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Abstract  27 

The application of statistical methods to comparatively framed questions about protein dynamics can 28 

potentially enable investigations of biomolecular function beyond the current sequence and structural 29 

methods in bioinformatics. However, chaotic behavior in single protein trajectories requires statistical 30 

inference be obtained from large ensembles of molecular dynamic (MD) simulations representing the 31 

comparative functional states of a given protein. Meaningful interpretation of such a complex form of 32 

big data poses serious challenges to users of MD. Here, we announce DROIDS v3.0, a molecular dynamic 33 

(MD) method + software package for comparative protein dynamics, incorporating many new features 34 

including maxDemon v1.0, a multi-method machine learning application that trains on large ensemble 35 

comparisons of concerted protein motions in opposing functional states and deploys learned 36 

classifications of these states onto newly generated protein dynamic simulations. Local canonical 37 

correlations in learning patterns generated from self-similar MD runs are used to identify regions of 38 

functionally conserved protein dynamics. Subsequent impacts of genetic and drug class variants on 39 

conserved dynamics can also be analyzed by deploying the classifiers on variant MD runs and 40 

quantifying how often these altered protein systems display the opposing functional states. Here, we 41 

present several case studies of complex changes in functional protein dynamics caused by temperature, 42 

genetic mutation, and binding interaction with nucleic acids and small molecules. We studied the impact 43 

of genetic variation on functionally conserved protein dynamics in ubiquitin and TATA binding protein 44 

and demonstrate that our learning algorithm can properly identify regions of conserved dynamics. We 45 

also report impacts to dynamics that correspond well with predicted disruptive effects of a variety of 46 

genetic mutations. In addition, we studied the impact of drug class variation on the ATP binding region 47 

of Hsp90, similarly identifying conserved dynamics and impacts that rank accordingly with how closely 48 

various Hsp90 inhibitors mimic natural ATP binding.   49 

Keywords  50 

Molecular dynamics, machine learning, molecular evolution, pharmaceuticals, genetic variation, binding 51 

interaction 52 

Statement of significance  53 

We propose a statistical method as well as offer a user-friendly graphical interfaced software pipeline 54 

for comparing simulations of the complex motions (i.e. dynamics) of proteins in different functional 55 

states. We also provide both method and software to apply artificial intelligence (i.e. machine learning 56 

methods) that enable the computer to recognize complex functional differences in protein dynamics on 57 

new simulations and report them to the user. This method can identify dynamics important for protein 58 

function, as well as to quantify how the motions of molecular variants differ from these important 59 

functional dynamic states. For the first time, this method of analysis allows the impacts of different 60 

genetic backgrounds or drug classes to be examined within the context of functional motions of the 61 

specific protein system under investigation.     62 

 63 

 64 
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Introduction  66 

The physicist Richard Feynman is said to have once famously quipped, ‘all biology is ultimately due to 67 
the wiggling and jiggling of atoms’. Stated with more precision, Feynman’s conjecture would imply that 68 
all biological function can ultimately be understood by analyzing rapid molecular motions in 69 
biomolecular structures as they alter or shift their functional state(s). Many decades later, these 70 
functional shifts in molecular dynamics are being illuminated by structural and computational biology. 71 
Examples of functionally altered dynamics include the destabilization of inter-residue contacts, in both 72 
disease malfunction and normal signal activation, as well as the stabilization of inter-residue contacts 73 
during protein folding, the formation of larger complexes, and various other binding interactions to 74 
small molecules. And while the functional role of rapid vibrations revealed by short term molecular 75 
dynamic (MD) simulations has been debated in the past, more recent empirical and computational 76 
studies have clearly demonstrated that differences in both rapid and directed vibrations can drive longer 77 
term functional conformational change (1, 2). From a broader perspective, if Feynman’s conjecture is 78 
true, then the specific details of a given protein system’s biomolecular dynamics will represent a 79 
potentially large source of latent variability in our functional understanding of the genome; a problem 80 
largely ignored by those disciplines currently generating the vast amounts of static forms of ‘omic’ type 81 
data (i.e. DNA sequence, transcript level, and protein structure)(3). However, in the last decade, 82 
simultaneous advances in the development of graphics hardware and biomolecular force fields has 83 
elevated our ability to computationally simulate MD long enough to capture ns to µs timescales for 84 
moderately-sized proteins (4, 5), and finally ‘see’ some of their functionally relevant motions. And now, 85 
the application of proper statistical comparisons of ensembles of short-timed framed MD simulation can 86 
potentially enable meaningful interpretations of comparative questions about protein dynamics (6). But 87 
due to the richly complex structure of data underlying the moving images generated by MD software, 88 
functional interpretation of modern MD simulations poses a serious challenge to current users, 89 
especially with comparatively-framed questions, where large ensembles of many production runs need 90 
to be generated and subsequently analyzed. A potential solution to this problem exists with the 91 
application of machine learning to the feature extraction and classification of the dynamic differences 92 
between ensembles of MD runs. These ensembles can be designed to represent pair-wise functional 93 
states of biomolecular systems (e.g. before/after chemical mutation or binding). Therefore, the high 94 
performance accelerated computation used to generate simulated protein motions for comparison can 95 
be effectively partnered with high performance methods for optimally extracting and learning the 96 
underlying dynamic feature differences defining the different functional states of proteins. Although 97 
machine learning has recently been applied to individual MD studies for a variety of specific tasks (7–9), 98 
there is no current software platform for the general application of machine learning to comparative 99 
protein dynamics.    100 

