazolium blue in rinse buffer) for 18 hours overnight at 37 ⁰C. Following 

overnight incubation, brain slices were rinsed 3x15 minutes in rinse buffer, mounted onto slides, 

dehydrated in successive washes of ethanol (50, 75, 95, 100, and 100%), cleared in three 

changes of xylene, and cover-slipped using Cytoseal XYL mounting media (Richard-Allen). Slides 

were imaged on a Zeiss Axio Scan Z1 Brightfield slide scanner microscope (Zeiss). 

Barnes maze spatial learning task 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 14, 2019. ; https://doi.org/10.1101/724104doi: bioRxiv preprint 

https://doi.org/10.1101/724104
http://creativecommons.org/licenses/by-nc/4.0/


To assess changes in spatial learning and memory, a Barnes maze spatial learning task 

was conducted as previously described (Fakira et al., 2016). Mice were handled by the 

experimenter for three days prior to the experiment to minimize handling stress. The Barnes maze 

apparatus was a 91 cm circular platform surround by twenty equidistant 5 cm holes. One hole, 

referred to as the target hole, led to a dark escape box in which the mouse could hide. All other 

holes led to false bottoms. Spatial cues in the form of large shapes (triangle, square, hexagon, 

and cross) surrounded the apparatus to allow for spatial navigation (Barnes, 1979). Any-Maze 

tracking software (Stoelting) was used for video recording and animal tracking. During habituation 

to the apparatus, the mouse was gently placed in the center of the maze and allowed to explore 

the maze for 180s in two consecutive trials. Upon entering the target hole, the entrance was 

covered, and the animal remained in the target box for 1 minute. If the animal did not enter the 

target hole in the 180s period, the animal was gently guided to the hole. During training days 1-4, 

three 180s trials were conducted for each animal in 15min intervals. The table was thoroughly 

cleaned between each trial with 70% ethanol and the top table was rotated to minimize olfactory 

cues leading to the target hole. The latency to the first entry in the target hole (primary latency), 

the number of errors made prior to initial target hole entry (primary errors), and the path efficiency 

(actual distance traveled to target hole/shortest distance to target hole from starting location) were 

recorded. On Day 5, a 90s probe trial was conducted where the escape box was replaced with a 

false bottom to prevent entry. The primary latency, primary errors, and path efficiency were 

recorded. 

Generation of a Cnih3 expressing virus  

A viral vector was constructed using pENTR3C and the mus musculus mRNA sequence 

of CNIH3, variant 2 (Genbank Accession: BC115640).  Transcriptional variant was chosen based 

on expression level in the brain and hippocampus, as notated on the UCSC Genome browser 

(Kent et al., 2002). CNIH3 cDNA was PCR’ed from clone 40103001 from the Mammalian Gene 
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Collection (MGC) and cloned into pENTR3C adding an N-terminal Myc-tag and featured a t2A 

sequence followed by a GFP sequence to mark expressing cells.  Once assembled in pENTR3c, 

the transcript was transferred into a pAAV-EF1a using Gateway cloning. Upon confirmation of 

cloning for this vector, the EF1A promoter was replaced by a CamKIIa promoter via classical 

restriction enzyme-based cloning, resulting in the pAAV-CAMKII-myc-CNIH3-t2a-GFP construct. 

The plasmid, once fully sequence verified, was packaged with an AAV5 serotype at the Hope 

Center Viral Core at Washington University in St Louis. 

Intracranial injection surgeries 

WT mice were anesthetized with 1-3% isofluorane and head-fixed in a stereotaxic 

apparatus (Stoelting). 0.5 µL of AAV5-CAMKII-myc-CNIH3-t2a-GFP virus (1.7x1013 particles per 

mL) or 0.5 µL of AAV5-CAMKII-eYFP (8.6x1011 particles per mL, Virus Vector Core, The 

University of North Carolina at Chapel Hill) control virus was slowly infused bilaterally into the 

dorsal hippocampus (A/P: -1.8, Lat: ±1.4, D/V: -1.8). After three weeks, hippocampi were either 

extracted for RT-qPCR or mice underwent training in the Barnes maze. Following Barnes maze 

testing, mice were transcardially perfused with 4% PFA and brains were sectioned for 

immunohistochemical verification of viral placement. 