In 2018, we released DROIDS v1.2 and v2.0 (Detecting Relative Outlier Impacts from molecular 101 
Dynamic Simulation), a GPU accelerated software pipeline designed for calculating and visualizing 102 
statistical comparisons of protein dynamics drawn from large repeated ensembles of short dynamic 103 
simulations representing two protein states (6). This application allowed simple visual and statistical 104 
comparison of protein MD ensembles set up in any way the user wanted to define them. Here, we 105 
announce the release of DROIDS v3.0, which now offers multiple pipelines tailored for specific functional 106 
comparisons of systems comprised of combinations of proteins, nucleic acids, and small ligand 107 
molecules. Comparisons can include different temperatures, different protein binding states (i.e. to 108 
DNA, drugs, toxins or natural ligands), or divergent genetic/epigenetic mutant states. We also include a 109 
major new machine learning tool, maxDemon v1.0, a multi-machine learning post-processing application 110 
for DROIDS that trains on the data representing the comparatively divergent functional dynamic states, 111 
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and subsequently identifies functionally conserved dynamics and genetic and/or drug class binding 112 
variant effects when deployed on new MD simulations representing these variants of interest. Thus, 113 
much like James Clerk Maxwell’s mythical creature (10), maxDemon derives important information from 114 
all atom resolution observation of dynamic motion. The three primary features/aims of our newly 115 
expanded software is to (A) improve user experience in comparative protein dynamics, (B) enable the 116 
local detection of functionally conserved protein dynamics, and to (C) enable the assessment of the local 117 
dynamic impacts of both genetic and drug class variants within the functional context of protein system 118 
of interest. Because the machine learning model we employ is trained on MD data representing normal 119 
functioning dynamic states of a protein, this metric of impact is highly context dependent to how a given 120 
mutation or drug impacts a specific protein. Thus, it potentially gives considerably more functional 121 
relevance to the analysis of variants when compared to more general database-derived metrics of 122 
mutational tolerance (e.g. SIFT, PolyPhen2 etc.). In Table 1, we list five primary methodological pipelines 123 
in available in DROIDS 3.0+maxDemon to address functional questions in comparative protein dynamics. 124 
In our results and discussion here, we present data on four case studies of functional protein dynamics 125 
that include feature extraction and classification of (A) a simple temperature shift in ubiquitin dynamics, 126 
(B) mutational impacts on ubiquitin binding dynamics, (C) mutation specific impacts on DNA binding of 127 
TATA binding protein, and (D) comparison of binding dynamics of drug class variants that mimic ATP 128 
binding in Hsp90. 129 

 130 

Materials and Methods  131 

Overview of comparative dynamics and visualization with DROIDS v3.0 132 

Our DROIDS method/software leverages several important key concepts when making comparisons 133 

between MD runs. The method utilizes structural alignment to restrict comparison of dynamics between 134 

individual homologous amino acids. The method also restricts comparison averaged over atoms 135 

common to all amino acids (i.e. backbone C, N, O and Cα). The method also employs statistical 136 

ensembling to make a robust comparison between protein dynamics in different functional states (6). 137 

While this is computationally intensive, it is necessary because of the inherent chaotic nature and 138 

unpredictability of single protein trajectory projections. This logic is analogous to the many storm tracks 139 

repeatedly modeled by meteorologists to gain statistical confidence in a hurricane weather forecast, 140 

where an ensemble of model runs all with slightly different initial conditions has far more predictive 141 

power than any single simulation. In DROIDS, the user can decide how large the MD ensembles need to 142 

be based upon the inherent stability of the protein under investigation. Generally, an ensemble size of 143 

200 to 300 MD runs at 0.5-1 ns will suffice for most proteins. The dynamics is summarized by calculation 144 

of root mean square fluctuations (rmsf) over constant time intervals represented by a constant number 145 

of image frames defined by the user (thus allowing rmsf values to be sampled on repeatedly on an 146 

identical and thus comparable scale). The default number of frames (i) in the software for a given time 147 

slice is n=50 representing 0.01 ns of simulation time. The rmsf value is thus  148 

𝑟𝑚𝑠𝑓 =
1

4
∑ √

1

𝑛
∗ ∑(𝑣𝑗𝑥 − 𝑤𝑥)

2
+ (𝑣𝑗𝑦 − 𝑤𝑦)

2
(𝑣𝑗𝑧 − 𝑤𝑧)

2
𝑛

𝑗=1

4

𝑖=1
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where v represents the set of XYZ atom coordinates for i backbone atoms (C, N, O, and Cα) for a given 150 

amino acid residue over j time points and w represents the reference coordinate structure at the 151 

beginning of each MD production run for a given ensemble. Therefore, rmsf values as defined here 152 

represent molecular dynamics at the resolution of a single amino acid backbone segment, and the same 153 

resolution at which fine scale protein-level molecular evolution operates via amino acid replacement, 154 

insertion and deletion. The rmsf is also the most basic underlying functional quantity to extract from MD 155 

simulation as its underpins all hierarchical levels of motion (1). Two ensembles of rmsf values (a query 156 

set and a reference set) are compared to calculate average delta rmsf or dRMSF. The user can choose to 157 

see the average angstrom difference between sets of values, or more preferably the user can calculate 158 

the symmetric Kullback-Leibler divergence (i.e. relative entropy) between the two empirical statistical 159 

distributions of rmsf. The KL divergence generally provides a richer more informative view of dynamic 160 

differences with less loss of information than simple averaging. Thus dRMSF comparing rmsf values for 161 

two ensembles of size m for a given amino acid is  162 

𝑑𝑅𝑀𝑆𝐹𝑎𝑣𝑔 = (∑ 𝑟𝑚𝑠𝑓

𝑚

𝑖=1

)

𝑞𝑢𝑒𝑟𝑦

− (∑ 𝑟𝑚𝑠𝑓

𝑚

𝑖=1

)

𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
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or 164 
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)] 166 

 167 

The resulting dRMSF values are color mapped to either still structures or movie images of the dynamics 168 

according to either a ‘temperature’ scale where (+) dRMSF = amplified vibration is red and (–) dRMSF = 169 

dampened vibration is blue. A ‘stoplight’ scale where (+) dRMSF is green and (–) dRMSF is red is also 170 

available. On both scales, neutral values are shaded towards white.   171 

Functional classification of new MD simulation with maxDemon v1.0  172 

While users can easily employ DROIDS 3.0 to examine ensemble differences between functional genetic 173 

or binding states, the application of this knowledge to new MD simulation is nearly impossible due to 174 

the inherent complexity of the moving protein behavior. Our new post-processing software, maxDemon 175 