Immunohistochemistry 

40 µm free-floating brain slices from viral Cnih3 overexpression mice were stained with rabbit 

anti-myc primary antibody (Cell Signaling Technology, #2272) and goat anti-rabbit 594 Alexa 

Fluor secondary antibody (Life Technologies, #A11037). Slices were mounted and imaged via 

confocal microscope to visualize virally expressed myc-tagged CNIH3 protein (Figure 4A).  

Statistics and data analysis 

 For statistical analysis, datasets were analyzed using GraphPad Prism 8 software. For 

RT-qPCR experiments, one-way ANOVAs and unpaired two-tailed t tests were used to compare 
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mRNA expression between genotypes and viral overexpression compared to WT and YFP 

expressing controls. Normality of each dataset was determined using a Shapiro-Wilk test. After 

determining that male and female mice did not differ in gene expression, data were pooled across 

sexes. For behavioral analysis, datasets were analyzed by two-way ANOVA for genotype and 

sex, with post-hoc Sidak’s multiple comparison tests used to compare genotypes and viral 

overexpressing animals to WT and viral controls. One female Cnih3+/- mouse froze during the 

probe trial and did not move during the test; therefore, it was eliminated from the final analysis. 

Outlier values were identified using a Grubbs’ test and animals which were outliers in primary 

errors, primary latency, or path efficiency datasets were eliminated from the final analysis (one 

male and female Cnih3+/+ and Cnih3+/-, one male Cnih3-/- mouse, one female overexpressing 

mouse). In addition, viral expression and injection placement were confirmed for every animal 

which underwent intracranial viral injection prior to behavioral testing, and one female injected 

with YFP control virus was excluded from final analysis due to failure of viral expression. The 

normality of each dataset was determined using a Shapiro-Wilk test. Cnih3+/+ and Cnih3+/- 

datasets did not pass normality for primary errors and the Cnih3 overexpressing female dataset 

did not pass normality for path efficiency in the Barnes maze, therefore these datasets were also 

analyzed using a nonparametric Kruskal-Wallis or Mann-Whitney test within each sex. Changes 

in gene expression and spatial memory parameters were considered statistically significant with 

p < 0.05.  

 

EXPERIMENTAL RESULTS 

Generation and validation of a Cnih3 knockout (KO) mouse line  

To examine the involvement of CNIH3 in learning and memory behaviors, we developed 

and characterized a line of Cnih3+/+, Cnih3+/-, and Cnih3-/- C57BL/6 mice bred from 
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Cnih3tm1a(KOMP)Wtsi mice. Cnih3tm1a(KOMP)Wtsi heterozygous male C57BL/6N mice were obtained from 

the Knockout Mouse Project (KOMP) (IMPC, 2016) and backcrossed with WT female C57BL/6J 

mice to produce Cnih3tm1a(KOMP)Wtsi heterozygous offspring on a C57BL/6J background. 

Heterozygous Cnih3tm1a(KOMP)Wtsi male and female mice were bred to create WT, heterozygous 

(HET), and homozygous (HOM) Cnih3tm1a(KOMP)Wtsi offspring. The Cnih3tm1a(KOMP)Wtsi gene 

contained a polyadenylation (pA) site following exon 3 to attenuate transcription of subsequent 

exons and was thus designed to be a “knockout-first” allele (Figure 1A). However, RT-qPCR 

analysis of mRNA synthesized cDNA determined that Cnih3tm1a(KOMP)Wtsi heterozygote and 

homozygote animals expressed only a 60% reduction in exon 4 of Cnih3 compared to WT mice 

(One-way ANOVA, F(2,14) = 20.40, p < 0.0001, post-hoc Sidak’s multiple comparisons test to WT, 

p = 0.0001 and 0.0003, respectively), resulting in a Cnih3 knockdown (KD) instead of a full KO 

animal (Figure 1A). As CNIH2 is a functionally similar homolog of CNIH3, we also conducted RT-

qPCR to assess Cnih2 expression to determine if Cnih3 KD results in compensatory expression 

of Cnih2. No change in Cnih2 expression was observed in Cnih3tm1a(KOMP)Wtsi hetero- or 

homozygote animals compared to WT controls (One-way ANOVA, F(2,13) = 2.041, p = 0.1695) 

(Figure 1A). Male and female mice did not differ in gene expression levels. 

To create a line of total Cnih3 KO animals, we conducted additional breeding to eliminate 

exon 4 from the Cnih3tm1a(KOMP)Wtsi gene (Figure 1B). Cnih3tm1a(KOMP)Wtsi homozygote males were 

bred with Actin-FLPe females to excise the Splice Acceptor site (SA), pA site, and the lacZ and 

neomycin (neo) cassettes contained within the FRT sites (generation F1). Male F1 mice were bred 

with Actin-Cre females to excise exon 4 contained with the loxP sites (generation F2). Removal of 

exon 4 results in a frameshift mutation across exons 5 and 6 which results in nonsense mediated 

decay and complete loss of function. RT-qPCR analysis found a significant decrease in Cnih3 

expression between genotypes (one-way ANOVA, F(2,22) = 264.1, p < 0.0001). Cnih3+/- mice 

expressed 50% of Cnih3 exon 4 compared to WT animals and Cnih3-/- mice have a total 
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elimination of Cnih3 exon 4 expression (post-hoc Sidak’s multiple comparisons test, p < 0.0001 

each genotype) (Figure 1C). Cnih2 expression remained unchanged in Cnih3+/- and Cnih3-/- mice 

compared to WT mice (one-way ANOVA, F(2,22) = 1.097, p = 0.3513). No difference was observed 

in gene expression between male and female mice.  

Anatomical expression of Cnih3 in the brain 

 To identify where Cnih3 was expressed in the brain, we visualized Cnih3 expression using 

a β-galactosidase staining assay to probe the lacZ cassette contained within the Cnih3tm1a(KOMP)Wtsi 

gene (Figure 2). Cnih3 expression was highest in the prefrontal cortex (PFC), hypothalamus, 

cortex, amygdala, and hippocampus. Within the hippocampus, a region where AMPAR activity 

regulates spatial and contextual memory (Lee et al., 2003; Matsuo et al., 2008; Sanderson et al., 

2008; Xia et al., 2011; Sebastian et al., 2013; Penn et al., 2017), Cnih3 expression was especially 

pronounced. In particular, the highest Cnih3 expression was observed within the dentate gyrus 

(DG) and the CA1 regions of the dorsal hippocampus (Figure 2). No difference in Cnih3 

expression was observed between male and female mice. While confirmation of null CNIH3 

protein expression would be ideal to validate Cnih3-/- animals and to probe for anatomical 

expression of CNIH3, we were unable to obtain or validate a suitable antibody for CNIH3. 

Nonetheless, given that our Lacz study concurred with previous studies showing high expression 

of cornichon proteins in the hippocampus (Kato et al., 2010; Herring et al., 2013), we next 

examined spatial memory in these mice. 

Spatial memory is impaired in Cnih3 KO female mice 

AMPAR activity in the hippocampus plays a critical role in spatial memory (Lee et al., 2003; 

Matsuo et al., 2008), and AMPAR auxiliary proteins facilitate AMPAR-dependent mechanisms 

that underlie these behaviors (Volk et al., 2010; Gandhi et al., 2014; Li et al., 2017). To determine 

if CNIH3 plays a role spatial memory, we utilized the Barnes maze behavioral paradigm  (Barnes, 
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1979; Sunyer et al., 2007) to assess spatial memory in Cnih3+/- and Cnih3-/- mice (Figure 3A). In 

the Barnes maze, mice were trained to use spatial cues around the room to locate a target hole 

on a large circular table leading to a dark box in which the mouse could hide. During the Day 5 

probe, we observed significant main effects of sex and genotype on animal performance in 

primary errors (two-way ANOVA, sex [F(1, 54) = 12.58, p = 0.0008], genotype [F(2, 54) = 8.539, p = 