1.0, uses machine learning to label or classify the differences learned by a previous DROIDS 176 

query/reference state comparison when subsequently applied to one or more new MD runs. The 177 

machine learning-based detection of variant impacts on functional protein dynamics presented here is 178 

outlined schematically in Figure 1. Similar to the statistics for comparative dynamics, the learning 179 

algorithms are also applied individually to each amino acid backbone’s ensemble of rmsf values. This  180 

allows for similar single residue resolution in the results. Learners are also applied within the same user 181 

defined time slices of rmsf allowing for visualization of time resolution of classification of functional 182 

dynamic behaviors as well. The learning performance is summarized by tallying the average 183 

classification over all time slices for each amino acid. Thus, an average performance of 0.5 would 184 

indicate that the learners are not finding the functional states defined by and trained by the initial 185 
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DROIDS comparative analysis. Canonical correlations in the positional performance plots are key in 186 

detecting sequence encoded functionally conserved dynamics regions, as well as genetic and drug class 187 

variant impacts to these functional regions as well. This is described with more formality below. 188 

Machine learning training and validation  189 

The feature vectors (X) for machine learning are collections of rmsf values (xi) labeled according 190 

to a query (q) and reference state (r) defined by the DROIDS MD comparison (i.e. where labels yi are q = 191 

1 and r = 0).  192 

𝑋 = {(𝑥𝑖, 𝑦𝑖)}𝑖=1
𝑁  193 

The length of the vector (N) is defined by the length of the MD production run chosen by the user and 194 

the size of the ensemble of MD production runs taken. Thus if the user chooses an ensemble of 200 MD 195 

production runs each at a time length of 0.5 ns (= 2500 frames) and uses the default time interval of 50 196 

frames to calculate any given interval of rmsf then the resulting feature vector will contain 20,000 data 197 

values for training (i.e. 10,000 values each for q and r).  198 

Users create a ‘stacked model’ or meta-model containing up to seven different machine learning 199 

classification algorithms including K-nearest neighbors, naïve Bayes, linear discriminant analysis, 200 

quadratic discriminant analysis, random forest, adaptive boosting and support vector machine (with 201 

kernel options including parameter tuned linear, polynomial, laplace and radial basis functions). R 202 

packages employed here are KNN, MASS, kernlab, randomForest and ada. We restricted machine 203 

learning to ‘shallow’ learning methods due to the relatively small datasets created when resolving 204 

dynamics of protein systems to short slices of time over single amino acids and also because of the 205 

robustness of the R packages when applied sequentially over time and structural space. Therefore, we 206 

do not yet support implementation of deep learning neural networks. For methodologically robust 207 

results on small proteins, we generally recommend users select all seven available methods. As real 208 

features of dynamics should be detectable by any method of learning, the agreement of classification 209 

obtained by the creation of a stacked model utilizing different learning methods makes the learning less 210 

sensitive to methodological artifacts. Depending upon system resources, users can choose to include or 211 

omit methods from four categories of learning (i.e. instance-based = KNN, probabilistic = NB / LDA / 212 

QDA, black box = SVM, and ensemble learning = randomForest / adaboost. Users will want to use as 213 

many as their system resources can handle, however for faster processing, a minimum of three of the 214 

seven learning methods can be chosen. Currently, most methods run on single CPU cores, however, the 215 

more CPU intensive methods of random forest and adaboost algorithms are programmed to use all 216 

available CPU cores found on the system. SVM is often the slowest method for larger protein systems 217 

and can be omitted when more than 300 residues are present in the protein simulation.  218 

After learners are trained on the query and reference ensembles, they are validated on a new 219 

MD run that matches the state of the reference MD runs during training. For example, when analyzing a 220 

binding interaction where the reference ensemble of training runs are conducted in the unbound 221 

protein state, a new run will be conducted in the unbound state and a line plot of the machine learning 222 

performance (i.e. precision, recall and accuracy) will be generated for all positions on the protein. It 223 

would be expected that if comparative differences in dynamics observed in the training set have a 224 

genuine relation to function(s) defined during training, they will display repeated behavior in the new 225 

reference run and be identified by the stacked learning model generating local peaks in learning 226 
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performance (i.e. accuracy) at functional regions (Figure 1D). Learner performance for a given machine 227 

learning method is defined as   228 

′𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒′ =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
=

𝑇𝑃 + 0

𝑇𝑃 + 0 + 𝐹𝑃 + 0
 229 

Where TP, TN, FP, and FN are true positive, true negative, false positive, and false negative 230 

classifications resp. The zero value terms arise because the validation is conducted on simulation 231 

representing just the reference state of the DROIDS comparison (where yi = 0).  Therefore, accuracy, 232 

and precision are algebraically collapsed to a single equivalent performance metric while recall is always 233 

equal to 1.  234 

Identifying regions of conserved dynamics 235 

Functionally conserved dynamics are defined as ‘repeated or self-similar and sequence-dependent 236 

dynamics’ discovered after training machine learners on the functional state ensembles derived with 237 

DROIDS. Conserved dynamics are detected via significant canonical correlations in position specific 238 

learning performance patterns after the deployment of learners on new MD simulation runs that were 239 

setup identically to the reference dynamic state defined by the MD ensemble training set. We expect 240 

that functionally conserved dynamics will be sequence encoded and therefore should display a repeated 241 

position dependent signature in our learned pattern profiles whenever MD runs are set up identically to 242 

MD upon which learners were trained. Therefore, a significant local canonical correlation (i.e. Wilk’s 243 

lambda) between learning performance profiles of self-similar MD runs can be used to detect local 244 

regions of conserved protein dynamics.  245 

To detect functionally conserved dynamics after training and validation, an additional new MD 246 

run matching the functional reference state is created (i.e. matching the MD validation run). The 247 

learning performance of this run is compared to the MD validation run using a canonical correlation 248 

analysis conducted using all selected learners (i.e. the stacked model) across both space and time (i.e. 249 

fluctuations backbone atoms of individual amino acids over subdivided time intervals). Any sequence 250 

dependent or ‘functionally conserved’ dynamics can be recognized through a significant canonical 251 

correlation in the profile of the overall learning performance along the amino acid positions for the two 252 

similar state runs. In effect, this metric defines dynamics that are functionally conserved by capturing a 253 

signal of significant self-similarity in dynamics that co-localizes to a specific part of the protein backbone.  254 