0.0006], and interaction [F(2, 54) = 12.60, p < 0.0001]) (Figure 3B) and primary latency (sex [F(1, 54) 

=  16.69, p = 0.0001], genotype [F(2, 54) =  7.549, p = 0.0013], and interaction [F(2, 54) =  15.03, p < 

0.0001]) (Figure 3C), and a significant effect of sex on path efficiency (sex [F(1, 54) = 13.85, p = 

0.0005], genotype [F(2, 54) =  1.690, p = 0.1941], and interaction [F(2, 54) =  7.870, p = 0.0010]) 

(Figure 3D). The sex-dependent effect of genotype on primary errors in the Barnes maze was 

also confirmed using a nonparametric Kruskal-Wallis test due to the presence of non-normal 

datasets (Female mice, p = 0.0065; Male mice, p = 0.6160). Overall, we conclude that Cnih3 

expression significantly modulates performance in the Barnes maze in a sex-specific manner. 

To further dissect the interaction between sex and genotype on spatial memory in the 

Barnes maze, post-hoc multiple comparisons were performed to compare Cnih3+/- and Cnih3-/- to 

sex-matched WT controls. We found that female Cnih3-/- mice made significantly more primary 

errors (post-hoc Sidak’s multiple comparisons test, p < 0.0001; nonparametric Dunn’s multiple 

comparison’s test, p = 0.0057) (Figure 3B), were slower to reach the target (post-hoc Sidak’s 

multiple comparisons test, p < 0.0001) (Figure 3C), and took less efficient paths to the target (p = 

0.0005) (Figure 3D) compared to WT female mice. However, no significant changes in primary 

errors (post-hoc Sidak’s multiple comparisons test, p = 0.9769; nonparametric Dunn’s multiple 

comparison’s test, p > 0.9999), primary latency (post-hoc Sidak’s multiple comparisons test, p = 

0.9904), nor path efficiency (p = 0.2547) were observed in Cnih3+/- female mice compared to 

female WT mice (Figure 3B-D). Conversely, male mice displayed no significant difference in the 

number of primary errors (post-hoc Sidak’s multiple comparisons test, Cnih3+/- : p = 0.9417 and 
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Cnih3-/- : 0.74444; nonparametric Dunn’s multiple comparison’s test, Cnih3+/- : p = 0.6501 and 

Cnih3-/- : p > 0.9999) (Figure 3B), primary latency to the target (post-hoc Sidak’s multiple 

comparisons test, Cnih3+/- : p = 0.7503 and Cnih3-/- : p = 0.2784) (Figure 3C), nor path efficiency 

(Cnih3+/- : p = 0.8664 and Cnih3-/- : p = 0.1967) (Figure 3D). We did not find evidence for sex 

differences in the performance of WT animals in the Barnes maze; male and female WT mice did 

not exhibit differences in primary errors (p = 0.9931), primary latency (p = 0.9875), nor path 

efficiency (p = 0.9514). Our results demonstrate that CNIH3 is necessary for spatial learning and 

memory in a sex-dependent manner.  

Validation of a new Cnih3 viral overexpression construct 

Since Cnih3 expression is necessary for spatial memory in female mice, therefore we 

wanted to determine if supraphysiological hippocampal Cnih3 is sufficient to enhance spatial 

memory. In order to investigate this, we generated an AAV5-CAMKII-myc-CNIH3-t2a-GFP virus 

to induce local overexpression of Cnih3 in hippocampal excitatory neurons. Bilateral injections of 

AAV5-CAMKII-myc-CNIH3-t2a-GFP or AAV5-CAMKII-eYFP control virus were performed, 

targeting the dorsal hippocampus in WT animals to induce Cnih3 overexpression (Figure 4A). To 

verify overexpression of Cnih3, RT-qPCR was performed to measure mRNA expression of Cnih3 

and Cnih2 (Figure 4B). The dorsal hippocampus of mice injected with the Cnih3 overexpression 

virus expressed ~200X more Cnih3 mRNA compared to YFP expressing controls (two-tailed 

unpaired t-test, p < 0.0001). Viral overexpression of Cnih3 did not result in a compensatory 

change in Cnih2 expression in the dorsal hippocampus (two-tailed unpaired t-test, p = 0.0593). 