                         𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑒𝑑𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑠 = 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 (𝐶𝐶𝑠𝑒𝑙𝑓) 255 

Significantly conserved regions calculated within a user defined sliding window (default value =20 256 

residues with cutoff of p<0.01) can be plotted upon the positional local correlational value profile (i.e. R 257 

value) and also can be mapped to the reference structure of the protein, colored in dark gray on a light 258 

background.  259 

Variant impact assessment 260 

By extension, mutational impacts of genetic or drug class variants on the functionally conserved 261 

dynamics can be quantified by their effects that range significantly beyond that observed in the self-262 

similar reference runs. Thus when canonical correlations of variants differ significantly from the self-263 

correlation observed in functionally conserved regions, according to a bootstrap test, we can plot the 264 
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magnitude of impact defining how the variant’s dynamics differs from the routine self-similar dynamics 265 

of the normal functioning protein. The impacts of dissimilar states caused by altered amino acid 266 

sequence or different binding partners are assessed through their local effect on the same canonical 267 

correlation identifying conserved dynamics. We introduce a metric of relative entropy relating the 268 

canonical correlations in both the self-similar and altered variant state. In essence, this is a metric of the 269 

‘impact’ of a given genetic or drug class variant within the context of normal functioning dynamics. For 270 

example, when trained on a natural binding interaction (e.g. DROIDS analysis comparing a DNA binding 271 

protein in its bound and unbound states), novel MD simulations with a variety of amino acid 272 

replacements can be deployed to see whether the learners can still recognize the functional dynamics in 273 

the mutant forms. In this case, functionally tolerated mutations will result in functionally conserved 274 

dynamics that do not vary outside of ± 3 standard deviation bounds of the self-similar runs, whereas 275 

functionally intolerant mutations will result in significant deviations from self-similarity of motion. An 276 

overall impact of a genetic and/or drug class binding variant on the conserved dynamic regions is 277 

calculated by  278 

                        𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑖𝑚𝑝𝑎𝑐𝑡 =  𝐶𝐶𝑠𝑒𝑙𝑓 ∗ 𝑙𝑜𝑔
𝐶𝐶𝑣𝑎𝑟𝑖𝑎𝑛𝑡

𝐶𝐶𝑠𝑒𝑙𝑓
 279 

Comparative plots of local variant impacts outside of the 3 standard deviation bound determined by the 280 

validation run are generated within a user defined sliding window.  Thus, this variant impact metric is 281 

designed to identify variant regions with dynamics that potentially alter disrupt conserved dynamic 282 

features of the normal functioning protein system.   283 

Four example applications (case studies) 284 

To demonstrate the performance and utility of DROIDS 3.0 + maxDemon 1.0, we ran the following four 285 

comparative case studies using the PDB IDs mentioned below. Bound and unbound files were created by 286 

deleting binding partners in UCSF Chimera and resaving PDBs (e.g. 3t0z_bound.pdb, 3t0z_unbound and 287 

3t0z_ligand). Each MD run ensemble consisted of 200 production runs at 0.5ns each explicitly solvated 288 

in a size 12 octahedral water box using TIP3P solvent model with constant temperature under an 289 

Anderson thermostat. The models were charge neutralized with both Na+ and Cl- ions. The heating and 290 

equilibration runs prior to production were 0.3ns and 10ns respectively. Prior to heating 2000 steps of 291 

energy minimization were also performed.  All seven available machine learning classifiers were 292 

trained on the functional MD ensembles and deployed upon new 5 ns production runs for each variant 293 

analyzed.   294 

Case study 1 (figure 2) – PDB ID = 1ubq – to analyze self-stability and effect of temperature shift in 295 

ubiquitin 296 

Case study 2 (figure 3)– PDB ID = 2oob – to analyze functional binding of ubiquitin to ubiquitin ligase and 297 

impacts of several tolerance pre-classified genetic variants 298 

Case study 3 (figure 4) – PDB ID = 1cdw – to analyze functional binding of TATA binding protein to DNA 299 

and impacts of several genetic variants 300 

Case study 4 (figure 5) – PDB ID = 3t0z – to analyze functional ATP binding in Hsp90 and subsequent 301 

impacts of six inhibitor drug variants  302 

Improvements and upgrades over previous versions 303 
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To enhance the user experience and scientific utility, DROIDS v3.0 offers many new features beyond 304 

earlier major release versions 1.2 and 2.0.  These are summarized below.  305 

- New GUI organization directs users to specific comparative tasks/applications in Table 1 306 

- A new control file builder for managing path dependencies in Linux is included  307 

- Amber16/18 support has been beta tested and is defined via paths.ctl file 308 

- Single or dual GPU user options are available for faster analyses   309 

- Automated structure prep (dry and reduce) via pdb4amber is now included in the GUI. The 310 

‘reduce’ variable is optional allowing users to either setup their own protonation states ahead of 311 

DROIDS, or simply allow DROIDS to hydrogenate the input structures entirely.    312 

- Program/package dependency installer script named ‘DROIDSinstaller.pl’ is included. It will lead 313 

users through all dependencies required after a fresh Linux build, including CUDA libraries and 314 

tools required for Nvidia GPU accelerated Amber in the Linux environment  315 

- KL divergence (= relative entropy) definition of dFLUX is now included as an option providing a 316 

richer color mapping of dFLUX in images and movies than the simple averaging algorithm 317 

offered in earlier DROIDS versions  318 

- Binding interaction analysis for both protein-DNA and protein-ligand systems is now offered 319 

with dedicated GUI for these comparisons. Protein-ligand system setup includes QMMM 320 

preprocessing in Antechamber and SQM. 321 

- LeAP control files for explicit solvent runs are now presented for advanced user modifications 322 

(e.g. changing ion concentration, water model, water box dimension of volume).        323 

- Dedicated GUI allowing genetic mutation placement (on DNA or AA) are included for setting up 324 

variants to analyze 325 

- Self-stability and temperature shift analysis has its own dedicated GUI, allowing users to copy 326 

the input pdb file to compare MD ensembles generated on identical structures at the same of at 327 

different temperatures 328 

- MaxDemon 1.0 - machine learning based detection of functionally conserved dynamic regions 329 

- MaxDemon 1.0 - machine learning based impact assessment of variants (genetic, structural or 330 

binding) 331 

- Dynamic visualization and movie rendering of machine learning classification performance 332 

- Virtual reality and ChimeraX compatibility is also supported (additional information and 333 

download code can be found here 334 

https://cxtoolshed.rbvi.ucsf.edu/apps/moleculardynamicsviewer 335 

https://github.com/kdiller713/ChimeraX_MolecularDynamicViewer 336 

Basic implementation of DROIDS and maxDemon 337 

The first step of any DROIDS analysis is to find or create two homologous PDB file format structures that 338 

represent the query and reference functional states of the protein system under investigation. Typically, 339 

these would represent the same protein in a bound vs. unbound state, or in a mutant vs. wildtype state. 340 

If the protein is interacting with a small ligand, and additional ‘ligand only’ PDB file should also be 341 

created for subsequent quantum mechanical optimization and preparation by Ambertools antechamber 342 

program. These files should be placed within the DROIDS download folder. Upon implementation via the 343 

command ‘perl DROIDS.pl’ launched from terminal within the DROIDS folder, the DROIDS graphical user 344 

interface (GUI) will help the user write a control file for required working path directories on their 345 

system (first use only) and then proceeds to a main GUI outlining the various types of comparisons that 346 
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can be generated (as detailed in Table 1) and the number of GPU available on the system. The next step 347 

is provides a user-friendly GUI to control and schedule Amber16/18 GPU-accelerated MD simulation to 348 

generate ensembles of short MD runs representing two functional protein states wanting to be 349 

compared. These functional comparisons are not limited, but would typically entail the impact of 350 

mutation (comparing dynamics before and after one or more amino acid replacements), the impact of 351 

an environmental change (comparing two states of temperature of solvent set up), or the impact of a 352 

molecular interaction (comparing bound to an unbound state). The DROIDS GUI will lead users through 353 

the building of a structural alignment file using UCSF Chimera’s MatchMaker and Match-Align tools. This 354 

will be needed later by the graphics components of DROIDS to make sure that only homologous regions 355 

of structures are being compared and analyzed. In this application, where the user is primarily 356 

interested in genetic or drug class variant impacts on an interactive signaling function, the typical 357 

training ensembles generated by DROIDS for further analysis with maxDemon should represent the 358 

normal binding function of the wild-type protein and therefore the bound vs unbound comparison 359 

would typically be used. A PDB file of the bound state can be the starting point and an unbound PDB 360 

model can be saved after deleting chains in the original file. If a small molecule ligand interaction is 361 

under study and requires application of an additional force fields such as GAFF, than an additional file 362 

representing only the ligand should also be generated and saved for preparation with antechamber 363 

software prior to building the solvent models using teLeAP. The GUI will pop open the .bat files that 364 

control more details of the simulation setup allowing advanced users to write more lines into the teLeAP 365 

modeling prep (e.g. to alter the water box dimensions, the water model itself, or to add additional ions 366 

beyond simple charge neutralization). The user should read all warnings provided to the terminal at this 367 

stage by the Amber software. Our GUI script will also double check the sizes of the files generated at this 368 

stage and will supply a warning if teLeap failed altogether to set up the complete model system for 369 

simulation. Upon successful setup the user can launch all the MD runs from the GUI. The requested jobs 370 

are automatically scheduled to each GPU one at a time by our software. When finished, the user can 371 

easily generate rmsf data by using the GUI to setup and launch cpptraj software provided in Ambertools. 372 

Thus the total process from file preparation, MD production and post-processing for DROIDS analysis by 373 

simply working down the buttons on each GUI from top to bottom and subsequently following the 374 

directions on the main terminal. After MD simulation and post-processing, DROIDS will take users to a 375 

second GUI for generating R plots and analyses for statistically comparing the dynamics, and then to a 376 

third GIU for visualization and movie generation. We refer users to our user manual and previous 377 

publication for more details. This third GUI has buttons to optionally launch our new machine learning 378 

application maxDemon if users wish to go beyond simple comparative protein dynamics and investigate 379 

novel simulations utilizing the DROIDS MD ensembles as a training set for subsequent machine learning.  380 

More detailed instructions to users are included with our DROIDS 3.0+maxDemon 1.0 user 381 

manual available in the GitHub repository.   382 

The main repository for DROIDS 3.0 and maxDemon 1.0 can be found here. Please follow the link to 383 

“Releases” and download the latest release as .tar.gz or .zip file 384 

https://github.com/gbabbitt/DROIDS-3.0-comparative-protein-dynamics   385 

and DOI: 10.5281/zenodo.3358976 concurrent with this publication 386 

https://zenodo.org/record/3358976#.XURVkOhKiiM     387 
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We also post various videos of examples using DROIDS, video tutorials, and ongoing projects here 388 

https://www.youtube.com/channel/UCJTBqGq01pBCMDQikn566Kw 389 

 390 

Results and Discussion  391 

To demonstrate the variety of comparative analyses that can be addressed with the new release of 392 

DROIDS 3.0 and maxDemon 1.0, we chose four different case studies of comparative protein dynamics. 393 

These included (A) an analysis of self-stability and temperature effects in single ubiquitin structure, (B) a 394 

functional genetic variant analysis of ubiquitin and ubiquitin ligase binding interaction, (C) a functional 395 

genetic variant analysis of DNA binding in TATA binding protein, and (D) a drug class variant analysis of 396 

compounds targeting the Bergerat ATP binding region of Hsp90 heat shock protein. 397 

Machine learning analysis of impacts due to simple environmental temperature shift   398 

 We first ran a null comparison as a ‘sanity check’ by running a query and reference ubiquitin (11) 399 

MD at the same temperatures (both 300K) and same solvent conditions. The DROIDS analysis (Figure 2A-400 