Injection location and spread of virus were verified through immunofluorescent probing for the 

myc-tag adjacent to CNIH3 (Figure 4C). This new tool allowed us to overexpress Cnih3 only in 

the dorsal hippocampus to measure the consequences of CNIH3 overexpression specifically in 

this region on spatial memory behavior. 

Spatial memory is improved in female mice overexpressing Cnih3 in the dorsal hippocampus 
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To determine if Cnih3 overexpression localized in the dorsal hippocampus was sufficient 

to enhance spatial memory, Cnih3 was overexpressed in the dorsal hippocampus of WT male 

and female mice prior to spatial memory testing in the Barnes Maze (Figure 4C-D). During the 

Day 5 probe, we observed significant main effects of sex and viral expression on primary errors 

(two-way ANOVA, sex [F(1, 33) = 4.362, p = 0.0445], virus [F(1, 33) = 5.071, p = 0.0311], and 

interaction [F(1, 33) = 3.848, p = 0.0583]) (Figure 4E), and significant main effects of sex for primary 

latency (sex [F(1, 33) =  4.429, p = 0.0430], virus [F(1, 33) =  4.429, p = 0.1497], and interaction [F(1, 

33) =  4.783, p = 0.0359]) (Figure 4F). Sex and viral expression did not significantly affect path 

efficiency in the Barnes maze, but a significant interaction between these two effects was 

observed (sex [F(1, 33) = 1.908, p = 0.1765], virus [F(1, 33) = 3.536, p = 0.0689], and interaction [F(1, 

33) = 7.438, p = 0.0101]) (Figure 4G). To investigate the sex-dependent effect of viral expression 

on path efficiency within our non-normal dataset, a nonparametric Mann-Whitney two-tailed test 

was also utilized to identify a significant effect of Cnih3 hippocampal overexpression on path 

efficiency in the Barnes maze in female mice (Female, p = 0.0062; Male, p = 0.4002). Overall, we 

conclude that Cnih3 overexpression in the dorsal hippocampus significantly affects performance 

in the Barnes maze in a sex-specific manner. 

To further dissect the interaction between sex and Cnih3 hippocampal overexpression, 

post-hoc multiple comparison analysis was conducted to compare each dataset to YFP 

expressing control mice. Female mice overexpressing Cnih3 in the hippocampus committed fewer 

primary errors (post-hoc Sidak’s multiple comparisons test, p = 0.0121) (Figure 4E), took less 

time to reach the target (p = 0.0310) (Figure 4F), and took a more efficient path to the target (p = 

0.0059) (Figure 4G) compared to control females. Male mice overexpressing Cnih3 in the 

hippocampus demonstrated no significant difference in the number of primary errors (p = 0.9731) 

(Figure 4F), primary latency (p = 0.8497) (Figure 4G), nor path efficiency (p = 0.7947) (Figure 4G) 

compared to male mice expressing the control virus in the hippocampus. We did not observe any 
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significant differences between YFP expressing control male and female mice in the number of 

primary errors (p = 0.9953), the primary latency (p = 0.9980), nor the path efficiency (p = 0.5993). 

Overall, female mice overexpressing Cnih3 in the dorsal hippocampus exhibited enhanced spatial 

memory in the Barnes maze compared to YFP expressing female controls.  

 

DISCUSSION 

 We have developed and characterized a line of Cnih3+/+, Cnih3+/-, and Cnih3-/- C57BL/6 

mice to investigate the role of CNIH3 in the formation of spatial memory. We observed a significant 

attenuation of spatial memory in Cnih3-/- female mice compared to sex-matched controls, and a 

congruous enhancement of spatial memory only in female mice overexpressing Cnih3 in the 

dorsal hippocampus. Therefore, we have identified novel sex differences in the function of CNIH3 

in the brain.  