C) showed identical atom fluctuation profiles along the backbone and a random dFLUX profile indicative 401 

of nonsignificant differences due to small random local thermal differences in the training sets. The 402 

machine learning classification plots on new MD runs vary randomly around 0.5 reflecting the fact that 403 

the learning algorithms effectively had no features to train on (Figure 2D). As expected, no significantly 404 

conserved dynamics were identified either (Figure 2E). By contrast, a protein dynamic comparison run 405 

with a 50K temperature difference (Figure 2 F-H) shows a much higher machine learner performance 406 

upon deployment (i.e. 70-80% successful classification – Figure 2I). Because environmental temperature 407 

shifts are not expected to reflect evolutionary conserved dynamics (i.e. are not position dependent in 408 

their effect), they also subsequently do not result in significant canonical correlations in the learning 409 

profiles (Figure J). Representative time slices of the positional classifications in each of these 410 

experiments are shown in K and L resp and indicate that our machine learning is capable of extracting 411 

and identifying simple differences in dynamics due to temperature. Another interesting observation 412 

here was the slightly higher learning performance of the simpler machine learning methods QDA and 413 

LDA over others at all sites in the temperature shifted example. We interpret this to be related to the 414 

fact that underlying rmsf distributions are probably Gaussian, a critical assumption of these two models, 415 

with unequal variances caused by steric hindrances on the backbone. This would predict that QDA might 416 

outperform other learners in this situation and it appears that it does. We note that where more 417 

complex functional dynamics are concerned, the more sophisticated learning methods such as support 418 

vector machine and adaboost often perform slightly better than others. However, we also note that 419 

these performance differences are usually quite small and that all learning methods generally come to 420 

similar local conclusions about functional dynamics. We examine machine learning performance 421 

regarding more functional binding dynamics in ubiquitin. 422 

 423 

Machine learning analysis of impacts of genetic variants on a functional protein binding interaction 424 

To examine functional dynamics in ubiquitin, we conducted a DROIDS analysis comparing its two 425 

functional states, bound and unbound to the ubiquitin associated binding (UBA) domain of ubiquitin 426 
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ligase (12)(Figure 3A-D). This binding domain is highly conserved among the many other proteins that 427 

interact directly with ubiquitin. The binding interaction greatly reduces the atom fluctuation in ubiquitin 428 

at 3 characteristic positions, two loop structures centered at LEU 8 and ALA 46 and a portion of beta 429 

sheet at the C terminus (Figure 3C). These three regions also drive significant differences in dynamics 430 

across the whole protein. In novel self-similar MD runs on the bound state, we successfully detect 431 

significant canonical correlations indicating conserved dynamics in these three regions with a broad 432 

expanse in conserved dynamics (Figure 3E and F) across the UBA region (Figure 3G). We tested a set of 433 

24 mutations that included sites with the most and least tolerated effects on growth rate in vivo in yeast 434 

according to a study by Roscoe et al. (13). In this study, nearly all mutations at E18 and G53 are tolerated 435 

while nearly all mutations at K48 and R72 are not. Ultimately, the causes of tolerance in these variants 436 

are not known, and do not necessarily invoke functional problems in dynamics. However, the impacts 437 

that we did observed in simulation were on average twice as strong in the intolerant backgrounds when 438 

compared to the mutation tolerant backgrounds. And, while we did not see large differences in the 439 

number of mutational impacts on dynamics between tolerated and non-tolerated mutant groups, the 24 440 

mutations analyzed all show a general trend of dynamic impact falling outside of most of the functional 441 

binding region (Figure 3H-K), suggesting that ubiquitin may have evolved a tertiary structure that 442 

allosterically translates dynamic impacts to less functional regions of the protein. Some interesting 443 

exceptions to this rule were demonstrated by the very large impacts of K48L, K48W and R72D, centered 444 

squarely in the functionally conserved binding regions of ubiquitin, and would obviously heavily disrupt 445 

electrostatic charge interactions there as well.                     446 

Machine learning analysis of impacts of genetic variants on DNA binding interaction 447 

TATA binding protein (TBP) is a general transcription factor that binds DNA upstream in most 448 

highly regulated eukaryotic gene promoter regions (14). While relatively small, it is a mechanically 449 

dynamic protein with a C-clamp like structure that highly distorts the rigid DNA double helix by inserting 450 

four phenylalanine side-chains between base pairs. It is thought that this bending allows TBP to be more 451 

rapidly released from the TATA element, as opposed to TATA-less promoters, subsequently allowing 452 

more highly controlled regulatory responses in TATA box genes (15). Due to its obvious symmetry and 453 

ability to impart large forces during binding, we thought that it would represent a good candidate for 454 

comparison of its dynamics during its binding interaction with DNA. We conducted a DROIDS analysis 455 

comparing human TBP (16) in its functionally bound and unbound states (Figure 4A-C). TBP exhibits a 456 

characteristic large signature of dampening of atom fluctuation throughout its entire structure with 457 

most pronounced effects in two loop regions that interact with the minor groove of DNA (arrows in 458 

Figure 4A and 4C). Canonical correlations in new self-similar MD runs marking increased performance in 459 

classification were observed in these regions (Figure 4D) along with corresponding regions of conserved 460 

dynamics identified by significant Wilk’s lamda (Figure 4E). Conserved dynamics from these loop areas 461 

are connected through the chains in the beta sheet region of TBP spanning the DNA major groove 462 

contact. Mutational impacts of four variants affecting the binding loop most proximal to the C terminal 463 

exhibited followed our expectation of increasing impact ordering from R192Q, R192K, R192polyD, and 464 

R192polyW (Figure 4G and 4H). The polyD and polyW mutations incorporated 5 sequential ASP or TRP 465 

residues centered at R192, both causing the loop region to become more rigid (causing increased 466 

negative dFLUX). We expected the strong functional binding affect observed across nearly all residues in 467 

this system would make it relatively highly tolerant to single amino acid substitutions, even when 468 

located in the most functional binding loop. In accordance with our expectations, we found the most 469 
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impactful multiple mutation (i.e. R192polyW) significantly affected the dynamics of nearly 6 times more 470 

local residues than the least impactful single substitution (i.e. R192Q).     471 

 472 

Machine learning analysis of impacts of drug class variants targeting the ATP binding region of Hsp90  473 

In contrast to TBP, we wanted to use our method to examine a small molecule binding 474 

interaction in a protein with potentially more complex impacts on molecular dynamics. Hsp90 is a well-475 

known chaperone protein that assists the folding of many proteins and thereby mitigating many 476 

environmental stresses in the cell. Hsp90 even capacitates the evolutionary process by allowing 477 

potential phenotypic variation exhibited under stress to be hidden from natural selection until needed in 478 

response to environmental change (17). Hsp90 contains a highly conserved N-terminal domain where 479 

ATP binding and activation occurs. The binding of ATP physically changes motions in this region creating 480 

a ‘lid’ that closed during ATP binding and open when conversion to ADP occurs. Due to the role of Hsp90 481 

in stress mitigation in most tumors, it is a common drug target for ATP inhibitors in many cancer 482 

therapies (18, 19). The amino acid residues that interact with ATP in this region are well known and the 483 

inhibitor geldanamycin is known to mimic nearly all the local ATP contacts as well (20). Other more 484 

modern inhibitors interact with the ATP binding pocket quite differently (19, 21, 22), so we thought that 485 

this system would be a good candidate for comparative analysis of drug class variants with our software.     486 

  We conducted a DROIDS analysis comparing the dynamics of Hsp90 chaperone, a common 487 

drug target for inhibitors in many cancer therapies, in both its ATP bound and unbound states. The 488 

binding of ATP was discovered to significantly destabilize three co-localized alpha helical regions of the 489 

protein adjacent to and extending from the ATP binding site (Figure 5A-D). MaxDemon analysis 490 

confirmed the dynamics of this region to be highly conserved in new MD runs (Figure 5D-G). We also 491 

analyzed the impacts of the six drug class variants targeting the ATP site (20, 22, 21, 23, 24), but 492 

interacting differently with residues in this region (Figure 5H). The contacts in the ATP binding site are 493 

shown in Figure 5I. While the localized patterns of impacts of the drug variants were all quite similar to 494 

ATP (Figure 5J), the drug variants that most closely mimicked the contacts of ATP (i.e. geldanamycin) had 495 

far less impact on conserved dynamics than variants that interacted very differently with the binding 496 

pocket (i.e. benzamide SNX1321 and inhibitor FJ1(Figure H-I). We feel that this finding demonstrates not 497 

only demonstrates the potential of our method/software quite well, but it also demonstrates that while 498 

it is important to be able to target a druggable protein binding site (25), researchers should also consider 499 

how these various small molecules might alter, or fail to alter, the natural dynamics of the system. In 500 

situations where a drug might too closely mimic the dynamic effects of a natural activator like ATP, a 501 

hyperactivation response might occur in non-tumor cells leading to secondary cancer (26–28). 502 

Alternatively, other situations may require drug targeting that does not alter the natural dynamic 503 

behavior too much, potentially activating proteolytic systems in the cell. Our software allows more 504 

detailed investigations of these potential dynamic impacts of drug class variants.     505 

Conclusion 506 

We provide a well demonstrated method and user-friendly software pipeline for conducting statistically 507 

sound comparative studies of large ensembles of comparative protein dynamics. The method/software 508 

also now provides machine learning based extrapolations of effects on novel MD simulations 509 

representing various functional variants of interest to the user. While there currently is at least one 510 
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other software allowing users to connect sequence-based evolutionary metrics to protein dynamics (29), 511 

our method/software is unique in that regions of functional conservation are identified by analyzing 512 

self-similar features of dynamics themselves rather than relying upon marrying dynamics analysis to 513 

traditional static sequence-based approaches, which do not necessarily assume that a conserved 514 

function region has a strong dynamic component. By providing a systematic way of comparing protein 515 

dynamics at single residue resolution, our method/software provides an important step beyond 516 

traditional sequence-based bioinformatics, allowing investigators to gain a much more biophysically-517 

grounded view of functional and evolutionary change. Another advantage to our method/software is 518 

that our functional impacts (i.e. mutational tolerance) are defined solely within the context of protein 519 

dynamic system being simulated. This provides a much deeper look into protein specific function than 520 

current genomic and proteomic database methods of predicting mutational tolerance (30, 31) currently 521 

allow. As GPU technology continues to advance at a rapid pace over the next few years, our 522 

method/software may have profound potential application to the development of precision and 523 

personalized medicine, where understanding the detailed interaction between genetic and drug class 524 

variants within the context of specific protein dynamic systems will be greatly needed.   525 

 526 

Supporting Material 527 

The main repository for DROIDS 3.0 and maxDemon 1.0 can be found at the GitHub repository link 528 

below. Please follow the link to “Releases” and download the latest release as .tar.gz or .zip file 529 

https://github.com/gbabbitt/DROIDS-3.0-comparative-protein-dynamics       530 

We also post various videos of examples using DROIDS, video tutorials, and ongoing projects here 531 

https://www.youtube.com/channel/UCJTBqGq01pBCMDQikn566Kw 532 

A ‘live version’ of the figures in this manuscript is also available on our YouTube channel. 533 
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Table 1. Common learner assisted comparative protein dynamic investigations enabled by 623 

DROIDS 3.0 + maxDemon 1.0. 624 

QUESTION DROIDS 3.0 training 

comparison 

Deployment of learners 

in maxDemon  

Important notes 

Measure dynamic 

tolerances of single 

protein to various 

genetic mutations 

Two sets (ensembles) 

of MD on the same 

protein at the same 

temperature 

MD run on one or more 

genetic mutant 

structures 

Isolates MD impacts of 

mutation(s) from 

natural variability in 

self-similar dynamics 

Measure dynamic 

tolerances of DNA 

binding interaction to 

genetic mutation(s) 

MD ensembles 

comparing both the 

unbound and  DNA  

bound protein 

MD run on one or more 

unbound genetic 

mutant structures 

Isolates MD impacts of 

mutation from natural 

binding function of the 

system 

Measure dynamic 

tolerances of individual 

genetic differences to a 

given drug 

MD ensembles 

comparing both the 

unbound and drug 

bound protein 

MD run on one or more 

drug-bound genetic 

mutant structures 

Isolates MD impacts of 

mutation from novel 

drug binding function of 

the system 

Measure dynamic 

similarities of different 

drug candidates to 

natural ligand binding 

interaction 

MD ensembles 

comparing both the 

unbound and ligand 

bound protein 

MD run on one or more 

drug variant bound  

structures 

Isolates MD impacts of 

drug candidates from 

the natural binding 

function of the ligand 

Measure evolution of 

novel dynamics in 

paralog genes 

MD ensembles 

comparing two ortholog 

proteins (i.e. same 

gene different species) 