While prior studies have not investigated the role of sex in the function of AMPAR auxiliary 

proteins, studies of sex differences in AMPAR-dependent spatial memory tasks offer mixed 

results. Some studies reported overall superior spatial memory in WT male compared to female 

rodents (Monfort et al., 2015); others observed sex differences in search strategies, but not 

performance in spatial memory tasks (Locklear and Kritzer, 2014). Additional studies have 

reported sex differences only in spatial memory retention but not in short-term memory (Qi et al., 

2016) or have found no spatial memory differences due to sex in WT young adult rodents (Frick 

et al., 1999; Dachtler et al., 2011). We did not observe differences in spatial memory in the Barnes 

maze between WT male and female 8 – 12-week-old mice. However, due to the clear effect of 

sex on CNIH3-dependent spatial memory, future studies of CNIH3 will monitor female estrous 

cycles to control for the potential effects of estrous on AMPARs and spatial memory. 
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Multiple studies have also shown a sex-specific component in AMPAR-mediated synaptic 

plasticity underlying memory. Several studies have reported that differences between male and 

female rats in evoked AMPAR/NMDAR signaling in hippocampal synapses, along with differences 

in the magnitude of evoked LTP, may underlie sex differences in spatial memory (Monfort et al., 

2015; Qi et al., 2016). Estrous has been shown to modulate diffusion of AMPARs to the surface 

in female mice (Palomero-Gallagher et al., 2003; Tada et al., 2015; Bechard et al., 2018), which 

may underlie part of the reported importance of estrogenic mechanisms for memory in females 

(Cordeira et al., 2018; Frick et al., 2018; Koss et al., 2018; Wang et al., 2018; Koebele et al., 

2019). However, the sex-specific role of AMPARs in memory may also be specific to the type of 

memory task being tested, as a study by Dachtler et al. concluded that the GluA1 subunit was 

necessary only for male, not female, mice in fear conditioning memory, but that hippocampal 

GluA1 was necessary for spatial learning in both sexes (Dachtler et al., 2011). Therefore, more 

investigation is needed to determine how AMPARs and their auxiliary proteins mediate sex-

specific spatial memory mechanisms. 

 Furthermore, we are particularly interested in extending our findings to examine the role 

of CNIH3 in contextual opioid-associated memory. We previously reported an association 

between SNPs in CNIH3 and protection from opioid dependence in humans (Nelson et al., 2016). 

In addition, we have previously shown the importance of the dorsal hippocampus (Fakira et al., 

2016; Williams et al., 2019) and AMPAR signaling in the modulation of opioid-associated 

contextual memory (Morón et al., 2007; Billa et al., 2009; Billa et al., 2010; Xia et al., 2011). Sex 

differences in AMPAR activity have also been linked to cocaine-associated memory (Bechard et 

al., 2018; Ganguly et al., 2019). Therefore, the novel component of sex differences in spatial 

memory identified here suggest that CNIH3 could play a role in sex-dependent drug-associated 

memory.  
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 In conclusion, we have developed a line of Cnih3 KO mice and characterized the effect of 

Cnih3 expression on spatial memory in mice. Despite no differences in spatial memory observed 

between WT male and female mice, only female Cnih3-/- mice exhibited attenuated spatial 

memory, whereas female Cnih3 overexpressing mice exhibited an enhancement of spatial 

memory. This was the first study to identify a sex difference in the function of CNIH3, or in any 

AMPAR auxiliary protein to our knowledge. The results of this study offer insight into sex-

dependent AMPAR auxiliary protein regulation of memory, which may impact a wide range of 

AMPAR-dependent behaviors and disorders.  
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FIGURE LEGENDS 

Figure 1: Generation and characterization of Cnih3 knockout (KO) mice. 