MD runs on one or 

more paralogs (i.e. 

duplicated genes in 

same species) 

Isolates potential MD 

novelty in duplicated 

gene product from 

nonfunctional or neutral 

changes in different 

species 

 625 
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 632 

Figure 1. Schematic overview of DROIDS 3.0 + maxDemon 1.0 software for machine learning-based 633 

detection of variant impacts on functionally conserved protein dynamics. The pipeline starts with (A) 634 

generation of two large ensembles of molecular dynamic (MD) simulations that represent a functional 635 

comparison of protein states (e.g. mutation, binding or environmental change). The root mean square 636 

fluctuations (rmsf) of protein backbone atoms in these ensembles are comparatively analyzed/visualized 637 

(i.e. using DROIDS) and are also later used as pre-classified training data sets for machine learning (i.e. 638 

using maxDemon). Note: in the pictured DROIDS analysis of nucleosome shows overall dampening of 639 

rmsf in the histone core with maximal dampening where the histone tails cross the DNA helix (B) New 640 

MD simulations are generated on two structures self-similar to the query state of training as well as a 641 

list of functional variants, and (C) up to seven machine learning methods are employed to classify the 642 

MD in the self-similar and variant runs according to the functional comparison defined by the initial 643 

training step. (D) The performance of learning is defined by average value of classification (i.e. 0 or 1) 644 

over 50 frame time slices for each amino acid position and regions of functionally conserved dynamics 645 

are later identified by significant canonical correlations in this learning efficiency (i.e. Wilk’s lamda) in 646 

self-similar MD runs. The impacts of variants are defined by relative entropy of variant MD compared to 647 

the MD in the self-similar runs and plotted when this entropy is significantly different from the variation 648 

in self-similarity (i.e. bootstrapped z-test). (E) A visual representation of the difference in local rmsf 649 

(dFLUX) is typically calculated using symmetric Kullback-Leibler (KL) divergence between the two 650 

distributions of rmsf in the training MD ensembles.  651 
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 652 

 653 

Figure 2. Analysis of environmental temperature change on non-functional ubiquitin dynamics. 654 

DROIDS image and analysis of random ubiquitin dynamics compared at the same (A-E) and different (F-J) 655 

temperatures. Note: blue color quantifies damped rmsf at temperature lowered by 50K. Note that 656 

performance is much higher when a temperature difference is modeled (D and I resp), however, as 657 

expected, neither comparison offers the machine learners a sequence-dependent profile by which to 658 

establish a signal of conserved dynamics (E or J).  The learner classifications for the best performing 659 

learner in this case (quadratic discriminant function: QDA) is shown imaged on the ubiquitin structure 660 

over time in both the (K) random dynamics and (L) temperature dampened dynamics. (Movies of this 661 

can be observed in supplemental file A) 662 
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 667 

Figure 3. Analysis of mutational impact and tolerance on functional ubiquitin dynamics. (A) DROIDS 668 

image and analysis of ubiquitin bound to the ubiquitin associated binding domain (UBA) of ubiquitin 669 

ligase. Note: blue color quantifies damped rmsf at binding interface. (i.e. negative dFLUX) also by the (B) 670 

respective rmsf profiles of bound and unbound training states and (C) the KL divergence or dFLUX profile 671 

colored by residue. Arrows indicate most prominent dampening of rmsf near loops at THR 9, ALA 46 and 672 

C terminus. (D) Significant differences in these rmsf profiles is determined by multiple-test corrected 673 

two sample KS test. (E) Local learning performance of each machine learning method in self-similar 674 

testing runs are shown color-coded by run and regions of functionally conserved dynamics, determined 675 

via significant local canonical correlation are shown in dark gray in both (F) traditional N to C terminal 676 

plot as well as (G) structural image. The mutational impacts of 24 genetic variants (H-K: six variants at 677 

each or four sites) are shown all demonstrating lack of impact in functionally conserved regions of the 678 

binding interaction.     679 
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 690 

 691 

 692 

Figure 4. Analysis of mutational impact and tolerance on DNA binding in Tata Binding Protein (TBP). 693 

DROIDS image and analysis of TBP in DNA-bound and unbound states showing (A) colored TBP structure, 694 

(B) respective rmsf profiles and (C) KL divergence (dFLUX) plot. Note: arrows indicate functional binding 695 

loops in the DNA minor groove red color indicates dampened rmsf. maxDemon analysis (D-E) identifying 696 

conserved dynamics supporting both minor groove binding loops and (F) connecting them through the 697 

central region of the beta sheet in the main body of TBP closest to the DNA.  Mutational impacts of 4 698 

genetic variants with increasing impact one of the functional loops are also shown (G) plotted and (H) on 699 

the TBP structure. They are R192K, R192D, R192Q and polyW centered at R192 in 1cdw.pdb and and 700 

position 161 (red arrow) in plots (Note: 31 position offset is due to DNA in the original file). 701 
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 715 

Figure 5. Analysis of drug class variant binding in the ATP-binding domain of Hsp90.  DROIDS image 716 

and analysis of Hsp90 in ATP-bound and unbound states showing (A) colored Hsp90 structure, (B) 717 

respective rmsf profiles and (C) KL divergence (dFLUX) plot and (D) significant differences in dynamics 718 

determined via the KS test. Note: arrows and green color indicate regions where rmsf is amplified in 719 

response to ATP binding. maxDemon analysis (E-G) identifying conserved dynamics connecting the ATP 720 

binding pocket and region of amplified rmsf. (H) Mutational impacts of 6 drug class variants targeting 721 

the ATP binding pocket of Hsp90 are plotted and (I) ordered by number of differences in structural 722 

contacts within the binding pocket. (J) Mutational impacts of these variants are demonstrated to 723 

predominantly impact the functionally conserved region of amplified rmsf thus mimicking the dynamic 724 

effect of functional ATP binding.   725 
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