(A) The KOMP Cnih3tm1a(KOMP)Wtsi gene contains a polyadenylation (pA) site after exon 3 to halt 

mRNA transcription. The pA site as well as lacZ and neo cassettes and a splice acceptor (SA) 

site are contained within two FRT sites. Exon 4 is surrounded by two loxP sites Cnih3tm1a(KOMP)Wtsi 

mice were bred to create a colony of WT, HET, and HOM Cnih3tm1a(KOMP)Wtsi mice. (B) RT-qPCR 

results for Cnih3tm1a(KOMP)Wtsi WT (n = 7), HET (n = 6), and HOM (n = 4) mice for expression of 

Cnih3 and Cnih2 mRNA. Relative mRNA expression is presented as relative fold change 

calculated by 2-(ddCt).  (C) Breeding scheme for Cnih3 KO mice from Cnih3tm1a(KOMP)Wtsi mice. (D) 

RT-qPCR results for Cnih3 and Cnih2 mRNA expression in Cnih3+/+ (n = 10), Cnih3+/- (n = 10), 

and Cnih3-/- (n = 5) mice (one-way ANOVA for genotype and post-hoc Sidak’s multiple comparison 

test, * denotes significance compared to WT (ns p > 0.05, *** p < 0.001). 

Figure 2: Cnih3 is strongly expressed in the dorsal hippocampus of Cnih3tm1a(KOMP)Wtsi mice. 

β-galactosidase staining for the lacZ cassette contained within the Cnih3tm1a(KOMP)Wtsi gene 

qualitatively identifies Cnih3 expression throughout the brain. Representative slices from lacZ- 

and from lacZ+ male and female are shown. A closeup image of a lacZ+ dorsal hippocampus 

shows strong lacZ expression in the CA1 and dentate gyrus regions of the dorsal hippocampus. 

Figure 3: Spatial memory is impaired in Cnih3-/- female mice, but not male mice.  

(A) Schematic of the Barnes maze protocol used to measure spatial memory in mice. (B – D) 

Barnes maze results of male and female Cnih3+/+ (male: n = 9; female: n = 12), Cnih3+/- (male: n 

= 10; female: n = 13), and Cnih3-/- (male: n =10; female: n = 5) mice during the probe trails is 

represented by (B) primary errors before location of the target hole, (C) primary latency to entry 

into the target hole, and (D) path efficiency to the target hole (two-way ANOVA for genotype and 

sex and post-hoc Sidak’s multiple comparisons test (ns p > 0.05, *** p < 0.001, **** p < 0.0001). 
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Figure 4: Spatial memory is enhanced in female mice overexpressing Cnih3 in the dorsal 

hippocampus. 

(A) AAV5-CAMKII-myc-CNIH3-t2a-GFP virus was injected bilaterally into the dorsal hippocampus 

of WT male and female mice to induce the overexpression of Cnih3 (-1.8 mm A/P, ±1.4 mm M/L, 

-1.8 mm D/V). (B) RT-qPCR analysis of Cnih3 and Cnih2 mRNA in the dorsal hippocampus 3 

weeks post viral injection of YFP control (n = 7) and Cnih3 overexpression (n = 5) viruses (two-

tailed unpaired t-test; ns p > 0.05, **** p < 0.0001). (C) Representative image of the dorsal 

hippocampus from a brain injected with AAV5-CAMKII-myc-CNIH3-t2a-GFP. Brain slices were 

probed for the myc-tag adjacent to Cnih3 in the viral construct. (D) Injection placements for AAV5-

CAMKII-myc-CNIH3-t2a-GFP and control AAV5-CAMKII-eYFP viruses of animals tested in the 

Barnes maze. (E – G) Barnes maze results of male and female mice injected with either control 

(male: n = 9; female: n = 8) or Cnih3 overexpression (male: n = 10; female: n = 10) virus during 

the probe trails is represented by (E) primary errors before location of the target hole, (F) primary 

latency to entry into the target hole, and (G) path efficiency to the target hole (two-way ANOVA 

for genotype and sex and post-hoc Sidak’s multiple comparisons test; ns p > 0.05, * p < 0.05, ** 

p < 0.01). 
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